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ASYMPTOTIC BEHAVIOR OF THE SOCLE
OF FROBENIUS POWERS

JINJIA LI

Abstract. Let (R,m) be a local ring of prime characteristic p
and q a varying power of p. We study the asymptotic behavior

of the socle of R/I [q] where I is an m-primary ideal of R. In

the graded case, we define the notion of diagonal F -threshold

of R as the limit of the top socle degree of R/m[q] over q when

q→∞. Diagonal F -threshold exists as a positive number (ratio-
nal number in the latter case) when: (1) R is either a complete

intersection or R is F -pure on the punctured spectrum; (2) R is

a two dimensional normal domain. In the latter case, we also dis-
cuss its geometric interpretation and apply it to determine the

strong semistability of the syzygy bundle of (xd, yd, zd) over the

smooth projective curve in P2 defined by xn + yn + zn = 0. The

rest of this paper concerns a different question about how the

length of the socle of R/I [q] vary as q varies. We give explicit

calculations of the length of the socle of R/m[q] for a class of

hypersurface rings which attain the minimal Hilbert–Kunz func-
tion. We finally show, under mild conditions, the growth of such

length function and the growth of the second Betti numbers of
R/m[q] differ by at most a constant, as q →∞.

1. Introduction

We first review some notation and definitions used throughout the pa-
per. In general, for a commutative ring R of prime characteristic p > 0, the
Frobenius endomorphism f : R → R is defined by f(r) = rp for r ∈ R; its
self-compositions are given by fn(r) = rp

n

. Restriction of scalars along each
iteration fn endows R with a new R-module structure, denoted by fn

R. For
simplicity, we use q to denote pn. If I is an ideal of R, the qth Frobenius power
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of I is the ideal generated by the qth powers of the generators of I , denoted
by I [q]. We use Fn(−) to denote the functor from the category of R-modules
to itself, given by base change along the Frobenius endomorphism R→ fn

R.
It is easy to see that Fn(R/I)∼=R/I [q]. Also, the derived functors of Fn(−)

are TorRi (−, f
n

R). For an R-module M , we use λ(M) (resp. pdM ) to denote
the length (resp. projective dimension) of M . When R is local with maximal
ideal m, the socle of M is (0 : m)M , which is isomorphic to HomR(R/m,M).
For an m-primary ideal I , the Hilbert–Kunz function of R with respect to I
is the length function λ(R/I [q]) (as a function of q); the Hilbert–Kunz multi-
plicity of R with respect to I is the limit of λ(R/I [q])/qdimR as q→∞. Such
a limit always exists [18].

In this paper, we investigate questions related to the following general
question: how does the socle of R/I [q] vary as q varies? While these questions
are fairly well-understood when I has finite projective dimension (see [14]),
they remain quite mysterious when the projective dimension of I is infinite
and this is where our original motivation came from. In addition to that, our
studies on these questions are also motivated by their relations with Hilbert–
Kunz function and tight closure theory from many aspects. We refer to [8],
[2], [23] for work along those lines.

The organization of this paper is as follows. In Section 2, for a stan-
dard graded local algebra (R,m) over a field of characteristic p, we define the
notion of diagonal F -threshold cI(R) of R (with respect to a homogeneous
m-primary ideal I). It is the limit of the top socle degree of R/I [q] over q
as q →∞. Such a definition agrees with the definition of F -threshold in the
literature, which is defined under a more general set-up. The existence of
the diagonal F -threshold of complete intersection rings follows from recent
work of Kustin and Vraciu (see Proposition 2.3). In general, it is not easy
to calculate this invariant unless I has finite projective dimension. However,
in graded dimension two case (smooth projective curve case), we can use the
geometric tools developed in [5] to study it and the rest of Section 2 is devoted
to this task. In graded dimension 2, the diagonal F -thresholds are all rational
numbers. Specifically, we prove in Theorem 2.5 that if the syzygy bundle of I
is strongly semistable and the degrees d1, . . . , ds of the generators of I satisfy
certain condition, then the diagonal F -threshold cI(R) is just d1+···+ds

s−1 , a ra-
tional number independent of the characteristic p. The case that the syzygy
bundle of I is not strongly semistable will be discussed in Theorem 2.6. We
show that in this case, under certain conditions, cI(R) is equal to the ratio-
nal number νt appeared originally in [5], whose definition (in general) relies
on a result of Langer about the existence of the Strong Harder–Narashimhan
filtrations. As a result, we can use a numerical condition on the diagonal
F -threshold to characterize the strong semistability of the syzygy bundle of
I when I is generated by homogeneous elements of the same degree and R is
of the form k[x, y, z]/(f) (Corollary 2.7).
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In Section 3, we apply Corollary 2.7 to study the strong semistability
of the syzygy bundle of I = (xd, yd, zd) over the smooth projective curve
Projk[x, y, z]/(xn + yn + zn) in prime characteristic p. Our work here re-
lies heavily on a very recent paper [15] of Kustin, Rahmati and Vraciu, in
which they completely determine how the property pd I <∞ depends on the
parameters p,n and d. We are able to transfer their results to determine,
in quite many cases, how the strong semistability of the syzygy bundle of
I depends on the parameters p,n and d. In particular, with some restric-
tions on p,n or d, the strong semistability of the syzygy bundle of I can be
characterized by the condition pd I [q] =∞ for all q� 0.

In Section 4 and Section 5, we study the asymptotic behavior of length of
socle of R/I [q]. Such a length function had been preliminarily investigated
by the author in his Ph.D. thesis, for the purpose of answering a question
of Dutta related to the nonnegativity conjecture of intersection multiplicity
in the non-regular case, we refer to [9] and [17] for more details in that di-
rection. Nevertheless, it is in general quite challenging to explicitly calculate
this length function; even for the less complicated Hilbert–Kunz functions,
the explicit calculations could be quite none trivial (for examples, see [10]).
The main result here is an explicit calculation of this length function for a
special class of hypersurface rings which attain the minimal Hilbert–Kunz
function (see Definition 4.3). What makes this calculation possible in such
a case is the observation that the entire socle of R/m[q] lives in the top de-
gree spot. We do not know how to calculate this length function, or merely
determine a leading term, when the socle contains elements of different de-
grees. We also point out a two-dimensional example in which the limit of
λ(soc(R/m[q])/qmax{0,dimR−2}) fail to exist as q→∞.

In Section 6, we use Gorenstein duality and some spectral sequence argu-
ments to prove Theorem 6.1. In particular, it shows under mild conditions,
the lengths of socle of R/I [q] and the second Betti numbers of R/I [q] differ
only by a constant for q sufficiently large.

2. Asymptotic behavior of top socle degree of Frobenius powers

Throughout this section, we assume (R,m) is a standard graded Noetherian
local algebra over a field of positive characteristic p. Let I be a homogeneous
m-primary ideal of R. Recall the a-invariant a(R) of R is the largest integer
m such that (HdimR

m (R))m �= 0, where HdimR
m (R) is the top local cohomology

module of R. When R is complete intersection of the form S/C where S is the
polynomial ring k[x1, . . . , xn] and C is the ideal generated by homogeneous
regular sequence f1, . . . , ft, a(R) =

∑
i deg fi − n. For every standard graded

Artinian R-module M =
⊕

Mn, we use t. s. d(M) to denote the top socle
degree of M , which is equal to max{n|Mn �= 0}. Recently, Kustin and Vraciu
(see [14], Proposition 7.1) established the following lower bound for the top
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socle degree of R/I [q], in the case either R is complete intersection or R is
Gorenstein and F -pure:

Theorem 2.1 (Kustin–Vraciu). Assume either R is complete intersection
or R is Gorenstein and F-pure. If t. s. d(R/I) = s, then for every q

t. s. d
(
R/I [q]

)
≥
(
s− a(R)

)
q+ a(R).

We remark here that since R is standard graded, the powers mr are exactly⊕
n≥rRn. Therefore the top socle degree of R/I [q] is nothing but the invariant

νIm(q) := max
{
r ∈N|mr � I [q]

}
.

The limit (when exists) of {νIm(q)/q} as q→∞ is a special case of an invariant
called F -threshold. More generally, for any ideals a and J of R (not necessarily

graded) with a⊆
√
J , one can define νJa (q) =max{r ∈N|ar � J [q]} and study

the convergence of the sequence νJa (q)/q as q→∞. We refer to [1], [11], [12],
[21] for details on that direction. F -thresholds are known to exist for rings
which is F -pure on the punctured spectrum. Here we focus on a special case
of F -threshold which we will call diagonal F -threshold.

Definition 2.2. The diagonal F -threshold of R with respect to an m-
primary ideal I , denoted cI(R), is defined as

cI(R) = lim
q→∞

t. s. d(R/I [q])

q

whenever such a limit exists. We also use c(R) to denote cm(R), and simply
call it the diagonal F -threshold of R.

Proposition 2.3. The diagonal F -threshold cI(R) exists when R is com-
plete intersection or is F -pure on the punctured spectrum. Moreover, if R
is complete intersection of the form S/C where S is the polynomial ring
k[x1, . . . , xn] and C is the ideal generated by a homogeneous regular sequence
f1, . . . , ft, assuming J is the lift of I in S, then

(2.1) cI(R)≥ cJ(S)−
∑

deg fi.

In particular, c(R)≥−a(R), where a(R) is the a-invariant.

Proof. The argument for the existence of diagonal F -threshold (or more
generally, the F -threshold) in the case of F -pure on the punctured spectrum
can be found in [12]. Assume R is complete intersection. By Theorem 2.1,
the sequence

(2.2)
t. s. d(R/I [q])− a(R)

q

is increasing as q increases. On the other hand, this sequence is bounded
up by a very simple argument contained in [2]. We include that argument
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here for the sake of convenience. Choose K large enough such that mK ⊆ I
and let L be the number of generators of mK , then we have trivial inclusion
(mK)Lq ⊆ (mK)[q] ⊆ I [q]. This means

t. s. d
(
R/I [q]

)
< (KL)q.

Therefore the sequence (2.2) converges as q→∞, which implies the diagonal
F -threshold cI(R) exists.

For the proof of the lower bound (2.1), we write I as I1 ∩ I2 ∩ · · · ∩ Ib with
each Ii irreducible. Let Ji be the lift of Ii in S. It is easy to check that
cI(R) ≥ cIi(R) for each i. Since the Frobenius endomorphism on S is flat,
cJ(S) =max{cJi(S)|i}. Thus, we reduce (2.1) to the case that I is irreducible.
In such a case, we have (see [14], p. 206)

(2.3) t. s. d

(
S

J [q] +C

)
= t. s. d

(
S

J [q]

)
−Mq,

where Mq is the least degree among homogeneous nonzero elements of

(J [q] : C)/J [q], which is less than or equal to (q− 1)
∑

deg fi. Then the lower
bound (2.1) follows from dividing both sides of (2.3) by q and taking the limit.
In particular, when I is the maximal ideal m of R, J is the maximal ideal
of S. In this case, since cJ(S) = dimS = n, the right-hand side of (2.1) is
n−

∑
deg fi =−a(R). �

If R is Gorenstein and F -pure, Theorem 2.1 also provides a lower bound
for diagonal F -thresholds, namely,

cI(R)≥ t. s. d(R/I)− a(R).

In particular, when I =m, one has c(R)≥−a(R). Such a bound is achievable.
For example, let R= k[x, y, z,w]/(xy− zw), then c(R) = 2 and a(R) =−2.

Remark 2.4. For a Cohen–Macaulay normal domain R, Brenner gave an
upper bound of t. s. d(R/I [q]) which is better than the trivial upper bound
used in the proof of Proposition 2.3. We refer to [2] for details. When I =m,
there is a lower bound m(q) for t. s. d(R/m[q]) given by Buchweitz and Chen,
see Theorem 4.2 below. This is a uniform lower bound for all graded hypersur-
faces of the form k[x0, x1, . . . , xn]/(f), where f runs through all homogeneous
polynomials of degree d. In particular, this implies c(R)≥ n+1

2 .

What information is encoded by the diagonal F -threshold cI(R) (or more
generally, by F -thresholds)? Questions of this kind have been studied by
many authors from many different angles (for example, see [11], [12]). In
the remaining part of this section, we investigate this question in the case of
smooth projective curves. We first briefly recall some basic definitions.
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Harder–Narasimhan filtrations. Let Y be a smooth projective curve over
an algebraically closed field. For any vector bundle V on Y of rank r, the
degree of V is defined as the degree of the line bundle ∧rV . The slope of V ,
denoted μ(V), is defined as the fraction deg(V)/r. Slope is additive on tensor
products of bundles: μ(V ⊗W) = μ(V) + μ(W). If f : Y ′ → Y is a finite map
of degree q, then deg(f∗(V)) = q deg(V) and so μ(f∗(V)) = qμ(V).

A bundle V is called semistable if for every subbundle W ⊆ V one has
μ(W) ≤ μ(V). Clearly, bundles of rank 1 are always semistable, and duals
and twists of semistable bundles are semistable.

Any bundle V has a filtration by subbundles

0 = V0 ⊂ V1 ⊂ · · · ⊂ Vt = V

such that Vk/Vk−1 is semistable and μ(Vk/Vk−1) > μ(Vk+1/Vk) for each k.
This filtration is unique, and it is called the Harder–Narasimhan (or HN)
filtration of V .

In positive characteristic, we use F to denote the absolute Frobenius mor-
phism F : Y → Y . Pulling back a vector bundle under F does not necessarily
preserve semistability. Therefore, the pullback under Fn of an HN filtration
of V does not always give an HN filtration of (F ∗)n(V). However, by the work
of Langer [16], there always exists a so called strong NH filtration, i.e., for
some n0, the HN filtration of (F ∗)n0(V) has the property that all its Frobenius
pullbacks are the HN filtrations of (F ∗)n(V), for all n > n0.

Suppose R is a standard-graded two-dimensional normal domain and I =
(f1, . . . , fs) where fi is homogeneous of degree di for 1 ≤ i ≤ s. Let Y =
ProjR. Consider the syzygy bundle S = Syz(f1, . . . , fs) on Y given by the
exact sequence

(2.4) 0−→S −→
s⊕

i=1

O(−di)
f1,...,fs−→ O−→ 0

and the pullback of this exact sequence along Fn (with a subsequent twist by
m ∈ Z)

(2.5) 0−→Sq(m)−→
s⊕

i=1

O(m− qdi)
fq
1 ,...,f

q
s−→ O(m)−→ 0,

where Sq denotes the pullback (F ∗)n(S) = Syz(fq
1 , . . . , f

q
s ). Applying the sheaf

cohomology to (2.5), we have a long exact sequence

0 −→H0
(
Y,Sq(m)

)
−→

s⊕
i=1

H0
(
Y,O(m− qdi)

) fq
1 ,...,f

q
s−→ H0

(
Y,O(m)

)
(2.6)

−→H1
(
Y,Sq(m)

)
−→

s⊕
i=1

H1
(
Y,O(m− qdi)

)
−→ · · · .
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As R is normal, the cokernel of the third map (from left) in the long exact
sequence (2.6) is the mth graded piece of R/I [q].

Now we are ready to move back to the question we asked earlier in this
section. Set degY = degOY (1) and let ωY denote the dualizing sheaf on Y .
We first treat the case where the syzygy bundle is strongly semistable.

Theorem 2.5. Suppose the syzygy bundle S is strongly semistable. Assume
also the degrees di satisfy the condition d1+···+ds

s−1 >maxi{di}, then

cI(R) = (d1 + · · ·+ ds)/(s− 1).

Proof. The rightmost term in (2.6) is zero for m > maxi{qdi}. This is
because, by Serre duality, h1(O(m − qdi)) = h0(O(−m + qdi) ⊗ ωY ), which
equals zero since the degree of O(−m+ qdi)⊗ ωY is negative.

From [5], we know for m> �d1+···+ds

s−1 q�+ degωY

degY , H1(Y,Sq(m)) vanishes.

It follows that

t. s. d
(
R/I [q]

)
≤
⌈
d1 + · · ·+ ds

s− 1
q

⌉
+

degωY

degY
.

Also from [5], for m≤ �d1+···+ds

s−1 q� − 1, H0(Y,Sq(m)) vanishes. An easy cal-

culation asserts that, for m= �d1+···+ds

s−1 q� − 1 and q� 0,

s∑
i=1

h1
(
O(m− qdi)

)
�= h0

(
O(m)

)
.

Thus

t. s. d
(
R/I [q]

)
≥
⌈
d1 + · · ·+ ds

s− 1
q

⌉
− 1 for q� 0,

and the theorem follows. �

We next discuss the case where the syzygy bundle is not strongly
semistable. In such a case, using strong NH filtrations, Brenner defined
rational numbers ν1, . . . , νt for the syzygy bundle S

νi =−μ(F ∗n(Si))/μ(F
∗n(Si−1))

q degO(1)
,

where 0 = S0 ⊂ S1 ⊂ · · · ⊂ St = S is a HN filtration of F ∗n0(S) which is
strong and q = pn0+n. These νi’s satisfy min{di} ≤ ν1 < · · ·< νt ≤max{di +
dj |i �= j}. Moreover, Brenner showed for q � 0, if m > qνt +

degωY

degY , then

H1(Y,Sq(m)) = 0 (see [5] for more details).
Let g denotes the genus of Y . With the above set-up, we have the following

theorem.

Theorem 2.6. (1) t. s. d(R/I [q])≤ νtq+
degωY

degY , for q� 0.
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(2) If we further assume νt >maxi{di}, then for q� 0,

t. s. d
(
R/I [q]

)
≥
{
�νtq� − 1, if g ≥ 1,

�νtq� − 2, if g = 0.

In particular, cI(R) exists and equals νt.

Proof. (1) Let l= t. s. d(R/I [q]). Thus, the cokernel of

s⊕
i=1

H0
(
Y,O(l− qdi)

) fq
1 ,...,f

q
s−→ H0

(
Y,O(l)

)
must be nonzero, which implies H1(Y,Sq(m)) �= 0. This shows l≤ qνt+

degωY

degY

when q� 0.
(2) Here we only treat the case g ≥ 1, the computations for the other case

are almost identical. So we assume g ≥ 1. To get the lower bound �νtq� − 1
in this case, let �= �νtq� − 1, it suffices to show the cokernel of

s⊕
i=1

H0
(
Y,O(�− qdi)

) fq
1 ,...,f

q
s−→ H0

(
Y,O(�)

)
is nonzero. To this end, we apply the following result from [5], p. 102:

For q� 0 and qνt−1 +
degωY

degY <m< qνt,

h0
(
Y,Sq(m)

)
= q(−r1ν1 − · · · − rt−1νt−1)degY(2.7)

+m(r1 + · · ·+ rt−1)degY + rank(St−1)(1− g).

Here, ri is defined to be the rank of Si/Si−1 for i= 1, . . . , t. These numbers
r1, . . . , rt satisfy

(2.8) r1 + · · ·+ rt = rankS = s− 1

and

(2.9) r1ν1 + · · ·+ rtνt =
s∑

i=1

di.

Let ε(q) = �νtq� − νtq, then �= νtq− 1 + ε(q). Therefore, by (2.7), we have

h0
(
Y,Sq(�)

)
(2.10)

= q(−r1ν1 − · · · − rt−1νt−1)degY

+
(
νtq− 1 + ε(q)

)
(r1 + · · ·+ rt−1)degY + rank(St−1)(1− g)

= q
(
νt(s− 1− rt)− r1ν1 − · · · − rt−1νt−1

)
degY

+
(
−1 + ε(q)

)
(s− 1− rt)degY + rank(St−1)(1− g).

On the other hand, since νt >max{di}, we have −�+qdi < 0 for q� 0, whence

H1
(
Y,O(�− qdi)

)
=H0

(
Y,O(−�+ qdi)

)
⊗ ωY ) = 0 for q� 0.



ASYMPTOTIC BEHAVIOR OF THE SOCLE OF FROBENIUS POWERS 611

So from Riemann–Roch theorem, we get

h0
(
O(�)

)
−

s∑
i=1

h0
(
O(�− qdi)

)
(2.11)

= �degY + (1− g)−
s∑

i=1

(�− qdi)degY − s(1− g)

which can be simplified to

(s− 1)(g− 1)−
(
(s− 1)�−

s∑
i=1

diq

)
degY(2.12)

= q

(
s∑

i=1

di − (s− 1)νt

)
degY + (s− 1)

((
1− ε(q)

)
degY + g− 1

)
.

Thus, by (2.6), the length of the cokernel of

s⊕
i=1

H0
(
Y,O(�− qdi)

) fq
1 ,...,f

q
s−→ H0

(
Y,O(�)

)
equals

(2.13) h0
(
Y,Sq(�)

)
+ h0

(
O(�)

)
−

s∑
i=1

h0
(
O(�− qdi)

)
= c1q+ c0,

where, by adding the right-hand sides of (2.10) and (2.12) and using (2.9),

c1 = degY

(
νt(s− 1− rt)− r1ν1 − · · · − rt−1νt−1 +

s∑
i=1

di − (s− 1)νt

)
= 0

and

c0 =
(
−1 + ε(q)

)
(s− 1− rt)degY + rank(St−1)(1− g)

+ (s− 1)
((
1− ε(q)

)
degY + g− 1

)
=
(
−1 + ε(q)

)
(−rt)degY + rank(St−1)(1− g) + (s− 1)(g− 1)

=
(
1− ε(q)

)
rt degY +

(
s− 1− rank(St−1)

)
(g− 1).

Since rank(St−1) + rt = rankS = s− 1,

c0 = rt
((
1− ε(q)

)
degY + g− 1

)
> 0.

The last inequality here is due to our assumption g ≥ 1. Therefore, the left-
hand side of (2.13) is positive for q� 0. �

Corollary 2.7. Assume R is of the form k[x, y, z]/(f) such that the genus
of ProjR is at least one. I = (f1, f2, f3) and deg fi = d. Then cI(R)≥ 3d

2 , and

cI(R) = 3d
2 if and only if the syzygy bundle of I is strongly semistable.
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Proof. If the syzygy bundle of I is strongly semistable, then cI(R) = 3d
2

follows from Theorem 2.5.
Assume the syzygy bundle of I is not strongly semistable. Here we have

t= 2, ν1 < ν2 and ν1 + ν2 = 3d. Therefore, cI(R) = ν2 >
3d
2 . �

Remark 2.8. Assume R is of the form k[x, y, z]/(f) where the degree of f
is h. By Corollary 4.6 in [5], we have

3

2
≤ c(R)≤ 2

and c(R) = 3/2 if and only if the syzygy bundle of (x, y, z) is strongly
semistable. Moreover, the Hilbert–Kunz multiplicity and the diagonal F -
threshold of R have the relation

eHK(R) = h
(
c(R)2 − 3c(R) + 3

)
.

Example 2.9. Consider Rp = Z/pZ[x, y, z]/(x4 + y4 + z4). The rank two
syzygy bundle S of (x, y, z) is strongly semistable if p≡±1 mod 8 and there-
fore, c(Rp) =

3
2 in this case. On the other hand, S is not strongly semistable

if p≡±3 mod 8 (See [13, Example 4.1.8], [6], [19] or Example 3.5). So

c(Rp) = νt = ν2 =
3

2
+

1

2p
.

Our Macaulay 2 experiments give us the following formulae of the top socle
degree functions for p= 3,5,7:

t. s. d
(
Rp/m

[q]
)
=

⎧⎪⎨⎪⎩
5q
3 + 1, if p= 3,
8q
5 + 1, if p= 5,

� 3q
2 �+ 1, if p= 7.

One might expect the following precise formula of t. s. d(R/m[q]), depend-
ing only on c(R) and a(R),

t. s. d
(
R/m[q]

)
=
⌊
c(R)q

⌋
+ a(R).

However, the following example, suggested by Brenner to the author, indi-
cates this is wrong.

Example 2.10. Let R = Z/2Z[x, y, z]/(x4 + y4 + z4 + x3y + y3z + z3x).
Then

t. s. d
(
R/m[q]

)
=

3

2
q.

Example 2.10 also shows the inequality in Theorem 2.1 could be strict for
all q.
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3. Some applications

Throughout this section, let R be the diagonal hypersurface k[x, y, z]/(xn+
yn+zn) where chark = p and I be the ideal (xd, yd, zd) of R. In a recent paper
[15], Kustin, Rahamati and Vraciu completely determined how the property
pd I < ∞ depends on the parameters p,n and d. For every prime number
p, they introduced the sets Sp and Tp, which form a partition for the set
of all nonnegative integers. One of their main results in that paper is that
I has finite projective dimension if and only if n | d or � d

n� ∈ Tp (see [15],
Theorem 6.2). In addition to that, they also explicitly described the minimal
free resolutions for such ideals. Our purpose here is to use the results in [15],
together with the characterization of the strong semistability of the syzygy
bundle of I obtained in Corollary 2.7, to study how the strong semistability
of the syzygy bundle of I depends on parameters p,n and d. We would like
to point out that the strong semistability of this particular syzygy bundle
has also been studied in great detail in [13], Chapter 4. In the rest of this
section, we adopt all the notation of [15] without explanation and refer to [15]
for details. Since we will apply Corollary 2.7, we also assume p � n and n≥ 3
throughout this section. With this assumption, ProjR is a smooth curve. We
first prove a sufficient condition for the strong semistability of syzygy bundle.

Theorem 3.1. If there are infinitely many q such that pd I [q] =∞, then
the syzygy bundle of I is strongly semistable.

We remark here that this sufficient condition is equivalent to: (a) n � d; and
(b) there are infinitely many q such that � qd

n � ∈ Sp.

Proof of Theorem 3.1. We know by Theorem 3.5 of [15], when pd I [q] =∞,
the leading term of t. s. d(R/I [q]) is ( 3d2 )q. Therefore, if there are infinitely

many q such that pd I [q] =∞, then cI(R) = 3d
2 . It then follows from Corol-

lary 2.7 that the syzygy bundle of I is strongly semistable. �

We next discuss the converse of Theorem 3.1. Assume pd I [q0] <∞ for some
q0 (hence pd I [q] <∞ for all q ≥ q0, see [22]). We know from Corollary 1.7

of [14], cI
[q0]

(R) equals the largest back twist in the minimal homogeneous
resolution of R/I [q0] by free R-modules, that is, the largest bi in the following
resolution of R/I [q0]:

0−→R(−b1)⊕R(−b2)−→
3⊕

i=1

R(−q0d)−→R−→ 0.

Since b1 + b2 − 2q0d= q0d, we have:

b1 �= b2 ⇔ max{b1, b2}>
3q0d

2
,
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i.e.

cI
[q0]

(R)>
3q0d

2
,

which is equivalent to (observe that cI(R) = 1
q0
cI

[q0]

(R))

cI(R)>
3d

2
.

Thus, by Corollary 2.7, we have the following theorem.

Theorem 3.2. Assume pd I [q0] <∞ for some q0. Then the syzygy bundle
of I is strongly semistable if and only if b1 = b2.

The following example shows the converse of Theorem 3.1 does not hold in
general.

Example 3.3. Let k = Z/5Z, n = 3 and d = 2. Then pd I [p] <∞ (hence
pd I [q] <∞ for all q > p). On the other hand, one can check the largest back
twist in the minimal homogeneous resolution of R/I [p] is 15 (i.e., b1 = b2 = 15).
So the syzygy bundle of I is strongly semistable.

Nonetheless, we could still expect the converse of Theorem 3.1 to hold when
the parameters p,n, d satisfy special conditions. We first treat the case when
n � d.

Theorem 3.4. Assume n � d. Then the converse of Theorem 3.1 holds for
all the following cases:

Case 1: p= 3;
Case 2: p≡ 1 mod 3;
Case 3: p and d are both odd;
Case 4: 3 � n.

In particular, if p = 2, 3 � n and n � d, then the syzygy bundle of I is never
strongly semistable.

Proof. When pd I [q0] < ∞, the minimal free resolution of I [q0] has been
given explicitly in [15], Section 5. It is then a bookkeeping job (but a little
tedious) to check case by case that, in any of the above cases, b1 �= b2 (we
refer to particularly Observation 5.3, Lemmas 5.4, 5.5, 5.12, Observation 5.13,
Theorem 5.14, Lemma 5.15 of [15]). Therefore by Theorem 3.2, the syzygy
bundle of I is not strongly semistable. The p= 2 case of this theorem follows
from the fact that T2 is the set of all nonnegative integers, hence pd I [q] is
never finite in such a case. �

Example 3.5. We apply this theorem to recover the known result we men-
tioned earlier in Example 2.9: Suppose p is odd. The syzygy bundle of (x, y, z)
over Z/pZ[x, y, z]/(x4 + y4 + z4) is strongly semistable if and only if p≡±1
mod 8. Here we have n = 4 which is not divisible by 3, so Theorem 3.4 is

applicable. First, consider the case p= 8c+ 1. We claim that �pe

n � ∈ Sp for
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every positive integer e. To see this, notice that �pe

4 �= pe−1
4 . We can express

this number in the following base-p expansion (see [15], Notation 1.5)

pe − 1

4
= 2cpe−1 + 2cpe−2 + · · ·+ 2cp+ 2c,

which involves only even digits. So the claim follows from [15], Remark 1.6.
Therefore, the syzygy bundle is strongly semistable in this case. For the case

p= 8c+ 3, we claim that �p2

4 � ∈ Tp. This is because �p2

4 �= 16c2 + 12c+ 2 =
(2c+1)p− (2c+1), which is a base-p expansion involves at least one odd digit.
Thus the syzygy bundle is not strongly semistable. We leave the remaining
cases for the interested readers to verify.

One can also apply the above base-p expansion method to reinvestigate
the strong semistability of the syzygy bundle S of (x2, y2, z2) on the Fermat
quintic x5 + y5 + z5 = 0 (here n = 5 and d = 2 so Theorem 3.4 is applica-
ble), which has been studied in [3], Section 2 and in [13], Example 4.1.9. In
particular, one can recover Corollary 2.1 of [3], which says S is not strongly

semistable when p≡±2 mod 5, by looking at the base-p expansions of �p
2

5 �
of such primes. Not only that, one also obtains that S is strongly semistable
when p≡±1 mod 5 via the same method. Again, we leave the detail for the
interested readers.

For the case n | d, we know there exists a q0 � 0 such that pd I [q0] <∞.
In such a case, the strong semistability is determined by the syzygy gap. We
refer to [20] or [7] for the definition of syzygy gap.

Theorem 3.6. Assume n | d. Let a= d
n . The syzygy bundle of I is strongly

semistable if and only if the syzygy gap of xa, ya, (x+ y)a in k[x, y] is zero. In
particular, if a is odd, then the syzygy bundle of I is never strongly semistable.

Proof. Let δ be the syzygy gap of xa, ya, (x + y)a in k[x, y]. From [15],
Observation 5.3, we know b1 = b2 if and only if δ = 0. So our conclusion follows
from Theorem 3.2. There is a formula δ2 = 4�(k[x, y]/(xa, ya, (x+ y)a))− 3a2

([20], Lemma 1). Hence if a is odd, δ �= 0. �

In the case n= 3 and p≡ 1 mod 3, we have the following characterization
of strong semistability.

Theorem 3.7. Assume n = 3, p ≡ 1 mod 3 and 3 � d. Then the syzygy
bundle of I is strongly semistable if and only of pd I =∞.

Proof. This follows from Proposition 8.5 of [15], Theorem 3.1 and Theo-
rem 3.4 immediately. �

We finally use Theorem 3.4 to recover a result of Brenner (Proposition 1
in [4], see also Lemma 4.2.8 in [13] for an extended version).
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Theorem 3.8. Fix d > 0 and a prime number p. For every positive integer
n0, there exists n > n0 such that the syzygy bundle of I = (xd, yd, zd) is not
strongly semistable on the smooth projective curve defined by xn+yn+zn = 0.

Proof. By Remark 1.6 in [15], the set Tp is not empty. Assume c ∈ Tp. For

every n0, we choose q large enough such that qd
c >max{n0 +4,4c+4, d+4}.

Let a be an integer such that a ≤ qd
c < a + 1. If 3 | a − 1, let n be one of

a−2, a−3 which is not divisible by p. If 3 � a−1, let n be one of a−2, a−1, a
which is neither divisible by 3 nor divisible by p. Then such an n satisfies
conditions 3 � n, n � qd and � qdn �= c ∈ Tp. Thus, the conclusion follows from
Theorem 3.4. �

4. Asymptotic behavior of length of socle of Frobenius powers

Our main question in this section is:
How does λ(soc(R/I [q])) vary as q varies?
In the case that I has finite projective dimension, it is well known that

λ(soc(R/I [q])) equals the constant λ(soc(R/I)). In the general situation, we
recall a result of Yackel [23], which asserts such a length function cannot grow
faster than O(qmax{dimR−2,0}).

Theorem 4.1 (Yackel). There exists a constant cR, s.t.

λ
(
soc

(
R/I [q]

))
≤ cRq

max{0,n−2},

where n= dimR.

Unfortunately, other than the above result of Yackel, very little is known
regarding the asymptotic behavior of this length function when I has infi-
nite projective dimension, even in the hypersurface situation. Therefore, any
explicit computation on such a length function in special cases would be valu-
able, and even could potentially initiate some new study. The main purpose
of this section is to explicitly calculate such length functions for I =m over a
special class of hypersurface rings, which will be specified below.

In [8], Buchweitz and Chen investigated a lower bound m(q) of the top socle
degree of R/m[q] among all dimension n hypersurfaces (R,m), and its relation
with minimal Hilbert–Kunz function. Among other things, they showed the
following theorem.

Theorem 4.2 (Buchweitz–Chen). Fix n,d > 0. Let q be a power of p. Let

m(q) =

⌊
(n+ 1)(q− 1) + (d− 1)

2

⌋
and

L(q) = the coefficient of tm(q) in
(
1− td

)(
1− tq

)n+1
(1− t)−n−2.
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Assume f is a homogeneous polynomial of degree d in S = k[x0, x1, . . . , xn].
Let R be the hypersurface ring S/fS and m the ideal of R generated by the
images of x0, x1, . . . , xn in R. Then the top socle degree t. s. d(R/m[q]) is at
least m(q) and the Hilbert–Kunz function of R with respect to m is at least
L(q). Moreover, the following are equivalent:

(1) t. s. d(R/m[q]) =m(q);
(2) the Hilbert–Kunz function of R with respect to m equals L(q).

Definition 4.3. We say a hypersurface ring attains the minimal Hilbert–
Kunz function if it satisfies any of the equivalent conditions in the above
theorem of Buchweitz and Chen.

Example 4.4 (Buchweitz–Chen). The hypersurfaces k[x, y, z,w]/(xy−zw)
and the Cayley’s cubic surface k[x, y, z,w]/(xyz + xyw + xzw + yzw) both
attain the minimal Hilbert–Kunz function, see [8] for details.

The following theorem is the main result of this section.

Theorem 4.5. Adopt all of the notation of Theorem 4.2. Assume R =
S/fS attains the minimal Hilbert–Kunz function. Then the entire socle of
R/m[q] must live in the top degree spot. In other words, no socle element of
R/m[q] is in degree <m(q).

Proof. We use x[q] to denote the ideal (x0, . . . , xn)
[q] of S. Let

Θ=
S

x[q]
=
⊕
i≥0

Θi

and

θ =
S

fS + x[q]
=
⊕
i≥0

θi.

Since we assume R attains the minimal Hilbert–Kunz function, by the ar-
gument contained in the proof of Theorem 4.2 in [8], we have short exact
sequences

(4.1) 0−→Θi−d
f−→Θi −→ θi −→ 0

for every i≤m(q).
Assume i≤m(q). Consider the following commutative diagram with exact

rows

(4.2)

0 −−−−→ Θi−d−1
f−−−−→ Θi−1 −−−−→ θi−1 −−−−→ 0⏐⏐�φi−d

⏐⏐�φi

⏐⏐�ψi

0 −−−−→ Θn+1
i−d

⊕f−−−−→ Θn+1
i −−−−→ θn+1

i −−−−→ 0,

where φi sends every r ∈Θi−1 to r(x0, x1, . . . , xn) ∈Θn+1
i and ψi is induced

by φi in the natural way. Then the degree (i − 1) component of the socle
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of θ is just Ker(ψi). The map φi is injective since the socle of Θ is the

one-dimensional vector space over k generated by xq−1
0 · · ·xq−1

n , an element of
degree >m(q). Therefore, we have the injection

Kerψi ↪→ (0 : m)Coker(φi−d).

While the following lemma guarantees (0 : m)Coker(φi−d) = 0, our theorem fol-
lows. �

We fix some notation which are valid for this lemma only. Let k be an
arbitrary field in any characteristic. Let R be the standard graded Artinian
ring k[x0, . . . , xn]/(x

t
0, . . . , x

t
n), where t is a fixed positive integer. Let mR

denote the maximal ideal (x0, . . . , xn) of R.

Lemma 4.6. Let φ be the map from R to Rn+1 defined by φ(r) =
r(x0, x1, . . . , xn). Let M be the cokernel of φ. Then the socle degree of M is
at least n(t− 1), that is, if a is a nonzero homogeneous element in (0 : mR)M ,
then the degree of a≥ n(t− 1).

Proof. We first point out the following fact, which is easy to verify.

Fact 1. In R, we have (0 : xi) = (xt−1
i ) ∀i.

To prove the lemma, we induct on n. The case n= 0 is trivial. Assume the
theorem holds for all Artinian rings of the form k[x0, x1, . . . , xl]/(x

t
0, x

t
1, . . . , x

t
l)

for all l < n. Consider the case R= k[x0, x1, . . . , xn]/(x
t
0, x

t
1, . . . , x

t
n). We use

Ri to denote the degree i component of R.
Suppose the lemma fails, then there exists an nonzero homogeneous ele-

ment a ∈ (0 : mR)M , whose degree is d < n(t − 1). Since M is a quotient
module of Rn+1, we can assume a is the image of a= (a0, a1, . . . , an) where
a0, a1, . . . , an ∈ Rd. The condition a ∈ (0 : mR)M implies that there exist
u0, u1, . . . , un ∈Rd such that

(4.3) axi = ui(x0, x1, . . . , xn), 0≤ i≤ n.

It follows that for every j = 0,1, . . . , n,

(4.4) ajxi = uixj , 0≤ i≤ n.

This implies ajmR ⊆ (xj), that is,

(4.5) aj ∈ (xj : mR).

Let R̃ denote R/xjR, ãj be the image of aj in R̃ and mR̃ the maximal ideal

of R̃. Then (4.5) becomes

ãj ∈ (0 : mR̃).

Applying Fact 1 to R̃, since degree of aj < n(t− 1), we see that ãj must be

the zero in R̃. This means

aj ∈ (xj).
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Hence, we can assume there exists a′j ∈ Rd−1 such that aj = a′jxj , for j =
0,1, . . . , n. Let a′ = a′0(x0, . . . , xn), which is an element in Imφ. Then a is
also the image of a− a′. So, we can replace a by a− a′ to assume a is of the
form (0, a1, . . . , an) in the first place. Therefore, by (4.3), we get

(4.6) uix0 = 0, 0≤ i≤ n.

Multiplying both sides of (4.4) by x0, we then obtain

(4.7) ajxix0 = 0, 0≤ i, j ≤ n.

Therefore, for every j = 0,1, . . . , n, ajx0 ∈ (0 : mR). Thus, by Fact 1 again,
we get

(4.8) ajx0 = λjx
t−1
0 · · ·xt−1

n

for some λj ∈ k. This contradicts the fact that degaj < n(t− 1). �

Corollary 4.7. Adopt all of the notation of Theorem 4.2. Assume R=
S/fS attains the minimal Hilbert–Kunz function. Then there exists a constant
c, such that

λ
(
soc

(
R/m[q]

))
= cqn−2 +O

(
qn−3

)
.

Moreover, the constant c has the following expressions:

c=

⎧⎨⎩
d((−1)n−d−3)

2n!

(
n
2

)∑ν−1
i=0 (−1)i

(
n+1
i

)
(ν − i)n−2, if n= 2ν − 1 is odd,

d((−1)n−d−3)
2n!

(
n
2

)∑ν−1
i=0 (−1)i

(
n+1
i

)
(ν + 1

2 − i)n−2, if n= 2ν is even.

Proof. By Theorem 4.5, it remains to calculate dimk θm(q), which is equal
to dimkΘm(q)−dimkΘm(q−d) by (4.1). Note that dimkΘi is the coefficient of

ti in the polynomial (1+ t+ t2 + · · ·+ tq−1)n+1. The rest of the calculation is
completely elementary, which will be carried out in detail in the next section.

�

Remark 4.8. Applying Corollary 4.7 to the 3-dimensional hypersurface
k[x, y, z,w]/(xy − zw), we see that λ(soc(R/m[q])) = 4q − 3; to the Cayley’s
cubic surface k[x, y, z,w]/(xyz+ xyw+ xzw+ yzw), we get λ(soc(R/m[q])) =
3q − 3. One might expect that in general, the limit of λ(soc(R/m[q]))/
qmax{0,n−2} (as q →∞) exists. However, the following example in dimension
two provides a negative answer for this question. Let R be the coordinate ring
of the rational quintic curve in P3 parametrized by (s, t)→ (t5, st4, s4t, s5) in
characteristic 2. Our Macaulay 2 experiment gives the following eventually
periodic sequence for the lengths of soc(R/m[q]):

q 1 2 3 4 5 6 7 8 9 10 11 12 . . .
Socle length 5 9 13 21 19 17 17 21 19 17 17 21 . . .

The author thanks Jason McCullough for providing some help on Macaulay
2 programming.
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Remark 4.9. This remark is due to Florian Enescu and Yongwei Yao. Let
(R,m) be a local ring and S =R[x](m,x) with maximal ideal n= (m, x). Then

λ(soc(R/m[q])) = λ(soc(S/n[q])) for all q. We leave the verification of this to
the interested readers.

5. Two combinatorial identities

This entire section is elementary. We prove a combinatorial result Theo-
rem 5.1, which contains the calculation we mentioned in the proof of Corol-
lary 4.7 as a special case.

Fix an integer n > 0, consider the following function

(5.1)
∑
i≥0

Γ(i)ti =
(
1 + t+ t2 + · · ·+ tq−1

)n+1
.

Assume m(q) is an integer-valued function of the following form

m(q) =

(
n+ 1

2

)
q+ ξ + ε,

where ξ is a constant and ε is defined according to

ε=

{
0, if n is odd,

(1/2)(q− 2�q/2�), if n is even.

For any fixed integer d > 0 define

(5.2) h(q) = Γ
(
m(q)

)
− Γ

(
m(q)− d

)
.

Then, we have the following estimate about h(q).

Theorem 5.1. There exists a constant c, such that

h(q) = cqn−2 +O
(
qn−3

)
.

Moreover, the constant c has the following expressions

c=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
d
n!

(
n
2

)
(2ξ + 2ε+ n− d+ 1)

∑ν−1
i=0 (−1)i

(
n+1
i

)
(ν − i)n−2,

if n= 2ν − 1,
d
n!

(
n
2

)
(2ξ + 2ε+ n− d+ 1)

∑ν−1
i=0 (−1)i

(
n+1
i

)
(ν + 1

2 − i)n−2,

if n= 2ν.

Proof. By binomial theorem, we have(
1 + t+ t2 + · · ·+ tq−1

)n+1
(5.3)

=
(1− tq)n+1

(1− t)n+1

=

(
n+1∑
i=0

(−1)i
(
n+ 1

i

)
tqi

)( ∞∑
i=0

(
n+ i

n

)
ti

)
.
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Case 1. n= 2ν − 1. Then (we leave ε here for the purpose of Case 2, even
though it is 0 here)

m(q) = νq+ ξ + ε.

By comparing the coefficients of tm(q) in (5.1) and (5.3), we get

(5.4) Γ
(
m(q)

)
=

ν−1∑
i=0

(−1)i
(
n+ 1

i

)(
(ν − i)q+ ξ + ε+ n

n

)
and

(5.5) Γ
(
m(q)− d

)
=

ν−1∑
i=0

(−1)i
(
n+ 1

i

)(
(ν − i)q+ ξ + ε+ n− d

n

)
.

Let

(5.6) g(q) =

(
(ν − i)q+ ξ + ε+ n

n

)
−
(
(ν − i)q+ ξ + ε+ n− d

n

)
,

then, one could rewrite h(q) as

(5.7) h(q) =
ν−1∑
i=0

(−1)i
(
n+ 1

i

)
g(g).

To estimate g(q), we use Stirling numbers of the first kind s(n,k) to expand
g(q) as a polynomial of (ν − i)q. Recall by definition, s(n,k) is the coefficient
of xk in the polynomial x(x− 1) · · · (x− n+ 1), i.e.,

(5.8) x(x− 1) · · · (x− n+ 1) =

n∑
k=0

s(n,k)xk.

Therefore, for any integer Z, we have

n!

(
(ν − i)q+Z

n

)
=

n∑
k=0

s(n,k)
(
(ν − i)q+Z

)k
=

n∑
k=0

s(n,k)

(
k∑

j=0

(
k

j

)(
(ν − i)jqjZk−j

))

= (ν − i)nqn +

((
n

1

)(
(v− i)q

)n−1
Z −

(
n

2

)(
(v− i)q

)n−1
)

+

((
n

2

)(
(v− i)q

)n−2
Z2 −

(
n

2

)(
n− 1

1

)(
(v− i)q

)n−2
Z

+ s(n,n− 2)
(
(v− i)q

)n−2
)

+ o
(
qn−3

)
.
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Here in the last equality, we use the fact s(n,n) = 1 and s(n,n− 1) =−
(
n
2

)
.

It follows that

n!g(q) = d
(
(v− i)q

)n−1
(
n

1

)
+ d

(
(v− i)q

)n−2
((

n

2

)
(2ξ + 2ε+ 2n− d)−

(
n

2

)(
n− 1

1

))
+ o

(
qn−3

)
= d

(
(v− i)q

)n−1
(
n

1

)
+ d

(
(v− i)q

)n−2
(
n

2

)
(2ξ + 2ε+ n− d+ 1)

+ o
(
qn−3

)
.

Therefore

h(q) = qn−1

(
d

n!

(
n

1

) ν−1∑
i=0

(−1)i
(
n+ 1

i

)
(ν − i)n−1

)

+ qn−2

(
d

n!

(
n

2

)
(2ξ + 2ε+ n− d+ 1)

ν−1∑
i=0

(−1)i
(
n+ 1

i

)
(ν − i)n−2

)
+ o

(
qn−3

)
.

Hence, by (5.9), the coefficient of qn−1 in h(q) is 0. Moreover,

c=
d

n!

(
n

2

)
(2ξ + 2ε+ n− d+ 1)

ν−1∑
i=0

(−1)i
(
n+ 1

i

)
(ν − i)n−2.

Case 2. n= 2ν. In this case,

m(q) =

(
ν +

1

2

)
q+ ξ + ε.

Exactly the same computations yield

h(q) = qn−1

(
d

n!

(
n

1

) ν−1∑
i=0

(−1)i
(
n+ 1

i

)(
ν +

1

2
− i

)n−1
)

+ qn−2

(
d

n!

(
n

2

)
(2ξ + 2ε+ n− d+ 1)

×
ν−1∑
i=0

(−1)i
(
n+ 1

i

)(
ν +

1

2
− i

)n−2
)

+ o
(
qn−3

)
.
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So by (5.10), the coefficient of qn−1 in h(q) is 0 and

c=
d

n!

(
n

2

)
(2ξ + 2ε+ n− d+ 1)

ν−1∑
i=0

(−1)i
(
n+ 1

i

)(
ν +

1

2
− i

)n−2

.
�

Lemma 5.2. For any positive integer n, the following identities hold:

(5.9)

n∑
i=0

(−1)i
(
2n

i

)
(n− i)2n−2 = 0

and

(5.10)

n∑
i=0

(−1)i
(
2n+ 1

i

)(
n− i+

1

2

)2n−1

= 0.

Proof. We only prove (5.9). The proof of (5.10) is similar. The following
elementary proof of (5.9) is suggested by Daniel Smith-Tone to the author.
First, we notice that

2
n∑

i=0

(−1)i
(
2n

i

)
(n− i)2n−2

=

n∑
i=0

(−1)i
(
2n

i

)
(n− i)2n−2 +

2n∑
j=n+1

(−1)j
(
2n

j

)
(n− j)2n−2

=

2n∑
i=0

(−1)i
(
2n

i

)
(n− i)2n−2.

For any function f(x), one defines �f(x), the forward difference of f(x),
to be the function f(x + 1) − f(x). The higher order forward difference is
defined recursively by �nf(x) =�n−1(�f(x)). It is then easy to check that
for any positive integer k,

�kf(x) =

k∑
i=0

(−1)i
(
k

i

)
f(x+ k− i).

Apply the above to f(x) = x2n−2. Since f(x) is a polynomial of degree 2n−2,
�2nf(x) must be zero, that is,

2n∑
i=0

(−1)i
(
2n

i

)
(x+ 2n− i)2n−2 = 0.

In particular, we can take x=−n and the identity is proved. �
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6. Socle length and Betti number

In this section, we provide some connections between the socle length func-
tion we considered in Section 4 and the asymptotic growth of some other in-
variants in characteristic p, such as Betti numbers. The main result of this
section is the following theorem.

Theorem 6.1. Let (R,m, k) be a local ring in characteristic p. Let I and a

be m-primary ideals. Suppose I = J +uR for some u ∈R, and J is an ideal of
finite projective dimension which satisfies the condition that R/J [q] is Artinian
Gorenstein for q � 0. Then the differences between any of the following two
numerical functions (as functions on q) are bounded as q→∞:

(1) λ(Hom(R/a,R/I [q]));
(2) λ(Tor1(R/I, f

n

R)⊗R/a);
(3) λ(Tor2(R/I [q],R/a)).

Proof. We first show for a given R-module M ,

(6.1) λ
(
Hom(R/a,M)

)
= λ

(
Hom(M,E)⊗R/a

)
,

where E =E(k) is the injective hull of k. To see this, suppose a= (a1, . . . , ac)
and consider the following exact sequence

(6.2) 0−→Hom(R/a,M)−→M −→
c⊕
1

M,

where the rightmost map sends every τ ∈M to (a1τ, . . . , acτ) ∈
⊕c

1M . Then
the equality (6.1) follows easily from taking the Matlis dual of (6.2).

Applying (6.1) to the case M = R/I [q] (take q large enough such that
J [q] ⊆ a), since R/J [q] is Gorenstein, E =R/J [q], we obtain

λ
(
Hom

(
R/a,R/I [q]

))
= λ

(
Hom

(
R/I [q],R/J [q]

)
⊗R/a

)
.

Observe that

Hom
(
R/I [q],R/J [q]

)∼= J [q] : I [q]

J [q]
=

J [q] : uq

J [q]
.

The last equality here is due to our assumption I = J + uR. We therefore
have

(6.3) λ
(
Hom

(
R/a,R/I [q]

))
= λ

(
J [q] : uq

J [q]
⊗R/a

)
.

Again, since I = J + uR, we have a short exact sequence

(6.4) 0−→ R

J : u
−→ R

J
−→ R

I
−→ 0.



ASYMPTOTIC BEHAVIOR OF THE SOCLE OF FROBENIUS POWERS 625

Tensoring (6.4) with fn

R. Notice that Tor1(R/J, f
n

R) = 0 since J has finite
projective dimension, we see there exists an exact sequence

(6.5) 0−→Tor1
(
R/I, f

n

R
)
−→ R

(J : u)[q]
−→ R

J [q]
−→ R

I [q]
−→ 0.

Comparing the exact sequence (6.5) with the short exact sequence

0−→ R

J [q] : uq
−→ R

J [q]
−→ R

I [q]
−→ 0,

which is obtained in a way similar to (6.4), we have

Tor1
(
R/I, f

n

R
)∼= J [q] : uq

(J : u)[q]
.

Hence, we obtain a short exact sequence

(6.6) 0−→ (J : u)[q]

J [q]
−→ J [q] : uq

J [q]
−→Tor1

(
R/I, f

n

R
)
−→ 0.

Tensoring (6.6) with R/a gives rise to an exact sequence

−→ (J : u)[q]

J [q]
⊗R/a−→ J [q] : uq

J [q]
⊗R/a−→Tor1

(
R/I, f

n

R
)
⊗R/a−→ 0.

It follows that

0 ≤ λ

(
J [q] : uq

J [q]
⊗R/a

)
− λ

(
Tor1

(
R/I, f

n

R
)
⊗R/a

)
≤ λ

(
(J : u)[q]

J [q]
⊗R/a

)
.

Thus from (6.3), we conclude that

0 ≤ λ
(
Hom

(
R/a, Fn(R/I)

))
− λ

(
Tor1

(
R/I, f

n

R
)
⊗R/a

)
≤ λ

(
(J : u)[q]

J [q]
⊗R/a

)
.

But the right-hand side is

≤ λ

(
(J : u)[q]

J [q]
⊗ k

)
λ(R/a)≤ λ

(
(J : u)

J
⊗ k

)
λ(R/a) =O(1).

Therefore, the difference between (1) and (2) is bounded as q→∞.
To establish the boundedness of the difference between (2) and (3), we use

some spectral sequence arguments. Let F• be the minimal free resolution
of R/I and G• the minimal free resolution of R/a. The double complex
Fn(F•)⊗G• yields the following spectral sequence

Tori
(
Torj

(
R/I, f

n

R
)
,R/a

)
⇒Hi+j

(
Fn(F•)⊗R/a

)
.
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From the exact sequence of low degree terms, we get the following exact
sequence

H2

(
Fn(F•)⊗R/a

)
−→ Tor2

(
Fn(R/I),R/a

)
−→Tor1

(
R/I, f

n

R
)
⊗R/a

0−→H1

(
Fn(F•)⊗R/a

)
ς−→ Tor1

(
Fn(R/I),R/a

)
−→ 0.

In this exact sequence, we choose n � 0 so that m[q] ⊆ a, which forces the
map ς to be an isomorphism. It then follows that

0≤ λ
(
Tor2

(
Fn(R/I),R/a

))
− λ

(
Tor1

(
R/I, f

n

R
)
⊗R/a

)
(6.7)

≤ λ
(
H2

(
Fn(F•)⊗R/a

))
.

Since m[q] ⊆ a, we also have

Hi

(
Fn(F•)⊗R/a

)
=

rankFi⊕
1

R/a.

So the right-hand side of (6.7) equals (rankF2)λ(R/a), which is independent
of q. �

We point out here that in Theorem 6.1, if we take a to be the maximal
ideal m, then (1) gives us the socle length function we considered in Section 4
and (3) gives the second Betti numbers of R/I [q].

Acknowledgments. We thank the referee’s many suggestions which make
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