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INVOLUTIONS AND TRIVOLUTIONS IN ALGEBRAS
RELATED TO SECOND DUALS OF GROUP ALGEBRAS

M. FILALI, M. SANGANI MONFARED AND AJIT IQBAL SINGH

Abstract. We define a trivolution on a complex algebra A as a
non-zero conjugate-linear, anti-homomorphism τ on A, which is a

generalized inverse of itself, that is, τ3 = τ . We obtain character-
izations of trivolutions and show with examples that they appear

naturally on many Banach algebras, particularly those arising

from group algebras. We give several results on the existence or

non-existence of involutions on the dual of a topologically intro-
verted space. We investigate conditions under which the dual of
a topologically introverted space admits trivolutions.

1. Introduction and preliminaries

By a well-known result of Civin and Yood [8, Theorem 6.2], if A is a Banach
algebra with an involution ρ : A −→ A, then the second (conjugate-linear)
adjoint ρ∗∗ : A∗∗ −→ A∗∗ is an involution on A∗∗ (with respect to either of
the Arens products) if and only if A is Arens regular; when this is the case, ρ∗∗

is called the canonical extension of ρ. Grosser [23, Theorem 1] has shown that
if A is a Banach algebra with a bounded right [left] approximate identity, then
a necessary condition for the existence of an involution on A∗∗ with respect to
the first [second] Arens product is that A∗ ·A=A∗ [A ·A∗ =A∗]. The above
results applied to the group algebra L1(G) imply that a necessary condition for
L1(G)∗∗ to have an involution (with respect to either of the Arens products) is
that G is discrete (Grosser [23, Theorem 2]); moreover, the natural involution
of L1(G) has the canonical extension to L1(G)∗∗ if and only if L1(G) is Arens
regular, and, by a well-known result of Young [39], L1(G) is Arens regular if
and only if G is finite.
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In general, since A is not norm dense in A∗∗, an involution on A may have
extensions to A∗∗ which are different from the canonical extension. A nec-
essary and sufficient condition for the existence of such extensions does not
seem to be known. However, for the special case of the group algebra L1(G),
Farhadi and Ghahramani [15, Theorem 3.2(a)] have shown that if a locally
compact group G has an infinite amenable subgroup, then L1(G)∗∗ does not
have any involution extending the natural involution of L1(G). (See also
the related paper by Neufang [33], answering a question raised in [15].) It
is unknown whether for a discrete group which does not contain an infinite
amenable group, there is an involution on L1(G)∗∗ extending the natural in-
volution of L1(G).

In Singh [37], the third author introduced the concept of α-amenability
for a locally compact group G. Given a cardinal α, a group G is called α-
amenable if there exists a subset F ⊂ L1(G)∗∗ containing a mean M (not
necessarily left invariant) such that |F| ≤ α and the linear span of F is a
left ideal of L1(G)∗∗. The group G is called subamenable if G is α-amenable

for some cardinal 1 ≤ α < 22
κ(G)

, where κ(G) denotes the compact covering
number of G, that is, the least cardinality of a compact covering of G. (We
remark that at the time of the proof-reading of the paper Singh [37], the
author did not know that the term subamenable had already been used in
different contexts, viz., subamenable semigroups by Lau and Takahashi in
[31], [32], and initially subamenable groups by Gromov in [22]. She thanks
A. T.-M. Lau for interesting exchange of mathematical points in this regard.)
It follows that 1-amenability of G is equivalent to the amenability of G, and
α-amenability implies β-amenability for every β ≥ α. If G is a non-compact
locally compact group, then every non-trivial right ideal in L1(G)∗∗ or in

LUC(G)∗ has (vector space) dimension at least 22
κ(G)

(Filali and Pym [18,
Theorem 5] and Filali and Salmi [19, Theorem 6], Filali [16], Filali, Neufang,
and Sangani Monfared [17]). It follows from this lower bound that if G is
a subamenable, non-compact, locally compact group, then L1(G)∗∗ has no
involution (Singh [37, Theorem 2.2]). Singh [37, Theorem 2.9(i)] also showed
that every discrete group G is a subgroup of a subamenable discrete group Gσ

with |Gσ| ≤ 2|G|. It is not known whether there exists any non-subamenable
group, and in particular, it remains an open question whether the free group
on 2 generators is subamenable.

All the above results show that the existence of involutions on second dual
Banach algebras imposes strong conditions on A. So it seems natural to
consider involution-like operators on Banach algebras and their second duals.
In this paper, we relax the condition of bijectivity on an involution ρ and of ρ
being its own inverse to that of ρ being a generalized inverse of itself, namely,
ρ3 = ρ, and call them trivolutions (Definition 2.1) following the terminology of
Degen [12]. It follows from the definition that every involution is a trivolution,
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but as we shall show later there are many naturally arising trivolutions which
are not involutions.

In Section 2, we start with a general study of trivolutions on algebras and
we give several characterizations of trivolutions in Theorem 2.3. We use the
decompositions given in Theorem 2.3(iii) to characterize trivolutive homomor-
phisms (Theorem 2.5). In Theorem 2.10, we show that, unlike involutions,
a trivolution can have various extensions to the unitized algebra A�, and we
give a complete characterization of all such extensions. We show that con-
cepts such as Hermitian, normal, and unitary elements, usually associated
with involutions, can be naturally defined in the context of trivolutive al-
gebras. In Section 3, we study involutions on the dual of a topologically
introverted space. In Theorem 3.1, we extend the result of Civin and Yood
(discussed above) to the dual of a topologically introverted space, and obtain
the result of Farhadi and Ghahramani [15, Theorem 3.2(a)] as a corollary. In
Theorem 3.3, we investigate the relationship between the existence of topo-
logically invariant elements and the existence of involutions on the dual of
a topologically introverted space. As a corollary, we show that under fairly
general conditions, neither of the Banach algebras PMp(G)∗ and UCp(G)∗,
1< p <∞, have involutions (for the definitions of these spaces see below as
well as the discussion prior to Corollary 3.4). In Section 4, we give some
sufficient conditions under which a second dual Banach algebra A∗∗ admits
trivolutions (Theorem 4.1). In Theorem 4.3, we show that for G non-discrete,
L1(G)∗∗ does not admit any trivolutions with range L∞

0 (G)∗. However, the
space L∞

0 (G)∗ itself always admits trivolutions (Theorem 4.7).
We close this section with a few preliminary definitions and notation. Given

a Banach algebra A, the dual space A∗ can be viewed as a Banach A-bimodule
with the canonical operations:

〈λ · a, b〉= 〈λ,ab〉, 〈a · λ, b〉= 〈λ, ba〉,

where λ ∈ A∗ and a, b ∈ A. Let X be a norm closed A-submodule of A∗.
Then given Ψ ∈X∗, λ ∈X , we may define Ψ · λ ∈A∗ by 〈Ψ · λ,a〉= 〈Ψ, λ · a〉.
If Ψ · λ ∈ X for all choices of Ψ ∈ X∗ and λ ∈ X , then X is called a left
topologically introverted subspace of A∗. The dual of a left topologically
introverted subspace X can be turned into a Banach algebra if, for all Φ,Ψ ∈
X∗, we define Φ�Ψ ∈X∗ by 〈Φ�Ψ, λ〉= 〈Φ,Ψ · λ〉. In particular, by taking
X = A∗, we obtain the first (or the left) Arens product on A∗∗, defined by
Arens [1], [2]. The space X∗ can be identified with the quotient algebra
A∗∗/X◦, where X◦ = {Φ ∈ A∗∗ : Φ|X = 0}. If X is faithful (that is, a = 0
whenever λ(a) = 0 for all λ ∈X), then the natural map of A into X∗ is an
embedding, and we will regard A as a subalgebra of (X∗,�). The space
X∗ has a canonical A-bimodule structure defined by 〈a · Φ, λ〉 = 〈Φ, λ · a〉,
〈Φ · a,λ〉= 〈Φ, a · λ〉 (Φ ∈X∗, λ ∈X,a ∈A). One can then verify that a ·Φ=
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a�Φ,Φ · a = Φ�a for each a ∈ A and Φ ∈X∗. For each Φ ∈X∗, the map
Ψ 
→Ψ�Φ, X∗ −→X∗, is continuous in the w∗-topology of X∗.

Right topologically introverted subspaces of A∗ are defined similarly; for
these spaces the second (or the right) Arens product on X∗ will be denoted
by Φ♦Ψ. A space which is both left and right topologically introverted is
called topologically introverted. When A is commutative, there will be no
distinction between left and right topologically introverted spaces.

Let A be a Banach algebra. The space of [weakly] almost periodic func-
tionals on A, denoted by [WAP(A∗)] AP(A∗), is defined as the set of all
λ ∈ A∗ such that the linear map A −→ A∗, a 
→ a · λ, is [weakly] compact.
The spaces A∗, WAP(A∗), and AP(A∗) are examples of topologically intro-
verted spaces. The space of left uniformly continuous functionals on A defined
by LUC(A) = lin(A∗ ·A) (the closure is in norm topology), is an example of
a left topologically introverted space. If G is a locally compact group, then
LUC(L1(G)) coincides with LUC(G), the space of left uniformly continuous
functions on G (cf. Lau [28]). For more information and additional examples
one may consult [9], [10], [13], [20], [27], [38].

If f : X −→X is a map on a set X , for simplicity and when no confusion
arises, we write fn to denote the n-times composition of f with itself, that
is, fn := f ◦ · · · ◦ f (n-times). Also when no confusion arises, we write ΦΨ to
denote the first Arens product Φ�Ψ.

2. Trivolutions

Definition 2.1. A trivolution on a complex algebra A is a non-zero, con-
jugate linear, anti-homomorphism τ : A−→A, such that τ3 = τ . When A is
a normed algebra, we shall assume that ‖τ‖= 1. The pair (A,τ) will be called
a trivolutive algebra.

Remarks 2.2. (i) It follows from the definition that every involution on a
non-zero complex algebra is a trivolution. Conversely, a trivolution which is
either injective or surjective, is an involution. Thus, for a trivloution injec-
tivity is equivalent to surjectivity; in particular, a trivolution is surjunctive
in the sense that it is either surjective or non-injective (see, for instance, [22]
and the references therein for history and more on this term). If (A,τ) is a
trivolutive normed algebra, then ‖τ(x)‖ ≤ ‖x‖ for every x ∈A; in particular,
when τ is an involution, we have ‖τ(x)‖= ‖x‖ for every x.

(ii) If (A,τ) is a trivolutive algebra, then τ(A) is a subalgebra of A. More-
over, if (A,τ) is a trivolutive normed algebra, then τ(A) is closed subalge-
bra of A: if (xn) is a sequence such that τ(xn) → x for some x ∈ A, then
τ(xn) = τ3(xn)→ τ2(x), and hence x= τ2(x) ∈ τ(A).

The next result gives several characterizations of trivolutions. We remark
that by the equivalence of (i) and (iii) in the following theorem, it follows
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that every trivolutive [Banach] algebra is a [strongly] splitting extension of an
involutive [Banach] algebra.

Theorem 2.3. Let A be a complex algebra, τ : A −→ A a non-zero map,
and B := τ(A) a subalgebra of A. Let IB denote the set of all involutions
on B. Then the following statements are equivalent.

(i) τ is a trivolution.
(ii) τ is a conjugate-linear, anti-homomorphism, and τ |B ∈ IB .
(iii) There exist a projection p : A −→ B with p an algebra homomorphism,

a two sided ideal I of A, and an involution ρ on B such that

(1) A= I ⊕B, τ = ρ ◦ p.
(iv) IB is non-empty, and for each ρ2 ∈ IB , there is a surjective homomor-

phism ρ1 : A−→B that satisfies τ = ρ2 ◦ ρ1 and ρ1 ◦ ρ2 ∈ IB .

The statements (i)–(iv) remain equivalent if A is a normed algebra and the
maps in (i)–(iv) are assumed to be contractive.

Proof. (i) =⇒ (ii): Since τ is a conjugate-linear anti-homomorphism, the
identity τ3 = τ implies that (τ |B)2 is the identity map on B, and therefore
τ |B ∈ IB .

(ii) =⇒ (iii): Let ρ := τ |B and p := τ ◦ τ : A −→ B. We leave it for the
reader to verify the easy facts that τ = ρ ◦ p, and p and ρ satisfy the re-
quirements in (iii). If we let I = ker τ = kerp, then I is a two-sided ideal
of A, and since p is a projection we have A = I ⊕ B. Moreover, since
I = ker τ and ρ = τ |B , it follows that for each x = y + z ∈ I ⊕ B, we have
τ(x) = τ(y) + τ(z) = ρ(z).

(iii) =⇒ (iv): The first two statements of (iv) are immediate consequences
of (iii). Let ρ2 ∈ IB be given and define ρ1 := ρ2 ◦ τ . Then ρ1 is a surjective
homomorphism from A to B and furthermore, ρ2 ◦ρ1 = ρ2 ◦ρ2 ◦ τ = IB ◦ τ = τ
(where IB denotes the identity map on B). Since ρ1 ◦ ρ2 is a conjugate-linear
anti-homomorphism on B, it remains to show that (ρ1 ◦ ρ2)

2 = IB . This
follows from the fact that τ2 = p, since then

(ρ1 ◦ ρ2)2 = ρ2 ◦ τ ◦ ρ2 ◦ ρ2 ◦ τ ◦ ρ2 = ρ2 ◦ τ2 ◦ ρ2 = ρ2 ◦ p ◦ ρ2 = IB .

(iv) =⇒ (i): Since τ = ρ2 ◦ ρ1, with ρ1, ρ2 as in (iv), it follows that τ is a
surjective, conjugate-linear anti-homomorphism. Now using the assumption
that ρ1 ◦ ρ2 is an involution on B, we have

τ3 = ρ2 ◦ (ρ1 ◦ ρ2) ◦ (ρ1 ◦ ρ2) ◦ ρ1 = ρ2 ◦ ρ1 = τ ;

hence τ is a trivolution. �

Corollary 2.4. Suppose that I = ker τ �= {0}. Let B = τ(A) and A =
I ⊕B as in (1). Then the following hold.

(i) τ =
(
0
0

0
ρ

)
, where ρ= τ |B .
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(ii) If I has an involution J , then there are an algebra C, a homomorphism
λ : A −→ C, an involution σ on C, and a homomorphism μ : C −→ A
such that the diagram

A
τ−−−−→ A

λ

⏐⏐� �⏐⏐μ

C −−−−→
σ

C

commutes, namely, τ = μ ◦ σ ◦ λ.
Proof. Statement (i) follows immediately from the fact that for each x=

y+ z ∈ I ⊕B, we have τ(x) = τ(y) + τ(z) = ρ(z).
To prove (ii), let pr1 = IA − τ2 be the projection of A onto I . We define

the algebra A as the vector space I ⊕B equipped with coordinatewise multi-
plication, therefore, if x= y + z ∈ A and x′ = y′ + z′ ∈ A (with y, y′ ∈ I and
z, z′ ∈ B), then xx′ = yy′ + zz′ ∈ A. Now we let C =A×A, equipped with
coordinatewise operations, and we define

λ(x) =
(
τ2(x),0

)
, μ

(
x,x′)= τ2(x)

and

σ(x,x′) =

(
τ J ◦ pr1

J ◦ pr1 τ

)(
x
x′

)
=

(
J ◦ pr1

(
x′)+ τ(x), J ◦ pr1(x) + τ

(
x′)).

It is easy to check that both λ and μ are homomorphisms, σ is a conjugate-
linear anti-homomorphism, and τ = μ ◦ σ ◦ λ. Moreover, since

σ2 =

(
τ2 + J ◦ pr1 ◦J ◦ pr1 τ ◦ J ◦ pr1+J ◦ pr1 ◦ τ
τ ◦ J ◦ pr1+J ◦ pr1 ◦ τ τ2 + J ◦ pr1 ◦J ◦ pr1

)

=

(
τ2 +pr1 0

0 τ2 +pr1

)
=

(
IA 0
0 IA

)
,

it follows that σ is an involution on C, completing the proof of (b). �
If (A,τ) is a trivolutive algebra, then we shall call the identities in (1) of

Theorem 2.3, namely, A= I⊕B, τ = ρ◦p, in which p= τ2, B = p(A) = τ(A),
I = kerp = ker τ , and ρ = τ |B , the canonical decompositions of (A,τ). As
an interesting application of these ideas, we shall give a characterization of
trivolutive homomorphisms π : (A1, τ1)−→ (A2, τ2). These are algebra homo-
morphisms such that π(τ1(x)) = τ2(π(x)), for all x ∈A1.

Theorem 2.5. Let (Ai, τi), i = 1,2, be two trivolutive [Banach] algebras
and π : A1 −→ A2 be a [continuous] trivolutive homomorphism. Let Ai =
Ii ⊕Bi and τi = ρi ◦ pi be the canonical decompositions of (Ai, τi). Then

π =

(
π11 0
0 π22

)
,
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where π11 : I1 −→ I2 and π22 : B1 −→ B2 are both [continuous] homomor-
phisms, and π22 is involutive.

Proof. We confine our attention to the case when I1 and I2 are both non-
zero. Following (1) of Theorem 2.3, we can write τ1 =

(
0
0

0
ρ1

)
, and τ2 =(

0
0

0
ρ2

)
. Let π =

(
π11

π21

π12

π22

)
be the block matrix representation of π. The

identity π ◦ τ1 = τ2 ◦ π implies that(
0 π12 ◦ ρ1
0 π22 ◦ ρ1

)
=

(
0 0

ρ2 ◦ π21 ρ2 ◦ π22

)
.

Since both ρ1 and ρ2 are bijective, the identities π12 ◦ ρ1 = 0 and ρ2 ◦π21 = 0,
imply that π12 = 0 and π21 = 0. Now it is easy to check that both π11 and π22

must be algebra homomorphisms. Moreover, the identity π22 ◦ ρ1 = ρ2 ◦ π22,
implies that π22 : (B1, ρ1)−→ (B2, ρ2) is involutive, as we wanted to show. �

There are various automatic continuity results for homomorphisms and for
homomorphisms intertwining with involutions in the literature (cf. Dales [9]
and Palmer [34], [35]). We can use these results to prove various automatic
continuity results involving trivolutions. We illustrate just one such result.
By a famous result of B. E. Johnson if A and B are Banach algebras with
B semisimple, then any surjective homomorphism ϕ : A−→B is continuous
(Palmer [34, Theorem 6.1.3]). Moreover, it is well known that if A is an
involutive Banach algebra and B is a C∗-algebra, then every involutive algebra
homomorphism π : A−→B is continuous (Dales [9, Corollary 3.2.4]). As an
immediate consequence of these results and Theorem 2.5, we can state the
following automatic continuity result for trivolutive homomorphisms.

Corollary 2.6. Let (Ai, τi), i = 1,2, be two trivolutive Banach algebras
and π : A1 −→A2 be a trivolutive homomorphism. If ker τ2 is semisimple and
is contained in π(A1), then π is continuous provided that for every b ∈ τ2(A2)
we have ‖τ2(b)b‖= ‖b‖2.

Next, we give a few examples of trivolutions.

Examples 2.7. (a) Let (X,μ) be a measure space and K ⊂X be a measur-
able subset of X with μ(K)> 0. Let L∞

K (X,μ) be the subalgebra of L∞(X,μ)
consisting of all those functions which vanish locally almost everywhere on
X \ K. Let χK be the characteristic function of K and p : L∞(X,μ) −→
L∞
K (X,μ) be the homomorphism f 
→ χKf . If ρ is the usual complex con-

jugation on L∞
K (X,μ), then the map τ given by τ(f) := ρ ◦ p(f) = χKf is a

trivolution on L∞(X,μ). We next give an abstract alternative.
(b) Let M be a von Neumann algebra and P ∈M be a central projection.

Then τ(T ) = PT ∗ is a trivolution on M .
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(c) The quotient of a trivolutive [normed] algebra (A,τ) by a two-sided
[closed] ideal I such that τ(I) ⊂ I and τ(A) �⊂ I , is a trivolutive [normed]
algebra. Finite products of trivolutive [normed] algebras, the completion of a
trivolutive normed algebra, and the opposite of a trivolutive [normed] algebra,
are all trivolutive [normed] algebras in canonical ways.

Theorem 2.8. Let τ be an anti-homomorphism on an algebra A and let
B = τ(A).

(i) If e ∈B is a right identity of A, then τ(e) = e and e is the identity of B.
(ii) The set B can contain at most one right identity of A.
(iii) Let A be a subalgebra of an algebra C of the form eC with e being a

right identity of C. If τ is a trivolution on A, and if �e denotes the left
multiplication map by e on C, then τ1 := τ ◦ �e is a trivolution on C and
τ1(C) = τ(A) =B.

Proof. (i) If a ∈ A, then a = ae and hence τ(a) = τ(e)τ(a), which shows
that τ(e) is a left identity for B. Since e ∈B, e= τ(e)e= τ(e), proving that
e= τ(e) and e is the identity for B.

(ii) This is an immediate consequence of (i).
(iii) Since e is a right identity of C and B ⊂ A= eC, it follows that �e|B

is the identity map on B: in fact, given b ∈B, we can write b= ec for some
c ∈C, and hence �e(b) = e(ec) = ec= b. It follows that �e ◦ τ = τ , and hence

τ31 = (τ ◦ �e)3 = τ ◦ (�e ◦ τ) ◦ (�e ◦ τ) ◦ �e = τ3 ◦ �e = τ ◦ �e = τ1.

In addition, since e is a right identity of C, we have e(c1c2) = (ec1)(ec2), for all
c1, c2 ∈C. Hence, �e is a homomorphism on C which implies that τ1 = τ ◦ �e
is a conjugate-linear, anti-homomorphism, completing the proof that τ1 is a
trivolution on C. The fact that τ1(C) =B is now immediate. �

Remarks 2.9. (i) Similar results hold if a right identity is replaced by a
left identity in Theorem 2.8; we leave the formulation of the results and their
proofs for the readers.

(ii) Let τ be a trivolution on A and let B = τ(A). If A has the identity e,
then τ(e) is the identity of B, which we may denote by eB . Clearly e = eB
if and only if e ∈B. This however may not always be the case: let A=C2,
B =C× {0}, and τ(z1, z2) = (z1,0); then e= (1,1) but eB = (1,0).

Next, we consider the problem of extending a trivolution to the unitized
algebra A� =C× A. Let (A,τ) be a trivolutive algebra and τ � : A� −→ A�

be a trivolution extending τ , namely, τ �(0, x) = (0, τ(x)), for all x ∈ A. If
τ �(1,0) = (λ0, x0), then, from conjugate linearity of τ � we obtain:

(2) τ �(λ,x) = τ �
(
λ(1,0) + (0, x)

)
=
(
λλ0, λx0 + τ(x)

)
.

If (λ0, x0) = (1,0), then τ �(λ,x) = (λ, τ(x)). We call this map the canonical
extension of τ to A�. We note that by Theorem 2.8(i), the condition τ �(1,0) =
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(1,0) is equivalent to (1,0) being in the range of τ �, and the latter condition
can be shown to be equivalent to λ0 �= 0 and x0 ∈ τ(A).

While every involution has only the canonical extension to an involution on
the unitized algebra, the situation is different for trivolutions, as the following
theorem shows.

Theorem 2.10. Let τ be a trivolution on a complex algebra A. The map
τ � in (2) is a trivolution extending τ if and only if either of the following
conditions hold:

(i) τ �(λ,x) = (λ,λx0 + τ(x)), where x0 ∈A is such that

(3) x2
0 =−x0, x0τ(A) = τ(A)x0 = {0}, τ(x0) = 0.

(ii) τ �(λ,x) = (0, λx0 + τ(x)), where x0 ∈ τ(A) is the identity of τ(A).

Proof. The proof that both (i) and (ii) define trivolutions on A� extending
τ , is routine and is left for the reader. We prove the necessity part of the
theorem. Using the idempotence of (1,0), we get

(λ0, x0) = τ �(1,0) = τ �(1,0)2 =
(
λ2
0,2λ0x0 + x2

0

)
,

which implies that either λ0 = 1 and x2
0 = −x0; or λ0 = 0 and x2

0 = x0. We
consider these two cases.

Case I: λ0 = 1 and x2
0 =−x0. In this case τ �(λ,x) = (λ,λx0 + τ(x)). Ap-

plying τ � to the identity (1,0)(0, x) = (0, x), we obtain(
0, τ(x) + τ(x)x0

)
=
(
0, τ(x)

)
,

which implies that τ(x)x0 = 0 for all x ∈A. Similarly, starting from the iden-
tity (0, x)(1,0) = (0, x) we can show that x0τ(x) = 0 for all x ∈A. Moreover
it follows from (τ �)3(1,0) = τ �(1,0), that(

1, x0 + τ(x0) + τ2(x0)
)
= (1, x0),

which is equivalent to τ(x0) + τ2(x0) = 0. Therefore,

0 = x0τ(x0) = τ2(x0)τ(x0) =−τ(x0)
2 =−τ

(
x2
0

)
= τ(x0).

Thus x0 satisfies all the conditions in (3).
Case II: λ0 = 0. In this case τ �(λ,x) = (0, λx0 + τ(x)). Applying τ � to the

identities (1,0)(0, x) = (0, x) and (0, x)(1,0) = (0, x), we obtain respectively,
τ(x)x0 = τ(x), x0τ(x) = τ(x), for all x ∈ A. Moreover, from (τ �)3(1,0) =
τ �(1,0), it follows that x0 = τ2(x0) ∈ τ(A). Thus x0 is the identity of τ(A).

�

Corollary 2.11. Let (A,τ) be a trivolutive normed algebra and A� be the
unitized algebra with the norm ‖(λ,x)‖ = |λ| + ‖x‖. A map τ � : A� −→ A�,
is a trivolution extending τ if and only if either of the following conditions
hold:

(i) τ �(λ,x) = (λ, τ(x));
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(ii) τ �(λ,x) = (0, λx0 + τ(x)), where x0 ∈ τ(A) is the identity of τ(A) with
‖x0‖= 1.

Proof. If τ � is of the form given in Theorem 2.10(i), then τ �(λ,0) = (λ,λx0)
for all λ ∈ C. Since we must have ‖τ �‖ = 1, we obtain |λ| + |λ|‖x0‖ ≤ |λ|,
implying that x0 = 0.

If however τ � is of the form given in Theorem 2.10(ii), then τ �(1,0) = (0, x0).
Hence the condition ‖τ �‖= 1 implies that ‖x0‖ ≤ 1. The inequality ‖x0‖ ≥ 1
is immediate since x0 is a non-zero idempotent. �

Remark 2.12. Let τ be an involution on a complex algebra A. Then
τ(A) =A, and hence any extension of τ of the form given in Theorem 2.10(i),
satisfies τ �(λ,x) = (λ, τ(x)), since τ(x0) = 0 implies that x0 = 0. It should be
noted that if A has no identity, then τ has no extension of the form given in
Theorem 2.10(ii).

We can define the concepts of normality, hermiticity, and positivity for
elements of trivolutive algebras.

Definition 2.13. Let (A,τ) be a trivolutive algebra and let x ∈A. Then
x is called

(i) Hermitian if τ(x) = x;
(ii) normal if xτ(x) = τ(x)x and xτ2(x) = τ2(x)x;
(iii) projection if x is Hermitian and x2 = x;
(iv) unitary if A is unital with identity e and xτ(x) = τ(x)x= e;
(v) positive if x is Hermitian and x= τ(y)y for some y ∈A.

We denote the set of all Hermitian (respectively, unitary, positive) elements
of A, by Ah (respectively, Au, A

+). It follows that Ah is a real vector subspace
of A, and Au is a group under multiplication (the unitary group of A). It
follows from the definition that if x is Hermitian, then x ∈ A+ if and only
if x= zτ(z) for some z ∈ A. It should be noted that for trivolutive algebras
in general, A+ need not form a positive cone. The definition of normality
is designed to have the τ -invariant algebra generated by x (and therefore,
containing both τ(x) and τ2(x)) commutative (since τ(x)τ2(x) = τ(τ(x)x) =
τ(xτ(x)) = τ2(x)τ(x)). If x is unitary in A, then by letting B = τ(A) and
eB = τ(e), we see that τ2(x) is the inverse of τ(x) in B, and x ∈ B implies
that e ∈ B (and e= eB). Thus, e ∈ B if and only if B contains at least one
unitary element.

Let (A,τ) be a trivolutive algebra and τ∗ be the conjugate-linear adjoint

of τ defined by 〈τ∗(f), a〉= 〈f, τ(a)〉 (f ∈A∗, a ∈A). If f : A−→C is a linear
functional on A, then fτ := τ∗(f), is also a linear functional on A. One
can easily check that the map f −→ fτ , is conjugate-linear and in general
fτττ = fτ . If (A,τ) is normed, then ‖fτ‖ ≤ ‖f‖. We call f Hermitian if
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fτ = f . Clearly if χ is a (Gelfand) character on A, then χτ is also a character
on A.

We close this section by stating the following two results whose straight-
forward proofs are omitted for brevity.

Theorem 2.14. Let (A,τ) be a unital trivolutive algebra and B = τ(A).
Let x ∈A.

(i) If x is invertible in A, then τ(x) is invertible in B and τ(x)−1 = τ(x−1).
(ii) If τ(x) is invertible in A, then τ(x) is invertible in B.

(iii) SpB(τ(x))⊂ SpA(x) (where the bar denotes the complex conjugate).

Theorem 2.15. Let (A,τ) be a trivolutive algebra.

(i) x ∈A can be written uniquely in the form x= x1 + ix2, with x1, x2 Her-
mitian, if and only if x ∈ τ(A).

(ii) f ∈ A∗ can be written uniquely in the form f = f1 + if2, with f1, f2
Hermitian, if and only if f ∈ τ∗(A∗).

(iii) A linear functional f is Hermitian if and only if f is real valued on Ah

and it vanishes on ker τ .
(iv) The map f −→ f |Ah

is an isomorphism between the real vector space
of all Hermitian linear functionals and the dual vector space of the real
space Ah.

3. Involutions on the dual of a topologically introverted space

The following theorem is an extension of a result of Civin and Yood [8,
Theorem 6.2] to the dual of a topologically introverted space.

Theorem 3.1. Let A be a Banach algebra and X , a faithful, topologically
(left and right) introverted subspace of A∗.

(i) If there is a w∗-continuous, injective, anti-homomorphism (with respect
to either of the Arens products) Θ : X∗ −→X∗ such that Θ(A)⊂A, then
the two Arens products coincide on X∗.

(ii) Let θ : A −→ A be an involution on A and let θ∗ : A∗ −→ A∗ be its
conjugate-linear adjoint. If θ∗(X) ⊂ X and if the two Arens products
coincide on X∗, then Θ= (θ∗|X)∗ : X∗ −→X∗, is an involution on X∗,
extending θ.

Proof. (i) Let μ, ν ∈X∗, and let (aα), (bβ) be two nets in A such that aα →
μ, bβ → ν, in the w∗-topology. Let us assume Θ is an anti-homomorphism with
respect to the first Arens product. Then Θ(aα)→Θ(μ), and Θ(bβ)→Θ(ν).
Hence,

Θ(μ�ν) = Θ(ν)�Θ(μ)

= w∗- lim
β

Θ(bβ)�Θ(μ)
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= w∗- lim
β

(
w∗- lim

α
Θ(bβ)�Θ(aα)

)
= w∗- lim

β

(
w∗- lim

α
Θ(bβ)Θ(aα)

)
= w∗- lim

β

(
w∗- lim

α
Θ(aαbβ)

)
= w∗- lim

β
Θ(μ♦ bβ)

= Θ(μ♦ν),

where ♦ denotes the second Arens product. Since Θ is injective, μ�ν = μ♦ν,
which is what we wanted to show.

The claim in (ii) follows by a similar argument as in (i). �

It is well known that the two Arens products coincide on WAP(A∗)∗ and
AP(A∗)∗ (Dales and Lau [10, Proposition 3.11]). It is also straightforward
to check that both of these spaces are invariant under the conjugate-linear
adjoint of any involution of A. Therefore if either of these spaces is faithful
(which is the case, for example, if the spectrum of A separates the points of
A; see Dales and Lau [10, p. 32]), then its dual has an involution extending
that of A. Hence as a corollary of the above theorem, we obtain the following
result due to Farhadi and Ghaharamani [15, Theorem 3.5].

Corollary 3.2. Suppose that A is an involutive Banach algebra and X
is either of the topologically introverted spaces AP(A∗),WAP(A∗). If X is
faithful, then X∗ has an involution extending the involution of A.

Let X ⊂A∗ be a faithful, topologically left introverted subspace of A∗. Let
σ(A) denote the spectrum of A and let ϕ ∈ σ(A) ∩X . We call an element
m ∈ X∗ a ϕ-topological invariant mean (ϕ-TIM) if 〈m,ϕ〉 = 1 and a ·m =
m · a= ϕ(a)m for all a ∈A.

The following theorem is an extension of a result of Farhadi and Ghahra-
mani [15, Theorem 3.2(a)] (see the Introduction) to the dual of topologically
left introverted spaces.

Theorem 3.3. Let A be a Banach algebra and X ⊂A∗ be a faithful, topo-
logically left introverted subspace of A∗. Let ϕ ∈ σ(A)∩X . If X∗ contains at

least two ϕ-TIMs, then X∗ cannot have an involution ∗ such that ϕ(a∗) = ϕ(a)
for every a ∈A.

Proof. Let us suppose that X∗ has an involution as in the statement of the
theorem. Let m ∈X∗ be an arbitrary ϕ-TIM. Then we have

(4) a ·m∗ =m∗ · a= ϕ(a)m∗ (a ∈A).

To prove the above identities, we note that for every a ∈A:

a ·m∗ =
(
m · a∗

)∗
=
(
ϕ
(
a∗
)
m
)∗

=
(
ϕ(a)m

)∗
= ϕ(a)m∗.
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The other identity in (4) is proved similarly. Using the w∗-continuity of the
product n�m on the variable n, it follows from (4) that

(5) n�m∗ = 〈n,ϕ〉m∗ (
n ∈X∗).

Thus using (5) and the fact that 〈m,ϕ〉= 1, we get

(6) m=
(
m∗)∗ = (

m�m∗)∗ =m�m∗ = 〈m,ϕ〉m∗ =m∗.

Now if m1,m2 are two distinct ϕ-TIMs, then using (5) and (6), we have

m1 =m2�m1 = (m2�m1)
∗ =m∗

1�m∗
2 =m1�m2 =m2;

which is a contradiction. �
To state a corollary of the above theorem, we first recall a few defi-

nitions. Let G be a locally compact group, 1 < p < ∞, and L (Lp(G))
be the space of continuous linear operators on Lp(G). Let λp : M(G) −→
L (Lp(G)), λp(μ)(g) = μ ∗ g, where μ ∗ g(x) =

∫
G
g(y−1x)dμ(y), be the left

regular representation of M(G) on Lp(G). The space PMp(G) is the w∗-
closure of λp(M(G)) in L (Lp(G)). This space is the dual of the Herz–
Figà-Talamanca algebra Ap(G), consisting of all functions u ∈ C0(G), such

that u =
∑∞

i=1 gi ∗ f̌i, where fi ∈ Lp(G), gi ∈ Lq(G), 1/p + 1/q = 1, and∑∞
i=1 ‖fi‖p‖gi‖q < ∞ (Herz [25]). When p = 2, A2(G) and PM2(G) coin-

cide respectively, with the Fourier algebra A(G) and the group von Neumann
algebra VN(G) studied by Eymard in [14]. In the following, for simplicity of
notation, we denote UC(Ap(G)) by UCp(G); when p = 2, this space is also

denoted by UC(Ĝ) in the literature.

Corollary 3.4. Let 1< p<∞, G be a non-discrete locally compact group,
and X =PMp(G) or X =UCp(G). Let e ∈G be the identity of G. Then X∗

does not have any involution ∗ such that u∗(e) = u(e), for every u ∈Ap(G).

Proof. Let ϕe ∈ σ(Ap(G)) ∩ X be the evaluation functional at e. Let
TIM(X∗) denote the set of all ϕe-TIMs on X∗. Granirer [21, Theorem,
p. 3400] has shown that if G is non-discrete, then |TIM(X∗)| ≥ 2c, where
c is the cardinality of real numbers. Therefore our result follows from Theo-
rem 3.3. �

Remark 3.5. For p= 2, the cardinality of TIM(PM2(G)) was determined
for second countable groups by Chou [7], and in full generality by Hu [26].
For additional information on the cardinality of topological invariant means,
see Chou [5], [6], Lau and Paterson [29].

Let G be a locally compact group and LUC(G) the space of all left uni-
formly continuous functions on G. It is known, and easy to verify, that the
natural restriction map π : L∞(G)∗ −→ LUC(G)∗ is a continuous algebra ho-
momorphism (with respect to the first Arens product). Using this fact we
can prove the following analogue of Singh’s result [37, Theorem 2.2] for the
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non-existence of involutions on LUC(G)∗. Our result extends Farhadi and
Ghahramani [15, Theorem 3.2(b)], from amenable to subamenable groups
(see the Introduction).

Theorem 3.6. If G is a non-compact subamenable group, then LUC(G)∗

has no involutions.

Proof. Since G is subamenable, there exists a subset F of L∞(G)∗ contain-

ing a mean m such that |F|< 22
κ(G)

, and the linear span of F is a left ideal J
of L∞(G)∗. Since π : L∞(G)∗ −→ LUC(G)∗ (defined above) is a continuous
homomorphism, it follows that π(J) is a non-trivial left ideal in LUC(G)∗;
π(J) is non-trivial since π(m) �= 0. Since the dimension of π(J) is less than
or equal to the dimension of J , it follows that LUC(G)∗ has a non-trivial

left ideal of dimension less than 22
κ(G)

. By Filali and Pym [18, Theorem 5],
if G is a non-compact locally compact group, every non-trivial right ideal

of LUC(G)∗ has dimension at least 22
κ(G)

. It follows that for non-compact
subamenable groups G, LUC(G)∗ cannot have any involutions. �

4. Trivolutions on the duals of introverted spaces

In Corollary 3.4 and Theorem 3.6, we saw several examples of topologically
left introverted spaces X for which there can be no involution on X∗. Our
objective in this section is to consider some cases for which A∗∗ or X∗ admits
trivolutions.

Theorem 4.1. Let A be a non-zero Banach algebra with an involution θ.
Under each of the following conditions, A∗∗ admits a trivolution.

(i) There exists a non-zero topologically introverted, faithful subspace X ⊂
A∗, such that the two Arens products coincide on X∗, θ∗(X)⊂X , and
A∗∗ =X◦ ⊕X∗.

(ii) A is a dual Banach algebra.
(iii) A has a bounded two-sided approximate identity and is a right ideal in

(A∗∗,�).
(iv) A∗∗ = I ⊕ A, as a topological direct sum of closed subspaces I and A,

with I as an ideal in A∗∗, the projection p on A∗∗ onto A being a homo-
morphism.

Proof. (i) This follows from Theorem 3.1(ii) and Theorem 2.3(iii).
(ii) Let A∗ be a predual of A, and consider the canonical Banach space

decomposition A∗∗ = (A∗)
◦⊕A (cf. Dales [9, p. 241]). It is easy to verify that

A∗ is a topologically introverted subspace of A∗, and clearly the two Arens
products coincide on (A∗)

∗ =A. Hence (ii) follows from Theorem 2.3(iii).
(iii) Since A has a bounded two-sided approximate identity we have the

decomposition A∗∗ ∼= (A∗ ·A)◦ ⊕ (A∗ ·A)∗; and since A is a right ideal in its
second dual, we have WAP(A∗) =A∗ ·A (cf. [3, Corollary 1.2, Theorem 1.5]).
Therefore, A∗∗ ∼= WAP(A∗)◦ ⊕ WAP(A∗)∗. It is easy to check that under
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these conditions, WAP(A∗) is faithful, and therefore our result follows by
Corollary 3.2 and Theorem 2.3(iii).

(iv) An appeal to Theorem 2.3 gives the result. �

Next, we study trivolutions on the Banach algebra L∞(G)∗, equipped with
its first Arens product �. Here G is a locally compact group. For simplicity
of notation, in the following we shall denote E�F by EF , whenever E,F ∈
L∞(G)∗. If K ⊂G is measurable and f ∈ L∞(G), let

‖f‖K = ess sup
{∣∣f(x)∣∣ : x ∈K

}
,

and let L∞
0 (G) be the closed ideal of L∞(G) consisting of all f ∈ L∞(G) such

that for given ε > 0, there exists a compact set K ⊂G such that ‖f‖G\K < ε.
In [30, Theorems 2.7 and 2.8], Lau and Pym showed that L∞

0 (G) is a faith-
ful, topologically introverted subspace of L∞(G) and L∞(G)∗ is the Banach
space direct sum

(7) L∞(G)∗ = L∞
0 (G)◦ ⊕L∞

0 (G)∗.

In this decomposition L∞
0 (G)∗ is identified with the closed subalgebra of

L∞(G)∗ defined as the norm closure of elements in L∞(G)∗ with com-
pact carriers (F ∈ L∞(G)∗ has compact carrier if for some compact set
K, F (f) = F (χKf) for every f ∈ L∞(G)). In addition, Lau and Pym
showed that if π : L∞(G)∗ −→ LUC(G)∗ is the natural restriction map, then
π(L∞

0 (G)∗) =M(G). Lau and Pym [30] make a case for the study of L∞
0 (G)∗

for general G (in place of L1(G)∗∗). In [36], the third named author has
expressed L∞

0 (G)∗ as the second dual of L1(G) with a locally convex topol-
ogy similar to the strict topology (see also [24]). Let E (G) denote the set of
all right identities of L∞(G)∗, and E1(G) the set of those with norm one. In
L∞(G)∗, when G is not discrete, there is an abundance of such right identities,
a fact noted and well-utilized in [23], [30], [36], [15], for instance.

For the convenience of our readers, we shall now state the following result
of Lau and Pym [30, Theorems 2.3 and 2.11] which will be needed in the last
three theorems of this paper. In the following results all products are with
respect to the first Arens product.

Theorem 4.2 (Lau and Pym [30]). Let G be a locally compact group and
let the map π : L∞(G)∗ −→ LUC(G)∗ be the natural restriction map. Then
the following hold.

(i) E1(G)⊂ L∞
0 (G)∗.

(ii) For each E ∈ E (G), π|EL∞(G)∗ is a continuous isomorphism from
EL∞(G)∗ to LUC(G)∗, and if ‖E‖ = 1, the isomorphism is an isom-
etry.

(iii) For each E ∈ E1(G), L∞
0 (G)∗ = EL∞

0 (G)∗ + (kerπ ∩ L∞
0 (G)∗), and the

algebra EL∞
0 (G)∗ is isometrically isomorphic with M(G) via π.
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Theorem 4.3. Let G be a non-discrete locally compact group and X and
Y be subalgebras of L∞(G)∗ with L∞

0 (G)∗ ⊂ Y ⊂X . Then there are no trivo-
lutions of X onto Y . In particular, L∞(G)∗ has no trivolutions with range
L∞
0 (G)∗.

Proof. If G is compact, then X = Y = L∞(G)∗, and hence any trivolution
of X onto Y is an involution on L∞(G)∗. Such an involution does not exist
if G is non-discrete by Grosser [23, Theorem 2].

Let G be non-compact. To obtain a contradiction, let ρ be a trivolution
from X onto Y . By Theorem 4.2(i), E1(G)⊂ Y . By Theorem 2.8(i), each E
in E1(G) is the identity for Y , and therefore, also the identity for L∞

0 (G)∗.
But the identity for L∞

0 (G)∗ is clearly in the topological centre of L∞
0 (G)∗

and so it belongs to L1(G) (cf. Budak, Işık and Pym [4, Proposition 5.4]),
which is not possible since G is not discrete. �

Theorem 4.4. The algebra L∞
0 (G)∗ has an involution if and only if G is

discrete. Further, if G is discrete, L∞(G)∗ has a trivolution with range L1(G),
extending the natural involution on L1(G).

Proof. If G is discrete, then L∞
0 (G)∗ = C0(G)∗ = L1(G) has a natural in-

volution, and hence by (7) and by Theorem 2.3(iii), L∞(G)∗ has a trivolution
with range L1(G), extending the involution of L1(G).

If G is not discrete, then the result follows from Theorem 4.3 upon taking
X = Y = L∞

0 (G)∗. �
Remark 4.5. In the above theorem we used the natural involution of

�1(G) to obtain a trivolution on �∞(G)∗ with range �1(G). Alternatively,
we can view �∞(G)∗ as the Banach algebra M(βG), where βG is the
Stone–Čech compactification of an infinite discrete group G, recalling that
M(βG) =M(βG \G)⊕ �1(G) where M(βG \G) is an ideal in M(βG) (Dales,
Lau and Strauss [11, Theorem 7.11 and (7.4)]) and then use Theorem 4.1(iv).

Theorem 4.6. If G is compact, then for each E ∈ E(G), there are trivolu-
tions of L∞(G)∗ onto EL∞(G)∗.

Proof. Let E ∈ E (G). The compactness of G implies that L∞
0 (G) = L∞(G)

and LUC(G)∗ = M(G). Let ρ be any involution on LUC(G)∗ and let
π′ = π|EL∞(G)∗ . It follows from Theorem 4.2(iii) that ρ′ := (π′)−1 ◦ ρ ◦ π′

is an involution on EL∞(G)∗. Let �E : L∞(G)∗ −→ EL∞(G)∗ be the left
multiplication by E. Then by Theorem 2.8(iii), τ := ρ′ ◦ �E is a trivolution of
L∞(G)∗ onto EL∞(G)∗, as required. �

Theorem 4.7. Let G be a locally compact group. For each E ∈ E1(G),
there exists a trivolution of L∞

0 (G)∗ onto EL∞
0 (G)∗.

Proof. By Theorem 4.2, E1(G) ⊂ L∞
0 (G)∗, and for each E ∈ E1(G),

EL∞
0 (G)∗ ∼=M(G). If ρ is an involution on M(G), then it is easily checked



INVOLUTIONS AND TRIVOLUTIONS IN ALGEBRAS 771

that ρ′ := (π|EL∞
0 (G)∗)

−1 ◦ ρ ◦ (π|EL∞
0 (G)∗) is an involution on EL∞

0 (G)∗,
and hence by Theorem 2.8(iii), τ := ρ′ ◦ �E is a trivolution of L∞

0 (G)∗ onto
EL∞

0 (G)∗. �
Remark 4.8. If ρ in the proofs of Theorems 4.6 or 4.7 restricts to an

involution ρ0 on L1(G), then in view of the fact that π is the identity on L1(G),
the trivolution τ constructed in the respective proofs will be an extension of
ρ0.
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