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A G-FAMILY OF QUANDLES AND HANDLEBODY-KNOTS

ATSUSHI ISHII, MASAHIDE IWAKIRI, YEONHEE JANG AND KANAKO OSHIRO

Abstract. We introduce the notion of a G-family of quandles
which is an algebraic system whose axioms are motivated by

handlebody-knot theory, and use it to construct invariants for

handlebody-knots. Our invariant can detect the chiralities of
some handlebody-knots including unknown ones.

1. Introduction

A quandle [11], [15] is an algebraic system whose axioms are motivated
by knot theory. Carter, Jelsovsky, Kamada, Langford and Saito [1] defined
the quandle homology theory and quandle cocycle invariants for links and
surface-links. The quandle chain complex in [1] is a subcomplex of the rack
chain complex in [4]. The quandle cocycle invariant extracts information from
quandle colorings by a quandle cocycle, and are used to detect the chirality
of links in [3], [18].

In this paper, we introduce the notion of a G-family of quandles which is an
algebraic system whose axioms are motivated by handlebody-knot theory, and
use it to construct invariants for handlebody-knots. A handlebody-knot is a
handlebody embedded in the 3-sphere. A handlebody-knot can be represented
by its trivalent spine, and the first author, in [6], gave a list of local moves
connecting diagrams of spatial trivalent graphs which represent equivalent
handlebody-knots. The axioms of a G-family of quandles are derived from
the local moves.

A G-family of quandles gives us not only invariants for handlebody-knots
but also a way to handle a number of quandles at once. We see that a G-family
of quandles is indeed a family of quandles associated with a group G. Any
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quandle is contained in some G-family of quandles as we see in Proposition 2.3.
We introduce a homology theory for G-families of quandles. A cocycle of
a G-family of quandles gives a family of cocycles of quandles. Thus it is
efficient to find cocycles of a G-family of quandles, and indeed Nosaka [17]
gave some cocycles together with a method to construct a cocycle of a G-
family of quandles induced by a G-invariant group cocycle.

A G-family of quandles induces a quandle which contains all quandles form-
ing the G-family of quandles as subquandles. This quandle, which we call the
associated quandle, has a suitable structure to define colorings of a diagram of
a handlebody-knot. Putting weights on colorings with a cocycle of a G-family
of quandles, we define a quandle cocycle invariant for handlebody-knots. In
[7], the first and second authors defined quandle colorings and quandle co-
cycle invariants for handlebody-links by introducing the notion of an A-flow
for an abelian group A. Quandle cocycle invariants we define in this paper
are nonabelian versions of the invariants. A usual knot can be regarded as
a genus one handlebody-knot by taking its regular neighborhood, and some
knot invariants have been modified and generalized to construct invariants for
handlebody-knots. In [10], the third and fourth authors defined symmetric
quandle colorings and symmetric quandle cocycle invariants for handlebody-
links by generalizing symmetric quandle cocycle invariants of classical knots
given in [12], [13].

A table of genus two handlebody-knots with up to 6 crossings is given in
[8], and the handlebody-knots 01, . . . ,616 in the table were proved to be mutu-
ally distinct by using the fundamental groups of their complements, quandle
cocycle invariants in [7] and some topological arguments in [9], [14]. Our quan-
dle cocycle invariant can distinguish the handlebody-knots 614 and 615 whose
complements have isomorphic fundamental groups, and detect the chiralities
of the handlebody-knots 52, 53, 65, 69, 611, 612, 613, 614, 615. In particular,
the chiralities of 53, 65, 611 and 612 were not known.

This paper is organized as follows. In Section 2, we give the definition of a
G-family of quandles together with some examples. In Section 3, we describe
colorings with a G-family of quandles for handlebody-links. We define the
homology for a G-family of quandles in Section 4 and define several invariants
for handlebody-links including quandle cocycle invariants in Section 5. In
Section 6, we calculate quandle cocycle invariants for handlebody-knots with
up to 6 crossings and show the chirality for some of the handlebody-knots. In
Section 7, we prove that our invariants can be regarded as a generalization of
the invariants defined in [7].

2. A G-family of quandles

A quandle [11], [15] is a non-empty set X with a binary operation ∗ : X ×
X →X satisfying the following axioms.
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• For any x ∈X , x ∗ x= x.
• For any x ∈X , the map Sx : X →X defined by Sx(y) = y ∗x is a bijection.
• For any x, y, z ∈X , (x ∗ y) ∗ z = (x ∗ z) ∗ (y ∗ z).
A rack is a non-empty set X with a binary operation ∗ : X×X →X satisfying
the second and third axioms. When we specify the binary operation ∗ of a
quandle (resp. rack) X , we denote the quandle (resp. rack) by the pair (X,∗).
An Alexander quandle (M,∗) is a Λ-module M with the binary operation
defined by x ∗ y = tx+ (1− t)y, where Λ := Z[t, t−1]. A conjugation quandle
(G,∗) is a group G with the binary operation defined by x ∗ y = y−1xy.

Let G be a group with identity element e. A G-family of quandles is a
non-empty set X with a family of binary operations ∗g : X ×X →X (g ∈G)
satisfying the following axioms.

• For any x ∈X and any g ∈G, x ∗g x= x.
• For any x, y ∈X and any g,h ∈G,

x ∗gh y =
(
x ∗g y

)
∗h y and x ∗e y = x.

• For any x, y, z ∈X and any g,h ∈G,(
x ∗g y

)
∗h z =

(
x ∗h z

)
∗h−1gh

(
y ∗h z

)
.

When we specify the family of binary operations ∗g : X ×X → X (g ∈ G)
of a G-family of quandles, we denote the G-family of quandles by the pair
(X,{∗g}g∈G).

Proposition 2.1. Let G be a group. Let (X,{∗g}g∈G) be a G-family of
quandles.

(1) For each g ∈G, the pair (X,∗g) is a quandle.
(2) We define a binary operation ∗ : (X ×G)× (X ×G)→X ×G by

(x, g) ∗ (y,h) =
(
x ∗h y,h−1gh

)
.

Then (X ×G,∗) is a quandle.

We call the quandle (X ×G,∗) in Proposition 2.1 the associated quandle
of X . We note that the involution f : X ×G→X ×G defined by f((x, g)) =
(x, g−1) is a good involution of the associated quandle X ×G, where we refer
the reader to [12] for the definition of a good involution of a quandle. Before
proving this proposition, we introduce a notion of a Q-family of quandles.
Let (Q,�) be a quandle. A Q-family of quandles is a non-empty set X with a
family of binary operations ∗a : X ×X →X (a ∈Q) satisfying the following
axioms.

• For any x ∈X and any a ∈Q, x ∗a x= x.
• For any x ∈X and any a ∈Q, the map Sx,a : X →X defined by Sx,a(y) =

y ∗a x is a bijection.
• For any x, y, z ∈X and any a, b ∈Q, (x ∗a y) ∗b z = (x ∗b z) ∗a�b (y ∗b z).
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Let Q be a rack. A Q-family of racks is a non-empty set X with a family
of binary operations ∗a : X ×X →X (a ∈Q) satisfying the second and third
axioms.

Lemma 2.2. Let (Q,�) be a quandle (resp. rack). Let (X,{∗a}a∈Q) be a
Q-family of quandles (resp. racks). We define a binary operation ∗ : (X ×
Q)× (X ×Q)→X ×Q by

(x,a) ∗ (y, b) =
(
x ∗b y, a � b

)
.

Then (X ×Q,∗) is a quandle (resp. rack).

Proof. The first axiom of a quandle follows from the equalities

(x,a) ∗ (x,a) =
(
x ∗a x,a � a

)
= (x,a).

For any (x,a), (y, b) ∈X ×Q, there is a unique (z, c) ∈X ×Q such that x=
z ∗b y and a= c � b. By the equalities (x,a) = (z ∗b y, c � b) = (z, c) ∗ (y, b), we
have the second axiom of a quandle. The third axiom of a quandle follows
from (

(x,a) ∗ (y, b)
)
∗ (z, c) =

((
x ∗b y

)
∗c z, (a � b) � c

)
=
((
x ∗c z

)
∗b�c

(
y ∗c z

)
, (a � c) � (b � c)

)
=
(
(x,a) ∗ (z, c)

)
∗
(
(y, b) ∗ (z, c)

)
. �

Conversely, we can prove the following. Let � be a binary operation on a
non-empty set Q. Let ∗a be a binary operation on a non-empty set X for
a ∈Q. We define a binary operation ∗ : (X ×Q)× (X ×Q)→X ×Q by

(x,a) ∗ (y, b) =
(
x ∗b y, a � b

)
.

If (X ×Q,∗) is a quandle (resp. rack), then (Q,�) is a quandle (resp. rack)
and (X,{∗a}a∈Q) is a Q-family of quandles (resp. racks).

Proof of Proposition 2.1. (1) The first and third axioms of a quandle are
easily checked. The second axiom of a quandle follows from the equalities(

x ∗g y
)
∗g−1

y =
(
x ∗g−1

y
)
∗g y = x.

Then (X,∗g) is a quandle.
(2) Let (G,�) be the conjugation quandle. By Lemma 2.2, (X ×G,∗) is a

quandle. �
The following proposition gives us many examples for a G-family of quan-

dles.

Proposition 2.3. (1) Let (X,∗) be a quandle. Let Sx : X → X be the
bijection defined by Sx(y) = y ∗ x. Let m be a positive integer such that Sm

x =
idX for any x ∈X if such an integer exists. We define the binary operation
∗i : X ×X →X by x ∗i y = Si

y(x). Then X is a Z-family of quandles and a
Zm-family of quandles, where Zm = Z/mZ.
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(2) Let R be a ring, and G a group with identity element e. Let X be a
right R[G]-module, where R[G] is the group ring of G over R. We define the
binary operation ∗g : X × X → X by x ∗g y = xg + y(e − g). Then X is a
G-family of quandles.

Proof. (1) We verify the axioms of a G-family of quandles.

x ∗0 y = S0
y(x) = idX(x) = x,

x ∗i x= Si
x(x) = x,(

x ∗i y
)
∗j y = Sj

y

(
Si
y(x)

)
= Si+j

y (x) = x ∗i+j y.

For the last axiom of a G-family of quandles, we can prove(
x ∗j z

)
∗i

(
y ∗j z

)
=
(
x ∗i y

)
∗j z

by induction.
(2) We verify the axioms of a G-family of quandles.

x ∗e y
= xe+ y(e− e) = x,

x ∗g x
= xg+ x(e− g) = x,(

x ∗g y
)
∗h y

= (xg+ y− yg)h+ y− yh= x ∗gh y,(
x ∗h z

)
∗h−1gh

(
y ∗h z

)
= (xh+ z − zh)h−1gh+ (yh+ z − zh)− (yh+ z − zh)h−1gh

= (xg+ y− yg)h+ z − zh

=
(
x ∗g y

)
∗h z. �

3. Handlebody-links and X-colorings

A handlebody-link is a disjoint union of handlebodies embedded in the
3-sphere S3. Two handlebody-links are equivalent if there is an orientation-
preserving self-homeomorphism of S3 which sends one to the other. A spatial
graph is a finite graph embedded in S3. Two spatial graphs are equivalent if
there is an orientation-preserving self-homeomorphism of S3 which sends one
to the other. When a handlebody-link H is a regular neighborhood of a spatial
graphK, we say thatK represents H , orH is represented by K. In this paper,
a trivalent graph may contain circle components. Then any handlebody-
link can be represented by some spatial trivalent graph. A diagram of a
handlebody-link is a diagram of a spatial trivalent graph which represents the
handlebody-link.
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An IH-move is a local spatial move on spatial trivalent graphs as described
in Figure 1, where the replacement is applied in a 3-ball embedded in S3.
Then we have the following theorem.

Theorem 3.1 ([6]). For spatial trivalent graphs K1 and K2, the following
are equivalent.

• K1 and K2 represent an equivalent handlebody-link.
• K1 and K2 are related by a finite sequence of IH-moves.
• Diagrams of K1 and K2 are related by a finite sequence of the moves de-

picted in Figure 2.

Let D be a diagram of a handlebody-link H . We set an orientation for each
edge in D. Then D is a diagram of an oriented spatial trivalent graph K.
We may represent an orientation of an edge by a normal orientation, which
is obtained by rotating a usual orientation counterclockwise by π/2 on the
diagram. We denote by A(D) the set of arcs of D, where an arc is a piece of
a curve each of whose endpoints is an undercrossing or a vertex. For an arc
α incident to a vertex ω, we define ε(α;ω) ∈ {1,−1} by

ε(α;ω) =

{
1 if the orientation of α points to ω,

−1 otherwise.

Let X be a G-family of quandles, and Q the associated quandle of X . Let
pX (resp. pG) be the projection from Q to X (resp. G). An X-coloring of D
is a map C : A(D)→Q satisfying the following conditions at each crossing χ
and each vertex ω of D (see Figure 3).
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• Let χ1, χ2 and χ3 be respectively, the under-arcs and the over-arc at a
crossing χ such that the normal orientation of χ3 points from χ1 to χ2.
Then

C(χ2) =C(χ1) ∗C(χ3).

• Let ω1, ω2, ω3 be the arcs incident to a vertex ω arranged clockwise
around ω. Then

(pX ◦C)(ω1) = (pX ◦C)(ω2) = (pX ◦C)(ω3),

(pG ◦C)(ω1)
ε(ω1;ω)(pG ◦C)(ω2)

ε(ω2;ω)(pG ◦C)(ω3)
ε(ω3;ω) = e.

We denote by ColX(D) the set of X-colorings of D. We call C(α) the color
of α. For two diagrams D and E which locally differ, we denote by A(D,E)
the set of arcs that D and E share.

Lemma 3.2. Let X be a G-family of quandles. Let D be a diagram of an
oriented spatial trivalent graph. Let E be a diagram obtained by applying one
of the R1–R6 moves to the diagram D once, where we choose orientations for
E which agree with those for D on A(D,E). For C ∈ ColX(D), there is a
unique X-coloring CD,E ∈ColX(E) such that C|A(D,E) =CD,E |A(D,E).

Proof. The colors of arcs in A(E)−A(D,E) are uniquely determined by
those of arcs in A(D,E), since we have

a ∗g a= a
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for the R1, R4 moves, and(
a ∗g b

)
∗g−1

b= a ∗e b= a

for the R2 move, and(
a ∗g b

)
∗h c=

(
a ∗h c

)
∗h−1gh

(
b ∗h c

)
for the R3 move, and((

b ∗g a
)
∗h a

)
∗(gh)−1

a= a ∗e b= b

for the R5 move, and only the coloring condition for the R6-move. �

Let X be a G-family of quandles, and Q the associated quandle of X . An
X-set is a non-empty set Y with a family of maps ∗g : Y ×X → Y satisfying
the following axioms, where we note that we use the same symbol ∗g as the
binary operation of the G-family of quandles.

• For any y ∈ Y , x ∈X , and any g,h ∈G,

y ∗gh x=
(
y ∗g x

)
∗h x and y ∗e x= y.

• For any y ∈ Y , x1, x2 ∈X , and any g,h ∈G,(
y ∗g x1

)
∗h x2 =

(
y ∗h x2

)
∗h−1gh

(
x1 ∗h x2

)
.

Put y ∗ (x, g) := y ∗g x for y ∈ Y , (x, g) ∈Q. Then the second axiom implies
that (y ∗ q1) ∗ q2 = (y ∗ q2) ∗ (q1 ∗ q2) for q1, q2 ∈Q. Any G-family of quandles
(X,{∗g}g∈G) itself is an X-set with its binary operations. We call it the
primitive X-set. Any singleton set {y} is also an X-set with the maps ∗g
defined by y ∗g x= y for x ∈X and g ∈G, which is a trivial X-set.

Let D be a diagram of an oriented spatial trivalent graph. We denote
by R(D) the set of complementary regions of D. Let X be a G-family of
quandles, and Y an X-set. Let Q be the associated quandle of X . An XY -
coloring of D is a map C : A(D) ∪ R(D) → Q ∪ Y satisfying the following
conditions.

• C(A(D))⊂Q, C(R(D))⊂ Y .
• The restriction C|A(D) of C on A(D) is an X-coloring of D.
• For any arc α ∈A(D), we have

C(α1) ∗C(α) =C(α2),

where α1, α2 are the regions facing the arc α so that the normal orientation
of α points from α1 to α2 (see Figure 4).

We denote by ColX(D)Y the set of XY -colorings of D.
For two diagrams D and E which locally differ, we denote by R(D,E)

the set of regions that D and E share. Since colors of regions are uniquely
determined by those of arcs and one region, Lemma 3.2 implies the following
lemma.
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y1 y1 ∗ q

→

q

Figure 4

Lemma 3.3. Let X be a G-family of quandles, Y an X-set. Let D be
a diagram of an oriented spatial trivalent graph. Let E be a diagram ob-
tained by applying one of the R1–R6 moves to the diagram D once, where
we choose orientations for E which agree with those for D on A(D,E). For
C ∈ ColX(D)Y , there is a unique XY -coloring CD,E ∈ ColX(E)Y such that
C|A(D,E) =CD,E |A(D,E) and C|R(D,E) =CD,E |R(D,E).

4. A homology

Let X be a G-family of quandles, and Y an X-set. Let (Q,∗) be the
associated quandle of X . Let Bn(X)Y be the free Abelian group generated
by the elements of Y ×Qn if n≥ 0, and let Bn(X)Y = 0 otherwise. We put(

(y, q1, . . . , qi) ∗ q, qi+1, . . . , qn
)
:= (y ∗ q, q1 ∗ q, . . . , qi ∗ q, qi+1, . . . , qn)

for y ∈ Y and q, q1, . . . , qn ∈ Q. We define a boundary homomorphism
∂n : Bn(X)Y →Bn−1(X)Y by

∂n(y, q1, . . . , qn) =

n∑
i=1

(−1)i(y, q1, . . . , qi−1, qi+1, . . . , qn)

−
n∑

i=1

(−1)i
(
(y, q1, . . . , qi−1) ∗ qi, qi+1, . . . , qn

)
for n > 0, and ∂n = 0 otherwise. Then B∗(X)Y = (Bn(X)Y , ∂n) is a chain
complex (see [1], [2], [4], [5]).

Let Dn(X)Y be the subgroup of Bn(X)Y generated by the elements of

n−1⋃
i=1

{(
y, q1, . . . , qi−1, (x, g), (x,h), qi+2, . . . , qn

) ∣∣∣ y ∈ Y,x ∈X,g,h ∈G,
q1, . . . , qn ∈Q

}
and

n⋃
i=1

⎧⎨⎩
(y, q1, . . . , qi−1, (x, gh), qi+1, . . . , qn)
−(y, q1, . . . , qi−1, (x, g), qi+1, . . . , qn)
−((y, q1, . . . , qi−1) ∗ (x, g), (x,h), qi+1, . . . , qn)

∣∣∣∣∣
y ∈ Y,x ∈X,
g,h ∈G,
q1, . . . , qn ∈Q

⎫⎬⎭ .
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We remark that (
y, q1, . . . , qi−1, (x, e), qi+1, . . . , qn

)
and (

y, q1, . . . , qi−1, (x, g), qi+1, . . . , qn
)

+
(
(y, q1, . . . , qi−1) ∗ (x, g),

(
x, g−1

)
, qi+1, . . . , qn

)
belong to Dn(X)Y .

Lemma 4.1. For n ∈ Z, we have ∂n(Dn(X)Y ) ⊂ Dn−1(X)Y . Thus
D∗(X)Y = (Dn(X)Y , ∂n) is a subcomplex of B∗(X)Y .

Proof. It is sufficient to show the equalities

∂n
(
y, q1, . . . , qi−1, (x, g), (x,h), qi+2, . . . , qn

)
= 0,

∂n
(
y, q1, . . . , qi−1, (x, gh), qi+1, . . . , qn

)
= ∂n

(
y, q1, . . . , qi−1, (x, g), qi+1, . . . , qn

)
+ ∂n

(
(y, q1, . . . , qi−1) ∗ (x, g), (x,h), qi+1, . . . , qn

)
in Bn−1(X)Y /Dn−1(X)Y . We verify the first equality in the quotient group.

∂n
(
y, q1, . . . , qi−1, (x, g), (x,h), qi+2, . . . , qn

)
= (−1)i

(
y, q1, . . . , qi−1, (x,h), qi+2, . . . , qn

)
+ (−1)i+1

(
y, q1, . . . , qi−1, (x, g), qi+2, . . . , qn

)
− (−1)i

(
(y, q1, . . . , qi−1) ∗ (x, g), (x,h), qi+2, . . . , qn

)
− (−1)i+1

((
y, q1, . . . , qi−1, (x, g)

)
∗ (x,h), qi+2, . . . , qn

)
= (−1)i

(
y, q1, . . . , qi−1, (x,h), qi+2, . . . , qn

)
+ (−1)i+1

(
y, q1, . . . , qi−1, (x, gh), qi+2, . . . , qn

)
− (−1)i+1

(
(y, q1, . . . , qi−1) ∗ (x,h),

(
x,h−1gh

)
, qi+2, . . . , qn

)
= 0,

where the first equality follows from((
y, q1, . . . , qi−1, (x, g), (x,h), qi+2, . . . , qj−1

)
∗ qj , qj+1, . . . , qn

)
= 0.

We verify the second equality in the quotient group.

∂n
(
y, q1, . . . , qi−1, (x, gh), qi+1, . . . , qn

)
=
∑
j<i

(−1)j
(
y, q1, . . . , qj−1, qj+1, . . . , qi−1, (x, g), qi+1, . . . , qn

)
+
∑
j<i

(−1)j
(
(y, q1, . . . , qj−1, qj+1, . . . , qi−1) ∗ (x, g), (x,h), qi+1, . . . , qn

)
+ (−1)i(y, q1, . . . , qi−1, qi+1, . . . , qn)
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+
∑
j>i

(−1)j
(
y, q1, . . . , qi−1, (x, g), qi+1, . . . , qj−1, qj+1, . . . , qn

)
+
∑
j>i

(−1)j
(
(y, q1, . . . , qi−1) ∗ (x, g), (x,h), qi+1, . . . , qj−1, qj+1, . . . , qn

)
−
∑
j<i

(−1)j
(
(y, q1, . . . , qj−1) ∗ qj , qj+1, . . . , qi−1, (x, g), qi+1, . . . , qn

)
−
∑
j<i

(−1)j
((
(y, q1, . . . , qj−1) ∗ qj , qj+1, . . . , qi−1

)
∗ (x, g), (x,h), qi+1, . . . , qn

)
− (−1)i

(
(y, q1, . . . , qi−1) ∗ (x, gh), qi+1, . . . , qn

)
−
∑
j>i

(−1)j
((
y, q1, . . . , qi−1, (x, gh), qi+1, . . . , qj−1

)
∗ qj , qj+1, . . . , qn

)
= ∂n

(
y, q1, . . . , qi−1, (x, g), qi+1, . . . , qn

)
+ ∂n

(
(y, q1, . . . , qi−1) ∗ (x, g), (x,h), qi+1, . . . , qn

)
,

where the last equality follows from(
(y, q1, . . . , qi−1) ∗ (x, gh), qi+1, . . . , qn

)
=
((
(y, q1, . . . , qi−1) ∗ (x, g)

)
∗ (x,h), qi+1, . . . , qn

)
and((

y, q1, . . . , qi−1, (x, gh), qi+1, . . . , qj−1

)
∗ qj , qj+1, . . . , qn

)
=
((
y, q1, . . . , qi−1, (x, g), qi+1, . . . , qj−1

)
∗ qj , qj+1, . . . , qn

)
+
((
(y, q1, . . . , qi−1) ∗ (x, g), (x,h), qi+1, . . . , qj−1

)
∗ qj , qj+1, . . . , qn

)
.

Then ∂n(Dn(X)Y )⊂Dn−1(X)Y . �

We put Cn(X)Y = Bn(X)Y /Dn(X)Y . Then C∗(X)Y = (Cn(X)Y , ∂n) is
a chain complex. For an Abelian group A, we define the cochain complex
C∗(X;A)Y = Hom(C∗(X)Y ,A). We denote by Hn(X)Y the nth homology
group of C∗(X)Y .

5. Cocycle invariants

Let X be a G-family of quandles, and Y an X-set. Let D be a diagram
of an oriented spatial trivalent graph. For an XY -coloring C ∈ ColX(D)Y ,
we define the weight w(χ;C) ∈ C2(X)Y at a crossing χ of D as follows. Let
χ1, χ2 and χ3 be respectively, the under-arcs and the over-arc at a crossing χ
such that the normal orientation of χ3 points from χ1 to χ2. Let Rχ be the
region facing χ1 and χ3 such that the normal orientations χ1 and χ3 point
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from Rχ to the opposite regions with respect to χ1 and χ3, respectively. Then
we define

w(χ;C) = ε(χ)
(
C(Rχ),C(χ1),C(χ3)

)
,

where ε(χ) ∈ {1,−1} is the sign of a crossing χ. We define a chain W (D;C) ∈
C2(X)Y by

W (D;C) =
∑
χ

w(χ;C),

where χ runs over all crossings of D.

Lemma 5.1. The chain W (D;C) is a 2-cycle of C∗(X)Y . Further,
for cohomologous 2-cocycles θ, θ′ of C∗(X;A)Y , we have θ(W (D;C)) =
θ′(W (D;C)).

Proof. It is sufficient to show that W (D;C) is a 2-cycle of C2(X)Y . We
denote by SA(D) the set of curves obtained from D by removing (small
neighborhoods of) crossings and vertices. We call a curve in SA(D) a semi-
arc of D. We note that a semi-arc is obtained by dividing an over-arc at all
crossings. We denote by SA(D; ξ) the set of semi-arcs incident to ξ, where ξ
is a crossing or a vertex of D.

We define the orientation and the color of a semi-arc by those of the arc
including the semi-arc. For a semi-arc α, there is a unique region Rα facing
α such that the orientation of α points from the region Rα to the opposite
region with respect to α. For a semi-arc α incident to a crossing or a vertex
χ, we define

ε(α;χ) :=

{
1 if the orientation of α points to χ,

−1 otherwise.

Let χ1, χ2 be the semi-arcs incident to a crossing χ such that they origi-
nate from the under-arcs at χ and that the normal orientation of the over-arc
points from χ1 to χ2. Let χ3, χ4 be the semi-arcs incident to a crossing χ
such that they originate from the over-arc at χ and that the normal ori-
entation of the under-arcs points from χ3 to χ4 (see Figure 5). Then we
have

∂2
(
w(χ;C)

)
= − ε(χ)

(
C(Rχ1),C(χ3)

)
+ ε(χ)

(
C(Rχ1),C(χ1)

)
+ ε(χ)

(
C(Rχ1) ∗C(χ1),C(χ3)

)
− ε(χ)

(
C(Rχ1) ∗C(χ3),C(χ1) ∗C(χ3)

)
=

∑
α∈SA(D;χ)

ε(α;χ)
(
C(Rα),C(α)

)
.
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→

↑χ1 χ2

χ3

χ4

ε(χ) = 1

→

↓χ1 χ2

χ4

χ3

ε(χ) =−1

Figure 5

Since
∑

α∈SA(D;ω) ε(α;ω)(C(Rα),C(α)) is an element of D1(X)Y for a vertex

ω, we have

∂2

(∑
χ

w(χ;C)

)
=

∑
χ

∑
α∈SA(D;χ)

ε(α;χ)
(
C(Rα),C(α)

)
=

∑
χ

∑
α∈SA(D;χ)

ε(α;χ)
(
C(Rα),C(α)

)
+
∑
ω

∑
α∈SA(D;ω)

ε(α;ω)
(
C(Rα),C(α)

)
=

∑
α∈SA(D)

((
C(Rα),C(α)

)
−
(
C(Rα),C(α)

))
= 0

in C1(X)Y , where χ and ω, respectively run over all crossings and vertices
of D. �

We recall that, for C ∈ ColX(D)Y , there is a unique XY -coloring CD,E ∈
ColX(E) such that C|A(D,E) = CD,E |A(D,E) and C|R(D,E) = CD,E |A(R,E) by
Lemma 3.3.

Lemma 5.2. Let D be a diagram of an oriented spatial trivalent graph.
Let E be a diagram obtained by applying one of the R1–R6 moves to the di-
agram D once, where we choose orientations for E which agree with those
for D on A(D,E). For C ∈ ColX(D)Y and CD,E ∈ ColX(E)Y such that
C|A(D,E) = CD,E |A(D,E) and C|R(D,E) = CD,E |R(D,E), we have [W (D;C)] =
[W (E;CD,E)] in H2(X)Y .

Proof. We have the invariance under the R1, R4 and R5 moves, since the
difference between [W (D;C)] and [W (E;CD,E)] is an element of D2(X)Y .
The invariance under the R2 move follows from the signs of the crossings
which appear in the move. We have the invariance under the R3 move, since
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the difference between [W (D;C)] and [W (E;CD,E)] is an image of ∂3. We
have the invariance under the R6 move, since no crossings appear in the
move. �

We denote by GH (resp. GK) the fundamental group of the exterior of a
handlebody-link H (resp. a spatial graph K). When H is represented by K,
the groups GH and GK are identical. Let D be a diagram of an oriented
spatial trivalent graph K. By the definition of an XY -coloring C of D, the
map pG ◦C|A(D) represents a homomorphism from GK to G, which we denote
by ρC ∈Hom(GK ,G). For ρ ∈Hom(GK ,G), we define

ColX(D;ρ)Y =
{
C ∈ColX(D)Y | ρC = ρ

}
.

For a 2-cocycle θ of C∗(X;A)Y , we define

H(D) :=
{[
W (D;C)

]
∈H2(X)Y |C ∈ColX(D)Y

}
,

Φθ(D) :=
{
θ
(
W (D;C)

)
∈A |C ∈ColX(D)Y

}
,

H(D;ρ) :=
{[
W (D;C)

]
∈H2(X)Y |C ∈ColX(D;ρ)Y

}
,

Φθ(D;ρ) :=
{
θ
(
W (D;C)

)
∈A |C ∈ColX(D;ρ)Y

}
as multisets.

Lemma 5.3. Let D be a diagram of an oriented spatial trivalent graph K.
For ρ, ρ′ ∈Hom(GK ,G) such that ρ and ρ′ are conjugate, we have H(D;ρ) =
H(D;ρ′) and Φθ(D;ρ) = Φθ(D;ρ′).

Proof. Let g0 be an element of G such that ρ′(x) = g−1
0 ρ(x)g0 for any x ∈

GK . Fix x0 ∈X . We set q0 := (x0, g0). Let f : ColX(D;ρ)Y →ColX(D;ρ′)Y
be the bijection defined by f(C)(x) =C(x) ∗ q0 (see Figure 6).

We prove [W (D;C)] = [W (D;f(C))] ∈H2(X)Y for C ∈ ColX(D;ρ)Y . We
assume that spatial trivalent graphs are drawn in R

2(⊂ S2). Let D′ be a dia-
gram obtained from D by putting an oriented loop γ in the outermost region
R∞ so that the loop bounds a disk, where the loop is oriented counterclock-
wise (see Figure 7). Let C ′ be the XY -coloring of D′ defined by C ′(γ) = q0

y y ∗ q

→

q

f�→ y ∗ q0 (y ∗ q) ∗ q0
→

q ∗ q0

Figure 6
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��
��
→D

D′

��
��
→ D

D′′

Figure 7

and C ′ =C on A(D,D′)∪R(D,D′). Then we note that C ′(R′
∞) =C(R∞)∗q0

for the region R′
∞ surrounded by the loop γ in D′. We deform the diagram

D′ by using R2, R3 and R5 moves so that the loop passes over all arcs of
D exactly once. Then we denote by D′′ and C ′′ ∈ ColX(D′′)Y the resulting
diagram and the corresponding XY -coloring of D′′, respectively. We obtain
the XY -coloring f(C) from C ′′ by removing the loop from D′′, which also
implies that f is well-defined.

Since no crossings increase or decrease when we add or remove the loop γ,
we have [

W (D;C)
]
=
[
W (D′;C ′)

]
=
[
W (D′′;C ′′)

]
=
[
W

(
D;f(C)

)]
,

where the second equality follows from Lemma 5.2. Then we have H(D;ρ) =
H(D;ρ′) and Φθ(D;ρ) = Φθ(D;ρ′). �

We denote by Conj(GK ,G) the set of conjugacy classes of homomorphisms
from GK to G. By Lemma 5.3, H(D;ρ) and Φθ(D;ρ) are well-defined for
ρ ∈Conj(GK ,G).

Lemma 5.4. Let D be a diagram of an oriented spatial trivalent graph K.
Let E be a diagram obtained from D by reversing the orientation of an edge e.
For ρ ∈ Hom(GK ,G), we have H(D) = H(E), Φθ(D) = Φθ(E), H(D;ρ) =
H(E;ρ) and Φθ(D;ρ) = Φθ(E;ρ).

Proof. It is sufficient to show that H(D;ρ) =H(E;ρ). We define a bijection
f : ColX(D;ρ)Y →ColX(E;ρ)Y by f(C)(α) = (pX(C(α)), pG(C(α))−1) if α is
an arc originates from the edge e, f(C)(α) =C(α) otherwise. We remark that
ρf(C) = ρC = ρ. The map f is well-defined, since z1 ∗ (x, g) = z2 is equivalent

to z2 ∗ (x, g−1) = z1. Then we have w(χ;C) = w(χ;f(C)) for every crossing
χ, since we have(
y, (x1, g1), (x2, g2)

)
=−

(
y ∗ (x1, g1),

(
x1, g

−1
1

)
, (x2, g2)

)
=−

(
y ∗ (x2, g2), (x1, g1) ∗ (x2, g2),

(
x2, g

−1
2

))
=
((
y ∗ (x1, g1)

)
∗ (x2, g2),

(
x1, g

−1
1

)
∗ (x2, g2),

(
x2, g

−1
2

))
in C2(X)Y (see Figure 8). Then we have H(D;ρ) =H(E;ρ). �
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→

↑(x1, g1)

(x2, g2)

y →

↓(x1, g
−1
1 )

(x2, g2)

y ∗ (x1, g1)

←

↑ (x1, g1) ∗ (x2, g2)

(x2, g
−1
2 )

y ∗ (x2, g2) ←

↓ (x1, g
−1
1 ) ∗ (x2, g2)

(x2, g
−1
2 )

(y ∗ (x1, g1)) ∗ (x2, g2)

Figure 8

By Lemma 5.4, H(D), Φθ(D), H(D;ρ) and Φθ(D;ρ) are well-defined for a
diagram D of an unoriented spatial trivalent graph, which is a diagram of a
handlebody-link. For a diagram D of a handlebody-link H , we define

Hhom(D) :=
{
H(D;ρ) | ρ ∈Hom(GH ,G)

}
,

Φhom
θ (D) :=

{
Φθ(D;ρ) | ρ ∈Hom(GH ,G)

}
,

Hconj(D) :=
{
H(D;ρ) | ρ ∈Conj(GH ,G)

}
,

Φconj
θ (D) :=

{
Φθ(D;ρ) | ρ ∈Conj(GH ,G)

}
as “multisets of multisets.” We remark that, for XY -colorings C and CD,E

in Lemma 5.2, we have ρC = ρCD,E
. Then, by Lemmas 5.1–5.4, we have the

following theorem.

Theorem 5.5. Let X be a G-family of quandles, Y an X-set. Let
θ be a 2-cocycle of C∗(X;A)Y . Let H be a handlebody-link represented
by a diagram D. Then the following are invariants of a handlebody-
link H .

H(D), Φθ(D), Hhom(D), Φhom
θ (D), Hconj(D), Φconj

θ (D).

We denote the invariants of H given in Theorem 5.5 by

H(H), Φθ(H), Hhom(H),

Φhom
θ (H), Hconj(H), Φconj

θ (H),

respectively.
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Let {y} be a trivial X-set. For the trivial 2-cocycle 0 of C∗(X;A){y}, we
have

Φ0(H) =
{
0 |C ∈ColX(D){y}

}
,

Φhom
0 (H) =

{{
0 |C ∈ColX(D;ρ){y}

}
| ρ ∈Hom(GH ,G)

}
,

Φconj
0 (H) =

{{
0 |C ∈ColX(D;ρ){y}

}
| ρ ∈Conj(GH ,G)

}
.

Thus

#ColX(H) := #ColX(D){y},

#ColhomX (H) :=
{
#ColX(D;ρ){y} | ρ ∈Hom(GH ,G)

}
,

#ColconjX (H) :=
{
#ColX(D;ρ){y} | ρ ∈Conj(GH ,G)

}
are invariants of a handlebody-link H represented by a diagram D, where #S
denotes the cardinality of a multiset S. We remark that these invariants do
not depend on the choice of the singleton set {y}.

We denote by H∗ the mirror image of a handlebody-link H . Then we have
the following theorem.

Theorem 5.6. For a handlebody-link H , we have

H
(
H∗)=−H(H), Φθ

(
H∗)=−Φθ(H),

Hhom
(
H∗)=−Hhom(H), Φhom

θ

(
H∗)=−Φhom

θ (H),

Hconj
(
H∗)=−Hconj(H), Φconj

θ

(
H∗)=−Φconj

θ (H),

where −S = {−a | a ∈ S} for a multiset S.

Proof. Let D be a diagram of a handlebody-link H . We suppose that
D is depicted in an xy-plane R

2. Let ϕ : R2 → R
2 be the involution de-

fined by ϕ(x, y) = (−x, y). Let ϕ̃ : S3 → S3 be the involution defined by
ϕ(x, y, z) = (−x, y, z) and ϕ(∞) = ∞, where we regard the 3-sphere S3 as
R

3 ∪ {∞}. Then ϕ(D) is a diagram of the handlebody-link H∗ = ϕ̃(H). For
ρ ∈ Hom(GH ,G) and C ∈ ColX(D;ρ)Y , we have ϕ̃∗(ρ) ∈ Hom(GH∗ ,G) and
C ◦ϕ ∈ColX(ϕ(D); ϕ̃∗(ρ))Y , where ϕ̃∗ is the isomorphism induced by ϕ̃. For
each crossing χ of D, ε(χ) =−ε(ϕ(χ)), and hence we have w(ϕ(χ),C ◦ ϕ) =
−w(χ,C). Then [W (ϕ(D);C ◦ϕ)] =−[W (D;C)], which implies the equalities
in this theorem. �

6. Applications

In this section, we calculate cocycle invariants defined in the previous sec-
tion for the handlebody-knots 01, . . . ,616 in the table given in [8], by using a
2-cocycle given by Nosaka [17]. This calculation enables us to distinguish some
of handlebody-knots from their mirror images, and a pair of handlebody-knots
whose complements have isomorphic fundamental groups.
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Let G= SL(2;Z3) and X = (Z3)
2. Then X is a G-family of quandles with

the proper binary operation as given in Proposition 2.3(2). Let Y be the
trivial X-set {y}. We define a map θ : Y × (X ×G)2 → Z3 by

θ
(
y, (x1, g1), (x2, g2)

)
:= λ(g1)det

(
x1 − x2, x2

(
1− g−1

2

))
,

where the Abelianization λ : G→ Z3 is given by

λ

(
a b
c d

)
= (a+ d)(b− c)(1− bc).

By [17], the map θ is a 2-cocycle of C∗(X;Z3)Y . Table 1 lists the invariant

Φconj
θ (H) for the handlebody-knots 01, . . . ,616. We represent the multiplicity

of elements of a multiset by using subscripts. For example, {{02,13}1,{03}2}
represents the multiset {{0,0,1,1,1},{0,0,0},{0,0,0}}.

From Table 1, we see that our invariant can distinguish the handlebody-
knots 614, 615, whose complements have the isomorphic fundamental groups.
Together with Theorem 5.6, we also see that handlebody-knots 52, 53, 65, 69,
611, 612, 613, 614, 615 are not equivalent to their mirror images. In particular,

Table 1

H Φconj
θ (H)

01 {{09}76}
41 {{09}83,{027}22,{081}3}
51 {{09}76}
52 {{09}95,{027}6,{081}1,{09,118}4,{027,154}2}
53 {{09}102,{027}4,{027,254}2}
54 {{09}74,{081}2}
61 {{09}91,{027}16,{081}1}
62 {{09}106,{045,118,218}2}
63 {{09}74,{027}2}
64 {{09}76}
65 {{09}74,{09,118}2}
66 {{09}72,{027}4}
67 {{09}85,{027}16,{081}3,{045,118,218}4}
68 {{09}76}
69 {{09}91,{027}6,{081}1,{09,118}6,{027,154}2,{027,254}2}
610 {{09}76}
611 {{09}70,{09,118}6}
612 {{09}97,{081}1,{09,118}8,{09,136,236}2}
613 {{09}95,{027}6,{081}1,{09,218}4,{027,254}2}
614 {{09}119,{027}6,{081}11,{09,118}12,{027,154}24}
615 {{09}119,{027}6,{081}11,{09,218}12,{027,154}24}
616 {{09}44,{081}32}
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Table 2

Chirality M II LL IKO IIJO
01 ©
41 ©
51 × �
52 × � � �
53 × �
54 × �
61 × �
62 ?
63 ?
64 × �
65 × �
66 ©
67 ©
68 ?
69 × � �
610 ?
611 × �
612 × �
613 × � � �
614 × � �
615 × � �
616 ©

the chiralities of 53, 65, 611 and 612 were not known. Table 2 shows us known
facts on the chirality of handlebody-knots in [8] so far. In the column of “chi-
rality”, the symbols © and × mean that the handlebody-knot is amphichiral
and chiral, respectively, and the symbol ? means that it is not known whether
the handlebody-knot is amphichiral or chiral. The symbols � in the right
five columns mean that the handlebody-knots can be proved chiral by using
the method introduced in the papers corresponding to the columns. Here,
M, II, LL, IKO and IIJO denote the papers [16], [7], [14], [9] and this paper,
respectively.

7. A generalization

In this section, we show that our invariant is a generalization of the invari-
ant ΦI

θ(H) defined by the first and second authors in [7]. We refer the reader
to [7] for the details of the invariant ΦI

θ(H). We recall the definition of the
chain complex for the invariant ΦI

θ(H).
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Let X be a Zm-family of quandles, Y an X-set. Let BI
n(X)Y be the

free Abelian group generated by the elements of Y × Xn if n ≥ 0, and let
BI

n(X)Y = 0 otherwise. We put(
(y,x1, . . . , xi) ∗j x,xi+1, . . . , xn

)
:=

(
y ∗j x,x1 ∗j x, . . . , xi ∗j x,xi+1, . . . , xn

)
for y ∈ Y , x,x1, . . . , xn ∈X and j ∈ Zm. We define a boundary homomorphism
∂n : BI

n(X)Y →BI
n−1(X)Y by

∂n(y,x1, . . . , xn) =

n∑
i=1

(−1)i(y,x1, . . . , xi−1, xi+1, . . . , xn)

−
n∑

i=1

(−1)i
(
(y,x1, . . . , xi−1) ∗1 xi, xi+1, . . . , xn

)
for n > 0, and ∂n = 0 otherwise. Then BI

∗(X)Y = (BI
n(X)Y , ∂n) is a chain

complex. Let DI
n(X)Y be the subgroup of BI

n(X)Y generated by the elements
of

n−1⋃
i=1

{
(y,x1, . . . , xi−1, x, x,xi+2, . . . , xn) | y ∈ Y,x,x1, . . . , xn ∈X

}
and

n⋃
i=1

{
m−1∑
j=0

(
(y,x1, . . . , xi−1) ∗j xi, xi, . . . , xn

)
| y ∈ Y,x1, . . . , xn ∈X

}
.

Then DI
∗(X)Y = (DI

n(X)Y , ∂n) is a chain complex.
We put CI

n(X)Y = BI
n(X)Y /D

I
n(X)Y . Then CI

∗(X)Y = (CI
n(X)Y , ∂n) is

a chain complex. For an Abelian group A, we define the cochain complex
C∗

I (X;A)Y = Hom(CI
∗(X)Y ,A). We denote by HI

n(X)Y the nth homology
group of CI

∗(X)Y .

Proposition 7.1. For n ∈ Z, we have

HI
n(X)Y ∼=Hn(X)Y .

Proof. The homomorphism fn : CI
n(X)Y →Cn(X)Y defined by

fn
(
(y,x1, . . . , xn)

)
=
(
y, (x1,1), . . . , (xn,1)

)
is an isomorphism, since the homomorphism gn : Cn(X)Y →CI

n(X)Y defined
by

gn
(
y, (x1, s1), . . . , (xn, sn)

)
=

s1−1∑
i1=0

s2−1∑
i2=0

· · ·
sn−1∑
in=0

(
· · ·

((
y ∗i1 x1, x1

)
∗i2 x2, x2

)
· · · ∗in xn, xn

)
is the inverse map of fn. It is easy to see that f = {fn} is a chain map from
CI

∗(X)Y to C∗(X)Y . Therefore, H
I
n(X)Y ∼=Hn(X)Y . �
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For a 2-cocycle θ of C∗
I (X;A)Y , the composition θ ◦ g2 is a 2-cocycle of

C∗(X;A)Y , and we have

ΦI
θ(H) = Φhom

θ◦g2(H),

where g2 is the map defined in Proposition 7.1. Then our invariant is a
generalization of the invariant introduced in [7].

Acknowledgments. The authors would like to thank Takefumi Nosaka for
valuable discussions about his cocycles.
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