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EXTENSIONS OF THE COEFFECTIVE COMPLEX

MICHAEL EASTWOOD

Abstract. The coeffective differential complex on a symplectic
manifold is extended both in length and in scope, unifying the
constructions of various other authors.

1. Introduction

This article is both an addendum to [4] and a precursor to [7]. In [4], we
discussed the construction of differential complexes on manifolds equipped
with various geometric structures. Mostly, these geometries were parabolic [5]
but there were two exceptions, specifically contact geometry for which there
is the Rumin complex [14] and symplectic for which there is a very similar
complex [15], which we dubbed the Rumin–Seshadri complex (it was inde-
pendently discovered by Tseng and Yau [17], [18]). This article extends the
realm of these complexes, specifically covering conformally symplectic mani-
folds and conformally calibrated G2 manifolds (see, for example, [1], [19] and
[9], respectively).

In [2], T. Bouche introduced a differential complex naturally defined on
any symplectic manifold M and coined the term coeffective complex for it
(see also [8]). If M has dimension 2n, then it is the subcomplex of the second
half of the de Rham complex

Λn d−→ Λn+1 d−→ · · · d−→ Λ2n−2 d−→ Λ2n−1 d−→ Λ2n → 0
∪ ∪ ∪ ‖ ‖
Λn
⊥ → Λn+1

⊥ → · · · → Λ2n−2
⊥ → Λ2n−1 → Λ2n → 0,
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where, if J denotes the symplectic form, then the bundle Λk
⊥ is defined as the

kernel of Λk J∧−−−→ Λk+2. Under the canonical isomorphisms

J ∧ J ∧ · · · ∧ J︸ ︷︷ ︸
n−k

∧ : Λk �−→ Λ2n−k for k = 0,1,2, . . . , n

the bundle Λ2n−k
⊥ may equally well be regarded as a subbundle of Λk, which we

shall write as Λk
⊥ and, as such, provides a natural complement to the range

of Λk−2 J∧−−−→ Λk for k = 2,3, . . . , n. Using indices (more precisely, abstract
indices in the sense of [13]), sections of the bundle Λk

⊥ for k = 2,3, . . . , n are
precisely the k-forms that are trace-free with respect to Jab, that is,

Jabωabc···d = 0,

where Jab is the inverse of Jab (let us say JacJ
bc = δa

b, where δa
b is the

Kronecker delta). Thus, we may rewrite the coeffective complex as

(1) Λn
⊥

d⊥−−→ Λn−1
⊥

d⊥−−→ · · · d⊥−−→ Λ2
⊥

d⊥−−→Λ1 d⊥−−→Λ0 → 0.

Bouche [2] showed that it is elliptic except at Λn
⊥. Since the diagrams with

exact rows

0→ Λk−2 J∧−−−→ Λk → Λk
⊥ → 0

↓ ↓
0→ Λk−1 J∧−−−→ Λk+1 → Λk+1

⊥ → 0

commute, there is a canonically defined differential complex going the other
way:

(2) 0→ Λ0 d−→Λ1 d⊥−−→Λ2
⊥

d⊥−−→ · · · d⊥−−→ Λn−1
⊥

d⊥−−→ Λn
⊥.

In fact, one can easily check that (1) and (2) are adjoint to each other under
the pairing

Λk
⊥ ⊗Λk

⊥
�−→ Λ2n−k

⊥ ⊗Λk
⊥

∧−−−→ Λ2n.

The Rumin–Seshadri complex joins (1) and (2) with a symplectically invariant

second order linear differential operator d
(2)
⊥ : Λn

⊥ → Λn
⊥ to obtain an elliptic

complex

(3)

0→ Λ0 d−→ Λ1 d⊥−→ Λ2
⊥

d⊥−→ Λ3
⊥

d⊥−→ · · · d⊥−→ Λn
⊥
↓ d

(2)
⊥

0← Λ0 d⊥←− Λ1 d⊥←− Λ2
⊥

d⊥←− Λ3
⊥

d⊥←− · · · d⊥←− Λn
⊥.

In four dimensions this complex is due to Smith [16] and in higher dimensions
it was also found by L.-S. Tseng and S.-T. Yau [17], [18] who go on to study
its cohomology on compact manifolds. The construction of (3) given in [4]
will be generalised in the following section.
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2. Conformally symplectic manifolds

A conformally symplectic structure on an even dimensional manifold M
of dimension at least 6 is defined by a non-degenerate 2-form J but, instead
of requiring that J be closed, as one would for a symplectic structure, one
requires only that

(4) dJ = 2α∧ J

for some 1-form α (the factor of 2 being chosen only for convenience). Non-
degeneracy of J implies that α is uniquely defined by (4). It is called the Lee
form [12]. Differentiating (4) gives

0 = d2J = 2dα∧ J + 2α∧ dJ = 2dα∧ J + 4α∧ α∧ J = 2dα∧ J

and, as J ∧ : Λ2 → Λ4 is injective since dimM ≥ 6, we see that α is closed.
In dimension 4, equation (4) defines a unique Lee form α and, for the defi-
nition of conformally symplectic, we require that α be closed. If we rescale
J by a positive smooth function, say Ĵ = Ω2J , then (4) remains valid with
α replaced by α̂ = α +Υ for Υ ≡ d logΩ. Hence, the notion of conformally
symplectic is invariant under such rescalings (and also in dimension 4 since
dΥ= 0). Locally, we may use this freedom to eliminate α and obtain an ordi-
nary symplectic structure. Globally, however, this need not be the case. For
example, the rescaled symplectic form

J ≡
(
1/‖x‖

)2(
dx1 ∧ dx2 + dx3 ∧ dx4 + · · ·

)

on R
2n is invariant under dilation x �→ λx and, therefore, descends to a confor-

mally symplectic structure on S1×S2n−1 whereas there is no global symplectic
form on this manifold. If we continue to denote the inverse of Jab by Jab, and
consider the vector field Xa ≡ Jabαb, then the identities

JadJbeJcf (∇[dJef ]−2α[dJef ]) = Jd[a∇dJ
bc] − 2X [aJbc],

JadJbe
(
2∇[dαe] + 3Xc(∇[dJec]−2α[dJec])

)
=−Xc∇cJ

ab − 2Jc[a∇cX
b]

are readily established for any torsion-free connection ∇a and show that a
conformally symplectic structure is equivalent to a Jacobi structure (Jab,Xa)
if we insist that Jab be non-degenerate (as discussed in [1]).

Theorem 1. On any conformally symplectic manifold (M,J), there is a
canonically defined elliptic complex

(5)

0→ Λ0 → Λ1 → Λ2
⊥ → Λ3

⊥ → · · · → Λn
⊥
↓

0← Λ0 ← Λ1 ← Λ2
⊥ ← Λ3

⊥ ← · · · ← Λn
⊥,

where Λk
⊥ denotes the bundle of k-forms that are trace-free with respect to J .

All operators are first order except for the middle operator, which is second
order. In the symplectic case, the second half of the complex coincides with the
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coeffective complex. This complex is locally exact except at Λ0 and Λ1 near
the beginning.

Proof. Consider the diagram

(6)
−→ Λp d−2α∧−−−−−−→ Λp+1 d−2α∧−−−−−−→ Λp+2 −→

↑ J ∧ ↑ J ∧ ↑ J ∧

−→ Λp−2 d−−−−→ Λp−1 d−−−−→ Λp −→ .

The bottom row is the de Rham complex and, in particular, is locally exact
except at Λ0. Since dα= 0, the same is true of the top row. Since dJ = 2α∧J ,
the diagram commutes. Now consider the columns. In the middle, non-
degeneracy of J ensures that

J ∧ : Λn−1 → Λn+1

is an isomorphism. To the left of this, we have injections and, to the right,
we have surjections. As discussed in Section 1, the trace-free forms Λk

⊥ may
be canonically identified with the cokernel of

J ∧ : Λk−2 → Λk for k = 2,3, . . . , n

but also with the kernel of

J ∧ : Λ2n−k →Λ2n−k+2 for k = 2,3, . . . , n.

The spectral sequence of a double complex completes the proof. �

Explicit formulæ for the operators in this complex can be given by using
indices and an arbitrarily chosen torsion-free connection but are quite com-
plicated since they necessarily employ the decomposition of arbitrary k-forms
into their trace-free parts

Λk =Λk
⊥ ⊕Λk−2

⊥ ⊕Λk−4
⊥ ⊕ · · · for k = 2,3, . . . , n

corresponding to the branching of Λk
R

2n under Sp(2n,R) ⊂ SL(2n,R) (cf.
the combinatorial formulæ in [18, §2.1]).

To discuss the global cohomology of the complex (5), let us relabel its terms
as Br for r = 0,1,2, . . . ,2n,2n+ 1 and define

(7) Hr
J(M)≡ ker : Γ(M,Br)→ Γ(M,Br+1)

im : Γ(M,Br−1)→ Γ(M,Br)
.

In comparison with [8] in the symplectic case, we have

Hr
J (M) =Hr−1

(
A(M)

)
for r = n+ 2, n+ 3, . . . ,2n+ 1

for their coeffective cohomology but now, for compact M , we have finite-
dimensional vector spaces for all r = 0,1,2, . . . ,2n,2n+ 1. Also in the sym-
plectic case, these cohomologies were introduced and studied by Tseng and
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Yau [17], [18] and our notation compares as follows.

Hr
J(M) = PHr

∂+
(M) for 0≤ r < n,

Hn
J (M) = PHn

ddΛ(M), Hn+1
J (M) = PHn

d+dΛ(M),

Hr
J(M) = PH2n+1−r

∂−
(M) for n+ 1< r ≤ 2n+ 1.

(Tseng and Yau refer to these and similar cohomologies as ‘primitive.’) Ac-
cording to Theorem 1, the cohomology H• of (5) on the level of sheaves of
germs of smooth functions occurs only at B0 and B1 and, from its proof, we
see that H1 =R. Also H0 is a locally constant sheaf. Specifically,

H0 = {f s.t. df − 2fα= 0},
and may equivalently be viewed as parallel sections of the trivial bundle
equipped with the flat connection defined by −2α as connection form. In
the symplectic case, we have H0 = R. Evidently, the top row of (6) provides
a fine resolution of H0 and so the sheaf cohomology Hr(M,H0) may be iden-
tified as the cohomology of the complex Γ(M,Λ•) with ω �→ dω − 2α ∧ ω as
differential. The following theorem extends the long exact sequence [8, (5)].

Theorem 2. On a conformally symplectic manifold (M,J), we have

H0
J(M) =H0

(
M,H0

)
, H2n+1

J (M) =H2n(M,R),

and a long exact sequence

0→H1
(
M,H0

)
→H1

J (M)→H0(M,R)
δ−→H2

(
M,H0

)
→ · · ·

→Hr
J (M)→Hr−1(M,R)

δ−→Hr+1
(
M,H0

)
→ · · ·

→H2n
J (M)→H2n−1(M,R)→ 0,

where δ : Hr−1(M,R)→Hr+1(M,H0) is given by cup product with the coho-
mology class [J ] ∈H2(M,H0).

Proof. The hypercohomology spectral sequence for the complex B• as a
complex of sheaves reads, at the E2-level

�

�

H0(M,H0) H1(M,H0) H2(M,H0) H3(M,H0) · · ·

H0(M,R) H1(M,R) H2(M,R) H3(M,R) · · ·�����������

�����������

�����������

and the desired conclusions follow. �
(Spectral sequence reasoning can always be replaced by an appropriate

diagram chase, in this case on the double complex (6).)
As an application of Theorem 2, if we consider complex projective space

CPn with J its usual Kähler form, then

[J ]∪ : Hr−1(CPn,R)→Hr+1(CPn,R)
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is an isomorphism for 1≤ r ≤ 2n− 1. Therefore,

H0
J(CP) =R, Hr

J(CPn) = 0 for 1≤ r ≤ 2n, H2n+1
J (CPn) =R.

More generally, Theorem 2 shows that the cohomology Hr
J(M) of a symplectic

manifold is determined by its de Rham cohomology and the action of the
symplectic class [J ] ∈H2(M,R). In particular, there are evident inequalities
concerning dimHr

J and the Betti numbers of a compact symplectic manifold
(including those of [8, Theorem 3.1]).

3. Conformally calibrated G2-manifolds

Following [9], a conformally calibrated G2-manifold is defined as a G2-
manifold (M,φ) such that

(8) dφ= 2α∧ φ

for some 1-form α. Recall [3], [6], [9] that φ is the fundamental 3-form defining
a reduction of structure group on the 7-dimensional smooth manifold M from
GL(7,R) to G2 ⊂ SO(7)⊂GL(7,R). In parallel with the symplectic case, the
form φ may be locally rescaled so that it is closed (and a G2-manifold with
closed fundamental form is said to be calibrated). As in the symplectic case
and as detailed in [9], the form φ, pointwise sometimes known as the Cayley
form [6], is sufficiently non-degenerate that

φ∧ : Λk −→ Λk+3 is injective for k = 0,1,

φ∧ : Λ2 �−→ Λ5,

φ∧ : Λk −→ Λk+3 is surjective for k = 3,4.

(9)

One way to see this is to decompose the forms on M into G2-irreducibles

(10)

Λ0 = • •〈0 0
Λ1 = • •〈1 0

Λ2 = • •〈0 1 ⊕ • •〈1 0

Λ3 = • •〈2 0 ⊕ • •〈1 0 ⊕ • •〈0 0
Λ4 = • •〈2 0 ⊕ • •〈1 0 ⊕ • •〈0 0

Λ5 = • •〈0 1 ⊕ • •〈1 0
Λ6 = • •〈1 0

Λ7 = • •〈0 0

and check (9) on the level of highest weights. The canonical Hodge isomor-
phism Λk ∼=Λ7−k is evident in this decomposition. Parallel to the symplectic
case, let us write

Λ4
⊥ ≡ kerφ∧ : Λ3 → Λ6, Λ3

⊥ ≡ kerφ∧ : Λ4 →Λ7

and, by inspecting (10), note that

Λ3
⊥ = • •〈2 0 ⊕ • •〈1 0

Λ4
⊥ = • •〈2 0 ⊕ • •〈0 0

also provide canonical complements to the ranges of φ ∧ : Λ0 → Λ3 and
φ ∧ : Λ1 → Λ4, respectively. From (9) we see that, as in the conformally
symplectic case, α is uniquely defined by (8) and is closed.
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Theorem 3. On any conformally calibrated G2-manifold (M,φ), there is
a canonically defined elliptic complex

(11)

0→ Λ0 → Λ1 → Λ2 → Λ3
⊥ → Λ4

⊥
↓

0← Λ0 ← Λ1 ← Λ2 ← Λ3
⊥ ← Λ4

⊥.

All differential operators are first order except for the middle operator, which
is second order. The second half of this complex coincides with the coeffec-
tive complex defined in [8]. It is locally exact except at Λ0 and Λ2 near the
beginning.

Proof. Consider the diagram

−→ Λp d−2α∧−−−−−−→ Λp+1 d−2α∧−−−−−−→ Λp+2 −→
↑ ∧ φ ↑ ∧ φ ↑ ∧ φ

−→ Λp−3 d−−−−→ Λp−2 d−−−−→ Λp−1 −→ .

The bottom row is the de Rham complex and, in particular, is locally exact
except at Λ0. Since dα= 0, the same is true of the top row. Since dφ= 2α∧φ,
the diagram commutes. The columns behave according to (9). Hence, the first
spectral sequence of this double complex reads, at the E1-level

�

�

0 0 0 0 0 Λ3
⊥ Λ4 Λ5 Λ7

Λ0 Λ1 Λ2 Λ3
⊥ 0 0 0 0 0

→ → →

→ → →

Passing to the E2-level constructs the complex and the second spectral se-
quence identifies its local cohomology H• as

H0 = {f s.t. df − 2fα= 0}, H2 =R,

with all others vanishing. Finally, ellipticity of this complex is inherited from
that of the de Rham complex. Specifically, for Λ1 � ξ �= 0, the symbol complex
of (11) is constructed from the double complex

−→ Λp ξ∧−−−→ Λp+1 ξ∧−−−→ Λp+2 −→
↑ ∧ φ ↑ ∧ φ ↑ ∧ φ

−→ Λp−3 ξ∧−−−→ Λp−2 ξ∧−−−→ Λp−1 −→,

the rows of which are exact (they are Koszul complexes). �

As in the (conformally) symplectic case, this construction (and this proof
of ellipticity) avoids explicit formulæ for the operators. If such formulæ are
needed, then one simply needs explicitly to write out the branching (9) (as is
done in [9, p. 365]).
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As in the conformally symplectic case (7), we may consider the global
cohomology on M of the complex (11), which we shall denote by Hr

φ(M) for
0≤ r ≤ 9.

Theorem 4. On a conformally calibrated G2-manifold (M,φ), we have

H0
φ(M) =H0

(
M,H0

)
, H1

φ(M) =H1
(
M,H0

)
,

H8
φ(M) =H6(M,R), H9

φ(M) =H7(M,R)

and a long exact sequence

0→H2
(
M,H0

)
→H2

φ(M)→H0(M,R)
δ−→H3

(
M,H0

)

→H3
φ(M)→H1(M,R)

δ−→H4
(
M,H0

)
→ · · ·

· · · →H6
φ(M)→H4(M,R)

δ−→H7
(
M,H0

)

→H7
φ(M)→H5(M,R)→ 0,

where δ : Hr(M,R) → Hr+3(M,H0) is given by cup product with the coho-
mology class [φ] ∈H3(M,H0).

Proof. Immediate from the hypercohomology spectral sequence as for the
proof of Theorem 2 except that the connecting homomorphism δ does not
appear until the E3-level. �

In the calibrated case (when α = 0), Hr(M,H0) =Hr(M,R) and we see
that Hr

φ(M) is determined by the de Rham cohomology of M and the action

of [φ] ∈H3(M,R) by cup product.

4. Other geometries

There are several other geometries defined by special k-forms for which
one can apply similar reasoning. Certainly, there are Spin(7)-geometries in
dimension 8 defined [3] by a fundamental 4-form Φ. The construction given
in this article extends to this case and, by the work of Joyce [11], there are
non-trivial compact examples with dΦ= 0.

Also, there are SO(3)× SO(3)-geometries in dimension 9 defined [10] by a
fundamental 5-form and SU(4)×U(1)-geometries in dimension 10 defined [6]
by a fundamental 6-form or 4-form but, for the moment, it is unclear whether
there are any examples of such geometries that are not locally homogeneous.
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