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NONSTANDARD ANALYSIS AND THE SUMSET
PHENOMENON IN ARBITRARY AMENABLE GROUPS

MAURO DI NASSO AND MARTINO LUPINI

Abstract. Beiglböck, Bergelson and Fish proved that if subsets
A, B of a countable discrete amenable group G have positive

Banach densities α and β respectively, then the product set AB is

piecewise syndetic, that is, there exists k such that the union of k-
many left translates of AB is thick. Using nonstandard analysis,

we give a shorter alternative proof of this result that does not

require G to be countable and moreover yields the explicit bound

k ≤ 1/αβ. We also prove with similar methods that if {Ai}ni=1

are finitely many subsets of G having positive Banach densities

αi and G is countable, then there exists a subset B whose Banach

density is at least
∏n

i=1αi and such that BB−1 ⊆
⋂n

i=1AiA
−1
i .

In particular, the latter set is piecewise Bohr.

Introduction

Using nonstandard analysis, in 2000 R. Jin proved that the sumset A+B
of two sets of integers is piecewise syndetic whenever both A and B have
positive Banach density ([12]). Jin’s theorem was later generalized in [2] by
M. Beiglböck, V. Bergelson, and A. Fish: [2, Theorem 2] asserts that if two
subsets A and B of a countable amenable group have positive Banach density,
then their product set AB is piecewise syndetic (and in fact piecewise Bohr;
see [2, Theorem 3]). Their proof uses methods from ergodic theory and makes
essential use of the assumption that the group is countable, particularly in [2,
Lemma 4.3, Lemma 4.4].
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The main result of this paper is a quantitative version of [2, Theorem 2],
asserting that if two subsets A and B of an amenable group have Banach
density at least 1

k and 1
n , then kn-many left translates of the product set

AB cover a thick set. Our proof makes use of methods from nonstandard
analysis, and does not require any assumption on the cardinality of the group.
In particular, it applies to uncountable discrete amenable groups, such as
infinite products of countable Abelian groups. Examples of such groups are
the group of functions from N to Z with pointwise sum, which is the direct
product of countably many copies of Z; and the group of subsets of Z with
symmetric difference, which is the product of countably many copies of Z/2Z.
More generally, if I is an ideal of subsets of N, one can consider the group
of subsets of N identified modulo I, which is the group associated with the
Boolean algebra ℘(N)/I.

Finally, we extend some of the properties of Delta-sets A−A proved in [7]
for sets of integers, to the general setting of amenable groups. In particular,
by applying the pointwise ergodic theorem for countable amenable groups in
the nonstandard setting, we show that any finite intersection

⋂n
i=1AiA

−1
i of

sets Ai of positive Banach density contains BB−1 for some set B of positive
Banach density and, as a consequence, those intersections are piecewise Bohr.

Let us now introduce some terminology to be used in the paper, as well
as some combinatorial notions that we shall consider. Let G be a group. If
A,B ⊆ G, we denote by A−1 = {a−1 | a ∈ A} the set of inverses of elements
of A. A left translate of A is a set of the form xA = {xa | a ∈ A}, while a
right translate of A is a set of the form Ax= {ax | a ∈A}. More generally, for
subsets A,B ⊆G, we denote the product set {ab | a ∈A and b ∈B} by AB.

A set A⊆G is k-syndetic if k-many left translates of A suffice to cover G,
that is, if G= FA for some F ⊆A such that |F | ≤ k. The set A is thick if the
family of its left translates {gA | g ∈ G} has the finite intersection property,
that is,

⋂
x∈H xA �= ∅ for all finite H ⊆G (equivalently, for everyfinite H there

is x ∈G such that Hx⊆A).
Another relevant notion is obtained by combining syndeticity and thickness.

A set A is piecewise k-syndetic if k-many left translates of A suffice to cover a
thick set, that is, if FA is thick for some F ⊆A such that |F | ≤ k. (For more
on these notions, see [3].)

Familiarity will be assumed with the basics of nonstandard analysis, namely
with the notions of hyperextension (or nonstandard extension), internal set,
hyperfinite set (or ∗finite set), the transfer principle, and the properties of
overspill and κ-saturation (recall that for every cardinal κ there exist κ-
saturated nonstandard models). Moreover, in Section 4 we shall also use the
Loeb measure. Good references for the nonstandard notions used in this paper
are, for example, the introduction given in [4, Section 4.4], and the monograph
[9] where a comprehensive treatment of the theory is given. However, there are
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several other interesting books on nonstandard analysis and its applications
that the reader may also want to consult (see, e.g., [1], [6], [5]).

Let us now fix the “nonstandard” notation we shall adopt here. If X is a
standard entity, ∗X denotes its hyperextension. A subset A of ∗X is internal
if it belongs to the hyperextension of the power set of X . If ξ, ζ ∈ ∗

R are
hyperreal numbers, we write ξ ≈ ζ when ξ and ζ are infinitely close, that is,
when their distance |ξ− ζ| is infinitesimal. If ξ ∈ ∗

R is finite, then its standard
part st(ξ) is the unique real number which is infinitely close to ξ. We write
ξ � η to mean that st(ξ − η)≤ 0, that is, ξ < η or ξ ≈ η.

1. Amenable groups and Banach density

In this paper, we aim at generalizing combinatorial properties of sets of
integers which are related to their asymptotic density, to more general groups.
To this purpose, it is convenient to work in the framework of amenable groups,
that are endowed with a suitable notion of density. Amenable groups admit
several equivalent characterizations (see, e.g., [15], [14]). The most convenient
definition for our purposes is the following one, first isolated by Følner in [8].

Definition 1.1. A group G is amenable if and only if it satisfies the
following

• Følner’s condition: For every finite H ⊂G and for every ε > 0 there exists
a finite set K which is “(H,ε)-invariant”, that is, K is nonempty and for
every h ∈H one has

|hK 	K|
|K| < ε.

The Banach density in amenable groups can be defined using the (H,ε)-
invariant sets as the “finite approximations” of G. Using almost invariant
sets ensures that the notion of density so obtained is invariant under left
translations.

Definition 1.2. Let G be an amenable group. The (upper) Banach density
d(A) of a subset A⊆G is defined as the least upper bound of the set of real
numbers α such that for every finite H ⊆G and for every ε > 0 there exists a

finite K which is (H,ε)-invariant and satisfies |A∩K|
|K| ≥ α. Similarly, the lower

Banach density d(A) is the least upper bound of the numbers α such that, for
some finite subset H of G and some ε > 0, every finite subset K of G which

is (H,ε)-invariant satisfies |A∩K|
|K| ≥ α.

It is not difficult to see that if A is piecewise k-syndetic, then d(A)≥ 1/k,
and if A is k-syndetic then d(A)≥ 1/k.

We now prove convenient nonstandard characterizations that will be used
in the sequel. The proof of the first part of Proposition 1.3 is essentially
contained in [10, Section 3] and it is reported here for convenience of the
reader.
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Proposition 1.3. A group G is amenable if and only if in every sufficiently
saturated nonstandard model one finds a “Følner approximation” of G, that
is, a nonempty hyperfinite set E ⊆ ∗G such that for all g ∈G:

|gE 	E|
|E| ≈ 0.

Moreover, if G is amenable, for all A⊆G one has:

d(A) = max

{
st

(
|∗A∩E|

|E|

) ∣∣∣ E Følner approximation of G

}
,

d(A) = min

{
st

(
|∗A∩E|

|E|

) ∣∣∣E Følner approximation of G

}
.

Proof. Assume first that G is amenable. For g ∈G and n ∈N let

Γ(g,n) =

{
K ⊆G finite nonempty

∣∣∣ |gK 	K|
|K| <

1

n

}
.

It is readily seen that by Følner’s condition the family of all sets Γ(g,n) has
the finite intersection property. Then, in any nonstandard model that satis-
fies κ-saturation with κ >max{|G|,ℵ0}, the hyperextensions ∗Γ(g,n) have a
nonempty intersection, and every E ∈

⋂
{∗Γ(g,n) | g ∈ G,n ∈ N} is a Følner

approximation of G.
Conversely, given H = {g1, . . . , gm} ⊆ G and ε > 0, the existence of a

nonempty finite (H,ε)-invariant set is proved by applying transfer to the
following property, which holds in the nonstandard model: “There ex-
ists a nonempty hyperfinite E ⊆ ∗G such that |giE 	 E| < ε|E| for all
i ∈ {1, . . . ,m}”.

Suppose now that G is amenable and A ⊆G. Consider a Følner approx-

imation E of G and define α = st( |
∗A∩E|
|E| ). If H = {g1, . . . , gn} ⊆ G and

ε > 0, applying transfer to the statement “There exists a nonempty hyper-
finite subset E ⊆ ∗G such that |giE 	E| < ε|E| for every i = 1,2, . . . , n and
|∗A∩E|> (α− ε)|E|” one obtains the existence of an (H,ε)-invariant subset
K of G such that |A∩K|> (α− ε)|K|. This shows that

d(A)≥ sup

{
|∗A∩E|

|E|

∣∣∣ E Følner approximation of G

}
.

It remains to show that the sup is a maximum, and it is equal to d(A). Define
for g ∈G and n ∈N,

ΛA(g,n) =

{
K ∈ Γ(g,n)

∣∣∣ |A∩K|
|K| > d(A)− 1

n

}
.

It is easily seen that the family of all sets ΛA(g,n) has the finite intersection
property. As before, in any nonstandard model that satisfies κ-saturation
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with κ >max{|G|,ℵ0}, the hyperextensions ∗ΛA(g,n) have a nonempty inter-
section, and every E ∈

⋂
{∗ΛA(g,n) | g ∈G,n ∈N} is a Følner approximation

of G such that st( |
∗A∩E|
|E| ) = d(A).

The proof of the nonstandard characterization of the lower Banach density
is similar and is omitted. �

It is often used in the literature the notion of Følner sequence, that is,
a sequence (Fn)n∈N of finite subsets of G such that, for all g ∈G,

lim
n→∞

|gFn 	 Fn|
|Fn|

= 0.

We remark that, if the above condition holds, then for every finite H ⊂G
and for every ε > 0 the sets Fn are (H,ε)-invariant for all sufficiently large n.
It follows that a countable group G is amenable if and only if it admits a
Følner sequence. Moreover, in the countable case, the Følner density of a set
A⊆G is characterized as follows:

d(A) = sup

{
limsup
n→∞

|A∩ Fn|
|Fn|

∣∣∣ (Fn)n∈N a Følner sequence

}
.

It is a well known fact (see for example [2, Remark 1.1]), that if (Fn)n∈N is
any Følner sequence and A⊆G, then there is a sequence (gn)n∈N of elements
of G such that

d(A) = limsup
n∈N

|A∩ Fngn|
|Fn|

.

From this, it immediately follows that, when G = Z, the Banach density as
defined here coincides with the usual notion of Banach density for sets of
integers.

For an extensive treatment of Banach density and its generalizations in the
context of semigroups, the reader is referred to [11].

The following notion of density Delta-sets is a generalization of the Delta-
sets A−A= {a− a′ | a, a′ ∈A} of sets of integers.

Definition 1.4. Let G be an amenable group, and let ε≥ 0. For A⊆G,
the corresponding ε-density Delta-set (or ε-Delta-set for short) is defined as
Δε(A) = {g ∈G | d(A∩ gA)> ε}.

Observe that Δε(A)⊆Δ0(A)⊆AA−1. We now introduce a notion of em-
beddability between sets of a group. The idea is to have a suitable partial
ordering relation at hand that preserves the finite combinatorial structure of
sets.

Definition 1.5. Let A,B ⊆G. We say that A is finitely embeddable in B,
and write A � B, if every finite subset of A has a right translate contained
in B.

It is immediate from the definitions that A is thick if and only if G � A.
Finite embeddability admits the following nonstandard characterization.
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Proposition 1.6. Let A,B ⊆ G. Then A � B if and only if in every
sufficiently saturated nonstandard model one has Aη ⊆ ∗B for some η ∈ ∗G.

Proof. Notice that A � B if and only if the family {a−1B | a ∈A} has the
finite intersection property. So, in any nonstandard model that satisfies κ-
saturation with κ > |A|, the intersection

⋂
a∈A a−1∗B is nonempty. If η is an

element of this set, then Aη ⊆ ∗B. Conversely, suppose that Aη ⊆ ∗B for some
η ∈ ∗G. If H = {h1, . . . , hn} is a finite subset of A, one obtains the existence of
an element x ∈G such that Hx⊆B by transfer from the statement: “There
exists η ∈ ∗G such that hiη ∈ ∗B for i= 1, . . . , n”. This shows that A � B. �

It is easily verified that, if A� B, then AA−1 ⊆BB−1 and Δε(A)⊆Δε(B)
for every ε≥ 0.

2. Combinatorial properties in a nonstandard setting

In this section, we prove combinatorial properties in a nonstandard frame-
work that will be used as key ingredients in the proofs of our main results.
The first one below can be seen as a form of pigeonhole principle that holds
in a hyperfinite setting.

Lemma 2.1. Let E be a hyperfinite set, and let {Cλ | λ ∈ Λ} be a finite fam-
ily of internal subsets of E. Assume that γ, ε are non-negative real numbers
such that

• ε < γ2;

• st( |Cλ|
|E| )≥ γ for every λ ∈ Λ;

• |Λ|> γ−ε
γ2−ε .

Then there exist distinct λ, μ ∈ Λ such that

st

(
|Cλ ∩Cμ|

|E|

)
> ε.

Proof. Without loss of generality, let us assume that st(|Cλ|/|E|) = γ for
every λ ∈ Λ. Suppose by contradiction that for all distinct λ �= μ:

st

(
|Cλ ∩Cμ|

|E|

)
≤ ε.

For i ∈ E, set ai =
∑

i∈Λ χλ(i) where χλ : E → {0,1} denotes the charac-
teristic function of Cλ. Observe that∑

i∈E

ai =
∑
λ∈Λ

|Cλ|

and ∑
i∈E

a2i =
∑
λ∈Λ

|Cλ|+
∑
λ �=μ

|Cλ ∩Cμ|.
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If we set bi = 1, then by the Cauchy–Schwarz inequality,(∑
λ∈Λ

|Cλ|
)2

=

(∑
i∈E

aibi

)2

≤
(∑

i∈E

a2i

)(∑
i∈E

b2i

)

= |E|
(∑

λ∈Λ

|Cλ|+
∑
λ �=μ

|Cλ ∩Cμ|
)
.

Dividing by |E|2, one gets

|Λ|2γ2 ≈
(∑

λ∈Λ

|Cλ|
|E|

)2

≤
∑
λ∈Λ

|Cλ|
|E| +

∑
λ �=μ

|Cλ ∩Cμ|
|E|

≈ |Λ|γ +
∑
λ �=μ

|Cλ ∩Cμ|
|E| .

As there are |Λ|(|Λ| − 1) ordered pairs (λ,μ) such that λ �= μ, we get

ε|Λ|
(
|Λ| − 1

)
�

∑
λ �=μ

|Cλ ∩Cμ|
|E| � |Λ|γ

(
|Λ|γ − 1

)
.

Dividing by |Λ|, we obtain that |Λ|γ2 ≤ γ + ε(|Λ| − 1), and finally:

|Λ| ≤ γ − ε

γ2 − ε
.

This contradicts our assumptions and concludes the proof. �
Recall that we called Følner approximation of G any nonempty hyperfinite

set E ⊆ ∗G such that for all g ∈G:

|gE 	E|
|E| ≈ 0.

Lemma 2.2. Let E be a Følner approximation of G, and suppose that C

is an internal subset of ∗G such that st( |C∩E|
|E| ) = γ > 0. Let 0 ≤ ε < γ2 and

k = � γ−ε
γ2−ε�. Define

DE
ε (C) =

{
g ∈G

∣∣∣ st
(
|C ∩ gC ∩E|

|E|

)
> ε

}
.

Then, for every P ⊆G and every g0 ∈ P there exists F ⊆ P such that g0 ∈ F ,
|F | ≤ k and P ⊆ F · DE

ε (C).

Proof. We define elements gi of P by recursion. Suppose that gi has been
defined for 0 ≤ i < n. If P ⊆ {g0, . . . , gn−1} · DE

ε (C), then set gn = gn−1.
Otherwise, pick

gn ∈ P \
(
{g0, . . . , gn−1} · DE

ε (C)
)
.
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We claim that, gk = gk−1, that is, P ⊆ {g0, . . . , gk−1} · DE
ε (C). Suppose by

contradiction that this is not the case. Then, for every i < j < k, we have

gj /∈ {g0, . . . , gi} · DE
ε (C).

This implies that g−1
i gj /∈DE

ε (C) and

ε≥ st

(
|C ∩ g−1

i gjC ∩E|
|E|

)
= st

(
|giC ∩ gjC ∩E|

|E|

)
.

By the previous lemma applied to the family {giC ∩ E | i < k}, there exist
i < j < k such that

|giC ∩ gjC ∩E|
|E| > ε.

This is a contradiction. �

Lemma 2.3. Let U,V ⊆ ∗G be hyperfinite sets, and let C ⊆ U and D ⊆ V
be internal subsets. Then there exists ζ,ϑ ∈ U such that

(1)
|Dζ ∩C|

|V | ≥ |C|
|U | ·

|D|
|V | −max

d∈D

|dU 	U |
|U | ,

(2)
|ϑD ∩C|

|V | ≥ |C|
|U | ·

|D|
|V | −max

d∈D

|Ud	U |
|U | .

Proof. Let χC : U →{0,1} be the characteristic function of C. For d ∈D,
one has

1

|U |
∑
u∈U

χC(du) =
|C ∩ dU |

|U | =
|C| − |C ∩ (U \ dU)|

|U | ≥ |C|
|U | −

|dU 	U |
|U | .

Then,

1

|U |
∑
u∈U

|Du∩C|
|V | =

1

|U |
∑
u∈U

(
1

|V |
∑
d∈D

χC(du)

)

=
1

|V |
∑
d∈D

(
1

|U |
∑
u∈U

χC(du)

)

≥ 1

|V |
∑
d∈D

(
|C|
|U | −

|dU 	U |
|U |

)

≥ |C|
|U | ·

|D|
|V | −max

d∈D
|dU 	U |/|U |.

Thus for some ζ ∈ U ,

|Dζ ∩C|
|V | ≥ |C|

|U | ·
|D|
|V | −max

d∈D

|dU 	U |
|U | .

The second part of the statement is obtained applying the first part to the
opposite group of G (which is amenable as well). �
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Lemma 2.4. Let G be an amenable group. Suppose A0,A1, . . . ,An ⊆G are
subsets with Banach densities d(Ai)≥ αi. Then in every sufficiently saturated
nonstandard model there exist Følner approximations E,F ⊆ ∗G and elements
ξ1, . . . , ξn, η1, . . . , ηn ∈ ∗G such that

|∗A0 ∩ (
⋂n

i=1
∗Aiξi)∩E|

|E| �
n∏

i=0

αi,(2.1)

|∗A0 ∩ (
⋂n

i=1 ηi
∗A−1

i )∩ F |
|F | �

n∏
i=0

αi.(2.2)

Proof. We proceed by induction. Let us start with property (1). The base
n = 0 is given by the nonstandard characterization of Banach density. Now
let the subsets A0,A1, . . . ,An+1 ⊆ G be given where d(Ai) ≥ αi. By the in-
ductive hypothesis there exists a Følner approximation V ⊆ ∗G and elements
ξ1, . . . , ξn ∈ ∗G that satisfy |∗A0 ∩ (

⋂n
i=1

∗Aiξi) ∩ V |/|V | �
∏n

i=0αi. We now
want to find a Følner approximation U that witnesses d(An+1) ≥ αn+1 and
with the additional feature of being ‘almost invariant’ with respect to left
translation by elements in V . To this purpose, pick a hyperfinite V ′ ⊇ V ∪G
(notice that this is possible by κ-saturation with κ > |G|). Consider the
following property that directly follows from the definition of Følner den-
sity: “For every k ∈ N and every finite H ⊆ G there exists a nonempty fi-
nite K ⊆ G which is (H,1/k)-invariant and such that the relative density
|An+1 ∩K|/|K| > αn+1 − 1/k”. If ν ∈ ∗

N, by transfer we get a nonempty
hyperfinite U ⊆ ∗G that is (V ′, 1ν )-invariant (and, in particular, is a Følner
approximation of G) and such that

|∗An+1 ∩U |
|U | >αn+1 −

1

ν
≈ αn+1.

Now apply (1) of Lemma 2.3 to the internal sets C = ∗An+1 ∩ U ⊆ U and
D = ∗A0 ∩ (

⋂n
i=1

∗Aiξi)∩ V ⊆ V , and pick an element ζ ∈ U such that

|Dζ ∩C|
|V | ≥ |C|

|U | ·
|D|
|V | −max

d∈D

|dU 	U |
|U | ≥ |C|

|U | ·
|D|
|V | −

1

ν
�

n+1∏
i=0

αi.

This yields the conclusion with E = V . In fact, by letting ξn+1 = ζ−1

|Dζ ∩C|
|V | ≤ |Dζ ∩ ∗An+1|

|V | =
|D ∩ ∗An+1ξn+1|

|V | =
|∗A0 ∩ (

⋂n+1
i=1

∗Aiξi)∩ V |
|V | .

As for (2), we proceed in a similar way as above by considering sets of
inverses. Precisely, let V ⊆ ∗G be a Følner approximation of G and η1, . . . , ηn
be elements of ∗G that satisfy

|∗A0 ∩ (
⋂n

i=1 ηi
∗A−1

i )∩ V |
|V | �

n∏
i=0

αi.
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Pick a Følner approximation U that witnesses d(An+1)≥ αn+1 and with the
additional feature of being ‘almost invariant’ with respect to left translations
by elements in the set of inverses V −1, that is, |∗An+1 ∩ U |/|U | � αn+1 and
|xU	U |/|U | ≈ 0 for all x ∈ V −1. Then apply (2) of Lemma 2.3 to the internal
sets C = ∗A−1

n+1 ∩U−1 ⊆ U−1 and D = ∗A0 ∩ (
⋂n

i=1 ηi
∗A−1

i )∩ V ⊆ V , and get

the existence of an element ϑ ∈ U−1 such that

|ϑD ∩C|
|V | ≥ |C|

|U−1| ·
|D|
|V | −max

d∈D

|U−1d	U−1|
|U−1|

=
|C−1|
|U | · |D|

|V | − max
d∈D−1

|dU 	U |
|U |

�
n+1∏
k=1

αk.

Since

|ϑD ∩C|
|V | ≤

|ϑD ∩ ∗A−1
n+1|

|V | =
|D ∩ ϑ−1∗A−1

n+1|
|V | =

|∗A0 ∩ (
⋂n+1

i=0 ηi
∗A−1

n+1)∩ V |
|V | ,

the statement is proved by letting F = V and ηn+1 = ϑ−1. �

3. Intersection properties of Delta-sets and Jin’s theorem

The nonstandard lemmas of the previous section entail a general result
about intersections of density Delta-sets.

Theorem 3.1. Suppose that, for i ≤ n, Ai is a subset of G of positive
Banach density αi. Let 0 ≤ ε < β2 where β =

∏n
i=1αi, P ⊆ G and g0 ∈ P .

If r = � β−ε
β2−ε�, then there exists a finite L⊆ P such that |L| ≤ r, g0 ∈ L and

P ⊆ L · (
⋂n

i=1Δε(Ai)).

Proof. By Lemma 2.4 where A0 =G, we can pick a Følner approximation
E ⊆ ∗G and elements ξ1, . . . , ξn ∈ ∗G such that

|(
⋂n

i=1
∗Aiξi)∩E|
|E| � β.

Define the internal set C =
⋂n

i=1
∗Aiξi and observe that

DE
ε (C)⊆

n⋂
i=1

Δε

(∗Ai

)
.

To see this, notice that if g ∈DE
ε (C) then for every j = 1, . . . , n:

ε <
|C ∩ gC ∩E|

|E| =
|(

⋂n
i=1

∗Aiξi)∩ g(
⋂n

i=1
∗Aiξi)∩E|

|E|

≤ |∗Ajξj ∩ g∗Ajξj ∩E|
|E| =

|∗(Aj ∩ gAj)∩Eξ−1
j |

|Eξ−1
j |

.
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Now apply Lemma 2.2 to C and get a finite L⊆ P such that |L| ≤ r, g0 ∈ L
and

P ⊆ L · DE
ε (C)⊂ L ·

n⋂
i=1

Δε

(∗Ai

)
. �

By applying Theorem 3.1 where P =G, one immediately obtains the fol-
lowing corollary.

Corollary 3.2. Under the assumptions of Theorem 3.1,
⋂n

i=1Δε(Ai) is
r-syndetic and, as a consequence, its lower Banach density is at least 1/r.

We can now prove the existence of an explicit bound in Jin’s theorem that
only depends on the densities of the given sets.

Theorem 3.3. Let G be an amenable group. If X ⊆G is infinite, w ∈X
and A,B ⊆G have positive Banach densities d(A) = α and d(B) = β, respec-
tively, then there exists a finite F ⊂X such that:

• w ∈ F ;
• |F | ≤ 1

αβ ;

• X � FAB.

Proof. By Lemma 2.4, we can pick a Følner approximation E ⊆ ∗G and an
element η ∈ ∗G such that the internal setX = ∗A∩η∗B−1∩E has relative den-
sity |X|/|E|� αβ. Then by Lemma 2.2 with ε= 0, there exists a finite F ⊂G
such that |F | ≤ 1/αβ and X ⊆ F · DE

0 (X). If g ∈X , there are ξ ∈ F and y ∈
DE

0 (X) such that g = ξy. Since y ∈DE
0 (X), ∗A∩ η∗B−1 ∩ y∗A∩ yη∗B−1 �= ∅.

In particular, y = abη−1 for some a ∈ ∗A and b ∈ ∗B. Therefore,

g = ξy = ξabη−1

and
gη = ξab ∈ F ∗A∗B = ∗(FAB).

Since this is true for every g ∈X ,

Xη ⊂ ∗(FAB).

Hence, by the nonstandard characterization of finite embeddability,

X � FAB. �
Corollary 3.4. Under the hypothesis of Theorem 3.3, AB is piecewise

k-syndetic where k = � 1
αβ �.

Proof. Set X = G and apply Theorem 3.3. Thus, G � FAB for some
F ⊂ G such that |F | ≤ 1

αβ . Henceforth, FAB is thick and AB is piecewise

� 1
αβ �-syndetic. �

In the rest of this section, we isolate a corollary that applies to Abelian
groups. Let us therefore assume thatG is an Abelian group, with the canonical
structure of Z-module, and A is a subset of G. For k ∈N, denote by
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• k ·A= {ka | a ∈A} the set of k-multiples of elements of A, and
• 1

k ·A= {g ∈G | kg ∈A}.
Corollary 3.5. Under the assumptions of Theorem 3.1, if G is moreover

Abelian, then for every k ∈ N the intersection
⋂n

i=1
1
k ·Δε(Ai) is r-syndetic

and, as a consequence, its lower Banach density is at least 1/r.

Proof. Apply Theorem 3.1 with P = k ·G and get the existence of a finite
set L⊆ k ·G such that |L| ≤ β−ε

β2−ε and k ·G⊆ L+(
⋂n

i=1Δε(Ai)). Pick H ⊆G

such that |H|= |L| and k ·H = L. Then for every g ∈G one has kg = kh+ x
for suitable h ∈H and x ∈

⋂n
i=1Δε(Ai). Equivalently, for every g ∈G there

exists h ∈H such that k(g− h) ∈
⋂n

i=1Δε(Ai), and hence

g− h ∈
n⋂

i=1

1

k
·Δε(Ai).

This shows that G=H + (
⋂n

i=1
1
k ·Δε(Ai)). �

4. Countable amenable groups

Throughout this section, we focus on countable amenable groups and prove
finite embeddability properties.

By [2, Corollary 5.3], if A⊆G has positive Følner density and G is count-
able, then AA−1 is piecewise Bohr. Moreover, by [2, Lemma 5.4], if A,B ⊆G,
A is piecewise Bohr and A � B, then B is piecewise Bohr as well. It is a
standard result in ergodic theory (see, for example, [13]) that any countable
discrete amenable group G has a Følner sequence (Fn)n∈N for which the point-
wise ergodic theorem holds. This means that, if G acts on a probability space
(X,B, μ) by measure preserving transformations and f ∈ L1(μ), then there is
a G-invariant f̄ ∈ L1(μ) such that, for μ-almost all x ∈X :

lim
n→∞

1

|Fn|
∑
g∈Fn

f(gx) = f̄(x).

Lemma 4.1. If E is a Følner approximation of G, 0< γ ≤ 1, and C is an

internal subset of E such that |C|
|E| � γ, then there exists ξ ∈E such that

d
(
Cξ−1 ∩G

)
≥ γ.

Proof. Pick a Følner sequence (Fn)n∈N for G that satisfies the pointwise
ergodic theorem. Consider the (separable) σ-algebra B on E generated by
the characteristic function χC of C, the probability space (E,B, μ) where μ
is the restriction of the Loeb measure to B and the measure preserving action
of G on (E,B, μ) by left translations. Since χC belongs to L1(μ), there is a
G-invariant function f̄ ∈ L1(μ) such that the sequence(

1

|Fn|
∑
g∈Fn

χC(gx)

)
n∈N
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converges to f̄(x) for μ-a.a. x ∈ E and hence, by the Lebesgue dominated
convergence theorem, in L1(μ). This implies in particular that

∫
f̄ dμ=

∫
χC dμ= st

(
|C|
|E|

)
= γ.

Thus, the set of x ∈E such that f̄(x)≥ γ is non-negligible and, in particular,
there is ξ ∈E such that f̄(ξ)≥ γ and the sequence(

1

|Fn|
∑
g∈Fn

χC(gξ)

)
n∈N

converges to f̄(ξ)≥ γ. Observe now that, for every n ∈N,

1

|Fn|
∑
g∈Fn

χC(gξ) =
|C ∩ Fnξ|

|Fn|

=
|Cξ−1 ∩ Fn|

|Fn|

=
|(Cξ−1 ∩G)∩ Fn|

|Fn|
.

From this and the fact that (Fn)n∈N is a Følner sequence for G, it follows that

d
(
Cξ−1 ∩G

)
≥ γ. �

Theorem 4.2. Let G be a countable amenable group and suppose that the
sets A1, . . . ,An ⊆ G have positive Banach densities d(Ai) = αi. Then there
exists B ⊆ G such that d(B) ≥

∏n
i=1αi and B � Ai for every i = 1, . . . , n.

As a consequence, BB−1 ⊆
⋂n

i=1AiA
−1
i and Δε(B)⊆

⋂n
i=1Δε(Ai) for every

ε≥ 0. In particular,
⋂n

i=1AiA
−1
i is piecewise Bohr.

Proof. By Lemma 2.4, there exists a Følner approximation E ⊆ ∗G and
elements ξ1, . . . , ξn ∈ ∗G such that

|∗A0 ∩
⋂n

i=1
∗Aiξi ∩E|

|E| �
n∏

i=0

αi.

By applying Lemma 4.1 to E and C = ∗A0∩
⋂n

i=1 ξi
∗Ai∩E one obtains η ∈E

such that

d
(
Cη−1 ∩G

)
≥

n∏
i=0

αi.

Define B = Cη−1 ∩G and observe that Bη ⊆ ∗A0 and Bηξ−1
i ⊆ ∗Ai for 1 ≤

i≤ n. This implies that B � Ai for 0≤ i≤ n. �
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5. Final remarks and open problems

In a preliminary version of [12], R. Jin asked whether one could estimate
the number k needed to have A + B + [0, k) thick (under the assumption
that both sets A,B ⊆N have positive Banach density). In the final published
version of that paper, he then pointed out that no such estimate for k exists
which depends only on the densities of A and B. In fact, the following holds.

• Let α,β > 0 be real numbers such that α + β < 1, and let k ∈ N. Then
there exist sets Ak,Bk ⊆ N such that the asymptotic densities d(Ak) > α
and d(Bk)> β but Ak +Bk + [0, k) is not thick.

An example can be constructed as follows.1 Pick natural numbers M , N ,
L such that M/L> α, N/L> β, and M/L+N/L+1/L < 1. For every k ∈N,
consider the following subsets of N:

Ak =

∞⋃
n=0

[Lnk,Lnk+Mk) and Bk =

∞⋃
n=0

[Lnk,Lnk+Nk).

Then the following properties are verified in a straightforward manner:

• The asymptotic densities d(Ak) =M/L and d(Bk) =N/L.
• Ak +Bk + [0, k) =

⋃∞
n=0[Lnk,Lnk+Mk+Nk+ k).

Since Lkn+Mk+Nk+k < Lkn+Lk = Lk(n+1), it follows that Ak+Bk+
[0, k) is not thick, as it consists of disjoint intervals of length (M +N + 1)k.

However, as remarked by M. Beiglböck, the problem was left open if one
replaces the length k of the interval [0, k) with the cardinality k of an arbitrary
finite set. As shown by our Theorem 3.3, one can in fact give the bound
k ≤ 1/αβ. Now, the question naturally arises as to whether such a bound is
optimal.

Next, it is easy to see that if G is Abelian and B ⊆G then d(B) = d(B−1).
Thus, it follows from Corollary 3.4 that if A,B ⊆G are such that d(A) = α
and d(B) = β and G is Abelian then both AB and AB−1 are piecewise � 1

αβ �-
syndetic. It would be interesting to know if the same is true for more general
amenable groups. More precisely: if G is an amenable group and B ⊆G, then
do B and B−1 have the same density? Or at least, is it always the case that
B has positive density if and only if B−1 has positive density? Besides, is the
statement of Corollary 3.4 still true where one replaces AB with AB−1?

Finally, all the results of this paper are proved without assumptions on the
cardinality of the group, apart from Theorem 4.2, where G is supposed to be
countable. It would be interesting to know if also this result holds for any
amenable group, regardless of its cardinality.

1 This example did not appear in [12], and it is reproduced here with Jin’s permission.
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