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THE TOTAL ABSOLUTE TORSION OF OPEN CURVES IN E3

KAZUYUKI ENOMOTO AND JIN-ICHI ITOH

Abstract. The total absolute torsion of smooth curves in E3 is
defined as the total integral of the absolute value of the torsion.

This notion is extended to piecewise smooth curves. We study

the infimum of the total absolute torsion in a certain set of curves,

where the endpoints, the osculating planes at the endpoints and

the length are all prescribed. We show how the infimum is cal-
culated from the boundary data.

1. Introduction

Let Σ be a C3 curve in the 3-dimensional Euclidean space E3. For curves
in E3, two geometric quantities called curvature and torsion are defined. The
total integral of curvature is called the total absolute curvature. The study of
the total absolute curvature has a long history since the work by Fenchel ([5]).
Seeing that most works had been done for closed curves, the authors studied
the total absolute curvature of open (i.e., not closed) curves in [3] and [4].
The total integral of torsion is called the total torsion and the total integral
of the absolute value of torsion is called the total absolute torsion. Note that
the torsion may change its sign while the curvature of space curves is always
nonnegative. Both the total torsion and the total absolute torsion have been
studied for closed curves in E3. An interesting property of the total torsion
of a closed curve is that it becomes zero if the curve lies on the unit sphere
([7], [11], [12], [13]). For the total absolute torsion, see, for example, [6], [8],
[10].

In the present paper, we study the total absolute torsion of open curves
and determine the minimal possible value of the total absolute torsion in a
certain family of open curves. The family of curves is described as follows.
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Let p, q be points in E3, Πp be an oriented plane through p, Πq be an oriented
plane through q and L be a positive constant not smaller than |pq|. We define
C(p,Πp, q,Πq,L) as the set of all C3 curves whose endpoints are p and q,
osculating plane at p is Πp, osculating plane at q is Πq and length is L. The
following theorem, which is the main result of the present paper, asserts that
the infimum of the total absolute torsion in C(p,Πp, q,Πq,L) can be calculated
using a piecewise linear curve with only two edges. In the statement, ∠(·, ·)
denotes the angle between two oriented planes.

Theorem 1.1. For any p, q, Πp, Πq and L, there exist a point r, an
oriented plane Π1 containing the line segment pr, and an oriented plane Π2

containing rq which have the following properties:

(1) The sum of the lengths of the line segments pr and rq is L.
(2) The sum of the angles ∠(Πp,Π1) +∠(Π1,Π2) +∠(Π2,Πq) gives the infi-

mum of the total absolute torsion in C(p,Πp, q,Πq,L).

To prove this theorem, we first extend the notion of the total absolute
torsion to curves which are C3 only piecewise. This makes it possible to
study the total absolute torsion of piecewise linear curves. The notion of
the total absolute torsion for piecewise linear curves is generalized to what
we call the total rotation of unit normal vector fields along piecewise linear
curves. We will show that, for any piecewise linear curve with three edges, it
is always possible to find a piecewise linear curve with two edges which has
a unit normal vector field of smaller total rotation, preserving the boundary
condition (Lemma 3.5). By an induction argument, we see that minimal
value of the total rotation under the given boundary condition is attained
by a unit normal vector field along a piecewise linear curve with 2 edges
(Proposition 3.7). We will show that the minimization of the total rotation
leads to the minimization of the total absolute torsion (Lemma 3.1). Finally,
making use of an approximation of smooth curves by piecewise linear curves,
we prove our main theorem. As a corollary, we give a proof of a theorem by
Aratake ([1]).

The authors express their thanks to the referee for helpful comments.

2. Total absolute torsion

Let Σ be a C3 curve in the 3-dimensional Euclidean space E3. Let L be the
length of Σ and x(s) (0≤ s≤ L) be a parameterization of Σ by its arclength.
Let

T (s) =
dx

ds
and

κ(s) =

∣∣∣∣dTds
∣∣∣∣= ∣∣∣∣d2xds2

∣∣∣∣.
κ(s) is called the curvature of Σ.
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If κ(s) �= 0 on Σ, a unit vector field

N(s) =
dT/ds

κ(s)

is defined. Note that 〈N(s), T (s)〉= 0, where 〈·, ·〉 is the inner product of E3.
Let B(s) = T (s)×N(s). Then {T (s),N(s),B(s)} forms a positively oriented
orthonormal frame field of E3 defined along Σ. The torsion of Σ is, by defi-
nition,

τ(s) =

〈
dN

ds
,B(s)

〉
.

The total absolute torsion is defined by

TAT(Σ) =

∫ L

0

∣∣τ(s)∣∣ds.
We regard T (s) as a curve in S2 and call it the tangent indicatrix of Σ,
which will be denoted by TΣ. N(s) becomes a unit tangent vector of TΣ and
B(s) becomes a unit normal vector of TΣ. Since |dT/ds|= κ(s), the oriented
geodesic curvature K of TΣ is given by

K(s) =

〈
1

κ(s)

dN

ds
,B(s)

〉
=

τ(s)

κ(s)
.

The integral of |K| along TΣ is called the total absolute curvature (as a curve
in S2) of TΣ, which will be denoted by TAC(TΣ). Then we have

TAC(TΣ) =

∫ L

0

∣∣K(s)
∣∣∣∣∣∣dTds

∣∣∣∣ds(2.1)

=

∫ L

0

∣∣K(s)
∣∣κ(s)ds

=

∫ L

0

∣∣τ(s)∣∣ds
=TAT(Σ).

Since

(2.2)
dB

ds
=−τ(s)N(s),

we have

(2.3) TAT(Σ) =

∫ L

0

∣∣∣∣dBds
∣∣∣∣ds.

This means that the total absolute torsion is equal to the length of B(s)
regarded as a curve in S2. (2.1) and (2.3) give two different interpretations
of the total absolute torsion.

We next consider the case when Σ has a point with vanishing curvature.
If k(s) = 0 for a ≤ s ≤ b (a and b may coincide), {T (s) : a ≤ s ≤ b} shrinks
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to a point and TΣ becomes a piecewise C2 curve. The definition of the total
absolute curvature is extended to piecewise C2 curves in S2 as the sum of
the total integral of the curvature and the rotation angles of the tangent
vector at nonsmooth points. In our case, if Σ is a C3 curve whose curvature
κ(s) vanishes for s ∈ [a1, b1] ∪ [a2, b2] ∪ · · · ∪ [ar, br] (a1 ≤ b1 < a2 ≤ b2 < · · ·<
ar ≤ br), then TΣ becomes a piecewise C2 curve in S2 and its total absolute
curvature is given by

TAC(TΣ) =

∫ a1

0

∣∣K(s)
∣∣κ(s)ds+ r−1∑

i=1

∫ ai+1

bi

∣∣K(s)
∣∣κ(s)ds

+

∫ L

br

∣∣K(s)
∣∣κ(s)ds+ r∑

i=1

ϕi,

whereϕi (i= 1, . . . , r) be the angle between lims→ai−0N(s) and lims→bi+0N(s)
(0≤ ϕi ≤ π). Following (2.1), we define the total absolute torsion of Σ by

TAT(Σ) = TAC(TΣ).

We make further extension of the definition of the total absolute torsion
for curves which are C3 only piecewise. Such a curve is expressed as

Σ =

n⋃
i=1

{
x(s) | si−1 < s< si

}
,

where 0 = s0 < s1 < · · · < sn−1 < sn = L and each {x(s) | si < s < si+1} is
a C3 curve. We define the tangent indicatrix TΣ of Σ as follows. Let
Σi = {x(s) | si−1 < s < si} and let TΣi be the tangent indicatrix of Σi.
TΣi is a continuous, piecewise C2 curve in S2 which has endpoints at
lims→si−1+0 T (s) and lims→si−0 T (s). We define TΣ as a curve which consists
of

⋃n
i=1{T (s) | si−1 < s < si} and the geodesic arcs between lims→si−0 T (s)

and lims→si+0 T (s) (i= 1, . . . , n). Since TΣ is a piecewise C2 curve in S2, the
total absolute curvature of TΣ is defined. Again, the total absolute torsion of
Σ is defined by

TAT(Σ) = TAC(TΣ).

As a special case, we consider the total absolute torsion of piecewise linear
curves. A piecewise linear curve P is written as

P = p0p1 ∪ p1p2 ∪ · · · ∪ pn−1pn,

where pi−1pi is the line segment which joins two points pi−1 and pi. Let

Ti =
−−−−→pi−1pi
|−−−−→pi−1pi|

.

Then the tangent indicatrix TP of P becomes

TP = T1T2 ∪ · · · ∪ Tn−1Tn,
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where TiTi+1 is the geodesic segment in S2 which joins Ti and Ti+1. Let ϕi

be the exterior angle of TP at Ti. Then the total absolute torsion of P , or the
total absolute curvature of TP , is given by

TAT(P ) = TAC(TP ) =

n−1∑
i=1

ϕi.

The angle ϕi is equal to the angle between two oriented planes, one spanned

by {−−−−−→pi−2pi−1,
−−−−→pi−1pi} and one spanned by {−−−−→pi−1pi,

−−−−→pipi+1}. Hence ϕi is the
angle (valued in [0, π]) between two vectors Ti−1 ×Ti and Ti ×Ti+1. If we set

Bi =
Ti × Ti+1

|Ti × Ti+1|
,

then ϕi is the distance d(Bi−1,Bi) between Bi−1 and Bi as points in S2.
Thus, we have another expression of TAT(P ) as

TAT(P ) =

n−1∑
i=1

d(Bi−1,Bi).(2.4)

Our extension of the notion of the total absolute torsion to piecewise
smooth curves is natural in the following sense. Let Σ : x(s) be a C3 curve.
Let n be a positive integer and let

Δn : 0 = s0 < s1 < · · ·< sn−1 < sn = L

be a division of the interval [0,L]. Let pi = x(si) and let

Pn : p0p1 ∪ p1p2 ∪ · · · ∪ pn−2pn−1 ∪ pn−1pn.

For any Σ, there exists a sequence of divisions {Δn}∞n=1 such that∑n−1
i=1 d(Bi−1,Bi) converges to

∫ L

0
|dBds |ds (= the length of B(s) as a curve in

S2) as n→∞, which implies

(2.5) lim
n→∞

TAT(Pn) = TAT(Σ).

Remark 2.1. The notion of the total absolute torsion for piecewise linear
curves is also given by Banchoff ([2]) and McRae ([8]). Our definition coincides
with them.
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Remark 2.2. We make several remarks on curves lying in a plane.

(1) If Σ is a curve with κ �= 0 which lies in a plane, then TAT(Σ) = 0. TΣ

becomes a subarc of a great circle in this case.
(2) For a curve in a plane, the oriented curvature κ̃ is defined. If κ̃(s)> 0 for

0≤ s < s0, κ̃(s0) = 0 and κ̃(s)< 0 for s0 < s≤ L, then TAT(Σ) = π.
(3) The total absolute torsion of a piecewise linear curve in a plane becomes

zero if and only if all oriented angles from pi−1pi to pipi+1 have the
same orientation. The piecewise linear curve p0p1 ∪ p1p2 ∪ p2p3 shown
in the picture below is an example of a planar curve with nonzero total
absolute torsion (= π). However, if one deforms the curve into a curve
like pp′1 ∪ p′1p

′
2 ∪ p′2p

′
3 ∪ p′3q, one can construct a curve of vanishing total

absolute torsion which has the same endpoints and the same length as
the original curve.

Now we extend the notion of the total absolute torsion for piecewise linear
curves to a little more general notion which we call the total rotation of unit
normal fields along piecewise linear curves.

Let

P = p0p1 ∪ p1p2 ∪ · · · ∪ pn−2pn−1 ∪ pn−1pn

be a piecewise linear curve in E3. Let νi be a unit vector perpendicular to
pi−1pi. We denote the set of the unit vectors {νi : i= 1, . . . , n} by ν̄. We call
ν̄ a unit normal vector field along the piecewise linear curve P . We define the
total rotation TR(P, ν̄) by

TR(P, ν̄) =

n−1∑
i=1

∠(νi, νi+1).

If we regard unit vectors as points in the unit sphere S2, we may rewrite the
total rotation, using the distance d(·, ·) in S2, as

TR(P, ν̄) =

n−1∑
i=1

d(νi, νi+1).

Let

(2.6) Bi =
−−−−→pi−1pi ×−−−−→pipi+1

|−−−−→pi−1pi ×−−−−→pipi+1|
(i= 1, . . . , n− 1).
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If we attach Bi to pi−1pi for each i = 1, . . . , n− 2 and use Bn−1 again and
attach it to pn−1pn, then

(2.7) B̄ = {B1, . . . ,Bn−2,Bn−1,Bn−1}
defines a unit normal vector field along P . In terms of the total rotation, (2.4)
can be rewritten as

(2.8) TAT(P ) = TR(P, B̄).

3. Curves with fixed endpoints, end-osculating-planes, length

Let p, q be points in E3. Let Πp and Πq be oriented planes which pass
through p and q, respectively. Let L be a positive constant not smaller than
|pq|. We define several classes of curves:

C(p, q): The set of all piecewise C3 curves which has endpoints at p and q.
C(p, q,L): The set of elements of C(p, q) whose length is L.
C(p,Πp, q,Πq): The set of elements of C(p, q) such that TΣ at the initial
point is tangent to the oriented great circle corresponding to Πp, and TΣ

at the terminal point is tangent to the oriented great circle corresponding
to Πq .
C(p,Πp, q,Πq,L) = C(p, q,L)∩ C(p,Πp, q,Πq).

Let n be a positive integer and let Pn be the set of all piecewise linear
curves with n edges. For all m < n, we regard Pm as a subset of Pn by
allowing angles between two edges to be zero. Let Pn(p, q) = Pn ∩C(p, q) and
Pn(p, q,L) = Pn ∩ C(p, q,L). Any element P of Pn(p, q) may be written as

P = pp1 ∪ p1p2 ∪ · · · ∪ pn−2pn−1 ∪ pn−1q.

P becomes an element of C(p,Πp, q,Πq) if and only if p1, p2 ∈ Πp and
{−→pp1,−−→p1p2} is positively oriented in Πp and pn−2, pn−1 ∈ Πq and {−−−−−−→pn−2pn−1,−−−→pn−1q} is positively oriented in Πq . If νi (i = 1, . . . , n) is a unit vector per-
pendicular to pi−1pi (setting p0 = p and pn = q), then

ν̄ = {ν1, . . . , νn}
defines a unit normal vector field along P . Let PN (p, q,L) be the set of
all (P, ν̄) such that P ∈ P(p, q,L) and ν̄ is a unit normal field along P . Let
PNn(p, q,L) be the set of all elements of PN (p, q,L) which have n edges. For

our purpose, we define the extended total rotation T̃R(P, ν̄) by

T̃R(P, ν̄) =∠(νp, ν1) +
n−1∑
i=1

∠(νi, νi+1) +∠(νn, νq).

Note that if ν1 = νp and νn = νq , then T̃R(P, ν̄) = TR(P, ν̄). As the follow-
ing lemma shows, the problem of minimizing the total absolute torsion in
P(p,Πp, q,Πq,L) is reduced to the problem of minimizing the extended total
rotation in PN (p, q,L).
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Lemma 3.1. We have

inf
{
TAT(P ) | P ∈ P(p,Πp, q,Πq,L)

}
= inf

{
T̃R(P, ν̄) | (P, ν̄) ∈ PN (p, q,L)

}
.

Proof. Let P be an element of P(p,Πp, q,Πq,L). If we define a unit normal
vector field B̄ along P by (2.6) and (2.7), then we have TAT(P ) = TR(P, B̄)

as in (2.8). Since B1 = νp and Bn−1 = νq , we have TR(P, B̄) = T̃R(P, B̄).
This implies that

inf
{
TAT(P ) | P ∈ P(p,Πp, q,Πq,L)

}
(3.1)

≥ inf
{
T̃R(P, ν̄) | (P, ν̄) ∈ PN (p, q,L)

}
.

Conversely, let (P, ν̄) be an element of PN (p, q,L). If (P, ν̄) ∈ PNn(p, q,L),
we may write P = pp1 ∪ p1p2 ∪ · · · ∪ pn−2pn−1 ∪ pn−1q and ν̄ = {ν1, ν2, . . . ,
νn−1, νn}. For each i= 1, . . . , n, let Πi be the oriented plane which contains
the edge pi−1pi and has νi as its oriented unit normal vector. The figure (a)
shows the plane Πi with the points pi−1 lying on the line Πi−1 ∩Πi and pi
lying on the line Πi ∩Πi+1. In the following, we will add some edges in the
plane Πi to make a detour of pi−1pi. The purpose of doing this is to construct

a piecewise linear curve whose total absolute torsion is equal to T̃R(P, ν̄). The
figures (b) and (c) both show how those detours of pi−1pi are constructed in
the plane Πi. The difference between (b) and (c) comes from the difference
of the direction of νi−1.

First, we take a point p′i−1 on the line Πi−1 ∩ Πi. p′i−1 is taken so that

the direction of −−−−−→pi−2pi−1 ×
−−−−−→
pi−1p

′
i−1 coincides with the direction of νi−1. The

figures (b) and (c) show the difference of the direction of νi−1. Then we take
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p′′i−1 so that
−−−−−→
pi−1p

′
i−1 ×

−−−−−→
p′i−1p

′′
i−1 coincides with the direction of νi. In both

figures (b) and (c), we assume that the normal vector νi of Πi is heading
toward the reader, but the argument will be similar even if νi heads into the
other direction. Now we want a closed curve coming back to pi−1. In (b),
pi−1p

′
i−1 ∪ p′i−1p

′′
i−1 ∪ p′′i−1pi−1 is closed, while in (c) we need another point

p′′′i−1 to make a closed curve pi−1p
′
i−1∪p′i−1p

′′
i−1∪p′′i−1p

′′′
i−1∪p′′′i−1pi−1. Finally,

we take a point p′i on the line Πi∩Πi+1 so that −−−−→pi−1pi×
−−→
pip

′
i coincides with the

direction of νi, which gives at the same time the first step of our construction
procedure in the next plane Πi+1. We replace the edge pi−1pi of the original
curve P by pi−1p

′
i−1∪p′i−1p

′′
i−1∪p′′i−1pi (the case (b)) or pi−1p

′
i−1∪p′i−1p

′′
i−1∪

p′′i−1p
′′′
i−1∪p′′′i−1pi (the case (c)) for every i to construct a new curve P ′ which is

an element of Pk(p,Πp, q,Πq,L) for some k ≤ 4n. By the way of construction,
we have

(3.2) TAT
(
P ′)= T̃R(P, ν̄).

Since we can make the length of the edges added as small as we want, the
length of P ′ can be made smaller than L+ ε for any given ε > 0. (3.2) implies
that

inf
{
TAT(P ) | P ∈ P4n(p,Πp, q,Πq,L+ ε)

}
≤ inf

{
T̃R(P, ν̄) | (P, ν̄) ∈ PNn(p, q,L)

}
for any ε > 0. Note that Pk(p,Πp, q,Πq,L + ε) (k ≤ 4n) is considered as a
subset of P4n(p,Πp, q,Πq,L+ ε). Since inf{TAT(P ) | P ∈ P4n(p,Πp, q,Πq,L)}
is continuous in L, we must have

inf
{
TAT(P ) | P ∈ P4n(p,Πp, q,Πq,L)

}
≤ inf

{
T̃R(P, ν̄) | (P, ν̄) ∈ PN n(p, q,L)

}
for every n. Thus we have

inf
{
TAT(P ) | P ∈ P(p,Πp, q,Πq,L)

}
(3.3)

≤ inf
{
T̃R(P, ν̄) | (P, ν̄) ∈ PN (p, q,L)

}
.

Now the lemma follows from (3.1) and (3.3). �

From now on, we consider the problem of minimizing the extended total
rotation in PN (p, q,L).

We start with the case when the curve has only one edge, i.e., the case
when L = |pq| and P = pq. In this case, our problem is simply the problem
of minimizing ∠(νp, ν) +∠(ν, νq) for ν ⊥ pq. The set of all unit vectors per-
pendicular to pq forms a great circle, which will be denoted as (pq)⊥. Our
problem is to find min{d(νp, ν) + d(ν, νq) | ν ∈ (pq)⊥}. The answer is trivial
if the geodesic segment between νp and νq intersects (pq)⊥, but if not, the
minimum is not so trivial, as we see in the following lemma.
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Lemma 3.2.

(1) If the great circle (pq)⊥ intersects the minimizing geodesic between νp and
νq (or equivalently, if 〈νp,−→pq〉〈νq,−→pq〉 ≤ 0), then we have min{d(νp, ν) +
d(ν, νq) | ν ∈ (pq)⊥}= d(νp, νq).

(2) If the great circle (pq)⊥ does not intersect the minimizing geodesic between
νp and νq (or equivalently, if 〈νp,−→pq〉〈νq,−→pq〉> 0), then we have

min
{
d(νp, ν) + d(ν, νq) | ν ∈ (pq)⊥

}
= arccos

(
〈νp, νq〉 − 2

〈νp,−→pq〉〈νq,−→pq〉
|pq|2

)
.

Proof. If the minimizing geodesic between νp and νq intersects (pq)⊥ at ν0,
then we have

d(νp, ν0) + d(ν0, νq) = d(νp, νq),

which shows ν0 attains the minimum.
Suppose that the great circle (pq)⊥ does not intersect the minimizing

geodesic between νp and νq . Set ξ = −→pq/|pq|. If ν0 ∈ (pq)⊥ minimizes
d(νp, ν) + d(ν, νq) for ν ∈ (pq)⊥, we must have

(3.4) ∠ξν0νp =∠ξν0νq = θ

for some θ ∈ [0, π/2]. (Here ∠ denotes the angle on S2.) This follows from
an ordinary reflection argument as the picture below shows. In this picture,
ν′p is the point on S2 symmetric to νp with respect to the great circle pq⊥.

ν0 is determined as the intersection of the great circle pq⊥ and the great circle
through νq and ν′p.

Applying the Law of Cosine of the spherical trigonometry to the spherical
triangle 
ν0νpνq , we have

cosd(νp, νq) = cosd(ν0, νp) cosd(ν0, νq)(3.5)

+ sind(ν0, νp) sind(ν0, νq) cos 2θ.

Similarly, in 
ν0νpξ, we have

cosd(νp, ξ) = cosd(ν0, νp) cosd(ν0, ξ) + sind(ν0, νp) sind(ν0, ξ) cosθ

= cosd(ν0, νp) cos
π

2
+ sind(ν0, νp) sin

π

2
cosθ

= sind(ν0, νp) cosθ
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and in 
ν0νqξ

cosd(νq, ξ) = cosd(ν0, νq) cosd(ν0, ξ) + sind(ν0, νq) sind(ν0, ξ) cosθ

= sind(ν0, νq) cosθ.

Now we have

2cosd(νp, ξ) cosd(νq, ξ) = 2sind(ν0, νp) sind(ν0, νq) cos
2 θ

= sind(ν0, νp) sind(ν0, νq)(cos2θ+ 1)

= cosd(νp, νq)− cosd(ν0, νp) cosd(ν0, νq)

+ sind(ν0, νp) sind(ν0, νq)

= cosd(νp, νq)− cos
(
d(ν0, νp) + d(ν0, νq)

)
,

which gives

cos
(
d(ν0, νp) + d(ν0, νq)

)
= cosd(νp, νq)− 2cosd(νp, ξ) cosd(νq, ξ)

= 〈νp, νq〉 − 2〈ξ, νp〉〈ξ, νq〉.

Since d(ν0, νp)+d(ν0, νq)≤ π when ν0 is the minimizer, we obtain the desired
equation. �

Now we deal with the case when the piecewise linear curve consists of two
edges. For any L ≥ |pq|, there exists an element of P2(p, q,L). Let L0 =
min{|pr|+ |rq| | r ∈ Πp ∩Πq}. L0 is a positive constant determined by p, q,
νp and νq . Let r0 be the point in Πp ∩Πq with |pr0|+ |r0q|= L0. Then (pr0 ∪
r0q,{νp, νq}) is an element of PN 2(p, q,L) whose total rotation is d(νp, νq).
For any positive constant L ≥ L0, there exists a point r in Πp ∩ Πq with
|pr|+ |rq| = L. Then (pr ∪ rq,{νp, νq}) is an element of PN 2(p, q,L) whose
total rotation is d(νp, νq).

Thus we obtain the following lemma.

Lemma 3.3. Let L be any positive constant with L≥ L0. Then we have

min
{
TR(P, ν̄) | (P, ν̄) ∈ PN 2(p, q,L)

}
= d(νp, νq).

Lemma 3.3 shows that the problem to be considered is essentially the case
when L0 >L≥ |pq|.
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Now we deal with the case when the piecewise linear curve consists of
three edges. We note that for any positive constant L > |pq| there exists an
element (pp1 ∪ p1p2 ∪ p2q,{ν1, ν2, ν3}) of PN 3(p, q,L) which satisfies ν1 = νp
and ν3 = νq . The following lemma for curves with 3 edges is the key in this
work.

Lemma 3.4. Let (P, ν̄) = (pp1 ∪ p1p2 ∪ p2q,{ν1, ν2, ν3}) be an element of
PN 3(p, q,L). Suppose that ν1 = νp and ν3 = νq . Then, there exists an element
of PN 2(p, q,L), (P ′, ν̄′) = (pp′1 ∪ p′1q,{ν′1, ν′2}) which satisfies the following
conditions:

(1) T̃R(P ′, ν̄′)≤TR(P, ν̄).
(2) Either ν′1 = νp or ν′2 = νq holds.

Proof. By Lemma 3.2, our problem becomes to find p1 and p2 which min-
imize

〈−−→p1p2, νp〉〈−−→p1p2, νq〉
|p1p2|2

under the constraint

|pp1|+ |p1p2|+ |p2q|= L.

We will express the locations of p1 and p2 using 2 parameters for each and
then express 〈−−→p1p2, νp〉〈−−→p1p2, νq〉/|p1p2|2 as a function of 4 variables. Let p′,
q′, p′1, p

′
2 be the orthogonal projections of p, q, p1, p2 onto the line Πp ∩Πq ,

respectively. We may assume that p′, p′1, p
′
2 and q′ lie on Πp ∩ Πq in this

order. Set x1 = |p1p′1|, x2 = |p2p′2|, y1 = |p′p′1| and y2 = |p′2q′|. We also set
a= |pp′|, b= |qq′|, c= |p′q′| and α= d(νp, νq).

Now we can write 〈−−→p1p2, νp〉〈−−→p1p2, νq〉/|p1p2|2 as a function of x1, y1, x2, y2 as

f(x1, y1, x2, y2) =
〈−−→p1p2, νp〉〈−−→p1p2, νq〉

|p1p2|2

=
x1x2 sin

2α

x2
1 + x2

2 − 2x1x2 cosα+ (c− y1 − y2)2
.
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We also define a function g(x1, y1, x2, y2) by

g(x1, y1, x2, y2) = |pp1|+ |p1p2|+ |p2q|

=
√
(x1 − a)2 + y21

+
√

x2
1 + x2

2 − 2x1x2 cosα+ (c− y1 − y2)2

+
√

(x2 − b)2 + y22 .

Suppose that (x1, y1, x2, y2) minimizes f under the constraint g = L and
both f and g are differentiable there. Then there exists a constant λ such
that

∂f

∂x1
= λ

∂g

∂x1
,(3.6)

∂f

∂y1
= λ

∂g

∂y1
,(3.7)

∂f

∂x2
= λ

∂g

∂x2
,(3.8)

∂f

∂y2
= λ

∂g

∂y2
.(3.9)

Since
∂f

∂y1
=

∂f

∂y2
,

we must have either λ= 0 or

(3.10)
∂g

∂y1
=

∂g

∂y2
.

(3.10) gives

(3.11)
y1√

(x1 − a)2 + y21
=

y2√
(x2 − b)2 + y22

.

If λ = 0, (x1, y1, x2, y2) becomes a critical point of f(x1, y1, x2, y2). Since
f(x1, y1, x2, y2) is maximal rather than minimal at any critical point, we see
that λ= 0 is not a solution for our problem.

By (3.11), we may define a function θ (−π/2≤ θ ≤ π/2) by

sin θ =
y1√

(x1 − a)2 + y21
=

y2√
(x2 − b)2 + y22

.

Then we have

cosθ =
|x1 − a|√

(x1 − a)2 + y21
=

|x2 − a|√
(x2 − b)2 + y22

.
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Now (3.6), (3.7), (3.8) are written as

x2 sin
2α(−x2

1 + x2
2 + (c− y1 − y2)

2)

(x2
1 + x2

2 − 2x1x2 cosα+ (c− y1 − y2)2)2
(3.12)

= λ

(
± cosθ+

x1 − x2 cosα√
x2
1 + x2

2 − 2x1x2 cosα+ (c− y1 − y2)2

)
,

2x1x2 sin
2α(c− y1 − y2)

(x2
1 + x2

2 − 2x1x2 cosα+ (c− y1 − y2)2)2
(3.13)

= λ

(
sinθ− c− y1 − y2√

x2
1 + x2

2 − 2x1x2 cosα+ (c− y1 − y2)2

)
,

x1 sin
2α(x2

1 − x2
2 + (c− y1 − y2)

2)

(x2
1 + x2

2 − 2x1x2 cosα+ (c− y1 − y2)2)2
(3.14)

= λ

(
± cosθ+

x2 − x1 cosα√
x2
1 + x2

2 − 2x1x2 cosα+ (c− y1 − y2)2

)
.

By (3.12), (3.13), (3.14), we have

(3.15)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(c− y1 − y2)(x

2
1 + x2

2 − 2x1x2 cosα+ (c− y1 − y2)
2)1/2

= sinθ(x2
2 − x2

1 + (c− y1 − y2)
2)± 2cosθx1(c− y1 − y2),

(c− y1 − y2)(x
2
1 + x2

2 − 2x1x2 cosα+ (c− y1 − y2)
2)1/2

= sinθ(x2
1 − x2

2 + (c− y1 − y2)
2)± 2cosθx2(c− y1 − y2).

The system (3.15) is equivalent to

(3.16)

⎧⎪⎨⎪⎩
(x1 − x2)(− sin θ(x1 + x2)± cosθ(c− y1 − y2)) = 0,

(c− y1 − y2)(± cos θ(x1 + x2) + sinθ(c− y1 − y2)

− (x2
1 + x2

2 − 2x1x2 cosα+ (c− y1 − y2)
2)1/2) = 0.

(3.16) implies that the following 4 cases (3.17)–(3.20) are possible.{
x1 − x2 = 0,

c− y1 − y2 = 0,
(3.17) {

− sin θ(x1 + x2)± cosθ(c− y1 − y2) = 0,

c− y1 − y2 = 0,
(3.18) ⎧⎪⎨⎪⎩

− sin θ(x1 + x2)± cosθ(c− y1 − y2) = 0,

± cosθ(x1 + x2) + sinθ(c− y1 − y2)

− (x2
1 + x2

2 − 2x1x2 cosα+ (c− y1 − y2)
2)1/2 = 0,

(3.19)

⎧⎪⎨⎪⎩
x1 − x2 = 0,

± cosθ(x1 + x2) + sinθ(c− y1 − y2)

− (x2
1 + x2

2 − 2x1x2 cosα+ (c− y1 − y2)
2)1/2 = 0.

(3.20)



THE TOTAL ABSOLUTE TORSION OF OPEN CURVES IN E3 679

Suppose that (3.17) holds. Then (3.13) implies sinθ = 0, since λ �= 0. Now
(3.14) gives

(3.21)
x1(1− cosα)√
2x2

1 − 2x2
1 cosα

=±1.

This yields α= π and there is no solution in this case.
Suppose that (3.18) holds. Then we have sinθ = 0. By (3.12) and (3.14),

we have

(3.22)
x2 sin

2α(−x2
1 + x2

2)

(x2
1 + x2

2 − 2x1x2 cosα)2
= λ

(
±1 +

x1 − x2 cosα√
x2
1 + x2

2 − 2x1x2 cosα

)
and

(3.23)
x1 sin

2α(x2
1 − x2

2)

(x2
1 + x2

2 − 2x1x2 cosα)2
= λ

(
±1 +

x2 − x1 cosα√
x2
1 + x2

2 − 2x1x2 cosα

)
.

It follows from (3.22) and (3.23) (where the signs for ±1 coincide) that

(3.24)
sin2α(x1 + x2)

2(x1 − x2)

(x2
1 + x2

2 − 2x1x2 cosα)2
=

λ(−1 + cosα)(x1 − x2)√
x2
1 + x2

2 − 2x1x2 cosα
.

Since we are assuming 0 < α < π, (3.24) implies x1 = x2, and we have the
same conclusion as the first case (3.17).

If (3.19) holds, we have

(3.25) (x1 + x2)
2 + (c− y1 − y2)

2 = x2
1 + x2

2 − 2x1x2 cosα+ (c− y1 − y2)
2,

which does not have a solution under the assumption that 0<α< π.
Not like other cases, (3.20) can possibly have a solution. This solution,

however, does not minimize f under the constraint g = L, as we show in the
following. Let x1 = x2 = a and y1 = b1, y2 = b2 be a solution of (3.20). Then
we have

(3.26) ±2a cosθ+ (c− b1 − b2) sinθ =
(
2a2 − 2a2 cosα+ (c− b1 − b2)

2
)1/2

.

Let p1(t) be the point defined by

x1 = a+ t cosθ,

y1 = b1 − t sinθ

and p2(s) be the point defined by

x2(s) = a− s cosθ,

y2(s) = b2 + s sin θ.

If t > 0, then p1(t) moves toward p along a straight line. If |pp1(t)| +
|p1(t)p2(s)|+ |p2(s)q|= L, we must have

(3.27)
∣∣p1(t)p2(s)∣∣+ ∣∣p2(s)p2(0)∣∣= ∣∣p1(t)p1(0)∣∣+ ∣∣p1(0)p2(0)∣∣,
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which gives

(3.28) (1 + cosα) cosθ(ts cosθ− at− as) = 0.

Thus, if α �= π and cosθ �= 0, then we have

(3.29) s=
at

t cosθ+ a
.

(3.29) allows us to express x2 and y2 in terms of t as

x2(t) =
a2

t cosθ+ a
,

y2(t) = b2 +
at sinθ

t cosθ+ a
.

Now we can write f in terms of t as

f(t) = f
(
x1(t), y1(t), x2(t), y2(t)

)
=

x1(t)x2(t) sin
2α

x1(t)2 + x2(t)2 − 2x1(t)x2(t) cosα+ (c− y1(t)− y2(t))2

= a2 sin2α

(
t− at

t cosθ+ a
+ 2a cosθ+ (c− b1 − b2) sinθ

)−2

= a2 sin2α

(
1

cosθ
(t cosθ+ a) +

1

cosθ

a2

t cosθ+ a
− 2a

cosθ

+ 2a cosθ+ (c− b1 − b2) sinθ

)−2

≤ a2 sin2α

(
2a

cosθ
− 2a

cosθ
+ 2a cosθ+ (c− b1 − b2) sinθ

)−2

= a2 sin2α
(
2a cosθ+ (c− b1 − b2) sinθ

)−2

= f(0).

Since the equality holds only when t = 0, we have f(t) < f(0), which shows
that the solution of (3.20) does not minimize f .

Now we conclude that, if {x1, y1, x2, y2} minimizes f under the constraint
that g = L, then either f or g is not differentiable there, with the only pos-
sible exception that p1 = p2. The possibility of p1 = p2 is eliminated by our
assumption on the length of pp1∪p1p2∪p2q. Since f or g is not differentiable
at the minimizing point, we have p1 = p or p2 = q. �

Now we use Lemma 3.4 to deal with the case when the piecewise linear
curve has 3 edges in general. (ν1 = νp and ν3 = νq are not assumed here.)

Lemma 3.5. Let (P, ν̄) be an element of PN 3(p, q,L). Then there exists

an element (P ′, ν̄′) of PN 2(p, q,L) such that T̃R(P ′, ν̄′)≤ T̃R(P, ν̄).
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Proof. We write (P, ν̄) as

P = pp1 ∪ p1p2 ∪ p2q, ν̄ = {ν1, ν2, ν3}.
By Lemma 3.4, there exists an element (P ′, ν̄′) = (pp′1 ∪ p′1q,{ν′1, ν′2}) of
PN 2(p, q,L) for which one of the following holds:

(1) ν′1 = ν1 and d(ν1, ν
′
2) + d(ν′2, ν3)≤ d(ν1, ν2) + d(ν2, ν3).

(2) ν′2 = ν3 and d(ν1, ν
′
1) + d(ν′1, ν3)≤ d(ν1, ν2) + d(ν2, ν3).

If (1) occurs, then we have

T̃R(P, ν̄) = d(νp, ν1) + d(ν1, ν2) + d(ν2, ν3) + d(ν3, νq)

≥ d(νp, ν1) + d
(
ν1, ν

′
2

)
+ d

(
ν′2, ν3

)
+ d(ν3, νq)

= d
(
νp, ν

′
1

)
+ d

(
ν′1, ν

′
2

)
+ d

(
ν′2, ν3

)
+ d(ν3, νq)

≥ d
(
νp, ν

′
1

)
+ d

(
ν′1, ν

′
2

)
+ d

(
ν′2, νq

)
= T̃R

(
P ′, ν̄′

)
.

Similarly, if (2) occurs, then we have

T̃R(P, ν̄) = d(νp, ν1) + d(ν1, ν2) + d(ν2, ν3) + d(ν3, νq)

≥ d(νp, ν1) + d
(
ν1, ν

′
1

)
+ d

(
ν′1, ν3

)
+ d(ν3, νq)

= d(νp, ν1) + d
(
ν1, ν

′
1

)
+ d

(
ν′1, ν

′
2

)
+ d

(
ν′2, νq

)
≥ d

(
νp, ν

′
1

)
+ d

(
ν′1, ν

′
2

)
+ d

(
ν′2, νq

)
= T̃R

(
P ′, ν̄′

)
. �

We use Lemma 3.5 to prove the following proposition for piecewise linear
curves with arbitrary number of edges.

Lemma 3.6. Let (P, ν̄) be an element of PNn(p, q,L) with n ≥ 3. Then

there exists an element (P ′, ν̄′) of PNn−1(p, q,L) such that T̃R(P ′, ν̄′) ≤
T̃R(P, ν̄).

Proof. We set

P = pp1 ∪ p1p2 ∪ · · · ∪ pn−2pn−1 ∪ pn−1q

and

ν̄ = {ν1, ν2, . . . , νn−1, νn}.
If we apply Lemma 3.5 to the subarc pn−3pn−2∪pn−2pn−1∪pn−1q associated
with {νn−2, νn−1, νn}, regarding pn−3 as p, νn−3 as νp in Lemma 3.5, we see
that there exists a piecewise linear curve pn−3p

′
n−2 ∪ p′n−2q associated with a

unit normal field {ν′n−2, ν
′
n−1} such that

d
(
νn−3, ν

′
n−2

)
+ d

(
ν′n−2, ν

′
n−1

)
+ d

(
ν′n−1, νq

)
(3.30)

≤ d(νn−3, νn−2) + d(νn−2, νn−1) + d(νn−1, νn) + d(νn, νq).
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Now we set

P ′ = pp1 ∪ p1p2 ∪ · · · ∪ pn−4pn−3 ∪ pn−3p
′
n−2 ∪ p′n−2q

and
ν̄′ =

{
ν1, ν2, . . . , νn−3, ν

′
n−2, ν

′
n−1

}
.

Then (P ′, ν̄′) ∈ PN n−1(p, q,L) and (3.30) implies

T̃R
(
P ′, ν̄′

)
≤ T̃R(P, ν̄). �

By an inductive argument based on Lemma 3.6, we obtain the following.

Proposition 3.7. Let (P, ν̄) be an element of PNn(p, q,L). Then there

exists an element (P ′, ν̄′) of PN 2(p, q,L) such that T̃R(P ′, ν̄′)≤ T̃R(P, ν̄).

Proposition 3.7, together with Lemma 3.1 and (2.8), gives the following
theorem, which shows that our main theorem holds for piecewise linear curves.

Theorem 3.8. For any p, q, Πp, Πq and L, there exist a point r, an
oriented plane Π1 containing the line segment pr, and an oriented plane Π2

containing rq which have the following properties:

(1) The sum of the lengths of the line segments pr and rq is L.
(2) The sum of the angles ∠(Πp,Π1) +∠(Π1,Π2) +∠(Π2,Πq) gives the infu-

mum of the total absolute torsion in P(p,Πp, q,Πq,L).

Now we give a proof of our main theorem.

Proof of Theorem 1.1. Let Σ be a curve in C(p,Πp, q,Πq,L). For each in-
teger n, we can construct a division

0 = s0 < s1 < · · ·< sn−1 < sn = L

so that the total absolute torsion of the piecewise linear curve

Pn : px(s1)∪ x(s1)x(s2)∪ · · · ∪ x(sn−2)x(sn−1)∪ x(sn−1)q

converges to TAT(Σ). The length of each of these piecewise linear curves is
not greater than L, but by attaching a small planar closed curve, it is easy to
construct a piecewise linear curve whose length is L and total absolute torsion
is equal to TAT(Pn). By Theorem 3.8, there exists

P = pr ∪ rq

such that
TAT(P )≤TAT(Pn).

Since TAT(Pn) converges to TAT(Σ), we must have

TAT(P )≤TAT(Σ),

which completes the proof of Theorem 1.1. �
Theorem 1.1 and Lemma 3.3 give the following corollary. Here, as in

Lemma 3.3, L0 =min{|pr|+ |rq| | r ∈Πp ∩Πq}.
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Corollary 3.9. If L≥ L0, then

inf
{
TAT(Σ) |Σ ∈ C(p,Πp, q,Πq,L)

}
=∠(Πp,Πq).

Remark 3.10. The problem we study in this paper may be regarded as a
“torsion version” of our results in [4], in which the total absolute curvature of
open curves are studied. The strategy we are taking here is somehow similar
to the one taken in [4]. Corollary 3.9 shows, however, that there is a difference
between them. The total torsion tends to be small when the length gets larger,
while the total absolute curvature tends to be large.

The following is first proved by Aratake [1]. Thus our theorem may be
regarded as a refinement of Aratake’s theorem.

Corollary 3.11. The infimum of the total absolute torsion in C(p, q,L)
tends to zero as the length L tends to infinity.

Proof. Let ε be any positive constant. We take an oriented plane Πp

through p and an oriented plane Πq through q so that ∠(Πp,Πq)< ε. Again,
we consider L0 =min{|pr|+ |rq| | r ∈Πp ∩Πq}. Since L0 depends on p, q, Πp

and Πq , we denote it as L0(p, q,Πp,Πq). We define L0(p, q, ε) by

L0(p, q, ε) = inf
{
L0(p, q,Πp,Πq) |∠(Πp,Πq)< ε

}
.

If L≥ L0(p, q, ε), we have inf{TAT(Σ) |Σ ∈ C(p, q,L)}< ε. �
Remark 3.12. In this paper, we extend the notion of the vector field B

from smooth curves to piecewise linear curves, and interpret the total absolute
torsion as the total rotation of the unit normal vector field along a piecewise
linear curve. Lemma 3.5 makes it possible to reduce the number of edges and
the total rotation, preserving the boundary condition. At the end, we obtain
a curve with only two edges whose total rotation gives the minimal possible
value of the total absolute torsion in C(p,Πp, q,Πq,L). An extension of the vec-
tor field N to piecewise linear curves is possible by defining N by the relation
N =B×T . If a piecewise linear curve approximates a smooth curve, then the
total rotation of N along the piecewise linear curve approximates the integral∫
Σ

√
κ2 + τ2 ds. Lemma 3.5 again works to reduce the total rotation of N and

the number of edges preserving the boundary condition. However, there is no
lemma like Lemma 3.1 for N and the resulting piecewise linear curve with two
edges does not give the infimum of

∫
Σ

√
κ2 + τ2 ds in C(p,Πp, q,Πq,L). The

minimization of
∫
Σ

√
κ2 + τ2 ds may be another interesting problem.
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