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THE BEHAVIOR OF THE BOUNDS OF MATRIX-VALUED
MAXIMAL INEQUALITY IN R

n FOR LARGE n

GUIXIANG HONG

Abstract. In this paper, we study the behavior of the bounds
of matrix-valued maximal inequality in R

n for large n. The main

result of this paper is that the Lp-bounds (p > 1) can be taken

to be independent of n, which is a generalization of Stein and

Strömberg’s result in the scalar-valued case. We also show that

the weak type (1,1) bound has similar behavior as Stein and
Stömberg’s.

1. Introduction

Let (X,d,μ) be a metric measure space and B(�2) the matrix algebra of
bounded operators on �2. For a locally integrable B(�2)-valued function f , we
define

fr(x) =
1

μ(B(x, r))

∫
B(x,r)

f(y)dμ(y),

where B(x, r) = {y ∈X : d(x, y)≤ r}.
We shall study the weak type (1,1) norm of the maximal operator, defined

to be the least quantity c1 such that for all f ∈ L+
1 (X;S1), all λ > 0, there

exists a projection e ∈ P(L∞(X) ⊗̄B(�2)) satisfying

efre≤ λ, ∀r > 0 and tr⊗
∫

e⊥ ≤ c1‖f‖1
λ

.(1.1)

Here Lp(X;Sp) denotes the noncommutative Lp spaces associated with von
Neumann algebra A = L∞(X) ⊗̄B(�2), which is the weak closure of the al-
gebra formed by essentially bounded functions f : X →B(�2). L+

p (A) is the
positive part of Lp(A). P(A) denotes the set of all projections in A.
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Analogously to (1.1), the strong (p, p) norm of the maximal operator is
defined to be the least quantity cp such that for all f ∈ L+

p (A), there exists

F ∈ L+
p (A) satisfying

fr ≤ F, ∀r > 0 and ‖F‖p ≤ cp‖f‖p.(1.2)

In the scalar-valued case, that is, replacing B(�2) by complex numbers C,
c1 and cp are reduced to be the weak (1,1)-boundedness and Lp-boundedness
of the Hardy–Littlewood maximal function

M(f)(x) = sup
r>0

1

|B(x, r)|

∫
B(x,r)

|f(y)|dμ(y).

This maximal function seems no available for matrix-valued function since we
can not compare any two matrices or operators, which is one source of dif-
ficulties in the noncommutative analysis. The obstacle has been successfully
overcome by the interaction with operator space theory. For instance, Junge
in [11] formulated noncommutative Doob’s maximal inequality using Pisier’s
theory of vector-valued noncommutative Lp-space [21]. Later, in [14], Junge
and Xu developed a quite involved noncommutative version of Macinkiewiz
interpolation theorem. Together with Yeadon’s weak type (1,1) maximal er-
godic inequality, the interpolation result enable them to establish a noncom-
mutative analogue of the Dunford–Schwartz maximal ergodic inequality. The
noncommutative Stein’s maximal ergodic inequality has also been obtained
in the same paper.

Inspired by the maximal inequalities established in the theory of noncom-
mutative martingale and in the ergodic theory, Mei in [15] considered the
operator-valued Hardy–Littlewood maximal inequality in R

n. He made use of
the geometric property of Rn to reduce Hardy–Littlewood maximal inequal-
ity to several operator-valued martingale inequalities, which can be viewed
as Junge’s noncommutative Doob’s maximal inequality or Cuculescu’s weak
type (1,1) inequality for noncommutative martingales. Mei’s inequality is ex-
ploited by Chen, Xu and Yin in [6] to prove maximal inequalities associated
to the integrable rapidly decreasing functions.

The reduction method in Mei’s arguments inevitably yields that the con-
stants grow exponentially in n, the dimension of the base space Rn. However,
it is well known that the constants cp when p > 1 can be taken to be inde-
pendent of n in the scalar-valued case. The first result on this topic belongs
to Stein [22] (see also the Appendix of [23]), which asserts that when X is
the n-dimensional Hilbert space and μ is Lebesgue measure, cp (p > 1) can
be taken to be independent of n. For general n-dimensional normed spaces,
Bourgain [1], [2] and Carbery [5] proved that cp ≤C(p)<∞ provided p > 3/2.
It is unknown whether or not there is some 1< p< 3/2 for which there exist
n-dimensional normed spaces Xn such that cp are unbounded. Bourgain in
[3] showed that cp ≤ C(p, q)<∞ for all p > 1 when X = �nq and q is an even
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integer, which was extended by Müller to X = �nq for all 1≤ q <∞. Finally,
Bougain [4] proved that cp <∞ for all X = �n∞. We refer the readers to the
Introduction of [18] for an overall review of the related results.

A dimension independent bound on cp would mean that the operator-valued
Hardy–Littlewood maximal inequality is in essence an infinite dimensional
phenomenon. In the scalar-valued case, Stein’s dimension independent bound
on cp (p > 1) has been exploited by Tǐser in [24] to study differentiation of
integrals with respect to certain Gaussian measures on Hilbert space. There-
fore, it is reasonable for us to expect a similar application of the dimension
independent bounds in the operator-valued case. Moreover, even though many
operator-valued results are motivated by quantum analysis or probability (see,
e.g., [15], [9], [20], [16], [10]), some of them are inversely used to study analysis
on some noncommutative structures. For instance, in [6], the authors studied
harmonic analysis on quantum torus through operator-valued harmonic anal-
ysis by transference technique; Junge Mei and Parcet [12] reduced the analysis
on the Fourier multiplier on discret group von Neumann algebras to operator-
valued results through Junge’s cross product techniques. Hence, there would
exist some applications of the dimension independent operator-valued results
to the analysis on some noncommutative structures. Last but not least, the
dimension free results are particularly of interest in the noncommutative anal-
ysis, since our research object is of infinite dimension such as a von Neumann
algebra.

In this work, as the first attempt, we restrict us to study the behavior of
operator-valued maximal inequality on n-dimensional Hilbert space equipped
with Lebesgue measure. An underlying principle is that even though there
are many difficulties in transferring classical results to the operator-valued
setting (or even noncommutative setting), the metric or geometric properties
of the defined spaces may interplay well with the noncommutativity of the
range spaces, as happened in [15], [9], [20]. The first result in the paper is on
the estimates of c1.

Theorem 1.1. Let f ∈ L+
1 (A). Then for any λ > 0, there exists a universal

constant C and a projection e ∈ P(A) such that

efre≤ λ, ∀r > 0 and tr⊗
∫

e⊥ ≤ Cn‖f‖1
λ

.

This result is a generalization of the one by Stein and Strömberg. The
main ingredient of the proof is Yeadon’s noncommutative maximal ergodic
theorem [25] (see also below Lemma 2.3). One will find a detailed proof in
Section 3.

The main result of this paper is the following dimension independent esti-
mates of cp for p > 1.



858 G. HONG

Theorem 1.2. Let 1< p≤∞ and f ∈ L+
p (A). Then there exist a constant

Cp which depends only on p but not on n, and a function F ∈ Lp(A) such that

fr ≤ F, ∀r > 0 and ‖F‖p ≤Cp‖f‖p.

This is an matrix-valued analogue of Stein and Strömberg’s result. We
should point out that the previous two theorems are also true by replacing
B(�2) with any von Neumann algebra equipped with a trace. But for sim-
plicity, we only prove them in the matrix-valued case. In Section 4, we prove
Theorem 1.2. The main idea is due to Stein and Strömberg, but we should
make use of the techniques and tools developped recently in the noncommu-
tative analysis. A key ingredient in Stein’s argument is the spherical maximal
inequality. In Section 5, we prove an operator-valued version. In a forthcom-
ing paper [8], we prove a noncommutative version of Nevo and Thangavelu’s
ergodic theorems for radial averages on the Heisenberg Group [19], and this
spherical maximal inequality can be viewed as a special case of this kind of
maximal ergodic inequalities.

Since this paper depends heavily on noncommutative maximal ergodic
inequalities and noncommutative Marcinkiewicz interpolation theorem, and
some readers may not be familiar with the main results or its related no-
tations, we shall recall part of them in Section 2. Throughout this paper,
C denotes a universal constant, may varying from line to line.

2. Preliminaries

We first recall the definition of the noncommutative maximal norm in-
troduced by Pisier [21] and Junge [11]. Let M be a von Neumann algebra
equipped with a normal semifinite faithful trace τ . Let 1 ≤ p ≤∞. We de-
fine Lp(M; �∞) to be the space of all sequences x= (xn)n≥1 in Lp(M) which
admit a factorization of the following form: there exist a, b ∈ L2p(M) and a
bounded sequence y = (yn) in L∞(M) such that

xn = aynb, ∀n≥ 1.

The norm of x in Lp(M; �∞) is given by

‖x‖Lp(M;�∞) = inf
{
‖a‖2p sup

n≥1
‖yn‖∞‖b‖2p

}
,

where the infimum runs over all factorizations of x as above.
We will follow the convention adopted in [14] that ‖x‖Lp(M;�∞) is denoted

by ‖ sup+n xn‖p. We should warn the reader that ‖ sup+n xn‖p is just a nota-
tion since supn xn does not make any sense in the noncommutative setting.
We find, however, that ‖ sup+n xn‖p is more intuitive than ‖x‖Lp(M;�∞). The
introduction of this notation is partly justified by the following remark.
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Remark 2.1. Let x= (xn) be a sequence of selfadjoint operators in Lp(M).
Then x ∈ Lp(M; �∞) iff there exists a positive element a ∈ Lp(M) such that
−a≤ xn ≤ a for all n≥ 1. In this case, we have∥∥∥sup

n≥1

+xn

∥∥∥
p
= inf

{
‖a‖p : a ∈ Lp(M),−a≤ xn ≤ a,∀n≥ 1

}
.

More generally, if Λ is any index set, we define Lp(M; �∞(Λ)) as the space
of all x= (xλ)λ∈Λ in Lp(M) that can be factorized as

xλ = ayλb with a, b ∈ L2p(M), yλ ∈ L∞(M), sup
λ

‖yλ‖∞ <∞.

The norm of Lp(M; �∞(Λ)) is defined by∥∥∥sup
λ∈Λ

+xλ

∥∥∥
p
= inf

xλ=ayλb

{
‖a‖2p sup

λ∈Λ
‖yλ‖∞‖b‖2p

}
.

It is shown in [14] that x ∈ Lp(M; �∞(Λ)) iff

sup
{∥∥∥sup

λ∈J

+xλ

∥∥∥
p
: J ⊂ Λ, J finite

}
<∞.

In this case, ‖supλ∈Λ
+xλ‖p is equal to the above supremum.

A closely related operator space is Lp(M; �c∞) for p≥ 2 which is the set of
all sequences (xn)n ⊂ Lp(M) such that∥∥∥sup

n≥1

+|xn|2
∥∥∥1/2
p/2

<∞.

While Lp(M; �r∞) for p ≥ 2 is the Banach space of all sequences (xn)n ⊂
Lp(M) such that (x∗

n)n ∈ Lp(M; �c∞). All these spaces fall into the scope of
amalgamated Lp spaces intensively studied in [13]. What we need about these
spaces is the following interpolation results.

Lemma 2.2. Let 2≤ p≤∞. Then we have(
Lp

(
M; �c∞

)
,Lp

(
M; �r∞

))
1/2

= Lp(M; �∞)

with equivalent norms.

We refer the reader to [11], [17] and [13] for more properties on these spaces.
Yeadon’s weak type (1,1) maximal ergodic inequality for semigroup is

stated as follows:

Lemma 2.3. Let (Tt)t≥0 be a semigroup of linear maps on M. Each Tt for
t≥ 0 satisfies the following properties:

(i) Tt is a contraction on M : ‖Tx‖∞ ≤ ‖x‖∞ for all x ∈M;
(ii) Tt is positive: Tx≥ 0 if x≥ 0;
(iii) τ ◦ T ≤ τ : τ(T (x))≤ τ(x) for all x ∈ L1(M)∩M+.
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Let x ∈ L+
1 (M), then for any λ > 0, there exists a projection e ∈M such that

eMt(x)e≤ λ, ∀t > 0 and τ
(
e⊥

)
≤ ‖x‖1

λ
,

where Mt is defined as

Mt =
1

t

∫ t

0

T sds, ∀t > 0.

In order to extend this result to p > 1, Junge and Xu [14] proved the follow-
ing much involved noncommutative Marcinkiewicz theorem for Lp(M; �∞).

Lemma 2.4. Let 1≤ p0 < p1 ≤∞. Let S = (Sn)n≥0 be a sequence of maps
from L+

p0
(M) + L+

p1
(M) into L+

0 (M). Assume that S is subadditive in the
sense that Sn(x+y)≤ Sn(x)+Sn(y) for all n ∈N. If S is of weak type (p0, p0)
with constant C0 and of type C1, then for any p0 < p< p1, S is of type (p, p)
with constant Cp satisfying

Cp ≤CC1−θ
0 Cθ

1

(
1

p0
− 1

p

)−2

,

where θ is determined by 1/p= (1−θ)/p0+θ/p1 and C is a universal constant.

With this interpolation result, they proved that there exists a constant Cp

such that ∥∥∥sup
t>0

+Mt(x)
∥∥∥
p
≤Cp‖x‖p, ∀x ∈ Lp(M).(2.1)

Moreover, if additionally each Tt satisfies

(iv) Tt is symmetric relative to τ : τ(T (y)∗x) = τ(y∗T (x)) for all x, y in the
intersection L2(M)∩M,

then ∥∥∥sup
t>0

+Tt(x)
∥∥∥
p
≤Cp‖x‖p, ∀x ∈ Lp(M),(2.2)

with Cp a constant only depending on p.

3. Estimates for c1

We follow Stein and Strömberg’s original argument to prove Theorem 1.1.
As we shall see that it is just an application of Yeadon’s weak type (1,1)
noncommutative maximal ergodic inequality.

Proof of Theorem 1.1. Let f ∈ L1(R
n;L1(M)). Without loss of generality,

we assume f is positive. We then define

fr(x) =
1

|B(0, r)|

∫
B(0,r)

f(x− y)dy.
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Recall that the heat-diffusion semigroup on R
n is given by T tg = g ∗ ht,

∀g ∈ S (Rn) with

ht(x) =
1

(4πt)n/2
e−|x|2/4t.

We consider the heat-diffusion semigroup on L∞(Rn) ⊗̄M given by St = T t⊗
idM. It is easy to check that (St)t≥0 satisfies (i)–(iii). So by Lemma 2.3, for
any η > 0, there exists a projection e ∈ P(A) such that

eMt(f)e≤ η, ∀t > 0 and tr⊗
∫

e⊥ ≤ ‖f‖1
η

,

where

Mt(f) =
1

t

∫ t

0

Ss(f)(x)ds=

∫
Rn

1

t

∫ t

0

hs(y)dsf(x− y)dy.

As proved in page 265 of [23], for any r > 0, there exists some tr such that

1

|B(0, r)|χB(0,r)(y) ≤Cn
1

tr

∫ tr

0

hs(y)ds.(3.1)

Hence, obviously we have

efre≤ eCnMtr(f)e≤Cnη.

Now for any λ > 0, take η = λ/(Cn), we obtain

tr⊗
∫

e⊥ ≤ Cn‖f‖1
λ

,

which finishes the proof. �

Instead of using Yeadon’s inequality, but use Junge and Xu’s inequality
(1.2), in the same spirit, we can deduce that for 1 < p ≤∞, there exists an
absolute constant Cp > 0 such that∥∥∥sup

r>0

+fr

∥∥∥
p
≤Cpn‖f‖p, ∀f ∈ Lp(A).(3.2)

And the constant cp can be improved to be O(
√
n) by the noncommutative

Stein’s maximal ergodic inequality (2.2) and the following fundamental esti-
mates [23]: for any r > 0, there is tr > 0 such that

1

|B(0, r)|χB(0,r)(y) ≤Cn1/2htr (y).(3.3)
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4. Estimates for cp (p > 1)

We adapt Stein’s argument [22] (see also the Appendix of [23]) to the
operator-valued setting. The key step of the argument is the following
operator-valued spherical maximal inequality. Let f ∈ S (Rk;SM ) (SM is
the set of finite dimension self-adjoint matrix), for any r > 0, we define

fk
r (x) =

1

ωk−1

∫
Sk−1

f
(
x− ry′

)
dσ

(
y′
)
,

where dσ is the usual measure on Sk−1, and ωk−1 is its total mass.

Proposition 4.1. Let k ≥ 3 and p > k/(k−1), then there exists a constant
Ak,p such that ∥∥∥sup

r>0

+fk
r

∥∥∥
p
≤Ak,p‖f‖p, ∀f ∈ Lp

(
R

k;Sp

)
.

We postpone its proof to the next section. The spherical maximal inequal-
ity yields the following weighted maximal inequality. Let f ∈ S (Rk;SM ), for
any m≥ 0 and r ≥ 0, we define

fk,m
r (x) =

(∫
|y|≤r

|y|m dy

)−1 ∫
|y|≤r

f(x− y)|y|m dy.

Proposition 4.2. Let k ≥ 3 and p > k/(k− 1), then∥∥∥sup
r>0

+fk,m
r

∥∥∥
p
≤Ak,p‖f‖p, ∀f ∈ Lp

(
R

k;Sp

)
with the constant Ak,p independent of m.

Proof. Without loss of generality, we assume f ∈ S (Rk;S+
M ). Using polar

coordinates, we can write∫
|y|≤r

f(x− y)|y|m dy =

∫ r

0

∫
Sk−1

f
(
x− sy′

)
sm+k−1 dσ

(
y′
)
ds.(4.1)

By Proposition 4.1, there exists F ∈ L+
p (R

k;Sp) such that

fk
s (x)≤ F (x), ∀s > 0 and ‖F‖p ≤Ak,p‖f‖p.

Hence

RHS of (4.1)≤ F (x)ωk−1

∫ r

0

sm+k−1 ds= F (x)ωk−1
rm+k

m+ k
.

So we have

fk,m
r ≤ F, ∀r > 0 and ‖F‖p ≤Ak,p‖f‖p

which is the desired result. �
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We now consider R
n with n≥ 3, and write it as R

n = R
k ×R

n−k with its
points x written by (x1, x2). Let ρ denote an arbitrary element of O(n), a
rotation of Rn about the origin. Let f ∈S (Rn;SM), for each ρ ∈O(n), r > 0,
we define

fk,n−k,ρ
r (x) =

(∫
|y1|≤r

|y1|n−k dy1

)−1 ∫
|y1|≤r

f
(
x− ρ(y1,0)

)
|y1|n−k dy1.

Proposition 4.3. Let k ≥ 3 and p > k/(k− 1), we have∥∥∥sup
r>0

+fk,n−k,ρ
r

∥∥∥
p
≤Ak,p‖f‖p, ∀f ∈ Lp(A)

with the constant Ak,p independent of n.

Proof. Take f ∈ S (Rn;SM ). Again, we assume f is positive. By rotation
invariance, it suffices to prove this when ρ is the identity rotation. In this
case, we decompose R

n = R
k ×R

n−k, with x= (x1, x2). Fix x2 ∈ R
n−k. By

Proposition 4.2, there exist Fx2 ∈ L+
p (R

k;Sp) such that

fk,n−k,1
r (x1, x2)≤ Fx2(x1), ∀r > 0 and ‖Fx2‖p ≤Ak,p‖fx2‖p.

Define F (x1, x2) = Fx2(x1) on R
n, then we complete the proof since fk,n−k,1

r ≤
F for all r > 0 and

‖F‖pp =
∫
Rn−k

∥∥F (·, x2)
∥∥p
p
dx2

≤Ap
k,p

∫
Rn−k

∥∥f(·, x2)
∥∥p
p
dx2 =Ap

k,p‖f‖pp. �

Let dρ denote the Haar measure on the group O(n), normalized so that its
total measure is 1. Now we are at a position to prove Theorem 1.2.

Proof of Theorem 1.2. The result for p=∞ is trivial. So we only consider
the case 1 < p <∞. When n ≤max(p/(p− 1),2), we can use the estimates
(3.2). Now, we assume n >max(p/(p−1),2). We write n= k+(n−k), where
k is the smallest integer greater than max(p/(p− 1),2). We can assume f is
of the form g ⊗m where g ∈ S +(Rn) and m ∈ S+

M , since the set of linear
combinations of such elements are dense in Lp(A). For such f , we have the
following formula∫

|y|≤r
f(y)dy∫

|y|≤r
dy

=

∫
O(n)

∫
|y1|≤r

f(ρ(y1,0))|y1|n−k dy1 dρ∫
|y1|≤r

|y1|n−k dy1
.(4.2)

Here y = (y1, y2) ∈ R
n = R

k × R
n−k. To verify (4.2) it suffices to do so for

g of the form g = g0(|y|)g1(y′), where y′ ∈ Sn−1, and y = |y|y′, since linear
combination of such functions are dense. Then for such g,

LHS of (4.2) =

∫ r

0

g0(t)t
n−1 dt ·

∫
Sn−1

g1
(
y′
)
dσ

(
y′
)
nr−nω−1

n−1 ⊗m.
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On the other hand, notice that g(ρ(y1,0)) = g0(|y1|)g1(ρ(y1,0)), so the right-
hand side of (4.2) equals∫ r

0

g0(t)t
n−1 dt ·

∫
O(n)

∫
Sk−1

g1
(
ρ
(
y′1,0

))
dσ

(
y′1
)
dρnr−nω−1

k−1 ⊗m.

Therefore matters are reduced to check that

1

ωn−1

∫
Sn−1

g1
(
y′
)
dσ

(
y′
)
=

1

ωk−1

∫
O(n)

∫
Sk−1

g1
(
ρ
(
y′1,0

))
dσ

(
y′1
)
dρ

which is trivial because∫
O(n)

g1
(
ρ
(
y′1,0

))
dρ=

1

ωn−1

∫
Sn−1

g1
(
y′
)
dσ

(
y′1
)
.

In (4.2), replace f(y) with f(x− y), we get∫
|y|≤r

f(x− y)dy∫
|y|≤r

dy
=

∫
O(n)

∫
|y1|≤r

f(x− ρ(y1,0))|y1|n−k dy1 dρ∫
|y1|≤r

|y1|n−k dy1
.

By Proposition 4.3, for each ρ ∈O(n), there exists F ρ ∈ L+
p (A) such that

fk,n−k,ρ
r ≤ F ρ, ∀r > 0 and

∥∥F ρ
∥∥
p
≤Ak,p‖f‖p.

Hence, one can very easily deduce that F (x) =
∫
O(n)

F ρ(x)dρ is in Lp(A) and

satisfy

fk,n−k
r ≤ F, ∀r > 0 and ‖F‖p ≤Ak,p‖f‖p. �

5. The proof of Proposition 4.1

In order to simplify the notation, we denote fn
t by ft/ωn−1. Hence

ft(x) =

∫
Sn−1

f(x− tθ)dσ(θ).

We set m(ξ) = d̂σ(ξ) = 2π|ξ|(2−n)/2J(n−2)/2(2π|ξ|) (see, e.g., Appendix B.4 in
[7]). Obviously m(ξ) is an infinitely differential function. We decompose the
multiplier m(ξ) into radial pieces as follows: We fix a radial Schwarz function
ϕ0 in R

n such that ϕ0(ξ) = 1 when |ξ| ≤ 1 and ϕ0(ξ) = 0 when |ξ| ≥ 2. For
j ≥ 1, we let

ϕj(ξ) = ϕ0

(
2−jξ

)
−ϕ0

(
21−jξ

)
and we observe that ϕj(ξ) is localized near |ξ|= 2j . Then we have∑

j≥0

ϕj = 1.

Set mj = ϕjm for all j ≥ 0. The mj ’s are finite supported Schwarz functions
that satisfy

m=
∑
j≥0

mj .
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Hence,

ft(x) =
(
f̂(·)m(t·)

)∨
=
∑
j≥0

(
f̂(·)mj(t·)

)∨
=
∑
j≥0

ft,j

For these ft,j , there are the following estimates.

Proposition 5.1. Let 1< p≤∞, there exists a constant C =C(n,p) such
that ∥∥∥sup

t

+ft,0

∥∥∥
p
≤C‖f‖p.

More precisely, for f ∈ L+
p (A), there exists F0 ∈ Lp(A) such that

ft,0 ≤ F0, ∀t > 0 and ‖F0‖p ≤C‖f‖p.(5.1)

Proposition 5.2. Let 1 < p ≤ 2. There exists a universal constant C =
C(n,p) such that for any j ≥ 1, we have∥∥∥sup

t

+ft,j

∥∥∥
p
≤C2(n/p−(n−1))j‖f‖p, ∀f ∈ Lp(A).

More precisely, for f ∈ L+
p (A), there exists Fj ∈ Lp(A) such that

ft,j ≤ Fj , ∀t > 0 and ‖Fj‖p ≤C2(n/p−(n−1))j‖f‖p.(5.2)

With the two previous estimates, we can finish the proof of Proposition 4.1.

Proof of Proposition 4.1. Let f ∈ L+
p (A). When 2 ≥ p > n/(n − 1), by

Propositions 5.1 and 5.2, we find Fj ’s satisfying inequality (5.1) or (5.2).
We set

F =
∑
j≥0

Fj .

Then

ft =
∑
j≥0

ft,j ≤
∑
j≥0

Fj = F, ∀t > 0

and

‖F‖ ≤
∑
j≥0

‖Fj‖p ≤C
∑
j≥0

2(n/p−(n−1))j‖f‖p =C‖f‖p.

When p≥ 2, we invoke the noncommutative interpolation theorem, Lemma 2.4
to obtain the estimates. �

The rest of this section is devoted to the proof of the two propositions.
Proposition 5.1 is a trivial application of the following Theorem 4.3 of [6].

Lemma 5.3. Let ψ be an integrable function on Rn such that |ψ| is radial
and radially decreasing. Let ψt(x) =

1
tnψ(

x
t ) for x ∈R

n and t > 0.
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(i) Let f ∈ L1(R
n;S1). Then for any α > 0 there exists a projection e ∈

P(A)⊗M such that

sup
t>0

∥∥e(ψt ∗ f)e
∥∥
∞ ≤ α and tr⊗

∫
e⊥ ≤Cn‖ψ‖1

‖f‖1
α

.

(ii) Let 1< p≤∞. Then∥∥∥sup
t>0

+ψt ∗ f
∥∥∥
p
≤Cn‖ψ‖1

p2

(p− 1)2
‖f‖p, ∀f ∈ Lp

(
R

n;Sp

)
.

On the proof of Proposition 5.2, it suffices to establish the two end-point
estimates p= 2 and p= 1, since a noncommutative version of Marcinkiewicz
interpolation theorem is available (see Lemma 2.4).

Lemma 5.4. There exists a constant C =C(n)<∞ such that for any j ≥ 1
we have ∥∥∥sup

t>0

+ft,j

∥∥∥
2
≤C2(1/2−(n−1)/2)j‖f‖2, ∀f ∈ L2(A).

Proof. We define a function

m̃j(ξ) = ξ ·�mj(ξ).

Let
f̃t,j(x) =

(
f̂(·)m̃j(t·)

)∨
(x).

And we consider the following two g-functions:

Gj(f)(x) =

(∫ ∞

0

∣∣ft,j(x)∣∣2 dt
t

) 1
2

and

G̃j(f)(x) =

(∫ ∞

0

∣∣f̃t,j(x)∣∣2 dt
t

) 1
2

.

For f ∈ S (Rn, S+
M), the identity

s
dfs,j
ds

= f̃s,j

hold for all j and s. By the fundamental theorem of calculus, we deduce that

ft,j(x)
2
=

∫ t

ε

d

ds

(
fs,j(x)

)2
ds+ fε,j(x)

2

=

∫ t

ε

s
df∗

s,j(x)

ds
fs,j(x)f

∗
s,j(x)s

dfs,j(x)

ds

ds

s
+ fε,j(x)

2

=

∫ t

ε

f̃∗
s,j(x)fs,j(x) + f∗

s,j(x)f̃s,j(x)
ds

s
+ fε,j(x)

2

≤
∫ ∞

0

∣∣∣∣f̃∗
s,j(x)fs,j(x)

ds

s
+

∫ ∞

0

f∗
s,j(x)f̃s,j(x)

∣∣∣∣dss + fε,j(x)
2.
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Hence by triangle inequality and Hölder inequality, we have∥∥∥sup
t

+|ft,j |2
∥∥∥1/2
1

≤
∥∥∥∥
∫ ∞

0

∣∣f̃∗
s,j(x)fs,j(x) + f∗

s,j(x)f̃s,j(x)
∣∣ds
s

∥∥∥∥1/2
1

+
∥∥fε,j(x)2∥∥1/21

≤ 2

∥∥∥∥
∫ ∞

0

f̃∗
s,j(x)fs,j(x)

ds

s

∥∥∥∥1/2
1

+ 2

∥∥∥∥
∫ ∞

0

f∗
s,j(x)f̃s,j(x)

ds

s

∥∥∥∥1/2
1

+
∥∥fε,j(x)2∥∥1/21

≤ 4
∥∥Gj(f)

∥∥ 1
2

2

∥∥G̃j(f)
∥∥ 1

2

2
+
∥∥fε,j(x)2∥∥1/21

.

≤ 8
∥∥Gj(f)

∥∥ 1
2

2

∥∥G̃j(f)
∥∥ 1

2

2
.

The last inequality is due to the fact that ‖fε,j(x)2‖1/21 tends to 0 as ε tends
to ∞ by Lebesgue dominated theorem. On the other hand, by the estimates
(see, e.g., [7]) ∣∣d̂σ(ξ)∣∣+ ∣∣� d̂σ(ξ)

∣∣≤Cn

(
1 + |ξ|

)(1−n)/2
,

we have ∥∥m(ξ)
∥∥
∞ ≤C2−j n−1

2 and
∥∥m(ξ)

∥∥
∞ ≤C2j(1−

n−1
2 ).

Using these elementary estimates and the facts that the functions mj and
m̃j are supported in the annuli around |ξ| = 2j , we obtain that these two
g-functions are L2-bounded with norms at most a constant multiple of the

quantities 2−j n−1
2 and 2j(1−

n−1
2 ) respectively. Hence∥∥∥sup

t

+ft,j

∥∥∥
2
≤C2j(

1
2−

n−1
2 )‖f‖2. �

Lemma 5.5. There exists a constant C =C(n)<∞ such that for all j > 1,
we have ∥∥∥sup

t

+ft,j

∥∥∥
1,∞

≤C2j‖f‖1, ∀f ∈ L1(A).

More precisely, for all λ > 0, there is a projection e ∈ P(A) such that

sup
t

‖eft,je‖∞ ≤ λ and τ

∫ (
e⊥

)
≤C2j‖f‖1.

Proof. Let Kj = (ϕj)
∨ ∗ dσ = Φ2−j ∗ dσ, where Φ is a Schwarz function.

Setting

Kj,t(x) = t−nKj

(
t−1x

)
.

We have

ft,j =Kj,t ∗ f.
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On page 399 of [7], it is shown that for any M >n, there exists CM <∞ such
that ∣∣Kj(x)

∣∣≤CM2j
(
1 + |x|

)−M
.

Then we complete the proof by Lemma 5.3. �
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