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REMARKS ON THE QUANTUM BOHR
COMPACTIFICATION

MATTHEW DAWS

Abstract. The category of locally compact quantum groups can
be described as either Hopf ∗-homomorphisms between universal

quantum groups, or as bicharacters on reduced quantum groups.

We show how So�ltan’s quantum Bohr compactification can be

used to construct a “compactification” in this category. Depend-
ing on the viewpoint, different C∗-algebraic compact quantum

groups are produced, but the underlying Hopf ∗-algebras are al-
ways, canonically, the same. We show that a complicated range

of behaviours, with C∗-completions between the reduced and uni-
versal level, can occur even in the cocommutative case, thus an-
swering a question of So�ltan. We also study such compactifica-
tions from the perspective of (almost) periodic functions. We

give a definition of a periodic element in L∞(G), involving the

antipode, which allows one to compute the Hopf ∗-algebra of

the compactification of G; we later study when the antipode as-
sumption can be dropped. In the cocommutative case, we make a

detailed study of Runde’s notion of a completely almost periodic

functional—with a slight strengthening, we show that for [SIN]

groups this does recover the Bohr compactification of Ĝ.

1. Introduction

The Bohr, or strongly almost periodic, compactification of a topological
group G is the maximal compact group GSAP containing a dense homomor-
phic image of G. One can construct GSAP by looking at the finite-dimensional
unitary representation theory of G, but when G is locally compact, there is
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an intriguing link with Banach and C∗-algebra theory. Let AP(G) denote
the collection of f ∈ Cb(G) whose orbits, under the left- or right-translation
actions of G on Cb(G), form relatively compact subsets of Cb(G) (the col-
lection of almost periodic functions). Then AP(G) is a commutative unital
C∗-algebra, the character space is GSAP, and the group structure of GSAP can
be “lifted” from the group structure of G. In this picture, we never go near
representation theory.

In the framework of non-commutative topology, one replaces spaces by
algebras—we think of G as being represented by C0(G), and the prod-
uct on G being given by a coproduct Δ : C0(G) → M(C0(G) ⊗ C0(G)) =
Cb(G × G);Δ(f)(s, t) = f(st). Then Δ is coassociative, and one can think
of a “quantum semigroup” (or, more prosaically, a C∗-bialgebra) as being a
pair (A,Δ) where A need no longer be commutative. When A is unital, and
we have the “cancellation” conditions that

lin
{
Δ(a)(b⊗ 1) : a, b ∈A

}
, lin

{
Δ(a)(1⊗ b) : a, b ∈A

}
are dense in A⊗A, then we have a compact quantum group. The pioneering
work of Woronowicz, [54], shows that such objects have a remarkable amount
of structure, and generalise completely the theory of compact groups. So�ltan
in [41] studied how to “compactify” a C∗-bialgebra, and produced a very sat-
isfactory theory, very much paralleling (and generalising) the representation-
theoretic approach to constructing the classical Bohr compactification.

Going back to a locally compact group G, more abstractly, we can work
with the convolution algebra L1(G), turn the dual space L1(G)∗ = L∞(G)
into an L1(G)-bimodule, and look at the functionals F ∈ L∞(G) such that
the orbit map L1(G) → L∞(G);a �→ a · F is a compact linear map. Then
we also recover AP(G)⊆ Cb(G)⊆ L∞(G). This theory has been generalised
to general Banach algebras, and in particular to the Fourier algebra (firstly
in [13]). However, links here with any notion of a “compactification” are very
tentative.

In this paper, we have two major goals, both centred around understanding
further So�ltan’s construction as applied to locally compact quantum groups.
These are C∗-bialgebras with additional, “group-like”, structure. First, in a
category theoretic sense, we have the inclusion functor from the category of
compact groups to the category of (say) locally compact groups. The Bohr
compactification is the universal arrow to this functor (see Section 2 below).
Building on work of Kustermans and Ng, the recent paper [33] gave a very
satisfactory picture for what morphisms between locally compact quantum
groups should be. In Section 3, we show how to construct a compactifica-
tion as a “universal object” in this category, see Proposition 3.4. A major
technical stumbling block is that we think of a single locally compact quan-
tum group as being represented by a number of different algebras, this par-



REMARKS ON THE QUANTUM BOHR COMPACTIFICATION 1133

alleling the fact that for a non-amenable G, the universal group C∗-algebra
C∗(G), and the reduced algebra C∗

r (G), are different. Working at the “uni-
versal” level, the morphisms for locally compact quantum groups are just
Hopf ∗-homomorphisms, but So�ltan’s construction may fail to give a univer-
sal compact quantum group. Similarly, compactifying at the reduced level
may give a different compact quantum group, but we show that the under-
lying Hopf ∗-algebras are always the same (in a canonical way), see Proposi-
tion 3.9.

In Section 4, we study our other major goal, and look at how the
quantum Bohr compactification could be constructed without reference to
(co)representations (thus paralleling the “almost periodic” construction of the
classical Bohr compactification). For a locally compact quantum group G, the
philosophy is that the “group structure” of G should be enough to allow us to
construct the compactification GSAP without explicitly looking at representa-
tions. We define a notion of a “periodic” element, and show how to recover this
from just knowledge of the convolution algebra L1(G), see Proposition 4.9.
We then show that for Kac algebras, or under a further hypothesis involving
the antipode, this notion of periodic element allows one to construct G

SAP,
see Section 4.3.

In Section 5, we study the Fourier algebra in further detail. In [40] Runde
used Operator Space theory to define the notion of a “completely almost
periodic functional”. Under an injectivity hypotheses, we end up looking at
the C∗-algebra {

x ∈ L∞(G) : Δ(x) ∈ L∞(G)⊗L∞(G)
}
,

where ⊗ here denotes the C∗-algebraic spacial tensor product. In the fully
quantum case, we show in Section 4.1 that the quantum E(2) group gives
an example to show that there is little hope of such a definition capturing
the Bohr compactification. However, in Theorem 5.1 we show, in particu-
lar, that for a discrete group G this definition, when applied to the Fourier
algebra A(G), does recover C∗

r (G) as we might hope; for the classical al-
most periodic definition, this was only known in the amenable case. We then
study [SIN] groups, and show that a slight further strengthening of Runde’s
definition does allow us to recover the quantum Bohr compactification, see
Theorem 5.3.

Finally, in Section 6, we study further examples. By looking again at the
Fourier algebra, we answer (negatively) some conjectures of So�ltan, showing
in particular that finding the quantum Bohr compactification of C∗(G) and
C∗

r (G) may yield different completions of the same underlying Hopf ∗-algebra,
and that even for the reduced C∗

r (G), the resulting compact quantum group
might fail to be itself reduced. This also shows that we did indeed need to
be careful in Section 3. In the special cases of discrete and compact quantum
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groups, we show how the “extra hypotheses” which appeared in previous
sections can be removed.

We start the paper in Section 2 with an introduction to the quantum groups
we are interested in, and the categories they form. We finish the paper with
some open problems.

2. Categories

We take a slightly general approach to compactifications. Let B be a
category, and let C be a full subcategory of B. We shall think of the objects of
C as being the “compact” objects of B (but be aware that this has nothing to
do with the, somewhat more specific, category-theoretic notion of a “compact
object”). Given an object B ∈ B, a “compactification” of B is an object

C ∈ C and an arrow B
f→ C which satisfies the following universal property:

for any C ′ ∈ C and any arrow B → C ′, then there is a unique arrow C → C ′

making the diagram commute:

B C ′

C

!

In particular, taking C = C ′, uniqueness ensures that the identity morphism
on C is the only arrow g : C → C with gf = f . This property ensures that
compactifications, if they exist, are unique up to isomorphism. Indeed, sup-

pose that B has two compactifications, B
f0→C0 and B

f1→C1. Then applying
the universal property of C0 to the arrow f1 yields a unique g0 : C0 →C1 with
g0f0 = f1. Similarly we get a unique g1 : C1 →C0 with g1f1 = f0:

C0

g0

B

f0

f1

f0

C1

g1

C0

Then the composition g1g0 satisfies the relation g1g0f0 = f0, and so g1g0 is
the identity. Similarly, g0g1 is the identity, and so C0 and C1 are isomorphic,
as claimed.

Suppose now that every object in B has a compactification; so by unique-

ness, we get a map F : B→ C. Given any arrow B0
f→ B1 in B, we have

the composition B0
f→B1 →FB1, where FB1 ∈ C, and so the universal prop-

erty of FB0 gives a unique arrow FB0
Ff→ FB1 making the following diagram
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commute

B0
f

B1

FB0
Ff FB1

It is a simple exercise in drawing diagrams, and using uniqueness again, that
F(f ◦ g) =Ff ◦ Fg, that is, F is a functor B→ C.

Of course all this is well-known: our notion of a compactification is just
the “universal arrow from B to the inclusion functor C→B” (see [32, Chap-
ter III]). Indeed, if compactifications exist, then we have that C is “reflec-
tive” in B and the compactification is simply the “reflection” (see [32, Sec-
tion IV.3]). This sort of “categorical” approach to defining the classical Bohr
compactification of a group was studied in [22], [23], and for a similar treat-
ment of the quantum case, see the recent paper [8] (which essentially gives
a treatment of So�ltan’s work via abstract categorical arguments, but which
does not consider the category LCQG described below).

We next introduce the two categories which shall interest us in this paper.

2.1. C∗-bialgebras. Recall that a “morphism” (in the sense of Woronow-
icz) between C∗-algebras B and A is a non-degenerate ∗-homomorphism
θ : B → M(A). Such a non-degenerate ∗-homomorphism has a unique ex-
tension to a unital, strictly continuous ∗-homomorphism M(B)→M(A), the
strict extension of θ, which in this paper we shall tend to denote by the same
symbol θ. As such, morphisms can be composed. We also tend to be slightly
imprecise, and to speak of a morphism from B to A (when really the map is
to M(A)) especially when drawing commutative diagrams.

The motivation comes from the commutative situation: if A and B are
commutative, then there are locally compact Hausdorff spaces XA,XB with
A ∼= C0(XA) and B ∼= C0(XB). Furthermore, there is a bijection between
morphisms θ : B → A and continuous maps φ : XA → XB given by θ(f) =
f ◦φ. If we did not consider the multiplier algebra M(A), then we would have
to restrict attention to proper continuous maps. See [31], [56] and perhaps
especially [53, Chapter 2 exercises] for further details.

Let CSBa be the category of C∗-bialgebras (A,Δ), here thought of in the
general sense as A being a (not necessarily unital) C∗-algebra and Δ a non-
degenerate ∗-homomorphism A → M(A ⊗ A) which is coassociative in the
sense that (Δ⊗ ι)Δ = (ι⊗Δ)Δ. An arrow (A,ΔA)→ (B,ΔB) is then a non-
degenerate ∗-homomorphism θ : B →M(A) with ΔAθ = (θ ⊗ θ)ΔB . A non-
degenerate ∗-homomorphism which intertwines the coproducts in this fashion
is termed a “Hopf ∗-homomorphism” in [33]. Here we have “reversed” the ar-
rows to generalise better from the commutative situation, as if (A,Δ) ∈ CSBa
with A commutative, then A = C0(S) for some locally compact semigroup
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S with Δ induced in the usual way, Δ(f)(s, t) = f(st). Given the discus-
sion above, morphisms restrict to the usual notion of a continuous semigroup
homomorphism.

In CSBa, we shall define the “compact” objects to be the compact quantum
groups in the Woronowicz sense, see the introduction and of course [54].

2.2. Locally compact quantum groups. Let LCQG be the category of
locally compact quantum groups, with morphisms in the sense of [33]. Let
us remark briefly on definitions. We shall follow the Kustermans and Vaes
definition, see [27], [28], [29], [49].

A locally compact quantum group in the von Neumann algebraic setting is
a Hopf–von Neumann algebra (M,Δ) equipped with left and right invariant
weights. As usual, we use Δ to turn M∗ into a Banach algebra, and we write
the product by juxtaposition. We shall “work on the left”; so using the left
invariant weight, we build the GNS space H , and a “multiplicative” unitary
W acting on H ⊗H (of course, the existence of a right weight is needed to
show that W is unitary). There is a (in general unbounded) antipode S which
admits a “polar decomposition” S =Rτ−i/2, where R is the unitary antipode,
and (τt) is the scaling group. There is a non-singular positive operator P
which implements (τt) as τt(x) = P itxP−it. Then W is manageable with
respect to P . One can develop a slightly more general theory of quantum
group from such manageable (or related, “modular”) multiplicative unitaries,
see [44], [43], [55]. Many of the results of this paper work in this more general
setting; see remarks later.

Given such a W , the space {(ι ⊗ ω)W : ω ∈ B(H)∗} is an algebra, and
its closure is a C∗-algebra, say A. There is a coassociative map Δ : A →
M(A⊗A) given by Δ(a) =W ∗(1⊗ a)W . If we formed W from (M,Δ) with
invariant weights, then A is σ-weakly dense in M , and the two definitions of
Δ agree. Similarly, {(ω⊗ ι)W : ω ∈ B(H)∗} is norm dense in a C∗-algebra Â,

and defining Δ̂(â) = Ŵ ∗(1⊗ â)Ŵ , we get a non-degenerate ∗-homomorphism

Δ̂ : Â→M(Â⊗ Â), where here Ŵ = ΣW ∗Σ, and Σ is the tensor swap map
H⊗H →H⊗H . If we started with (M,Δ) having invariant weights, then we

can construct invariant weights on (Â′′, Δ̂). The unitary W is in the multiplier

algebra M(A⊗ Â)⊆B(H ⊗H).
We write G for an abstract object to be thought of as a quantum group.

We write C0(G),L∞(G) and L1(G) for A,M and M∗. We also write L2(G)
for H .

Again, the commutative examples always arise from locally compact groups
with their Haar measures, and again, morphisms between C∗-algebras, which
intertwine coproducts, correspond to continuous group homomorphisms.
However, the cocommutative examples are of the form C∗

r (G), the reduced
group C∗-algebras (and at the von Neumann algebra level, VN(G)) as we
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work with faithful weights. Then, for example, the trivial group homomor-
phism should correspond to trivial representation C∗(G) → C, but this re-
mains bounded on C∗

r (G) only for amenable G (see [36, Theorem 4.21], [24,
Section 6]).

The passage from C∗
r (G) to C∗(G) can analogously be performed for quan-

tum groups, see [26]. We shall write Cu
0 (G) for the universal C∗-algebraic

form of G. A similar object can be found for manageable multiplicative uni-
taries, see the second part of [43].

One possible definition for a morphism in LCQG is then a non-degenerate
∗-homomorphism Cu

0 (G)→Cu
0 (H) which intertwines the coproduct. This was

explored in [26, Section 12] where links with certain coactions of the associated
L∞ algebras was established. Previously (before the canonical definition of
a locally compact quantum group had been given) Ng studied similar ideas
in [34]. Unifying and extending these ideas, the paper [33] shows that Hopf
∗-homomorphisms at the universal level correspond bijectively to various other
natural notions of “morphism”, and we take this as a working definition of an
arrow in LCQG.

In summary, an object G in LCQG is a locally compact quantum group,
thought of as either being in reduced form C0(G), or in universal form Cu

0 (G).
A morphism G→H can be described in a number of equivalent ways:

• As a non-degenerate ∗-homomorphism Cu
0 (H)→ Cu

0 (G) which intertwines
the coproduct (that is, a Hopf ∗-homomorphism between universal quantum
groups).

• As a bicharacter which is a unitary U ∈M(C0(G)⊗C0(Ĥ)) which satisfies
(ΔG ⊗ ι)(U) = U13U23 and (ι⊗Δ

Ĥ
)(U) = U13U12.

As above, we “reverse” the arrows from [33], so as to better generalise from the
commutative situation. Furthermore, for bicharacters, we have translated “to
the left”, as we are working with left Haar weights, and thus left multiplicative
unitaries (which form the identity morphisms in this category).

In LCQG we shall define the “compact objects” to be those G with C0(G)
(or, equivalently, Cu

0 (G)) being unital. Those C0(G) thus arising are precisely
the reduced compact quantum groups, [4, Section 2]. Let CQG be the full
subcategory of compact quantum groups. Henceforth, we shall write C(G)
and Cu(G) to stress that the algebra is unital.

To finish, notice that the relation between LCQG and CSBa is slightly
involved. If we take the concrete realisation of LCQG as having objects of
the form Cu

0 (G) and morphisms described by Hopf ∗-homomorphisms, then
LCQG becomes a full subcategory of CSBa, and the compact objects agree.
However, this viewpoint is slightly misleading, as for example C0(G) will be
an object in CSBa different from Cu

0 (G), whereas we would generally regard
these as being “the same” quantum group. Furthermore, of course, CSBa
contains a great many objects which do not arise from LCQG in any fashion.
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Of interest from the viewpoint of Section 2 is that the “compact” objects do
correspond, all be it in a many-to-one fashion.

2.3. So�ltan’s Bohr compactification. In [41], So�ltan showed that in
CSBa, compactifications always exist. We shall shortly give a full account
of his theory, but for now let us make some brief comments. Given an object
G = (A,ΔA) in CSBa, we construct a certain unital C∗-subalgebra AP(G) in
M(A) such that (the strict extension of) ΔA restricts to a coproduct ΔAP(G)
on AP(G). Then bG = (AP(G),ΔAP(G)) is the compactification of G (termed
the quantum Bohr compactification of G in [41, Definition 2.14]).

Given the concrete realisation of LCQG as a full subcategory of CSBa, given
G we can form AP(G) by applying So�ltan’s theory to Cu

0 (G). However, the
obvious problem is that (AP(G),ΔAP(G)), while a compact quantum group,
might fail to be a universal quantum group, and hence would not be a member
of LCQG (viewed as a subcategory of CSBa). Indeed, this can even occur when
G is cocommutative, see Section 6.2 below.

In the next section, we instead show how to adapt So�ltan’s ideas to con-
struct a compactification in LCQG. We will also show that while the resulting
C∗-algebra picture is slightly complicated, the underlying (unique) dense Hopf
∗-algebra can be constructed in a number of equivalent ways, starting from
either Cu

0 (G) or from C0(G).

3. Compactification in LCQG

In this section, we shall show how to construct compactifications in LCQG,
by somewhat directly applying So�ltan’s construction. Thus we first summarise
So�ltan’s work in [41].

Let G = (A,Δ) be an object of CSBa. A (finite-dimensional) bounded
representation of G is an element T of M(A) ⊗ B(H), where H is a finite-
dimensional Hilbert space, with (Δ⊗ ι)T = T12T13, and such that T is invert-
ible. Equivalently, we could term such an object an invertible corepresentation
of A (with the Δ being clear from context) and we shall mostly stick to this
latter convention (to avoid confusing C0(G) with Cu

0 (G), and because we
want to stress the “invertible” aspect). There are obvious notions of taking
the direct sum, and tensor product, of invertible corepresentations.

If we take a basis of B(H), then we establish an isomorphism B(H)∼=Mn,
and thus identify T with (Tij) ∈Mn(M(A)). Then T needs to be invertible,
and to satisfy

Δ(Tij) =

n∑
k=1

Tik ⊗ Tkj for all i, j.

Let T� = (Tji) be the “transpose” of T ; this is always an “anti-
corepresentation”. We shall say that T is admissible if T� is invertible.
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Remark 3.1. If A is commutative, then T is invertible if and only if T�

is, but in general the admissible corepresentations form a strict subset of the
collection of invertible corepresentations. In CSBa there are counter-examples
([41, Remark 2.10] which references [52, Section 4]) but we do not know the
answer for C0(G) (and/or Cu

0 (G)) for G ∈ LCQG; see Conjecture 7.2 at the
end.

The linear span of the elements Tij form the collection of matrix elements
of T . By taking direct sums and tensor products, and using the trivial rep-
resentation, one can show that the collection of matrix elements of invertible
corepresentations forms a unital subalgebra of M(A), see [41, Proposition 2.5].

Harder to show (as we now use Woronowicz’s work in [59]) is that when T
is an admissible corepresentation, and BT denotes the C∗-algebra generated
by the matrix elements of T , then Δ restricts to a map BT →BT ⊗BT , and
(BT ,Δ|BT

) is a compact quantum group, see [41, Proposition 2.7]. It follows,
see [41, Corollary 2.9], that T is similar to a unitary corepresentation (again, in
CSBa the converse is not true, see [41, Remark 2.10]). One can now show that
admissible corepresentations are stable under tensor products, and it follows
that the set of all matrix elements of admissible corepresentations of A, say
AP(A), forms a unital ∗-subalgebra of M(A), see [41, Proposition 2.12].

Remark 3.2. Let T be a bounded corepresentation which is similar to a
unitary representation U . Then it is elementary to see that T� is invertible if
and only if U� is invertible. It follows that if we are interested in the matrix
elements of admissible corepresentations, it is no loss of generality to study
only admissible, unitary corepresentations.

We shall again abuse notation slightly (the map Δ being implicit) and write
AP(A) for the closure of AP(A). Thus AP(A) is a unital C∗-algebra and Δ
restricts to AP(A) to give a compact quantum group bA= (AP(A),ΔAP(A)).
By [4, Appendix A] we know that a compact quantum group admits a unique
dense Hopf ∗-algebra. By combining this with [41, Corollary 2.15] we see that
for AP(A), this Hopf ∗-algebra is simply AP(A). Finally, [41, Theorem 3.1]
shows that AP(A) satisfies the correct universal property to be, in the sense
of Section 2, the compactification of (A,Δ) in CSBa.

Remark 3.3. Let (A,ΔA) and (B,ΔB) be C∗-bialgebras and θ : A →
M(B) a Hopf ∗-homomorphism. If U ∈M(A)⊗Mn is an admissible corepre-
sentation, then V = (θ ⊗ ι)(U) will also be admissible (as, for example, V =

(θ⊗ ι)(U) will have inverse (θ⊗ ι)(U
−1

)). It follows that θ(AP(A))⊆AP(B),
and it is from this observation that we see that AP(A) has the correct universal
property.

3.1. For locally compact quantum groups. Let G be an object of LCQG.
Apply So�ltan’s theory to the universal quantum group Cu

0 (G), to yield a
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compact quantum group AP(Cu
0 (G)). This defines an object K of LCQG

which is compact. Indeed, C(K) is the reduced version of AP(Cu
0 (G)), see [4,

Theorem 2.1]. This can be formed as the quotient of AP(Cu
0 (G)) by the null-

ideal of the Haar state. Alternatively, we can start with the Hopf ∗-algebra
AP(Cu

0 (G)), which also carries a Haar state. Using this we can form the
Hilbert space L2(K), and then we can identify AP(Cu

0 (G)) with a ∗-algebra
of operators on L2(K). Then C(K) is the closure of AP(Cu

0 (G)) in B(L2(K)).
See [4, Theorem 2.11].

We can now form Cu(K), the universal version of K, by following [26].
Alternatively, one can follow [4, Section 3]; a little work shows that these are
equivalent constructions. In particular, we can think of Cu(K) as being the
universal enveloping C∗-algebra of AP(Cu

0 (G)), and so there is a surjective
∗-homomorphism Λu

AP
: Cu(K) → AP(Cu

0 (G)) which intertwines the coprod-
ucts. The composition

Cu(K)
Λu

AP

AP
(
Cu

0 (G)
)

M
(
Cu

0 (G)
)

is hence a Hopf ∗-homomorphism, and so defines an arrow G→K in LCQG.
As we might hope, we have the following result.

Proposition 3.4. With the arrow G→K just defined, K is the compacti-
fication of G in LCQG.

Before we can prove this result, we need to study in detail the ideas of [33]
and [26], as applied to compact quantum groups.

3.2. Morphisms and lifts. Let us recall some notions related to one and
two-sided “universal bicharacters” (to use the language of [33]). We shall
follow [26], but analogous results are shown in [33], [43]. Let G be a compact
quantum group and form the “universal” algebra Cu

0 (G) together with the
reducing morphism ΛG : Cu

0 (G) → C0(G) (which is denoted by π in [26]).

There is a unitary VG = V ∈ M(Cu
0 (G) ⊗ C0(Ĝ)) such that (Δu ⊗ ι)(V) =

V13V23 and (ι ⊗ Δ̂)(V) = V13V12; we think of V as being a variant of W
with its left-leg in Cu

0 (G); indeed, (ΛG ⊗ ι)(V) =W . Similarly, there is U ∈
M(Cu

0 (G)⊗Cu
0 (Ĝ)), a fully universal version of W .

We now recall some results from [33]. Let (A,Δ) be a C∗-bialgebra, and
let G be a locally compact quantum group. We shall say that U ∈M(A⊗
C0(Ĝ)) is a bicharacter if U is unitary, (Δ⊗ι)(U) = U13U23 and (ι⊗Δ

Ĝ
)(U) =

U13U12. Then [33, Proposition 4.2] shows that there is a bijection between
such bicharacters U , and Hopf ∗-homomorphisms φ : Cu

0 (G) → A, the link
being that U = (φ⊗ ι)(VG).

For locally compact quantum groups G,H, we can similarly define the
notion of a bicharacter in M(Cu

0 (G) ⊗ Cu
0 (Ĥ)). Then [33, Proposition 4.7]

shows that for any bicharacter U ∈ M(C0(G) ⊗ C0(Ĥ)), there is a unique
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bicharacter V ∈M(Cu
0 (G)⊗Cu

0 (Ĥ)) with (ΛG ⊗Λ
Ĥ
)(V ) = U . We call V the

“lift” of U ; hence U is the lift of W .
The following is only implicit in [33] (having been rather more explicit in

an early preprint1 of that paper) so we give the short argument.

Proposition 3.5. Given locally compact quantum groups G,H and a
Hopf ∗-homomorphism θ : Cu

0 (G) → C0(H), there is a unique Hopf ∗-
homomorphism θ0 : C

u
0 (G)→Cu

0 (H) with θ =ΛHθ0.

Proof. Let U ∈ M(C0(H) ⊗ C0(Ĝ)) be the unique bicharacter associated

with θ, and let V ∈M(Cu
0 (H)⊗Cu

0 (Ĝ)) be the unique “lift”. Then (ι⊗Λ
Ĝ
)(V )

is a bicharacter, and so gives a unique θ0 : C
u
0 (G)→ Cu

0 (H). Then observe
that (ι⊗Λ

Ĝ
)(V ) = (θ0 ⊗ ι)(VG). It follows that

(ΛHθ0 ⊗ ι)(VG) = (ΛH ⊗Λ
Ĝ
)(V ) = U = (θ⊗ ι)(VG).

As {(ι ⊗ ω)(VG) : ω ∈ L1(Ĝ)} is dense in Cu
0 (G), it follows that ΛHθ0 = θ.

Uniqueness follows in a similar way to [33, Lemma 50], [26, Lemma 6.1],
compare Lemma 3.6 below. �

Now let A be a compact quantum group, not assumed to be reduced or
universal. Let K be the abstract compact quantum group determined by A,
so that C(K) is the reduced version of A, and Cu(K) is the universal version
of A. As above, if A is the unique dense Hopf ∗-algebra of A, then C(K)
is the completion of A determined by the Haar state, and Cu(K) is the uni-
versal C∗-algebra completion of A. Let Λu

A : Cu(K)→A and Λr
A : A→C(K)

be the surjective Hopf ∗-homomorphisms which make the following diagram
commute:

Cu(K)
Λu

A
A

Λr
A

C(K)

A
We also have the surjective Hopf ∗-homomorphism ΛK : Cu(K)→ C(K). As
this also respects the inclusion of A into Cu

0 (K) and C0(K), it follows that we
have a further commutative diagram:

Cu(K)
Λu

A

ΛK

A
Λr

A
C(K)

The following lemma uses similar techniques to [26, Result 6.1].

Lemma 3.6. Let (A,ΔA) and Λr
A be as above. Let H be a locally compact

quantum group. If π1, π2 : C
u
0 (H)→A are Hopf ∗-homomorphisms such that

Λr
Aπ1 =Λr

Aπ2, then π1 = π2.

1 See arXiv:1011.4284v1.

http://arxiv.org/abs/arXiv:1011.4284v1
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Proof. Consider the universal left regular representation V for K. By [26,
Proposition 6.2], we have that

(ι⊗ΛK)Δ
u
K(x) = V∗(1⊗ΛK(x)

)
V

(
x ∈Cu(K)

)
.

Set U = (Λu
A ⊗ ι)(V) ∈M(A⊗C0(K̂)), so that

U∗(1⊗ΛK(x)
)
U =

(
Λu
A ⊗ΛK

)
Δu

K(x) =
(
ι⊗Λr

A

)
ΔA

(
Λu
A(x)

) (
x ∈Cu(K)

)
.

It follows that

U∗(1⊗Λr
A(x)

)
U =

(
ι⊗Λr

A

)
ΔA(x) (x ∈A).

We remark that we could construct U purely using compact quantum group
techniques, compare equation (5.10) in [54] (and remember that we work with
left multiplicative unitaries).

Now let π : Cu
0 (H)→A be a Hopf ∗-homomorphism. Let U be the universal

bicharacter of H and set V = (π⊗ ι)(U) ∈M(A⊗Cu
0 (Ĥ)). Then

(ΔA ⊗ ι)(V ) = (π⊗ π⊗ ι)
(
Δu

H ⊗ ι
)
(U) = V13V23.

By combining the previous two displayed equations, we see that

V13

((
Λr
A ⊗ ι

)
(V )

)
23

=
((
ι⊗Λr

A

)
ΔA ⊗ ι

)
(V ) = U∗

12

((
Λr
A ⊗ ι

)
(V )

)
23
U12,

and so

V13 = U∗
12

((
Λr
A ⊗ ι

)
(V )

)
23
U12

((
Λr
A ⊗ ι

)
(V )

)∗
23
.

It follows that V is determined by (Λr
A ⊗ ι)(V ) = (Λr

Aπ ⊗ ι)(U), that is, V
is determined by Λr

Aπ. By [26, Corollary 6.1], (ι⊗Λ
Ĥ
)(U) = VH, and by the

remarks after [26, Proposition 5.1], we know that {(ι⊗ ω)(VH) : ω ∈ L1(Ĥ)}
is dense in Cu

0 (H). Thus, π is determined by knowing

π
(
(ι⊗ ω)(VH)

)
= π

(
(ι⊗ ωΛ

Ĥ
)(U)

)
= (ι⊗ ωΛ

Ĥ
)(V ).

We conclude that π is determined uniquely by knowing V , and in turn V is
uniquely determined by knowing Λr

Aπ. The result follows. �

3.3. Back to compactifications. We are now in a position to prove Propo-
sition 3.4. Let K be the compact quantum defined by AP(Cu

0 (G)). Let
ΛK

AP
: Cu(K)→M(Cu

0 (G)) be the Hopf ∗-homomorphism defining the arrow
G→K, and let Λr

AP
: AP(Cu

0 (G))→C(K) be the “reducing morphism” con-
sidered in the previous section.

Proof of Proposition 3.4. Let H be compact in LCQG, and let G→ H be
an arrow. We have to show that this factors through G → K. Let the ar-
row G → H correspond to the Hopf ∗-homomorphism θ : Cu(H) → Cu

0 (G).
As AP(Cu

0 (G)) is a compactification, compare Remark 3.3, it follows that
θ(Cu(H))⊆AP(Cu

0 (G))⊆M(Cu
0 (G)). So the composition

Cu(H)
θ

AP
(
Cu

0 (G)
) Λr

AP

C(K)
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makes sense, and is a Hopf ∗-homomorphism θ0 : C
u(H) → C(K). Let

θ1 : C
u(H) → Cu(K) be the unique lift given by Proposition 3.5. This de-

fines an arrow K→H in LCQG.
We now claim that the following diagrams commute:

G H

K

Cu
0 (G) Cu(H)

θ

θ1

Cu(K)

ΛK

AP

By the definition of arrows in LCQG, one diagram commutes if and only if the
other does. However, we calculate that

Λr
APθ = θ0 =ΛKθ1 =Λr

APΛ
K

APθ1.

By Lemma 3.6, it follows that θ =ΛK

AP
θ1, as required. �

Definition 3.7. Given G, let the resulting compact quantum group K be
denoted by G

SAP, the strongly almost periodic compactification of G.

One could equally well call this the “Bohr compactification” of G, but this
terminology would clash with that used by So�ltan in [41] (because G

SAP is
an abstract quantum group, not in general a concrete sub-C∗-bialgebra of
M(C0(G))). Our terminology is inspired by that for semigroups, see [6, Sec-
tion 4.3] (for “reasonable” semigroups, the “strongly almost periodic compact-
ification” is the universal compact group compactification, while the “almost
periodic compactification” is the universal compact semigroup compactifica-
tion. For topological groups, the notions coincide: it would be interesting to
investigate analogous ideas for C∗-bialgebras).

Remark 3.8. Recall from Section 2 that for an arrow G → H in
LCQG we have a unique arrow G

SAP → H
SAP. If G → H is given by a

Hopf ∗-homomorphism θ : Cu
0 (H) → Cu

0 (G), and GSAP → HSAP is given by
θSAP : Cu(HSAP)→Cu(GSAP), then by construction, this is the unique Hopf
∗-homomorphism making the following diagram commute:

Cu
(
H

SAP
) Λu

AP

θSAP

AP
(
Cu

0 (H)
)

M
(
Cu

0 (H)
)

θ

Cu
(
G

SAP
) Λu

AP

AP
(
Cu

0 (G)
)

M
(
Cu

0 (G)
)

Now, the composition AP(Cu
0 (H)) → M(Cu

0 (H))
θ→ M(Cu

0 (G)) is a Hopf ∗-
homomorphism, and so, again by [41, Theorem 3.1], it follows that the image
is a subset of AP(Cu

0 (G)). So actually θSAP drops to a Hopf ∗-homomorphism
AP(Cu

0 (H))→ AP(Cu
0 (G)); that is, provides an arrow in the middle vertical

in the diagram above.
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Indeed, by Remark 3.3 we know that θ(AP(Cu
0 (H)))⊆AP(Cu

0 (G)), and so
θ restricts to give a map AP(Cu

0 (H))→AP(Cu
0 (G)); this is the map considered

in the previous paragraph. By composing with the inclusion AP(Cu
0 (G))→

Cu(GSAP), we obtain a Hopf ∗-homomorphism AP(Cu
0 (H))→Cu(GSAP). As

Cu(HSAP) is the universal C∗-algebra generated by AP(Cu
0 (H)), we hence

obtain a map Cu(HSAP)→Cu(GSAP), and by tracing the construction in the
proof of Proposition 3.4, we find that this map is indeed θSAP.

We next investigate what would happen if we used AP(C0(G)) instead of
AP(Cu

0 (G)).

Proposition 3.9. Let G be a locally compact quantum group. Consider the
Hopf ∗-algebras AP(C0(G)) and AP(Cu

0 (G)), which we can consider as subal-
gebras of M(Cu

0 (G)) and M(C0(G)), respectively. Then the strict extension of
Λ : Cu

0 (G)→ C0(G) restricts to form a bijection AP(Cu
0 (G))→AP(C0(G)).

In particular, C(GSAP) is also the reduced version of the compact quantum
group AP(C0(G)).

Proof. By construction (see after Definition 3.2), AP(C0(G)) is merely
the set of elements of admissible corepresentations of C0(G); and simi-
larly for AP(Cu

0 (G)). As Λ is a Hopf ∗-homomorphism, it is clear that
Λ(AP(Cu

0 (G)))⊆AP(C0(G)).
Conversely, and with reference to Remark 3.2, let U0 be an admissible

unitary corepresentation of C0(G), and let U be the unique lift to a unitary
corepresentation of Cu

0 (G). Our aim is to show that U is admissible, from
which it will follow that Λ(AP(Cu

0 (G))) =AP(C0(G)).
It is easy to see that UT

0 is invertible if and only if U0 = (U∗
0,ij)

n
i,j=1 is

invertible. Now, U0 is a corepresentation (and not an anti-corepresentation),
and from the theory of compact quantum (matrix) groups we know that U0 is
similar to a unitary, so there is a scalar matrix F with V0 = F−1U0F unitary.
Let V be the unique lift to Cu

0 (G). We shall show that U = FV F−1, which
is invertible, showing that U is admissible as claimed.

We now argue as in the proof of Lemma 3.6. For i, j, we have that∑
k

Uik ⊗U0,kj = (ι⊗Λ)Δu(Uij) = V∗(1⊗U0,ij)V

= V∗(1⊗ (
FV0F

−1
)∗
ij

)
V

=
∑
s,t

FisF
−1
tj V∗(1⊗ V ∗

0,st

)
V =

∑
s,t

FisF
−1
tj (ι⊗Λ)Δu

(
V ∗
st

)
=

∑
s,t,k

FisF
−1
tj V ∗

sk ⊗ V ∗
0,kt =

∑
k

(FV )∗ik ⊗
(
V0F

−1
)∗
kj

=
∑
k

(FV )∗ik ⊗
(
F−1U0

)∗
kj

=
∑
k

(FV )∗ik ⊗
(
F−1U0

)
kj
.
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It then follows that as U0 is unitary, for each i, r,∑
k,j

Uik ⊗U0,kjU
∗
0,rj =

∑
k

Uik ⊗ δk,r1 = Uir ⊗ 1

=
∑
k,j

(FV )∗ik ⊗
(
F−1U0

)
kj

(
U∗
0

)
jr

=
∑
k

(FV )∗ik ⊗ F−1
kr =

(
FV F−1

)∗
ir
⊗ 1.

Hence, U = FV F−1 as claimed.
So we have shown that admissible unitary corepresentations of C0(G) lift

to admissible unitary corepresentations of Cu
0 (G). Finally, we argue as in [11,

Section 1.2]. Let Bu ⊆M(Cu
0 (G)) denote the space of elements of all unitary

corepresentations of Cu
0 (G). By the universal property of U , it follows that

Bu =
{
(ι⊗ ω ◦ φ)(U) : φ : Cu

0 (Ĝ)→B(H) is a non-degenerate

∗-homomorphism, ω ∈ B(H)∗
}
.

Similarly define B ⊆M(C0(G)), so

B =
{
(ι⊗ ω ◦ φ)(V̂) : φ : Cu

0 (Ĝ)→B(H) is a non-degenerate

∗-homomorphism, ω ∈ B(H)∗
}
.

Then Λ restricts to a surjection Bu →B, because (Λ⊗ ι)(U) = V̂ . We claim
that Λ : Bu → B is an injection, from which it will follow certainly that
Λ : AP(Cu

0 (G))→AP(C0(G)) is injective, as required.

Let a = (ι ⊗ ω ◦ φ)(U) ∈ Bu be non-zero. So μ = ω ◦ φ ∈ Cu
0 (Ĝ)∗ is non-

zero. Now, Cu
0 (Ĝ) is the closed linear span of {(τ ⊗ ι)(V̂) : τ ∈ L1(G)}, and as

μ 
= 0, there is τ ∈ L1(G) with 〈μ, (τ ⊗ ι)(V̂)〉 
= 0. Thus Λ(a) = (ι⊗μ)(V̂) 
= 0,
as required.

As C(GSAP) is the completion of AP(Cu
0 (G)) for the norm coming from

the action on L2(GSAP), it follows that C(GSAP) is also the completion of
AP(C0(G)), namely the reduced version of AP(C0(G)), and so the second
claim follows. �

Consequently, it is enough to work in C0(G). Combining this proposition
with the observations of Section 3.2, we have the following commutative dia-
gram, where now A denotes the Hopf ∗-algebra associated with G

SAP, which
can now be identified the space of elements of admissible representations of
Cu

0 (G), or equivalently, C0(G),

Cu
(
GSAP

)
AP

(
Cu

0 (G)
) Restriction of ΛG

AP
(
C0(G)

)
C
(
GSAP

)

A
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In Section 6.2 below, we shall see that in the cocommutative case, it is possible
to say when the horizontal surjections are actually isomorphisms.

Definition 3.10. For a locally compact quantum group G, we write
AP(G) for the unique dense Hopf ∗-algebra of C(GSAP). By the above,
equivalently this is the unique dense Hopf ∗-algebra of AP(C0(G)), or of
AP(Cu

0 (G)).

We finish this section by showing a simple link between admissible represen-
tations and the antipode S, thought of here as a strictly-closed (unbounded)
operator on M(C0(G)).

Proposition 3.11. Let U = (Uij) ∈Mn(M(C0(G))) be a unitary corepre-
sentation. Then U is admissible if and only if U∗

ij ∈D(S) for each i, j.

Proof. For fixed i, j, as U is a corepresentation and is unitary,∑
k

Δ(Uik)
(
1⊗U∗

jk

)
=
∑
k,l

Uil ⊗UlkU
∗
jk =

∑
l

Uil ⊗
(
UU∗)

lj
= Uij ⊗ 1.

Similarly,∑
k

(1⊗Uik)Δ
(
U∗
jk

)
=
∑
k,l

U∗
jl ⊗UikU

∗
lk =

∑
l

U∗
jl ⊗

(
UU∗)

il
= U∗

ji ⊗ 1.

It follows from [28, Corollary 5.34, Remark 5.44] that Uij ∈ D(S) with
S(Uij) = U∗

ji.

Suppose now that U∗
ij ∈D(S) for all i, j. Then Uij ∈D(S−1), so we may

set Vij = S−1(Uji). Then∑
k

Vik

(
U�)

kj
=

∑
k

S−1(Uki)Ujk = S−1

(∑
k

S(Ujk)Uki

)

= S−1

(∑
k

U∗
kjUki

)
= δi,j1,

so that V U� = 1. Similarly, U�V = 1, so U� is invertible.
Conversely, if U is admissible, then the elements of U will belong to the

Hopf ∗-algebra A associated to AP(C0(G)). By applying [28, Proposition 5.45]
(compare [41, Proposition 4.11]) to the inclusion Hopf ∗-homomorphism
AP(C0(G)) → M(C0(G)), we see that this inclusion will intertwine the an-
tipode on A and S. In particular, S will restrict to a bijection A→A, and
so the “only if” claim follows. �

Remark 3.12. Thanks to [26, Proposition 9.6], the same result holds for
unitary corepresentations of Cu

0 (G) if we use the universal antipode Su.
We also remark that the proof that matrix elements of unitary corepre-

sentations of a compact quantum group form a Hopf ∗-algebra ultimately
relies upon the fact that if U is a unitary corepresentation, then U , or
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equivalently U�, is similar to a unitary corepresentation (equivalently, anti-
corepresentation). Indeed, we used this fact in the proof of Proposition 3.9
above. This point was, we feel, slightly skipped in [41, Remark 2.3(2)] and
explains why the argument given there does not work (directly) for locally
compact quantum groups.

Remark 3.13. If G is a Kac algebra (or, more generally, if S =R) then the
previous proposition gives a simple proof that any unitary corepresentation
is admissible. In particular, this answers the implicit question before [41,
Proposition 4.6].

Remark 3.14. Let us just remark that everything in this section ap-
plies equally well to quantum groups coming from manageable multiplicative
unitaries—simply replace references to [26] by the appropriate results to be
found in [43] and [33].

4. Representation free, and Banach algebraic, techniques

When G is a locally compact group, the algebra AP(C0(G)) coincides
with the classical algebra of almost periodic functions, namely those func-
tions f ∈Cb(G) such that the collection of left (or right) translates of f forms
a relatively compact subset of Cb(G), see [6, Section 4.3], for example.

There is a classical and well-studied link with Banach algebras here. Con-
sider the algebra L1(G) and turn Cb(G) into an L1(G) bimodule in the usual
way; we shall denote the module actions by 
. Then a simple argument using
the bounded approximate identity for L1(G), together with the fact that a
subset of a Banach space is relatively compact if and only if its absolutely
convex hull is, shows that a function f is almost periodic if and only if the or-
bit map L1(G)→Cb(G);a �→ a 
 f (or f 
 a) is a compact linear map. In fact,
identifying Cb(G) with a subalgebra of L∞(G), we obtain the same class by
looking at those f ∈ L∞(G) with L1(G)→ L∞(G);a �→ a 
 f being compact
(compare with the arguments of [47] or [9, Lemma 5.1], for example).

We are hence lead to consider the following definition.

Definition 4.1. Let A be a Banach algebra, and turn A∗ into an A-
bimodule in the usual way. A functional μ ∈A∗ is almost periodic if the orbit
map A→A∗;a �→ a 
μ is compact. We write AP(A) for the collection of such
functionals.

For μ ∈ A∗, define Lμ,Rμ : A → A∗ by Rμ(a) = a 
 μ and Lμ(a) = μ 
 a.
With κ : A → A∗∗ being the canonical map, we find that L∗

μ ◦ κ = Rμ and
R∗

μ ◦ κ= Lμ, and so Lμ is compact if and only if Rμ is compact. We remark
that some authors write AP(A∗) instead of AP(A).

When A = L1(G), we hence recover the classical notion of an almost pe-
riodic function. It is thus very tempting to use the same definition for any
locally compact quantum group. Indeed, early on in the development of the
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Fourier algebra, the definition of AP(Ĝ) = AP(A(G)) was made (we believe
for the first time in [13, Chapter 7]).

Let us quickly recall some notation. For a locally compact group G, we
define L∞(Ĝ) to be the group von Neumann algebra VN(G), which is gener-
ated by the left translation maps {λ(s) : s ∈G} acting on L2(G). In the setup
of Kac algebras or locally compact quantum groups, this is the dual to the
commutative algebra L∞(G). The predual of VN(G) is the Fourier algebra
A(G), as defined by Eymard, [18] (compare also [45]). Generally one thinks of
A(G) as being a commutative Banach algebra, in fact, a subalgebra of C0(G).
We remark that the locally compact quantum group convention would be to
consider multiplicative unitary W for VN(G), and then to consider the “left-
regular representation”, the map A(G) = VN(G)∗ → C0(G);ω �→ (ω ⊗ ι)(W )
(which is also used in [45, Section 3, Chapter VII]). Concretely, we identify
the functional ω with the continuous function G → C; t �→ 〈λ(t−1), ω〉. We
warn the reader that Eymard instead considers the map t �→ 〈λ(t), ω〉.

It was recognised that it “should be” the case that AP(Ĝ) = C∗
δ (G), the

C∗-subalgebra of VN(G) generated by the left translation operators. This is
indeed quantum Bohr compactification, see [41, Section 4.2] and Section 5
below. An excellent reference here is Chou’s paper [9].

Theorem 4.2. We have the following facts:

(1) AP(Ĝ) = C∗
δ (G) if G is Abelian [13], or discrete and amenable (which

follows easily from [19, Proposition 2]).

(2) There exists a compact group G such that C∗
δ (G) 
= AP(Ĝ). This is [9,

Theorem 3.5], but be aware of some errors in preliminary results; these
errors are partly corrected in [38]; in particular [38, Proposition 1] shows
the result we are interested in.

(3) If H is an open normal subgroup of G with G/H amenable, and with

C∗
δ (H) = AP(Ĥ), then also C∗

δ (G) = AP(Ĝ), [9, Theorem 4.4].

Remarkably, in full generality, it is still unknown if AP(Ĝ) is even a C∗-
algebra, never-mind whether it satisfies any obvious interpretation as a “com-
pactification”. Recently, Runde suggested a new definition of “almost peri-
odic” which takes account of the Operator Space structure of A(G). We use
standard notions from the theory of Operator Spaces, see [16] for example.
In particular, if M is a von Neumann algebra and M∗ its predual, then the
space of completely bounded maps M∗ → M , denoted CB(M∗,M), can be
identified with the dual space of the operator space projective tensor product,
M∗ ⊗̂M∗, and with the von Neumann tensor product M ⊗M . That is, we
identify T ∈ CB(M∗,M), μ ∈ (M∗ ⊗̂M∗)

∗ and y ∈M ⊗M by the relations〈
T (ω), τ

〉
= 〈μ,ω⊗ τ〉= 〈y,ω⊗ τ〉 (ω, τ ∈M∗).

There are analogous constructions given by slicing y on the right; see [16,
Chapter 7].
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For a map between operator spaces, there are a number of notions of being
“compact”, namely completely compact and Gelfand compact, see [40, Sec-
tion 1] and references therein for a discussion. In general these are distinct,
but when mapping into a dual, injective operator space, they coincide with the
notation of being the completely-bounded-norm limit of finite-rank operators
(much as, in the presence of the approximation property, a compact map be-
tween Banach spaces is the norm limit of finite-rank maps). For a completely
contractive Banach algebra A, Runde makes the following definitions:

Definition 4.3. A completely bounded map T : E → F between operator
spaces is completely compact if for each ε > 0 there is a finite-dimensional
subspace Y of F such that, with Q : F → F/Y the quotient map, ‖QT‖cb < ε.

For μ ∈ A∗ say that μ is completely almost periodic, denoted by μ ∈
CAP(A), if both Lμ and Rμ are completely compact.

Consider the case when (M,Δ) is a Hopf–von Neumann algebra and
A=M∗ with the canonical operator space structure. Then, if M is an in-
jective von Neumann algebra, [40, Theorem 2.4] shows that CAP(A) is a
C∗-subalgebra of M . Indeed, the proof shows that

CAP(A) =
{
x ∈M : Δ(x) ∈M ⊗M

}
,

where here ⊗ denotes the minimal C∗-algebra tensor product, namely the
norm closure of M �M in M ⊗M . In particular, this applies to A = A(G)
when G is an amenable or connected locally compact group, [40, Corol-
lary 2.5].

Hence for “nice” G, Runde’s algebra CAP(L1(G)) agrees with those x ∈
L∞(G) such that

Lx : L1(G)→ L∞(G); ω �→ x 
 ω = (ω⊗ ι)Δ(x)

can be cb-norm approximated by finite-rank maps. Equivalently, this means
that Δ(x) can be norm approximated by finite-rank tensors in M ⊗M .

4.1. Counter-examples. The counter-example considered by Chou is as
follows: for a compact group G, let E be the rank-one orthogonal projection
onto the constant functions in L2(G). Then E ∈ VN(G) and it is possible
to analyse closely the orbit map A(G) → VN(G);ω �→ ω · E, in particular,

E ∈ AP(Ĝ) if and only if G is tall. However, a careful calculation shows
that Chou’s argument [9, Proposition 3.1] (compare also [14]) does extend

to CAP(Ĝ). We plan to explore in future work if we can characterise when

E ∈CAP(Ĝ); compare also with Theorem 5.3 below.
Instead, we now turn our attention to the fully quantum case, and explore

a remarkable result of Woronowicz in [57]. The quantum E(2) group was
defined in [58], see also [37], [51].
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Theorem 4.4. Let q ∈ (0,1) and let G be the quantum E(2) group with
parameter q. Then CAP(G) strictly contains AP(C0(G))∼=C(GSAP).

Proof. We use two results of Woronowicz. First, [57] (see especially Sec-
tion 4) shows that for all x ∈ C0(G), we have that Δ(x) ∈ C0(G) ⊗ C0(G);
notice the lack of a multiplier algebra! So immediately we see that C0(G)⊆
CAP(G).

Second, we use the classification of unitary corepresentations of C0(G) given
in [58, Theorem 2.1]. In finite dimensions, the classification is very restrictive.
Indeed, let U ∈M(C0(G))⊗Mn be a finite-dimensional unitary corepresenta-
tion. Then there exist matrices N,b ∈Mn with N self-adjoint, b normal, and
N, |b| commuting. Furthermore, if b has polar decomposition b= u|b|, then on
(ker b)⊥, we have that u∗Nu =N + 2. Clearly this cannot hold for bounded
operators, so in this finite-dimensional setting, (ker b)⊥ = {0} so b= 0. Then
[58, Theorem 2.1] further gives an expression for U in terms of b and N . How-
ever, as b= 0, it follows that actually U ∈Mn(M(C0(G))) diagonalises, with
diagonal entries powers of v ∈M(C0(G)). Here v is a unitary, one of the op-
erators which “generates” C0(G), compare [58, Theorem 1.1]. We know that
Δ(v) = v⊗ v by [58, Theorem 1.2], and so v is a one-dimensional, admissible,
corepresentation.

It follows from this discussion that AP(G) is spanned by {vk : k ∈ Z} and
so G

SAP is isomorphic to the circle group (and hence is a classical compact
group). In particular, AP(C0(G)) is (much) smaller than CAP(G). �

Let us draw one further conclusion from this. Let A ⊆ M(C0(G)) be
the maximal compact quantum semigroup; so A is the maximal unital C∗-
subalgebra with Δ(A) ⊆ A ⊗ A. That A exists follows from a free-product
argument, compare [52]: if B,C ⊆ M(C0(G)) are two such unital algebras,
then the image of the free-product B ∗ C in M(C0(G)) will be a unital C∗-
bialgebra containing both B and C. If G=G is a classical (semi)group then
A will be commutative, with character space K say, and Δ restricted to A
will induce a continuous semigroup structure on K. It follows that K is ac-
tually the “almost periodic” compactification of G, compare [6, Chapter 4.1].
If G were a group, then this agrees with the Bohr compactification. However,
if now G is again the quantum E(2) group, then this maximal A will cer-
tainly contain C0(G)⊕C1; in particular, again A will be (much) larger than
AP(C0(G)).

4.2. Stronger notions. Thus it appears that, in complete generality, even
the notion of “completely almost periodic” is not strong enough to single
out AP(C0(G)). We shall make a stronger definition; the link with Runde’s
definition is clarified in Proposition 4.9 below.
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Definition 4.5. Say that x ∈ L∞(G) is periodic if Δ(x) is a finite-rank ten-
sor in L∞(G)⊗L∞(G). Denote the collection of periodic elements of L∞(G)
by P∞(G), and denote the norm closure, in L∞(G), by P

∞(G).

Note that similar definitions would hold for M(C0(G)) (or indeed for
M(Cu

0 (G))) and at this level of generality, it is not clear if they would yield
the same objects; thus we choose to emphasis this by using the notation P∞

not P , and so forth. Compare with Remark 4.15 and the comment after The-
orem 6.4, which suggest that working with M(C0(G)) should probably give
the same result, but that M(Cu

0 (G)) might not.

Remark 4.6. In the purely algebraic setting, working with multiplier Hopf
algebras, So�ltan studied a very similar ideas for discrete quantum groups in
[42] (see also [41, Proposition 4.6]).

Lemma 4.7. Let G be a locally compact quantum group. Then

P∞(G) =
{
x ∈ L∞(G) : Lx is finite-rank

}
=

{
x ∈ L∞(G) : Rx is finite-rank

}
.

Furthermore, P∞(G) is a C∗-subalgebra of L∞(G), and an L1(G)-submodule
of L∞(G).

Proof. It follows immediately from the definition that P
∞(G) is a C∗-

algebra. As Lx(ω) = x 
 ω = (ω ⊗ ι)Δ(x), it is easy to see that if Δ(x) is
a finite-rank tensor, then Lx is a finite-rank map. Conversely, if Lx is finite-
rank, then let {xi} be a basis for the image of Lx. For each ω ∈ L1(G), there
hence exist unique scalars {ai} with x 
 ω =

∑
i aixi. Then the map ω �→ ai

is bounded and linear, so there are yi in L∞(G) with x 
 ω =
∑

i〈yi, ω〉xi.
Equivalently, Δ(x) =

∑
i yi ⊗ xi is a finite-rank tensor. An analogous argu-

ment holds for Rx; or use again that Rx = L∗
x ◦ κ and Lx =R∗

x ◦ κ (where κ
is the inclusion L1(G)→ L1(G)∗∗).

To show that P∞(G) is an L1(G)-submodule, it suffices to show that P∞(G)
is a submodule. For ω ∈ L1(G), let Tω : L∞(G)→ L∞(G) be the map x �→
ω 
 x. Then Lω�x = Tω ◦Lx, so x ∈ P∞(G) =⇒ ω 
 x ∈ P∞(G). Similarly, let
Sω : L1(G)→ L1(G) be the map τ �→ ωτ . Then Lx�ω = Lx ◦Sω , and it follows
that P∞(G) is also a right L1(G)-submodule. �

The following ultimately provides an alternative description of P∞(G).

Theorem 4.8. Let T : L1(G) → L∞(G) be a completely bounded right
L1(G)-module homomorphism. Then there exists x ∈ L∞(G) with T =Rx.

Proof. That T is completely bounded again means that there is y ∈
L∞(G)⊗L∞(G) with T (ω) = (ω ⊗ ι)(y) for all ω ∈ L1(G). If we have that
y =Δ(x), then T (ω) = (ω ⊗ ι)Δ(x) = ω 
 x=Rx(ω) as required. Conversely,
that T is a right L1(G)-module homomorphism is equivalent to

〈y,ω1ω2 ⊗ ω3〉=
〈
T (ω1ω2), ω3

〉
=
〈
T (ω1), ω2ω3

〉
= 〈y,ω1 ⊗ ω2ω3〉,
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that is, (Δ⊗ ι)(y) = (ι⊗Δ)(y). So we wish to prove that this relation on y
forces that y =Δ(x) for some x.

If L1(G) has a bounded approximate identity, this is a Banach algebraic
exercise. For G cocommutative, we gave a proof in [10, Theorem 6.5], and
an early preprint by the author2 shows that this is true for general G (with
a relatively elementary proof). However, actually a somewhat more general
statement already exists in the literature. A (left) action of G on a von
Neumann algebra N is an injective normal unital ∗-homomorphism α : N →
L∞(G)⊗N with (ι ⊗ α)α = (Δ ⊗ ι)α. For actions of Kac algebras, it was
shown in [17, Théorème IV.2] (see also [17, Définition II.8]) that

α(N) =
{
z ∈ L∞(G)⊗N : (ι⊗ α)(z) = (Δ⊗ ι)(z)

}
.

In [48, Section 2], the necessary preliminary steps to prove this result for
locally compact quantum groups are given, although a full proof is not shown.
As Δ is an action of G on L∞(G), our claim immediately follows from this
general theory. �

Proposition 4.9. Let G be a locally compact quantum group. Then
AP(C0(G)) ⊆ P

∞(G) ⊆ CAP(L1(G)). Indeed, x ∈ P
∞(G) if and only if Lx

can be cb-norm approximated by finite-rank module maps L1(G)→ L∞(G).

Proof. It is clear that a matrix element of an admissible corepresentation
is periodic (as the corepresentation is finite-dimensional) and so AP(C0(G))⊆
P
∞(G). If x is periodic, then as Δ is an isometry, it follows that Δ(x) can

be norm approximated by elements of form Δ(y) with Δ(y) a finite-rank
tensor. It is immediate that x ∈ CAP(L1(G)), and that Lx can be cb-norm
approximated by finite-rank module maps. The converse now follows from
the previous theorem, as every finite-rank module map is of the form Ly for
some y with Δ(y) a finite-rank tensor. �

Thus the collection P
∞, which can be defined purely in terms of the Banach

algebra L1(G), is a weakening of AP and a strengthening of CAP. In the next
section we shall provide cases (in particularly, when G is a Kac algebra) when
AP= P

∞. In the following section, we embark on a programme to determine
CAP(A(G)) for various classes of groups G.

4.3. When periodic implies almost periodic. Our aim here is to show
that if x ∈ P

∞(G), then under further assumptions on x, also x ∈AP(C0(G)).
First, we need to decide upon reasonable “further assumptions”. Proposi-
tion 3.11 immediately implies the following.

Lemma 4.10. Let x ∈ AP(G). If we consider AP(G) as a subalgebra of
M(C0(G)), then x ∈ D(S) ∩ D(S−1). Similarly, if we consider AP(G) ⊆
M(Cu

0 (G)), then AP(G)⊆D(Su)∩D(S−1
u ).

2 See Theorem 2.2 of arXiv:1107.5244v3.

http://arxiv.org/abs/arXiv:1107.5244v3
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Our aim will be to show that in fact AP(G) = P
∞(G) ∩D(S) ∩D(S−1).

Notice that if S is actually bounded (if G is a Kac algebra) then immediately
we have that AP(G) = P(G).

We start with some results about the antipode. As S is unbounded, the
natural candidate for an involution on L1(G) is unbounded. Instead, following
for example [26, Section 4], we define L1

� (G) to be the collection of ω ∈ L1(G)

such that there is ω� ∈ L1(G) satisfying 〈x,ω�〉= 〈S(x)∗, ω〉 for all x ∈D(S).
Then ω �→ ω� defines an involution on L1

� (G). For ω ∈ L1(G), define ω∗ by

〈x,ω∗〉= 〈x∗, ω〉 for x ∈ L∞(G).

Lemma 4.11. Let x ∈D(S)⊆ L∞(G) and let ω ∈ L1
� (G). Then x
ω ∈D(S)

with S(x 
 ω) = ω�∗ 
 S(x), and ω 
 x ∈D(S) with S(ω 
 x) = S(x) 
 ω�∗.
Let y ∈ D(S−1) and let τ ∈ L1

� (G)∗. Then y 
 τ, τ 
 y ∈ D(S−1) with

S−1(y 
 τ) = τ∗� 
 S−1(y) and S−1(τ 
 y) = S−1(y) 
 τ∗�.

Proof. By [7, Appendix A], for example, to show that x 
 ω ∈D(S) with
S(x 
 ω) = ω�∗ 
 S(x), it suffices to show that for all τ ∈ L1

� (G), we have that〈
x 
 ω, τ �

〉
=
〈
ω�∗ 
 S(x), τ∗

〉
.

However, this follows from a simple calculation:〈
x 
 ω, τ �

〉
=

〈
x,ω 
 τ �

〉
=
〈
x,
(
τ 
 ω�

)�〉
=
〈
S(x)∗, τ 
 ω�

〉
=

〈
ω� 
 S(x)∗, τ

〉
=
〈
ω�∗ 
 S(x), τ∗

〉
.

The second claim is entirely analogous.
For the second part, we use that S−1 = ∗ ◦ S ◦ ∗, and that Δ is a ∗-

homomorphism. So y∗ ∈D(S) and τ∗ ∈ L1
� (G), and thus y∗ 
 τ∗ ∈D(S) with

S(y∗ 
τ∗) = τ∗�∗ 
S(y∗). Hence, y
τ ∈D(S−1) and S−1(y
τ) = S(y∗ 
τ∗)∗ =
τ∗� 
 S−1(y). The other claim follows similarly. �

The following is essentially a restatement of [7, Proposition 4.6]; but here
our sums are finite, and so we can ignore convergence issues.

Proposition 4.12. Let x ∈ L∞(G) be such that Δ(x) =
∑n

i=1 ai ⊗ bi
where for each i, we have that b∗i ∈ D(S). Then the map L : L∞(Ĝ) →
B(L2(G)); x̂ �→

∑n
i=1 S(b

∗
i )

∗x̂ai maps into L∞(Ĝ) and is the adjoint of a

(completely bounded) left multiplier of L1(Ĝ). In particular, (ι⊗ L)(W ∗) =
(x⊗ 1)W ∗, equivalently,

∑
i(1⊗ S(b∗i )

∗)Δ(ai) = x⊗ 1.

Corollary 4.13. Let x ∈ L∞(G) be such that Δ(x) =
∑n

i=1 ai ⊗ bi where
for each i, we have that ai ∈D(S). Then 1⊗ x=

∑
i(S(ai)⊗ 1)Δ(bi).

Proof. We follow [29, Section 4], and define the opposite quantum group to
G to be G

op, where L∞(Gop) = L∞(G) and Δop = σΔ. Then we find that
Rop = R and (τopt ) = (τ−t). It follows that Sop = Ropτop−i/2 = Rτi/2 = S−1 =

∗ ◦ S ◦ ∗.
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So Δop(x) =
∑

i bi ⊗ ai and for each i, we have that a∗i ∈ D(Sop). So
the previous proposition, now applied to G

op, shows that x ⊗ 1 =
∑

i(1 ⊗
Sop(a∗i )

∗)Δop(bi), or equivalently, 1⊗ x=
∑

i(S(ai)⊗ 1)Δ(bi). �

We can now prove the main theorem of this section; the idea of this con-
struction is well-known in Hopf algebra theory (but of course we have to work
harder in the analytic setting).

Theorem 4.14. Let x ∈ P∞(G)∩D(S)∩D(S−1). There exists an admis-
sible corepresentation U = (Uij) of C0(G) such that x is a matrix element
of U . In particular, x ∈M(C0(G)) and x ∈AP(C0(G)).

Proof. That x ∈ P∞(G) is equivalent to Rx : L1(G)→ L∞(G);ω �→ ω 
 x
having a finite-dimensional image, say X . Then Rx(L

1
� (G)) is dense in X , as

L1
� (G) is dense in L1(G). As X is finite-dimensional, Rx(L

1
� (G)) =X , and so

we can find (ωi)
n
i=1 ⊆ L1

� (G) with {ωi 
 x : 1≤ i≤ n} forming a basis for X .
Set xi = ωi 
 x.

As {xi} is a linearly independent set, the map L1(G)→Cn;ω �→ (〈xi, ω〉)ni=1

is a linear surjection. Hence the set {(〈xi, ω〉)ni=1 : ω ∈ L1
� (G)} is a dense linear

subspace of Cn, and hence equals C
n. So we can find (τi)

n
i=1 ⊆ L1

� (G) with

〈xj , τi〉= δi,j for 1≤ i, j ≤ n. Let yi = x 
 τi.
For ω ∈ L1(G) there are unique (ai)

n
i=1 ⊆ C with ω 
 x =

∑
i aixi. Then

ai = 〈ω 
 x, τi〉= 〈x 
 τi, ω〉= 〈yi, ω〉, and so for τ ∈ L1(G),〈
Δ(x), τ ⊗ ω

〉
=
∑
i

ai〈xi, τ〉=
∑
i

〈xi ⊗ yi, τ ⊗ ω〉.

It follows that Δ(x) =
∑

i xi⊗yi. Notice that then xi = ωi 
x=
∑

j〈yj , ωi〉xj ,

so as {xi} is a linearly independent set, we conclude that 〈yj , ωi〉= δi,j for all
i, j. In particular, {yj} is also a linearly independent set.

Set Uij = xj 
 τi = ωj 
 x 
 τi. Then

Δ2(x) =
∑
j

Δ(xj)⊗ yj =
∑
i

xi ⊗Δ(yi).

It follows that Δ(yi) =
∑

j Uij ⊗ yj for all i. Then

Δ2(yi) =
∑
j

Δ(Uij)⊗ yj =
∑
k

Uik ⊗Δ(yk) =
∑
k,j

Uik ⊗Ukj ⊗ yj .

As {yj} is also a linearly independent set, this shows that U = (Uij) is a
corepresentation.

Using Lemma 4.11, notice that yi, xi ∈D(S) for all i, and that Uij ∈D(S)
for all i, j. As Δ(x) =

∑
i xi ⊗ yi, Corollary 4.13 shows that

1⊗ x=
∑
i

(
S(xi)⊗ 1

)
Δ(yi) =

∑
i,j

S(xi)Uij ⊗ yj .
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Hence, x ∈ lin{yi}. We now notice that for each i, Δ(y∗i ) =
∑

j U
∗
ij ⊗ y∗j , and

so Proposition 4.12 shows that

y∗i ⊗ 1 =
∑
j

(
1⊗ S(yj)

∗)Δ(
U∗
ij

)
=
∑
jk

U∗
ik ⊗ S(yj)

∗U∗
kj .

Hence, yi ∈ lin{Uik : 1≤ k ≤ n} for each i, and we conclude that x is a matrix
element of U .

The preceding argument is partly inspired by [7, Section 4]; in particular,
[7, Theorem 4.7] shows that if the representation L1(G)→Mn;ω �→ (〈Uij , ω〉)
is non-degenerate, then U is invertible with inverse (S(Uij))

n
i,j=1. We claim

that this representation is indeed non-degenerate. For ξ ∈ C
n, as {yi} is a

linearly independent set, there is τ ∈ L1(G) with ξ = (〈yj , τ〉)nj=1. Then

(
〈Uij , ω〉

)
ξ =

(∑
j

〈Uij , ω〉〈yj , τ〉
)n

i=1

=
(
〈yi, ω 
 τ〉

)n
i=1

.

We need to show that as ω, τ vary, we get a subset whose linear span is all
of C

n. However, this is clear, because lin{ω 
 τ : ω, τ ∈ L1(G)} is a dense
subspace of L1(G), and the set {yi} is linearly independent.

We hence conclude that U is invertible. It is known that invertible represen-
tations are members ofM(C0(G)⊗Mn) =M(C0(G))⊗Mn, see [55, Section 4],
[1, p. 441] and [7, Theorem 4.9]. So x ∈M(C0(G)).

It remains to show that U is admissible, that is, U� is invertible, or equiv-
alently, that U = (U∗

ij)
n
i,j=1 is invertible. By hypothesis, also x ∈ D(S−1).

Arguing as before, we can find (ω′
i)

n
i=1 ⊆ L1

� (G)∗ with xi = ω′
i 
 x. Similarly,

we find (τ ′i)
n
i=1 ⊆ L1

� (G)∗ with 〈xj , τ
′
i〉= δij . Setting y′i = x 
 τ ′i , we follow the

argument above to conclude that Δ(x) =
∑

i xi⊗y′i. As {xi} is a linearly inde-
pendent set, actually y′i = yi for all i. Then U ′

ij = xj 
 τ
′
i is a corepresentation,

but now U ′
ij ∈D(S−1) for all i, j. However,∑
j

Uij ⊗ yj =Δ(yi) =Δ(y′i) =
∑
j

U ′
ij ⊗ y′j =

∑
j

U ′
ij ⊗ yj ,

so using that {yj} is a linearly independent set, it follows that Uij = U ′
ij for

all i, j. Thus U∗
ij ∈D(S) for all i, j, and so [7, Theorem 4.7] shows that U is

invertible (as obviously L1(G)→Mn;ω �→ (〈U∗
ij , ω〉)ni,j=1 = (〈Uij , ω∗〉)ni,j=1 is

non-degenerate). �

Remark 4.15. An immediate corollary of the proof is that if x ∈ P∞(G)∩
D(S), then x ∈M(C0(G)) and x is a matrix element of an invertible, finite-
dimensional corepresentation of C0(G).

Combining Lemma 4.10 and Theorem 4.14 immediately gives the following.
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Corollary 4.16. We have that AP(C0(G)) = P∞(G)∩D(S)∩D(S−1).

For Kac algebras, this takes on a very pleasing form, because S = R is
bounded. In particular, this answers a question ask by So�ltan, see [41, p. 1260],
as to whether a finite-dimensional, unitary corepresentation of a discrete Kac
algebra is automatically admissible—the answer is “yes”, as would be true for
any Kac algebra, and any finite-dimensional corepresentation.

Corollary 4.17. Let G be a Kac algebra. Then AP(C0(G)) = P∞(G),
and AP(C0(G)) = P

∞(G).

So at least for a Kac algebra, this corollary provides a way, just starting
from L1(G), of finding AP(C0(G)) and AP(C0(G)). In the general case,
D(S) ∩D(S−1) will be smaller than L∞(G), and so in principle it might be
hard to calculate P∞(G) ∩D(S) ∩D(S−1). Compare with Theorem 6.4 and
Conjecture 7.1 below.

5. The cocommutative case

So�ltan showed in [41, Section 4.2] that if G is a locally compact group

and G = Ĝ, then AP(Cu
0 (G)) = AP(C∗(G)) is the closed linear span of the

translation operators {Ls : s ∈G} inside M(C∗(G)). Actually, much the same
proof work for C∗

r (G) = C0(G). So in light of Proposition 3.9, we see that if
Gd denotes G with the discrete topology, then the compactification of G in

LCQG is Ĝd.
Let us give a different, short proof of this, using our previous results. In

the literature (see [9] for example) it is common to write C∗
δ (G) for the

C∗-subalgebra of VN(G) = L∞(G) generated by the left-translation maps
{λ(s) : s ∈G}. Let us write C[G] for the algebra (not norm closed) generated
by the operators λ(s). We first note that each λ(s) ∈M(C0(G)), and that Δ
restricts to C[G] turning (C[G],Δ) into a unital bialgebra. Thus (C∗

δ (G),Δ)
is a unital C∗-bialgebra. It is easy to verify the density conditions to show
that (C∗

δ (G),Δ) is a compact quantum group. Hence C∗
δ (G) ⊆ AP(C0(G)).

However, Chou showed in [9, Proposition 2.3] (translated to our terminology)
that P∞(G) = C[G], from which it follows that P

∞(G) = C∗
δ (G). So, with

reference to Proposition 4.9, it follows that AP(C0(G)) =C∗
δ (G).

5.1. Completely almost periodic elements. We now wish to investigate
Runde’s definition CAP(A(G)). First, we have the following result, which
holds for any compact Kac algebra.

Theorem 5.1. Let G be a compact Kac algebra. If x ∈ L∞(G) with Δ(x) ∈
L∞(G)⊗L∞(G) (the C∗-algebraic minimal tensor product) then x ∈C(G).
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Proof. As G is Kac, we have that R= S = S−1 and the Haar state ϕ is a
trace. Let ξ0 ∈ L2(G) be the cyclic vector for ϕ. Then, for y, z ∈ L∞(G) and
a, b ∈C(G),(

(ϕ⊗ ι)
(
W (y⊗ z)W ∗)aξ0|bξ0)

=
(
(y⊗ z)W ∗(ξ0 ⊗ aξ0)|W ∗(ξ0 ⊗ bξ0)

)
=
(
Δ
(
b∗
)
(y⊗ z)Δ(a)ξ0 ⊗ ξ0|ξ0 ⊗ ξ0

)
= (ϕ⊗ϕ)

(
Δ
(
b∗
)
(y⊗ z)Δ(a)

)
= (ϕ⊗ϕ)

(
Δ
(
ab∗

)
(y⊗ z)

)
,

using that ϕ is a trace. By [54, Theorem 2.6(4)], we know that

R
(
(ϕ⊗ ι)

((
ab∗ ⊗ 1

)
Δ(y)

))
= (ϕ⊗ ι)

(
Δ
(
ab∗

)
(y⊗ 1)

)
.

Hence, we get

ϕ
(
R
(
(ϕ⊗ ι)

((
ab∗ ⊗ 1

)
Δ(y)

))
z
)
= ϕ

(
R(z)

(
(ϕ⊗ ι)

((
ab∗ ⊗ 1

)
Δ(y)

)))
,

using that ϕ ◦R= ϕ. This is then equal to

(ϕ⊗ϕ)
((
ab∗ ⊗R(z)

)
Δ(y)

)
=
(
W ∗(ξ0 ⊗ yξ0)|ba∗ξ0 ⊗R

(
z∗
)
ξ0
)

=
(
(ι⊗ ω̂)

(
W ∗)ξ0|ba∗ξ0)= ϕ

(
ab∗c

)
= ϕ

(
b∗ca

)
= (caξ0|bξ0),

where ω̂ = ωyξ0,R(z∗)ξ0 ∈ L1(Ĝ) and c= (ι⊗ ω̂)(W ∗) ∈ C(G). As a, b ∈ C(G)
were arbitrary, this shows that

(ϕ⊗ ι)
(
W (y⊗ z)W ∗) ∈C(G).

We remark that a similar idea to this construction, in a very different context,
appears in [39, Section 3].

For ε > 0 we can find τ ∈ L∞(G)�L∞(G) with ‖Δ(x)− τ‖< ε. Thus∥∥(ϕ⊗ ι)
(
WΔ(x)W ∗)− (ϕ⊗ ι)

(
WτW ∗)∥∥< ε.

However, as W ∗Δ(x)W = 1⊗ x, this shows that there is some d ∈C(G) with
‖x− d‖< ε. So x ∈C(G) as required. �

Corollary 5.2. Let G be a compact Kac algebra with L∞(G) injective

(for example, G= Ĝ for a discrete amenable group G). Then CAP(L1(G)) =
C(G).

To deal with the non-injective case would presumably require a much more
detailed study of the notion of a completely compact map. We do not currently
see how to adapt our ideas to the non-Kac setting.

In the rest of this section, we start a programme of extending Theorem 5.1.
Having a trace seemed very important to this proof, so to make progress in
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the non-compact case we shall restrict ourselves to the case when G= Ĝ for
a [SIN] group G. We shall prove the following result:

Theorem 5.3. Let G be a [SIN] group, and let x0 ∈ VN(G) be such that
Δ2(x0) ∈VN(G)⊗VN(G)⊗VN(G). Then x0 ∈C∗

δ (G).

By definition, G is [SIN] group if G contains arbitrarily small neighbour-
hoods of the identity which are invariant under inner automorphisms. Equiv-
alently, by [46, Proposition 4.1], VN(G) is a finite von Neumann algebra.
Discrete, compact and Abelian groups are all [SIN] groups. A connected
group G is [SIN] if and only if the quotient of G by its centre is compact, if
and only if G→ GSAP is injective, see [35, Chapter 12]. Also we note that
[SIN] groups are always unimodular.

Recall that the fundamental unitary W of VN(G) satisfies Wξ(s, t) =
ξ(ts, t) for ξ ∈ L2(G × G), s, t ∈ G. As A(G) is commutative, we of course
have that ω 
 x= x 
 ω for ω ∈ A(G) and x ∈ VN(G). We write the module
action of VN(G) on A(G) by juxtaposition.

Lemma 5.4. Let G be unimodular, and let ξ ∈ L2(G) satisfy ξ(ab) =
ξ(ba) for (almost) every a, b ∈ G. For all z ∈ VN(G × G) we have that
(ωξ ⊗ ι)(WzW ∗) ∈ VN(G). Furthermore, for x, y ∈ VN(G) we have that
(ωξ ⊗ ι)(W (x⊗ y)W ∗) = ϕx 
 y where ϕx = (ωξx) ◦R ∈A(G).

Proof. Let s, t ∈ G and let w = (ωξ ⊗ ι)(W (λ(s) ⊗ λ(t))W ∗). Let f, g ∈
L2(G), and calculate:

(wf |g) =
((
λ(s)⊗ λ(t)

)
W ∗(ξ ⊗ f)|W ∗(ξ ⊗ g)

)
=

∫
G

∫
G

W ∗(ξ ⊗ f)
(
s−1a, t−1b

)
W ∗(ξ ⊗ g)(a, b)dadb

=

∫
G

∫
G

ξ
(
b−1ts−1a

)
ξ
(
b−1a

)
daf

(
t−1b

)
g(b)db

=

∫
G

∫
G

ξ
(
ts−1ab−1

)
ξ
(
ab−1

)
daf

(
t−1b

)
g(b)db

=

∫
G

∫
G

ξ
(
ts−1a

)
ξ(a)daf

(
t−1b

)
g(b)db

=
〈
λ
(
st−1

)
, ωξ

〉(
λ(t)f |g

)
.

The 4th equality follows by our assumption on ξ, and the 5th equality as G
is unimodular. Thus w = 〈λ(st−1), ωξ〉λ(t) ∈VN(G). Now,

ϕλ(s) 
 λ(t) =
〈
λ(t), ϕλ(s)

〉
λ(t) =

〈
λ
(
t−1

)
, ωξλ(s)

〉
λ(t) =w,

and so the stated formula holds when x = λ(s) and y = λ(t). By sep-
arate weak∗-continuity, the formula holds for all x, y. Then, by weak∗-
continuity again, it follows that for any z ∈VN(G×G) we do indeed have that
(ωξ ⊗ ι)(WzW ∗) ∈VN(G). �
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The obvious use of this result is that (ωξ ⊗ ι)(WΔ(x)W ∗) = x for any
x ∈ VN(G) and any suitable ξ. Thus this is very similar to the argument in
Theorem 5.1 above.

Note that ϕx =R(x)(ωξ ◦R) and that if ξ is real-valued, then ωξ ◦R= ωξ ,

as for x ∈VN(G), we have that R(x) = Ĵx∗Ĵ , and here Ĵ : L2(G)→ L2(G) is
just the map of pointwise conjugation. If G is a [SIN] group, then whenever
V is an invariant neighbourhood of the identity, then ξV = |V |−1/2χV will be
an invariant unit vector in L2(G). Arguing as in [46, Section 3], we see that
ωξ is a tracial state in A(G). Let U be an ultrafilter refining the order filter
on the set I of invariant neighbourhoods of the identity in G, and let Φ be
the weak∗-limit, taken in VN(G)∗, along U , of the net (ωξV ). Thus, Φ is a
trace on VN(G). Define

α : VN(G×G)→VN(G); α(x) = lim
U
(ωξV ⊗ ι)

(
W (x⊗ y)W ∗),

where the limit is in the weak∗-topology on VN(G). For ω ∈A(G),〈
α(x⊗ y), ω

〉
= lim

U

〈(
R(x)ωξV

)

 y,ω

〉
= lim

U

〈
Δ(y)

(
R(x)⊗ 1

)
, ωξV ⊗ ω

〉
=Φ

(
(ω 
 y)R(x)

)
.

Let (H,π, ξ0) be the GNS construction for Φ. Hence〈
α(x⊗ y), ω

〉
=
(
π(ω 
 y)ξ0|π

(
R
(
x∗))ξ0).

We wish to find H is a more concrete way, for which we turn to the notion of
an ultrapower of a Banach space, [20]. Let �∞(L2(G), I) be the Banach space
of bounded families of vectors in L2(G) indexed by I . Define a degenerate
inner-product on �∞(L2(G), I) by(

(ξi)|(ηi)
)
= lim

i→U
(ξi|ηi).

The null-space is NU = {(ξi) : limi→U ‖ξi‖ = 0} and �∞(L2(G), I)/NU be-
comes a Hilbert space, denoted by (L2(G))U . The equivalence class defined
by (ξi) will be denoted by [ξi]. In particular, set ξ1 = [ξV ]. Any T ∈ B(L2(G))
acts on (L2(G))U by T [ξi] = [T (ξi)]. It is now easy to verify that the map

π(x)ξ0 �→
[
x(ξV )

]
= xξ1

(
x ∈VN(G)

)
is an isometry, and so extends to an isometric embedding H → (L2(G))U . We
shall henceforth identify H with a closed subspace of (L2(G))U .

Lemma 5.5. For x ∈ VN(G) and ω ∈ A(G), we have that (ω 
 x)ξ1 =
(ω⊗ ι)(W ∗)xξ1. Hence, H is an invariant subspace of (L2(G))U for the action
of C0(G).

Proof. A direct calculation easily establishes that

lim
V→{e}

∥∥W (f ⊗ ξV )− f ⊗ ξV
∥∥= 0

(
f ∈ L2(G)

)
.
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Let g ∈ L2(G), and let (g ⊗ ι) : L2(G×G)→ L2(G) be the operator ξ ⊗ η �→
(ξ|g)η. Then, for ω = ωf,g ∈A(G),∥∥(ω 
 x)ξ1 − (ω⊗ ι)

(
W ∗)xξ1∥∥

= lim
V→U

∥∥(g⊗ ι)W ∗(1⊗ x)W (f ⊗ ξV )− (g⊗ ι)W ∗(1⊗ x)(f ⊗ ξV )
∥∥

= lim
V→U

∥∥(g⊗ ι)W ∗(1⊗ x)
(
W (f ⊗ ξV )− f ⊗ ξV

)∥∥= 0,

as required. As {(ω⊗ ι)(W ∗) : ω ∈A(G)} is dense in C0(G), by continuity, it
follows that C0(G), acting on (L2(G))U , maps H to H . �

Let π̂ : C0(G) → B(H) the resulting ∗-homomorphism. For ξ, η ∈ H , it
follows that ωξ,η ◦ π̂ : C0(G) → C is a functional, and so defines a measure
in M(G) = C0(G)∗. Then left convolution by the measure defines a member
of VN(G) (actually, of M(C∗

r (G))) which we shall denote by μξ,η . Notice
that for μ ∈M(G), the convolution operator so defined is (ι⊗μ)(W ∗), which
makes sense, as W ∗ ∈ M(C∗

r (G) ⊗ C0(G)). For the following result, notice
that for x ∈ VN(G), we have that R(x∗)ξ1 = [xξV ] and so it follows that
μyξ1,R(x)∗ξ1 = μxξ1,R(y)∗ξ1 .

Proposition 5.6. We have that α(x ⊗ y) = μyξ1,R(x)∗ξ1 . Consequently,
for z ∈ VN(G) with Δ(z) ∈ VN(G)⊗VN(G), we have that z is in the norm
closure of M(G) inside VN(G).

Proof. For ω ∈A(G), we have that〈
α(x⊗ y), ω

〉
=

(
π(ω 
 y)ξ0|π

(
R
(
x∗))ξ0)= (

(ω⊗ ι)
(
W ∗)yξ1|R(

x∗)ξ1)
=

〈
(ω⊗ ι)

(
W ∗), ωyξ1,R(x∗)ξ1 ◦ π̂

〉
= 〈μyξ1,R(x∗)ξ1 , ω〉.

For ε > 0, we can find τ ∈VN(G)�VN(G) with ‖Δ(z)− τ‖< ε. Then∥∥z − α(τ)
∥∥=

∥∥αΔ(z)− α(τ)
∥∥< ε.

We have just established that α(τ) ∈M(G) (inside VN(G)) and so the result
follows. �

Of course, we would like to prove that such z are actually in C∗
δ (G). Let

M denote the norm closure of M(G) in VN(G). Consider the closure of
{π(μ)ξ0 : μ ∈M} in H . We shall shortly see that this Hilbert space is isomor-
phic to �2(G). However, we have been unable to decide if this is all of H or
not. Furthermore, just knowing that Δ(z) ∈VN(G)⊗VN(G) and that z ∈M
does not tell us that we can approximate Δ(z) by an element of M �M . In
the classical situation, when we compute the Bohr compactification of G (and

not Ĝ) then all our C∗-algebras are commutative, and so they all have the
approximation property, and so knowing, for example, that ω 
 z ∈M for all
ω does tell us that z ∈M ⊗M . In our setting, working with operator spaces,
it seems very unlikely that M will have the required operator space version
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of the approximation property. We consequently impose a slightly stronger
condition; see Theorem 5.3 below.

Define θ : �2(G)→H by δs �→ λ(s)ξ1. We note that(
λ(s)ξ1|λ(t)ξ1

)
= lim

V→U

〈
λ
(
t−1s

)
, ωξV

〉
= δt,s,

because if t−1s is not the identity, then 〈λ(t−1s), ωξV 〉 will be zero for a
sufficiently small neighbourhood V . It follows that θ is an isometry, and
so θθ∗ is the orthogonal projection of H into θ(�2(G)).

Lemma 5.7. The action of C0(G) on H leaves �2(G) invariant, and so
μθ(h),η = μθ(h),θθ∗η ∈ �1(G) for all h= (hs) ∈ �2(G) and η ∈H .

Proof. For f ∈C0(G), we find that

lim
V→U

∥∥fλ(s)ξV − f(s)λ(s)ξV
∥∥2

= lim
V→U

∫
G

∣∣f(t)ξV (s−1t
)
− f(s)ξV

(
s−1t

)∣∣2 dt
= lim

V→U
|V |−1

∫
G

∣∣f(t)− f(s)
∣∣2χV

(
s−1t

)
dt.

Now, χV (s
−1t) = 0 unless t ∈ sV , a small neighbourhood of s. As f is con-

tinuous, |f(t)− f(s)|2 will be, on average, small on the set sV , and hence the
limit is zero. It follows that fθ(δs) = f(s)θ(δs), and so

〈f,μθ(δs),η〉= f(s)
(
θ(δs)|η

)
= f(s)

(
θ(δs)|θθ∗η

)
= 〈f,μθ(δs),θθ∗η〉,

as required. �

Lemma 5.8. Let μ ∈ M(G), and treat μ as an operator in VN(G). Let
a ∈ �1(G)⊆ �2(G) be the atomic part of μ. Then μξ1 = θ(a).

Proof. Let μ, ν ∈ M(G) and note that M(G) is a Banach ∗-algebra (the

∗-operation is 〈μ∗, a〉 =
∫
a(s−1)dμ(s) for a ∈ C0(G)) with the natural map

M(G)→VN(G) a ∗-homomorphism. Then

(μξ1|νξ1) = ϕ
(
ν∗μ

)
= lim

V→U

(
ν∗μξV |ξV

)
= lim

V→U

〈
ν∗μ, (ωV ⊗ ι)

(
W ∗)〉.

If we let aV = (ωV ⊗ ι)(W ∗) ∈ C0(G), then it’s easy to see that aV (e) = 1
for all V (with e the unit of G) and that for any open set U containing e,
eventually the support of aV is contained in U . As ν∗μ is a regular measure,
it follows that

lim
V→U

〈
ν∗μ, (ωV ⊗ ι)

(
W ∗)〉= (

ν∗μ
)(
{e}

)
,

the measure of the singleton {e}. However, for any Borel set E we have that
(see [21, Theorem 19.11])(

ν∗μ
)
(E) =

∫
G

ν∗
(
Es−1

)
dμ(s).
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Now, for any s ∈ G, we have that ν∗({s−1}) = ν({s}) and there is hence a
countable (or possibly finite) subset F ⊆G with ν∗({s−1}) = 0 if s /∈ F . So
the function s �→ ν∗({s−1}) is countably supported, and hence(

ν∗μ
)(
{e}

)
=

∫
G

ν∗
({

s−1
})

dμ(s) =
∑
s∈G

ν
(
{s}

)
μ
(
{s}

)
.

If a, b ∈ �1(G) are the atomic parts of μ and ν respectively, then it follows
that (ν∗μ)({e}) = (b∗a)({e}) and hence (μξ1|νξ1) = (aξ1|bξ1).

It hence follows that

‖μξ1 − aξ1‖2 = (μξ1|μξ1)− (μξ1|aξ1)− (aξ1|μξ1) + (aξ1|aξ1) = 0.

The proof is then complete by observing that if ι : �1(G)→ �2(G) is the formal
identity, then θι(a) = aξ1. �

Theorem 5.9 (Theorem 5.3). Let G be a [SIN] group, and let x0 ∈VN(G)
be such that Δ2(x0) ∈VN(G)⊗VN(G)⊗VN(G). Then x0 ∈C∗

δ (G).

Proof. Define α : VN(G)⊗ VN(G)⊗ VN(G)→VN(G)⊗ VN(G) by〈
α(x), ω⊗ τ

〉
=
〈
α
(
(ι⊗ ι⊗ τ)(x)

)
, ω

〉
.

We should justify why this makes sense. Notice that for f, g ∈ L2(G),(
α(x)f |g

)
=
(
x
[
W ∗(ξV ⊗ f)

]
|
[
W ∗(ξV ⊗ g)

])
,

where [W ∗(ξV ⊗ f)] is an element of (L2(G×G))U . It is now clear that α is
completely bounded, and now standard operator space techniques show that
α exists, and is completely bounded with ‖α‖cb ≤ ‖α‖cb = 1. For x ∈VN(G)
and ω, τ ∈A(G),〈

αΔ2(x), ω⊗ τ
〉
=

〈
α
(
(ι⊗ ι⊗ τ)Δ2(x)

)
, ω

〉
=

〈
αΔ

(
(ι⊗ τ)Δ(x)

)
, ω

〉
=
〈
Δ(x), ω⊗ τ

〉
.

Hence, αΔ2(x) =Δ(x).
For ε > 0, we can find u =

∑n
i=1 ai ⊗ bi ⊗ ci ∈ VN(G)� VN(G)� VN(G)

with ‖Δ2(x0)− u‖< ε. Then∥∥∥∥x0 −
∑
i

α
(
α(ai ⊗ bi)⊗ ci

)∥∥∥∥=
∥∥x0 − αα(u)

∥∥< ε.

However, for each i there is a measure μi with α(ai ⊗ bi) = μi. Hence, by
Proposition 5.6,∑

i

α
(
α(ai ⊗ bi)⊗ ci

)
=
∑
i

α(μi ⊗ ci) =
∑
i

μμiξ1,R(ci)∗ξ1 .

As μiξ1 ∈ θ(�2(G)), by Lemma 5.7, it follows that the sum defines a member
of �1(G). So x0 can be norm approximated by elements of �1(G), that is,
x0 ∈C∗

δ (G). �
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We remark (without proof) that if Δ2(x) ∈ VN(G) ⊗ VN(G) ⊗ VN(G)
then using that Δ∗ : A(G) ⊗̂A(G) → A(G) is a complete surjection, one
can show that A(G) → VN(G);ω �→ ω 
 x is completely compact. It fol-
lows, as in [40], that if G is amenable or connected (so VN(G) is injec-
tive) then x ∈ CAP(A(G)). Conversely, if Δ(x) ∈ VN(G) ⊗ VN(G) then
Δ2(x) ∈VN(G×G)⊗VN(G)∩VN(G)⊗VN(G×G), but we do not see why
Δ2(x) need be in VN(G)⊗VN(G)⊗VN(G). Obviously x ∈C∗

δ (G) does imply
this, however.

6. Further examples

In this section, we study various examples, and present some counter-
examples to conjectures in [41].

6.1. Commutative case. There is little to say here—the categorical con-
struction obviously agrees with the usual strongly almost periodic or Bohr
compactification, [6], [22], [23]. Furthermore, in the commutative case, there
is no distinction between the reduced and universal case.

6.2. Reduced quantum groups. In [41, Question 2], So�ltan asked, in
particular, if AP(C0(G)) is always a reduced compact quantum group, or in
our language, if AP(C0(G))→ C(GSAP) is an isomorphism. In this section,
we shall show that the answer is “no”, even if G is cocommutative.

As in the previous section, let G = Ĝ for a locally compact group G.

Then the compactification of G is Ĝd, so C(GSAP) = C∗
r (Gd) and

Cu(GSAP) = C∗(Gd). We follow the notation of, in particular, [5], and
write again C∗

δ (G) for the span of the translation operators {λ(s) : s ∈ G}
in M(C0(G)) = M(C∗

r (G)). Following [5], consider the following surjective
Hopf ∗-homomorphisms:

C∗(Gd)
Ψ

AP
(
Cu

0 (G)
) α

AP
(
C0(G)

)
=C∗

δ (G)
Φ

C∗
r (Gd).

Recall that Cu(GSAP) = C∗(Gd) and C(GSAP) = C∗
r (Gd). Here we use the

notation of [5], except that our map α is denoted by Λ there (which obviously
clashes with other notation in this paper). Then [5] proves the following (some
of these results also follow from work in [2] and [15]):

• α is an isomorphism if and only if G is amenable;
• Φ ◦ α is an isomorphism if and only if Gd is amenable;
• Φ is an isomorphism if and only if G contains an open subgroup H with
Hd amenable;

• if G is a connected Lie group, then Ψ is an isomorphism if and only if G is
solvable, if and only if Φ is an isomorphism. Recall that in this case, G is
solvable if and only if Gd is amenable, [36, Theorem 3.9].
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Example 6.1. In particular, we see that the compact quantum group
AP(C0(G)) is reduced if and only if Φ is an isomorphism. Setting G to be
the dual of SU(2) or SO(3), we see that G is a discrete, cocommutative quan-
tum group, and Φ is not an isomorphism, as G is connected, but Gd is not
amenable (as it contains a free group, [36, Proposition 3.2]).

Example 6.2. Let G be an amenable, connected Lie group with Gd

non-amenable (again, G = SU(2) or SO(3) works), and set G = Ĝ. Then
AP(Cu

0 (G)) =AP(C0(G)), but these are not equal to either Cu
0 (G

SAP) nor to
C0(G

SAP). Such compact quantum groups, lying strictly between their uni-
versal and reduced versions, were studied in [30, Section 8], so this example
gives a whole family of further “exotic” compact quantum group norms. Fur-
thermore, as again G is a discrete quantum group, this answers in the negative
a conjecture made after [41, Question 1], as AP(Cu

0 (G)) is not universal.

We finish this section by observing that we can prove something like ana-
logues for some of the above facts for general quantum groups.

There are many equivalent definitions of what it means for a general locally
compact quantum group G to be coamenable. We shall choose the definition
that G is coamenable if the counit is bounded on C0(G), see [3, Section 3].
That is, there is a state ε ∈C0(G)∗ with (ι⊗ ε)Δ = ι. Then ε is unique, and
(ε⊗ ι)Δ = ι. For a locally compact group G, always G is coamenable, while

Ĝ is coamenable if and only if G is amenable.

Proposition 6.3. Let G be a locally compact quantum group and consider
the maps α : AP(Cu

0 (G)) → AP(C0(G)) and Φ : AP(C0(G)) → C(GSAP).
Then:

(1) Φ ◦ α : AP(Cu
0 (G))→ C(GSAP) is injective (and hence an isomorphism)

if and only if GSAP is coamenable.
(2) Suppose that G is coamenable. Then the natural map Φ : AP(C0(G))→

C(GSAP) is injective (that is, AP(C0(G)) is reduced) if and only if GSAP

is coamenable.

Proof. For (1) we note that Cu
0 (G) always admits a bounded counit εu, see

[26, Section 4]. If Φ◦α is injective then it is an isomorphism (as the dense Hopf
∗-algebras agree, see discussion around Definition 3.10). Thus the restriction
of εu to AP(Cu

0 (G)) induces a bounded counit on C(GSAP) and so GSAP is coa-
menable. Conversely, if GSAP is coamenable then Cu(GSAP) =C(GSAP) (see
[4, Theorem 2.2]) and so as the canonical surjection Cu(GSAP)→ C(GSAP)
factors through Φ ◦ α, it follows that Φ ◦ α is injective.

For (2), let ε ∈ C0(G)∗ be the counit, which exists as G is coamenable.
If Φ is injective, then it is an isomorphism, and the restriction of ε to
AP(C0(G))∼= C(GSAP) defines a bounded counit on C(GSAP), showing that
G

SAP is coamenable. Conversely, if GSAP is coamenable then by [4, Theo-
rem 2.2] the Haar state on AP(C0(G)) is faithful and so Φ is injective. �
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6.3. Compact quantum groups. The whole theory is designed to ensure
that if G is a compact quantum group, then it is its own compactification
(compare [41, Section 4.3]). Of interest here are links with Section 4. The
following is an improvement upon Theorem 4.14, in that we make no assump-
tion about the antipode. The proof is very similar to [54, Theorem 2.6(2)],
where it is shown that, when G is compact, if a ∈ P∞(G) ∩ C0(G), then
a ∈ AP(C0(G)). We give the details, because the argument is not long, and
makes an interesting link with Theorem 4.14. Our proof avoids use of L2(G),
and so maybe holds promise of extension to the non-compact case.

Theorem 6.4. Let G be compact. Then P∞(G) =AP(C0(G)).

Proof. It suffices to show that x ∈ P∞(G) is in AP(C0(G)). Let ϕ be
the (normal) Haar state on L∞(G). By [29, Section 1], compare also [54,
Theorem 2.6(4)], we know that for a, b ∈ L∞(G) we have that (ι⊗ϕ)(Δ(a∗)×
(1⊗ b)) ∈D(S) with

S
(
(ι⊗ϕ)

(
Δ
(
a∗
)
(1⊗ b)

))
= (ι⊗ϕ)

((
1⊗ a∗

)
Δ(b)

)
.

For a ∈ L∞(G), let ωa ∈ L1(G) be the functional 〈b,ωa〉 = ϕ(a∗b) for b ∈
L∞(G). As ϕ is a KMS state, such functionals are dense in L1(G).

That x ∈ P∞(G) means that Δ(x) =
∑n

i=1 xi ⊗ yi with {xi} and {yi} lin-
early independent sets. Arguing as in the proof of Theorem 4.14, we can find
(ai)⊆ L∞(G) such that 〈yj , ωai〉= δij . Thus for each i,

S
(
(ι⊗ϕ)

(
Δ
(
a∗i
)
(1⊗ x)

))
= (ι⊗ϕ)

((
1⊗ a∗i

)
Δ(x)

)
=
∑
j

xj〈yj , ωai〉= xi.

So xi ∈ D(S−1) = D(S)∗. Applying the same argument to x∗ shows that
xi ∈D(S). Applying the same argument to Gop shows that yi ∈D(S)∩D(S)∗

for all i.
A close examination of the proof of Theorem 4.14 shows that knowing

that xi, yi ∈D(S) ∩D(S)∗ for all i is enough for the proof to work, and so
x ∈AP(C0(G)), as required. �

We remark that Woronowicz asked in [54] if it was essential to focus on
reduced compact quantum groups for this result hold. This was answered
affirmatively in [30, Remark 9.6]; in our language, a compact quantum group
(A,Δ) is constructed, and an element a ∈ A is found, such that Δ(a) is a
finite-rank tensor in A�A, but a /∈AP(A).

6.4. Discrete quantum groups. Discrete quantum groups were extensively
studied in [41]. An important tool is the canonical Kac quotient of a compact
quantum group, an idea attributed to Vaes. Given a compact quantum group
(A,Δ), let I be the closed ideal formed of all a ∈ A such that τ(a∗a) = 0
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for all traces τ . If A admits no traces, set I = A. Let AKAC = A/I with
π : A→AKAC the quotient map. Then

ΔKAC(a+ I) = (π⊗ π)Δ(a) (a ∈A),

is well defined, and (AKAC,ΔKAC) becomes a compact quantum group. It
turns out that the Haar state is tracial, and so (A,ΔKAC) is a Kac algebra.
In particular, the dual of (A,ΔKAC) is a unimodular discrete quantum group,
and hence has a bounded antipode. All this is explained in [41, Appendix A].

Let us now adapt the argument given in [41, Section 4.3] and single

out a key idea. Let G be discrete and set (A,Δ) = (Cu(Ĝ),Δu
Ĝ
). Then

(AKAC,ΔKAC) is a compact Kac algebra, and so also its universal form,

say (Cu(Ĥ),Δu
Ĥ
) is Kac. Let πu : Cu(Ĝ) → Cu(Ĥ) be the unique lift of

π : A → AKAC, and let π̂ : C0(H) → C0(G) be the dual (recall that G and
H are discrete, and so Cu

0 (H) =C0(H) and so forth).

Proposition 6.5. For all n, the map V �→ (π̂ ⊗ ι)(V ) gives a surjection
from the set of n-dimensional unitary corepresentations V ∈M(C0(H))⊗Mn

to the set of n-dimensional unitary corepresentations of C0(G).

Proof. As π̂ is a Hopf ∗-homomorphism, we need only prove surjectivity of
the map; namely, that if U ∈M(C0(G))⊗Mn is a unitary corepresentation,
then U = (π̂⊗ ι)(V ) for some suitable V . Recall again the work of Kustermans

in [26]. There is a unique ∗-homomorphism φ : A→Mn with U = (ι⊗φ)(V̂G).
Furthermore, as G and H are discrete,

UG = V̂G,UH = V̂H =⇒ (ι⊗ πu)(V̂G) = (π̂⊗ ι)(V̂H).

As Mn has a faithful trace, it is easy to see that there is a unique ∗-
homomorphism φ0 : AKAC →Mn with φ0 ◦ π = φ. Recall the reducing mor-
phism Λu

AKAC
: Cu(Ĥ) → AKAC, and set V = (ι ⊗ φ0 ◦ Λu

AKAC
)(V̂H), an n-

dimensional unitary corepresentation of C0(H). Then

(π̂⊗ ι)(V ) =
(
ι⊗ φ0 ◦Λu

AKAC
◦ πu

)
(V̂G) = (ι⊗ φ0 ◦ π)(V̂G) = U,

as required. �

Now, Corollary 4.17 shows that finite-dimensional unitary corepresenta-
tions of H are automatically admissible (a result not available to So�ltan) and
so we get the following (which So�ltan was able to prove by other means, see
[41, Theorem 4.5]). We will revisit this result below.

Corollary 6.6. Any finite-dimensional unitary corepresentation of a dis-
crete quantum group G is admissible.

Proof. Let U be a finite dimension unitary corepresentation of C0(G).
Then U = (π̂ ⊗ ι)(V ) for an (automatically) admissible unitary corepresen-
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tation V of C0(H). Then, as in the proof of Proposition 3.9, V is similar
to a unitary corepresentation, say X . A simple calculation then shows that
U = (π̂⊗ ι)(V ) is similar to (π̂⊗ ι)(X) and hence admissible. �

7. Open questions

The most interesting open question seems to be:

Conjecture 7.1. For any G, we have that P∞(G) =AP(G).

One obvious attack is suggested by Theorem 4.14: show that if x ∈ P∞(G)
then automatically x ∈D(S)∩D(S)∗. Woronowicz’s argument, Theorem 6.4,
shows that this is true for compact G.

In the extreme case of one-dimensional corepresentations, the answer is also
affirmative. To be precise, if x ∈ L∞(G) is a corepresentation, meaning that
Δ(x) = x⊗x, then automatically x is unitary (and so x ∈D(S)∩D(S)∗). Two
independent proofs are given in [12, Theorem 3.2] and [25, Theorem 3.9], but
both proofs use, for example, that also x∗x is a character, and there seems
little hope of extending these sorts of arguments to more general periodic
elements.

A weaker conjecture is the following:

Conjecture 7.2. For any G, the finite-dimensional unitary corepresenta-
tions of C0(G) are admissible.

This is true for compact quantum groups from Woronowicz’s work (see [54,
Proposition 6.2], which is the key to showing that the matrix elements of uni-
tary corepresentations form a Hopf ∗-algebra, in the compact case). It is true
for Kac algebras by Corollary 4.17, and is true for discrete quantum groups
by Corollary 6.6. Recall that the final result is proved by using the “canonical
Kac quotient” of the dual: any finite-dimensional ∗-representation of a com-
pact quantum group factors through a (compact) Kac algebra; but this tech-
nique is something special to the compact case, and fails for discrete quantum
groups, for example. However, we wonder if some slightly different technique
could be used to prove the conjecture? We note that in all computations
of the quantum Bohr compactification, one computes the finite-dimensional
unitary corepresentations of C0(G) via computing the finite-dimensional ∗-
representations of Cu

0 (Ĝ), and then in each special case, it turns out that
these corepresentations are always admissible.

In the classical situation, consider the link between finite-dimensional uni-
tary representations π of G in Mn, and group homomorphisms from G
to compact groups. Trivially, any such π induces a group homomorphism
G→ U(n); and the Peter–Weyl theory tells us that to understand homomor-
phisms G → K for compact K, it is enough (in some sense) to know the
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finite-dimensional unitary representations of G. This second point was of
course generalised by So�ltan in [41]. However, the first point has links to
Conjecture 7.2. The following is easy to show, as every finite-dimensional
corepresentation of a compact quantum group is admissible.

Proposition 7.3. Conjecture 7.2 holds for G if and only if every finite-
dimensional unitary corepresentation U of G factors through a compact quan-
tum group.

We remark that the quantum group analogues of the unitary groups are the
“universal” quantum groups, in the sense of Van Daele and Wang [52], [50].
If Conjecture 7.2 is false, then there are finite-dimensional unitary corepresen-
tations of G which have nothing to do with compact quantum groups: a very
strange situation.

Acknowledgments. We thank Yemon Choi for helpful comments on Sec-
tion 2, Biswarup Das for useful commments on an early version of this article,
Piotr So�ltan for bringing [57] to our attention, and the anonymous referee for
careful proof-reading.
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