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THE BIERI–NEUMANN–STREBEL INVARIANT OF
THE PURE SYMMETRIC AUTOMORPHISMS OF

A RIGHT-ANGLED ARTIN GROUP

NIC KOBAN AND ADAM PIGGOTT

Abstract. We compute the BNS-invariant for the pure symmet-
ric automorphism groups of right-angled Artin groups. We use

this calculation to show that the pure symmetric automorphism

group of a right-angled Artin group is itself not a right-angled

Artin group provided that its defining graph contains a separat-
ing intersection of links.

1. Introduction

In 1987, the Bieri–Neumann–Strebel (BNS) geometric invariant Σ1(G) was
introduced for a discrete group G. The invariant is an open subset of the
character sphere S(G) which carries considerable algebraic and geometric in-
formation. It determines whether or not a normal subgroup with Abelian
quotient is finitely generated; in particular, the commutator subgroup of G
is finitely generated if and only if Σ1(G) = S(G). If M is a smooth compact
manifold and G= π1(M), then Σ1(G) contains information on the existence
of circle fibrations of M . Additionally, if M is a 3-manifold, then Σ1(G) can
be described in terms of the Thurston norm. Other aspects of the rich theory
of BNS-invariant can be found in [BNS87].

Although Σ1(G) has proven quite difficult to compute in general, it has
been computed in the case that G is a right-angled Artin group [MV95],
and in the case that G is the pure symmetric automorphism group of a free
group [OK00]. In the present article, we generalize the result of [OK00] by
computing Σ1(G) when G is the pure symmetric automorphism group of a
right-angled Artin group. The outcome of the computation is recorded in
Theorem A, to be found in Section 4 below.
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We also provide an application of our computation. It was shown in
[CRSV10] that if A is the right-angled Artin group determined by a graph Γ
that has no separating intersection of links (no SILS), then the correspond-
ing group of pure symmetric automorphisms PΣ(A) is itself a right-angled
Artin group. We prove the converse by observing that when Γ has a SIL, the
BNS-invariant of PΣ(A) does not have a certain distinctive property that the
BNS-invariant of a right-angled Artin group must satisfy. Thus we prove the
following theorem.

Theorem B. The group PΣ(A) is isomorphic to a right-angled Artin group
if and only if the defining graph Γ contains no SILs.

Theorem B is indicative of a dichotomy within the family of groups
{PΣ(A)} determined by whether or not Γ has a SIL. Certain algebraic mani-
festations of this dichotomy were proved in [GPR12]. It would be interesting
to understand more geometric manifestations. Since right-angled Artin groups
are CAT(0) groups, we are lead to ask the following question:

Question 1.1. If the defining graph Γ contains a SIL, is PΣ(A) a CAT(0)
group?

This paper is organized as follows: in Section 2 and Section 3, we define
the BNS-invariant Σ1(G) and the pure symmetric automorphism group, re-
spectively, and record some useful facts which inform the arguments to follow.
We prove Theorem A in Section 4. This proof involves two cases with the first
handled in Section 4.1 and the second in Section 4.2. In Section 5, we prove
Theorem B.

2. The BNS-invariant

Let G be a finitely generated group. A character χ of G is a homomor-
phism from G to the additive reals. The set of all characters of G, denoted
Hom(G,R), is an n-dimensional real vector space where n is the Z-rank of
the Abelianization of G. Two non-zero characters χ1 and χ2 are equivalent if
there is a real number r > 0 such that χ1 = rχ2. The set of equivalence classes
S(G) = {[χ] | χ ∈ Hom(G,R)− {0}} is called the character sphere of G, and
this is homeomorphic to an (n− 1)-dimensional sphere. The BNS invariant
Σ1(G), a subset of S(G), may be described in terms of either the geometry of
Cayley graphs (see [BNS87]), or G-actions on R-trees (see [Bro87]). For our
purposes the latter is more convenient, and we now describe Σ1(G) from that
point of view.

Suppose G acts by isometries on an R-tree, T , and let � : G→ R+ be the
corresponding length function. For each g ∈ G, let Cg be the characteristic
subtree of g. If �(g) = 0, then g is elliptic, and Cg is its fixed point set; if
�(g) �= 0, then g is hyperbolic, and Cg is the axis of g. The action is non-
trivial if at least one element of G is hyperbolic, and Abelian if every element
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of [G,G] is elliptic. A non-trivial Abelian action on an R-tree must fix either
one or two ends of the tree, and is considered exceptional if it fixes only one
end. To each non-trivial Abelian action, and each fixed end e, we associate
the character χ such that |χ(g)|= �(g), and χ(g) is positive if and only if g
is a hyperbolic isometry which translates its axis away from the fixed end e.
We say g is χ-elliptic if χ(g) = 0, and χ-hyperbolic otherwise.

We are now able to give Brown’s formulation of Σ1(G): An equivalence class
[χ] ∈ S(G) is contained in Σ1(G) unless there exists an R-tree T equipped with
an exceptional non-trivial Abelian G-action associated to χ.

To demonstrate that [χ] ∈ Σ1(G), it suffices to show that in any R-tree T
equipped with a non-trivial Abelian G-action associated to χ, there exists a
line X such that X ⊆ Cg for all g ∈G. For this purpose, the following facts
about characteristic subtrees are invaluable (see [OK00]):

Fact A. If [g,h] = 1 and h is hyperbolic, then Ch ⊆Cg .

Fact B. If [g,h] = 1, then Cg ∩Ch ⊆Cgh.

Essentially, we work with a fixed finite generating set of G, we consider an
arbitrary non-trivial Abelian G-action on an arbitrary R-tree T , we let X ⊆ T
denote the axis of one χ-hyperbolic generator s, and we use Facts A and B to
demonstrate that X ⊆Ct for every other generator t. For this approach to be
successful we typically need a sufficient number of commuting relations in G.

To demonstrate that [χ] ∈Σ1(G)c, it is often convenient to make use of the
following well-known facts.

Lemma 2.1. Let χ ∈ Hom(G,R)− {0}. Suppose there is an epimorphism
φ : G → H and a character ψ ∈ Hom(H,R) such that χ = ψ ◦ φ. If [ψ] ∈
Σ1(H)c, then [χ] ∈Σ1(G)c.

Corollary 2.2. If A and B are non-trivial finitely-generated groups, and
χ ∈Hom(G,R)− {0} factors through an epimorphism G→A ∗B, then [χ] ∈
Σ1(G)c.

Proof. This follows from Lemma 2.1, and the fact that Σ1(A ∗B) = ∅. �

3. Right-angled Artin groups and their pure symmetric
automorphisms

Throughout, we fix a simplicial graph Γ, with vertex set V and edge set E.
For each vertex a ∈ V , the link of a is the set Lk(a) = {b ∈ V | {a, b} ∈ E},
and the star of a is the set St(a) = Lk(a)∪ {a}. For a set of vertices W ⊆ V ,
we write Γ \W for the full subgraph spanned by the vertices in V \W .

Let A = A(Γ) denote the right-angled Artin group determined by Γ. We
shall not distinguish between the vertices of Γ and the generators of A, thus
A is the group presented by〈

V | ab= ba for all a, b ∈ V such that {a, b} ∈E
〉
.
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For each vertex a ∈ V \Z, and each connected component K of Γ \ St(a),
the map

v �→
{
a−1va if v ∈K,

v if v ∈ V \K,

extends to an automorphism πa
K : A→ A. We say πa

K is the partial conju-
gation (of A) with acting letter a and domain K. We write P for the set
comprising the partial conjugations.

The pure symmetric automorphism group, PΣ(A), comprises those auto-
morphisms α :A→A which map each vertex to a conjugate of itself. Laurence
proved that PΣ(A) is generated by P [Lau95].

We let Z = {a ∈ V | St(a) = V }, and we may assume Z �= ∅ for the fol-
lowing reason: it follows immediately from Laurence’s result, together with
the observation that enriching Γ with a new vertex w adjacent to all other
vertices does not introduce new partial conjugations, and does not change the
domain of any existing partial conjugation. Let d : V × V →{0,1,2} denote
the combinatorial metric on V .

We now record three results, paraphrased from existing literature, which
make working with P tractable. A proof of the first is included because it is
so brief; the second follows immediately from the first.

Lemma 3.1 ([GPR12, Lemma 4.3]). If πa
K , πb

L ∈ P and d(a, b) = 2 and
b /∈K, then either K ∩L= ∅ or K ⊆ L.

Proof. Assume πa
K , πb

L ∈ P and d(a, b) = 2 and b /∈ K. For the sake of
contradiction, suppose ∅ �=K ∩ L �=K. Let u ∈K ∩ L and v ∈K \ L. Since
K is connected, there exists a path α in K from u to v. Since u ∈ L and
v /∈ L, α passes through a vertex w ∈ St(b). Since d(b,w)≤ 1 and w ∈K and
b ∈ Γ \ St(a), b ∈K—a contradiction. �

Lemma 3.2 ([GPR12, Corollary 4.4 and Lemma 4.7]). For each pair of
partial conjugations (πa

K , πb
L) ∈ P × P , exactly one of the following six cases

holds:

(1) d(a, b)≤ 1;
(2) d(a, b) = 2, a ∈ L, and b ∈K;
(3) d(a, b) = 2, K ∩L= ∅, and either a ∈ L or b ∈K;
(4) d(a, b) = 2, and either {a} ∪K ⊂ L or {b} ∪L⊂K;
(5) d(a, b) = 2, and ({a} ∪K)∩ ({b} ∪L) = ∅;
(6) d(a, b) = 2, and K = L.

The relation [πa
K , πb

L] = 1 holds only in the cases (1), (4) and (5).

Theorem 3.3 ([Toi12, Chapter 3]). Every relation between partial conju-
gations is a consequence of the following relations:

(1) [πa
K , πb

L] = 1 if (πa
K , πb

L) falls into one of the cases (1), (4), (5) of
Lemma 3.2;
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(2) [πa
Kπa

L, π
b
L] = 1 if K �= L and b ∈K.

It is convenient to introduce notation for certain products of partial con-
jugations with the same acting letter. We write δaK,L for the product πa

Kπa
L,

provided K �= L. We write ιa for the inner automorphism w �→ a−1wa for all
w ∈A, and we note ιa is simply the product of all partial conjugations with
acting letter a.

Next, we record some useful facts about the behavior of partial conjuga-
tions.

Lemma 3.4. If πa
K , πb

L ∈ P are such that a /∈ L and b ∈K and K ∩ L= ∅,
then πa

L ∈ P and [δaK,L, π
b
L] = 1.

Proof. Assume πa
K , πb

L ∈ P are such that a /∈ L and b ∈K and K ∩ L= ∅.
Let K ′ denote the connected component of Γ \ St(a) such that K ′ ∩ L �= ∅.
Since d(a, b) = 2 and a /∈ L and b /∈K ′ and K ′ ∩L �= ∅, the pair (πa

K′ , πb
L) falls

into case (6) of Lemma 3.2. Thus, K ′ = L. The relation [δaK,L, π
b
L] = 1 is (2)

in Theorem 3.3. �
Corollary 3.5. If a ∈ V \ Z and πb

L ∈ P , then [ιa, πb
L] = 1 if and only if

a /∈ L.

4. The BNS-invariant of PΣ(A)

Throughout this section, we consider an arbitrary non-trivial character
χ : PΣ(A)→ R. We write Σ for Σ1(PΣ(A)), and Σc for the complement of
Σ in S(PΣ(A)).

Lemma 4.1. Let πa
K , πa

L ∈ P with K �= L. If πa
K , πa

L and δaK,L are χ-

hyperbolic, then [χ] ∈Σ.

Proof. Suppose πa
K , πa

L and δaK,L are χ-hyperbolic. Consider a PΣ(A)-
action on an R-tree T that realizes χ. Let X = Cπa

K
= Cπa

L
= CδaK,L

. Let πc
M

be an arbitrary partial conjugation. If [πa
K , πc

M ] = 1 or [πa
K , πc

M ] = 1, then
X ⊆ Cπc

M
by Fact A; thus we may assume [πa

K , πc
M ] �= 1 and [πa

K , πc
M ] �= 1.

It follows that d(a, c) = 2. Since K ∩ L = ∅, we may assume without loss of
generality that c /∈K. Since d(a, c) = 2 and c /∈K and [πa

K , πc
M ] �= 1, the pair

(πa
K , πc

M ) falls into case (3) or (6) of Lemma 3.2.
First, consider the case that (πa

K , πc
M ) falls into case (3). Then a ∈M . By

Lemma 3.4, πc
K ∈ P and [δcK,M , πa

K ] = 1. By Fact A, X ⊆CδcK,M
. If c ∈ L, then

[δaK,L, π
c
K ] = 1 and X ⊆Cπc

K
by Fact A. By Fact B, X ⊆Cπc

M
. If c /∈ L, then

the pair (πa
L, π

c
K) falls into case (5) of Lemma 3.2 which implies [πa

L, π
c
K ] = 1.

By Fact A, X ⊆Cπc
K

which implies X ⊆Cπc
M

by Fact B.
Now consider the case that (πa

K , πc
M ) falls into case (6). Then a /∈M , c /∈K

and M =K. Since M ∩L=K ∩L= ∅ and a /∈M and [πa
L, π

c
M ] �= 1, the pair

(πa
L, π

c
M ) falls into case (3) of Lemma 3.2. Thus, c ∈ L. Since c ∈ L and

M =K, [δaK,L, π
c
M ] = 1, and by Fact A, X ⊆Cπc

M
. �
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Corollary 4.2. If [χ] ∈ Σc, then the following properties hold for each
vertex a ∈ V \Z:

(1) There are at most two χ-hyperbolic partial conjugations with acting let-
ter a.

(2) The inner automorphism ιa is χ-hyperbolic if and only if there is exactly
one χ-hyperbolic partial conjugation with acting letter a.

(3) If πa
K and πa

L are distinct χ-hyperbolic partial conjugations, then χ(πa
K) =

−χ(πa
L).

Lemma 4.3. Let πa
K , πa

L ∈ P with K �= L, and let b ∈ V . If πa
K , πa

L and ιb

are χ-hyperbolic, then [χ] ∈Σ.

Proof. Suppose πa
K , πa

L and ιb are χ-hyperbolic. If a= b, then [χ] ∈ Σ by
Corollary 4.2(3). Thus we may assume b �= a. Let T be an R-tree equipped
with a PΣ(A)-action that realizes χ. Let X = Cπa

K
= Cπa

L
. Since ιb is χ-

hyperbolic, there exists a connected component M of Γ \ St(b) such that πb
M

is χ-hyperbolic. If b /∈K, then[
πa
K , ιb

]
=

[
ιb, πb

M

]
= 1;

if b ∈K, then b /∈ L and [
πa
L, ι

b
]
=

[
ιb, πb

M

]
= 1;

in either case, Fact A yields

Cπa
L
=Cιb =Cπb

M
=X.

Let πc
N be an arbitrary partial conjugation. The lemma is proved if we

show X ⊆ Cπc
N
, for then the PΣ(A)-action fixes X setwise and is therefore

not exceptional. If πc
N commutes with any of the automorphisms πa

K , πa
L, π

b
M

or ιb, then X ⊆ Cπc
N

by Fact A. Thus, we may assume πc
N commutes with

none of these automorphisms. It follows that d(a, c) = d(b, c) = 2 and b ∈N .
Since K ∩ L = ∅, we may assume without loss of generality that c /∈ L. We
now consider cases based on whether or not N contains a.

First, we consider the case a ∈N . Since b ∈N and c /∈ L and [πc
N , πb

L] �=
1, the pair (πc

N , πb
L) falls into case (3) of Lemma 3.2; thus N ∩ L = ∅. By

Lemma 3.4, πc
L is a partial conjugation, and [πa

L, δ
c
L,N ] = 1. By Fact A, X ⊆

CδcL,N
. Since b ∈ N , b /∈ L, and by Corollary 3.5, [ιb, πc

L] = 1. By Fact A,
X ⊆Cπc

L
. By Fact B, X ⊆Cπc

N
.

Next, we consider the case a /∈N . Since a /∈N and c /∈ L and [πa
L, π

c
N ] �= 1,

the pair (πa
L, π

c
N ) falls into case (6) of Lemma 3.2; thus N = L. Let N ′ be

the component of Γ \ St(c) such that a ∈N ′. Therefore, [πa
L, δ

c
N,N ′ ] = 1. By

Fact A, X ⊆ Cδc
N,N′ . Since b ∈N , b /∈N ′, and by Corollary 3.5, [ιb, πc

N ′ ] = 1.

By Fact A, X ⊆Cπc
N′ . By Fact B, X ⊆Cπc

N
. �

Corollary 4.4. If [χ] ∈Σc, then exactly one of the following holds:
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(I) For each vertex a ∈ V \Z, there is at most one χ-hyperbolic partial con-
jugation with acting letter a.

(II) For each vertex a ∈ V \Z, ιa is χ-elliptic and there are either zero or two
χ-hyperbolic partial conjugations with acting letter a.

Motivated by the corollary above, we classify characters depending on
which case, if any, they fall into.

Definition 4.5. We say χ is type I if for each vertex a ∈ V \ Z, there is
at most one χ-hyperbolic partial conjugation with acting letter a. We say χ
is type II if for each vertex a ∈ V \Z, ιa is χ-elliptic and there are either zero
or two χ-hyperbolic partial conjugations with acting letter a.

4.1. Characters of type I.

Definition 4.6 (p-set). A set of partial conjugations Q⊆P is a p-set (or
a partionable set) if Q satisfies the following properties:

(1) For each vertex a ∈ V \ Z, Q contains at most one partial conjugation
with acting letter a.

(2) The set Q admits a non-trivial partition {Q1,Q2} with the property that
a ∈ L and b ∈K for each pair (πa

K , πb
L) ∈Q1 ×Q2.

We say {Q1,Q2} is an admissible partition of Q.

Remark 4.7. In the definition above, the first property is implied by the
second. In this instance we have preferred transparency to brevity.

Remark 4.8. An arbitrary maximal p-set Q, and an admissible partition
{Q1,Q2} may be constructed as follows. Begin with a partial conjugation πa

K .
Let b1, . . . , bn be the vertices of K. For j = 1, . . . , n, let Lj be the connected
component of Γ\St(bj) such that a ∈ Lj . Let a= a1, a2, . . . , am be the vertices
of

⋂n
j=1Lj �= ∅. For i = 1,2, . . . ,m, let Ki be the connected component of

Γ \ St(ai) such that b1 ∈Ki. Let

Q1 =
{
πa1

K1
, . . . , πam

Km

}
, Q2 =

{
πb1
L1
, . . . , πbn

Ln

}
and Q=Q1 ∪Q2.

Proposition 4.9. Suppose χ is type I and let H denote the set of χ-hyper-
bolic partial conjugations. Then [χ] ∈Σc if and only if H is contained in some
p-set Q.

Proof. Suppose χ is type I and H is contained in a p-set Q. Let {Q1,Q2}
be an admissible partition of Q, with

Q1 =
{
πa1

K1
, . . . , πam

Km

}
and Q2 =

{
πb1
L1
, . . . , πbn

Ln

}
.

Let G1 be the free Abelian group with basis {u1, . . . , um}, let G2 be the free
Abelian group with basis {v1, . . . , vn}, and let G=G1 ∗G2. Consider a map

such that: πai

Ki
�→ ui for i= 1, . . . ,m; π

bj
Lj

�→ vj for j = 1, . . . , n; and all other

partial conjugations are mapped to the identity. It follows from Theorem 3.3
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that this map determines an epimorphism φ : PΣ(A) → G. Since χ factors
through φ, by Corollary 2.2, [χ] ∈Σc.

Now suppose χ is type I and there is no p-set containing H. Let T be
an R-tree equipped with a PΣ(A)-action that realizes χ. Let πa

K ∈ H, and
let X = Cπa

K
. To prove the lemma it suffices to prove that X ⊆ Cπc

M
for an

arbitrary partial conjugation πc
M , because then we have that the action fixesX

setwise and hence is not exceptional. If πc
M commutes with πa

K , Fact A gives
that X ⊆Cπc

M
. Thus we may assume that πc

M does not commute with πa
K .

Next we show that the elements of H share the axis X . Let

I =
{
πb
L ∈H |X ⊆Cπb

L

}
.

Suppose H �= I, and let πb
L ∈H\ I . Since X ��Cπb

L
, we have that [πb

L, ι
a] �= 1,

and [πa
K , ιb] �= 1. By Corollary 3.5 we have a ∈ L and b ∈K. It follows that

(I,H\ I) is an admissible partition, and H is a p-set—a contradiction which
proves H= I.

Now consider an arbitrary partial conjugation such that πc
M does not com-

mute with πb
L or ιb whenever πb

L ∈ H. It follows that d(b, c) = 2 for all
πb
K ∈H. Since πc

M does not commute with ιb, b ∈M for each πb
L ∈H. Since

H ∪ {πc
M} is not a p-set, {{πc

M},H} is not an admissible partition. Thus
there exists πb

L ∈ H such that c /∈ L. Since d(b, c) = 2 and b ∈M and c /∈ L
and [πc

M , πb
L] �= 1, Lemma 3.4 gives that πc

L is a partial conjugation. Since
[δcL,M , πb

L] = 1, Fact A gives X ⊆ CδcL,M
. By Corollary 3.5, [πc

L, ι
b] = 1. By

Fact A, X ⊆Cπc
L
. By Fact B, X ⊆Cπc

M
. �

4.2. Characters of type II.

Definition 4.10 (δ-p-set). A set of partial conjugations Q⊆P is a δ-p-set
if Q satisfies the following properties:

(1) For each vertex a ∈ V \Z, Q contains either zero or two partial conjuga-
tions with acting letter a.

(2) The set Q admits a non-trivial partition {Q1,Q2} such that a ∈ L or
b ∈K or K = L for each pair (πa

K , πb
L) ∈Q1 ×Q2.

We say {Q1,Q2} is an admissible δ-partition of Q.

Remark 4.11. It follows from the definitions that if πa
K1

, πa
K−1

∈ Q and

K1 �=K−1, then either πa
K1

, πa
K−1

∈ Q1 or πa
K1

, πa
K−1

∈ Q2. Further, for each

quadruple (
πa
K1

, πa
K−1

, πb
L1
, πb

L−1

)
∈Q1 ×Q1 ×Q2 ×Q2,

a ∈ Li and b ∈Kj and K−i = L−j for some i, j ∈ {−1,1}.

Lemma 4.12. Let πa
K1

, πa
K2

, πb
L1
, πb

L2
∈ P be distinct partial conjugations.

Then [πa
Ki

, πb
Lj
] �= 1 for all i, j ∈ {1,2} if and only if {πa

K1
, πa

K2
, πb

L1
, πb

L2
} is a

δ-p-set.
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Proof. Assume [πa
Ki

, πb
Lj
] �= 1 for all i, j ∈ {1,2}. Without loss of generality,

assume a /∈ L2 and b /∈K2. Since a /∈ L2 and b /∈K2 and [πa
K2

, πb
L2
] �= 1, the

pair (πa
K2

, πb
L2
) falls into case (6) of Lemma 3.2; thus K2 = L2. Since b /∈K2

and K2 ∩ L1 = L2 ∩ L1 = ∅ and [πa
K2

, πb
L1
] �= 1, the pair (πa

K2
, πb

L1
) falls into

case (3) of Lemma 3.2; thus a ∈ L1. Since a /∈ L2 and K1 ∩ L2 =K1 ∩K2 =
∅ and [πa

K1
, πb

L2
] �= 1, the pair (πa

K1
, πb

L2
) falls into case (3) of Lemma 3.2;

thus b ∈ K1. Thus {{πa
K1

, πa
K2

},{πb
L1
, πb

L2
}} is an admissible δ-partition of

{πa
K1

, πa
K2

, πb
L1
, πb

L2
}. The converse follows immediately from the definitions

and Lemma 3.2. �

Lemma 4.13. Let πa
K1

, πa
K2

, πc
M be distinct partial conjugations, and let T

be a R-tree equipped with a PΣ(A)-action that realizes χ. If πa
K1

and πa
K2

are

χ-hyperbolic, c /∈K1 and Cπa
K1

�Cπc
M
, then c ∈K2 and πc

K1
∈ P .

Proof. Suppose πa
K1

and πa
K2

are χ-hyperbolic and c /∈K1. Let T be an R-
tree equipped with a PΣ(A)-action that realizes χ, and suppose Cπa

K1
�Cπc

M
.

It follows that d(a, c) = 2.
Since c /∈K1 and [πa

K1
, πc

M ] �= 1, the pair (πa
K1

, πc
M ) falls into either case (3)

or case (6) of Lemma 3.2. If (πa
K1

, πc
M ) falls into case (3), a ∈ M . By

Lemma 3.4, πc
K1

∈ P . Since [δcK1,M
, πa

K1
] = 1, but Fact B cannot be used, we

must have that [πc
K1

, πa
K2

] �= 1; thus (πc
K1

, πa
K2

) falls into case (3) of Lemma 3.2,
and c ∈K2. If (π

a
K1

, πc
M ) falls into case (6), we have a /∈M and M =K1. But

then since a /∈M and M ∩K2 = ∅ and [πa
K2

, πc
M ] �= 1, the pair (πa

K2
, πc

M ) falls
into case (3) of Lemma 3.2. Thus c ∈K2. �

Proposition 4.14. Suppose χ is type II and let H denote the set of χ-
hyperbolic partial conjugations. Then [χ] ∈Σc if and only if H is contained in
some δ-p-set Q.

Proof. Suppose H is contained in some δ-p-set Q. Let {Q1,Q2} be an
admissible partition of Q with

Q1 =
{
πa1

K1
, πa1

L1
, . . . , πam

Km
, πam

Lm

}
and Q2 =

{
πb1
M1

, πb1
N1

, . . . , πbn
Mn

, πbn
Nn

}
.

Let G1 be the free Abelian group with basis {u1, . . . , um}, G2 be the free
Abelian group with basis {v1, . . . , vn}, and G=G1 ∗G2. Define φ : PΣ(A)→
G by πai

Ki
�→ ui and πai

Li
�→ u−1

i for i = 1, . . . ,m, π
bj
Mj

�→ vj and π
bj
Nj

�→ v−1
j

for j = 1, . . . , n, and all other generators map to the identity. For πai

Ki
∈

Q1 and π
bj
Mj

∈ Q2, we have either ai ∈ Mj or Ki = Mj , and in either case,

[πai

Ki
, π

bj
Mj

] �= 1. Thus, φ is a well-defined epimorphism. Since χ factors through

this map, by Corollary 2.2, we have [χ] ∈Σc.
Suppose H is not contained in some δ-p-set Q. Let T be an R-tree equipped

with an PΣ(A)-action that realizes χ. Since χ is type II, we have πa,K , πa,L ∈
H for some vertex a ∈ V \Z. Let X =Cπa

K
=Cπa

L
.
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First, we will show X = Cπb
M

for each πb
M ∈ H. Define I = {πb

M ∈ H |
X = Cπb

M
}. Assume H �= I, and let πb

M ∈H \ I. Since πb
M ∈H, there exists

πb
N ∈ H where M �= N , and clearly πb

N ∈ H \ I. Let πc
Q ∈ I. Again, there

must be πc
R ∈ I such that Q �=R. By Lemma 4.12, (I,H\I) is an admissible

δ-partition which is a contradiction, so H= I.
Now let πb

M be an arbitrary element of P , and let

H=
{
πa1

K1
, πa1

L1
, . . . , πam

Km
, πam

Lm

}
.

By Lemma 4.13, either X ⊆ Cπb
M

or without loss of generality, b ∈ Ki and

πb
Li

∈ P for each i = 1, . . . ,m. Assume the latter is true, so either ai /∈ M
for some i ∈ {1, . . . ,m} or ai ∈ M for each i ∈ {1, . . . ,m}. If ai /∈ M , then
πb
M commutes with πai

Li
which implies by Fact A that X ⊆Cπb

M
. Suppose for

each i = 1, . . . ,m, ai ∈M . If Li ∩ Lj = ∅ for some i �= j, then [πb
Li
, π

aj

Lj
] = 1

which implies X ⊆ Cπb
Li
. Since a ∈M and b /∈ Li and Li ∩M = ∅, we have

[δbLi,M
, πai

Li
] = 1. By Fact A, X ⊆ CδbLi,M

, and by Fact B, X ⊆Cπb
M
. Suppose

Li∩Lj �= ∅ for each pair (i, j). Then Li = Lj for each pair (i, j) since these are
connected components of Γ \ St(b). Denote by L this connected component.
Then ({πb

M , πb
L},H) is an admissible partition of the δ-p-set H ∪ {πb

M , πb
L}

which is a contradiction. Therefore, X ⊆Cπb
M
, and [χ] ∈Σ. �

Proposition 4.9 and Proposition 4.14 prove our first main theorem.

Theorem A. Let χ : PΣ(A) → R be a character, and let H denote the
set of χ-hyperbolic partial conjugations. Then [χ] ∈ Σc if and only if H is
contained in a set of partial conjugations Q such that either:

(1) The set Q admits a partition {Q1,Q2} with the property that a ∈ L and
b ∈K for each pair (πa

K , πb
L) ∈Q1 ×Q2; or

(2) For each vertex a ∈ V \Z, ιa is χ-elliptic, and Q contains either zero or
two partial conjugations with acting letter a; and Q admits a partition
{Q1,Q2} with the property that a ∈ L or b ∈K or K = L for each pair
(πa

K , πb
L) ∈Q1 ×Q2.

Example 4.15. Let A= 〈a, b, c, d, e | [a, b], [b, c], [c, d], [c, e]〉. The pure sym-
metric automorphism group PΣ(A) is generated by the set{

πa
{c,d,e}, π

b
{d}, π

b
{e}, π

c
{a}, π

d
{a,b}, π

d
{e}, π

e
{a,b}, π

e
{d}

}
,

so S(PΣ(A)) is a 7-dimensional sphere. The maximal p-sets are:

(1) Q1 = {πa
{c,d,e}, π

c
{a}, π

d
{a,b}, π

e
{a,b}} with admissible partition {πa

{c,d,e}} and

{πc
{a}, π

d
{a,b}, π

e
{a,b}},

(2) Q2 = {πa
{c,d,e}, π

b
{d}, π

d
{a,b}} with admissible partition {πa

{c,d,e}, π
b
{d}} and

{πd
{a,b}},
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(3) Q3 = {πa
{c,d,e}, π

b
{e}, π

e
{a,b}} with admissible partition {πa

{c,d,e}, π
b
{e}} and

{πe
{a,b}}, and

(4) Q4 = {πd
{e}, π

e
{d}}.

The only maximal δ-p-set is {πb
{d}, π

b
{e}, π

d
{a,b}, π

d
{e}, π

e
{a,b}, π

e
{d}} with ad-

missible partition {πb
{d}, π

b
{e}} and {πd

{a,b}, π
d
{e}, π

e
{a,b}, π

e
{d}}. Therefore, Σc

consists of the characters [χ] such that:

(1) χ sends all generators to zero except maybe those generators in Qi for
some 1≤ i≤ 4, or

(2) χ(πb
{d}) = −(πb

{e}), χ(π
d
{a,b}) = −χ(πd

{e}), χ(π
e
{a,b}) = −χ(πe

{d}), and χ

sends all other generators to zero.

5. Right-angled Artin groups with separating intersecting links

A graph Γ has a separating intersection of links (SIL) if there exists a
pair a, b of distinct non-adjacent vertices such that Γ \ (Lk(a) ∩ Lk(b)) has a
connected componentM containing neither a nor b. The following proposition
was proven in [CRSV10], and we state the result in terms of our particular
circumstance.

Proposition 5.1 ([CRSV10, Theorem 3.6]). If the defining graph Γ con-
tains no SILs, then PΣ(A) is isomorphic to a right-angled Artin group.

In this section we prove the converse to Proposition 5.1, which completes
the proof of Theorem B. We continue to use the notation described above.

Given a non-trivial character ψ :A→R, we write Γψ for the full subgraph
of Γ spanned by the set of ψ-hyperbolic vertices. The subgraph Γψ is called
dominating if every vertex in Γ is either in, or adjacent to a vertex in, Γψ . It
was shown in [MV95] that:

Theorem 5.2 ([MV95, Theorem 4.1]). Suppose [ψ] ∈ S(A). Then [ψ] ∈
Σ1(A) if and only if Γψ is connected and dominating.

For each set of vertices U ⊆ V , we write S(U) for the sub-sphere{
[ψ] ∈ S(A) | ψ(v) = 0 for all v ∈ V \U

}
.

We note that S(U) is a sub-sphere of dimension |U | − 1 (we consider S(∅) to
be a sub-sphere of dimension −1). We say S(U) is a missing sub-sphere if
S(U)⊆Σ(A)c, and we note this holds exactly when the full subgraph spanned
by U is disconnected or non-dominating. If U spans a subgraph of Γ which
is non-dominating, then every subset of U spans a subset of Γ which is non-
dominating; if U spans a subgraph of Γ which is disconnected, then every
subset of U spans a subset of Γ which is disconnected or non-dominating. It
follows that if S(U) and S(W ) are missing sub-spheres, then S(U ∩W ) is
a missing sub-sphere. It also follows that Σ1(A) is constructed from S(A)
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by removing the maximal missing sub-spheres. Viewing the construction of
Σ1(A) in this distinctive way, we observe the following:

Lemma 5.3. If A is a right-angled Artin group, and S1, . . . , Sp ⊆ S(A) are
the maximal missing sub-spheres, then

rk
(
A/[A,A]

)
− rk

(
Z(A)

)
= 1+

∑
i

dim(Si)−
∑
i<j

dim(Si ∩ Sj)

+
∑

i<j<k

dim(Si ∩ Sj ∩ Sk)− · · ·+ (−1)n−1 dim(S1 ∩ · · · ∩ Sp).

Proof. Since rk(A/[A,A]) = |V |, and rk(Z(A)) = |Z|, the lemma is proved
if we show that the right-hand side of the equation sums to |V \Z|. It follows
from Theorem 5.2 that, for each i, Si = S(Ui) for some maximal set of vertices
Ui which spans a disconnected or non-dominating subgraph of Γ. For each
vertex v ∈ V \Z, the singleton set {v} spans a non-dominating subgraph of Γ,
and hence v is contained in at least one set Ui. Any set of vertices containing
an element of Z spans a connected and dominating subgraph of Γ. Thus we
have V \ Z = U1 ∪ U2 ∪ · · · ∪ Up. Now the Principle of Inclusion–Exclusion,
together with the identity

∑p
i=1(−1)i−1

(
p
i

)
= 1, gives:

|U1 ∪U2 ∪ · · · ∪Up|
=

∑
i

|Ui| −
∑
i<j

|Ui ∩Uj |

+
∑

i<j<k

|Ui ∩Uj ∩Uk| − · · ·+ (−1)n−1|U1 ∩ · · · ∩Up|

=
∑
i

(
dim(Si) + 1

)
−

∑
i<j

(
dim(Si ∩ Sj) + 1

)
+

∑
i<j<k

(
dim(Si ∩ Sj ∩ Sk) + 1

)
− · · ·+ (−1)n−1

(
dim(S1 ∩ · · · ∩ Sp) + 1

)
= 1+

∑
i

dim(Si)−
∑
i<j

dim(Si ∩ Sj)

+
∑

i<j<k

dim(Si ∩ Sj ∩ Sk)− · · ·+ (−1)n−1 dim(S1 ∩ · · · ∩ Sp).
�

Next, we characterize the maximal missing sub-spheres in S(A) by a prop-
erty which makes no reference to the canonical generating set of A, thereby
allowing us to identify the only candidates for maximal missing sub-spheres
in S(G) when we do not yet know whether or not G is a right-angled Artin
group.
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A normal subgroup K in a finitely-generated group G is a complement
kernel if K = ker(ψ) for some [ψ] ∈Σ(G)c. For such K, the set{

[ψ] ∈Σ1(G)c |K ⊆ ker(ψ)
}

is the complement subspace determined by K.

Lemma 5.4. For each subset S ⊆ S(A), S is a maximal missing sub-sphere
if and only if S is the complement subspace determined by some minimal
complement kernel K.

Proof. Suppose S = S(U) is a maximal missing sub-sphere in S(A), with
U = {u1, . . . , up}. Let ψU : A→R denote the character such that

ψU (v) = 0 for v ∈ V \U and ψU (ui) = πi for i= 1, . . . , p.

Since π is transcendental, KU = ker(ψU ) consists of those elements a ∈ A
with zero exponent sums in each of the vertices u1, . . . , up. It follows that
[ψU ] ∈ S(U), and KU ⊆ ker(ψ) for every [ψ] ∈ S(U). Thus S(U) is the com-
plement subspace determined by KU . The maximality of U , together with
Theorem 5.2, implies that KU is minimal amongst the kernels of characters
in Σ1(A)c. It also follows from Theorem 5.2 that every minimal complement
kernel arises in this way. �

We now have an approach for showing that a finitely-generated torsion-free
group G is not a right-angled Artin group: we identify the minimal comple-
ment kernels K1, . . . ,Kp in G; use these to identify the corresponding com-
plement subspaces S1, . . . , Sp in S(G); then show that Lemma 5.3 fails. We
carry out this plan for PΣ(A) when Γ contains a SIL.

Lemma 5.5. If S is the complement subspace corresponding to a minimal
complement kernel K in PΣ(A), then either:

S =
{
[χ] ∈ S

(
PΣ(A)

)
| χ

(
πa
K

)
= 0 for all πa

K ∈ P \Q
}

for some maximal p-set Q, in which case dim(S) = |Q| − 1; or

S =
{
[χ] ∈ S(A) | χ

(
πa
K

)
= 0 for all πa

K ∈ P \Q, and χ
(
ιv

)
= 0 for all v ∈ V

}
for some maximal δ-p-set Q, in which case dim(S) = |Q|/2− 1.

Proof. Suppose S is the complement subspace corresponding to a minimal
complement kernel K in PΣ(A), and let χ : PΣ(A)→R be a character with
kernel K. By Corollary 4.4, χ is type I or type II.

Consider first the case that χ is type I. By Proposition 4.9, the χ-hyperbolic
vertices comprise a p-set Q. The minimality of K implies that Q is not
contained in a larger p-set. That S is as described follows immediately.

Now consider the case that χ is type II. By Proposition 4.14, the χ-
hyperbolic vertices comprise a δ-p-set Q. The minimality of K implies that
Q is not contained in a larger δ-p-set. That S is as described follows imme-
diately. �
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Lemma 5.6. If Q1, . . . ,Qp are the maximal p-sets in PΣ(A), and S1, . . . , Sp

the corresponding complement subspaces, then

rk
(
PΣ(A)/

[
PΣ(A), PΣ(A)

])
= 1+

∑
i

dim(Si)−
∑
i<j

dim(Si ∩ Sj)

+
∑

i<j<k

dim(Si ∩ Sj ∩ Sk)− · · ·+ (−1)n−1 dim(S1 ∩ · · · ∩ Sp).

Proof. It follows from Theorem 3.3 that rk(PΣ(A)/[PΣ(A), PΣ(A)]) = |P|.
Suppose πa

K ∈ P . Let b be a vertex in K, and let L be the connected com-
ponent of Γ \ St(b) such that a ∈ L. Then {πa

K , πb
L} is a p-set. Thus every

partial conjugation is contained in at least one p-set. Now, as in the proof of
Lemma 5.3, the lemma follows from the Principle of Inclusion–Exclusion and
the identity

∑p
i=1(−1)i−1

(
p
i

)
= 1. �

Corollary 5.7. If PΣ(A) is isomorphic to a right-angled Artin group,
then Σ1(PΣ(A))c contains no characters of type II.

Proof. Assume the notation of Lemma 5.6. Suppose Σ1(PΣ(A))c contains
a character of type II. Then there exists a maximal δ-p-set Q, and correspond-
ing complement subspace S. By Lemma 5.5, since |Q| ≥ 4, dim(S)≥ 1. Since
no character is both type I and type II, S ∩ Si = ∅ for each i. It follows from
Lemma 5.6 that the equation in Theorem 5.3 fails because the right-hand side
exceeds the left-hand side. �

Proposition 5.8. If Γ contains a SIL, then PΣ(A) is not isomorphic to
a right-angled Artin group.

Proof. Suppose Γ contains a SIL. Let a, b and M be as in the definition
of a SIL, let K be the connected component of Γ \ St(a) that contains b,
and let L be the connected component of Γ \ St(b) that contains a. The set
{πa

K , πa
M , πb

L, π
b
M} is a δ-p-set. In particular, Σ1(PΣ(A)) contains at least

one character of type II. By Corollary 5.7, PΣ(A) is not isomorphic to a
right-angled Artin group. �

Proposition 5.8 and [CRSV10, Theorem 3.6] prove Theorem B.
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