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ON ABEL SUMMABILITY OF JACOBI POLYNOMIALS
SERIES, THE WATSON KERNEL AND APPLICATIONS

CALIXTO P. CALDERÓN AND WILFREDO O. URBINA

Abstract. In this paper, we return to the study of the Wat-
son kernel for the Abel summability of Jacobi polynomial se-
ries. These estimates have been studied for over more than 40
years. The main innovations are in the techniques used to get

the estimates that allow us to handle the cases 0< α as well as
−1<α< 0, with essentially the same methods. To that effect, we

use an integral superposition of Natanson kernels, and the A. P.

Calderón-Kurtz, B. Muckenhoupt Ap-weight theory. We consider

also a generalization of a theorem due to Zygmund in the context

of Borel measures. The proofs are different from the ones given

in (Sobre la conjugación y sumabilidad de series de Jacobi (1971)

Universidad de Buenos Aires, Studia Math. 49 (1974) 217–224,

Colloq. Math. 30 (1974) 277–288 and Illinois J. Math. 41 (1997)

237–265). We will discuss in detail the Calderón–Zygmund de-
composition for nonatomic Borel measures in R. We prove that

the Jacobi measure is doubling and following (Studia Math. 57

(1976) 297–306), we study the Ap weight theory in the context

of Abel summability of Jacobi expansions. We consider power

weights of the form (1 − x)α, (1 + x)β , −1 < α < 0,−1 < β < 0.

Finally, as an application of the weight theory we obtain Lp es-
timates for the maximal operator of Abel summability of Jacobi
function expansions for suitable values of p.

1. Introduction

Given α,β >−1, consider the Jacobi measure J α,β on [−1,1], defined as

(1.1) J α,β(dx) = ωα,β(x)dx= (1− x)α(1 + x)β dx.
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The Jacobi polynomials of parameters α,β, {Pα,β
n }n≥0 are orthogonal poly-

nomials with respect to the measure J α,β ,∫ 1

−1

Pα,β
n (x)Pα,β

m (x)J α,β(dx) = 0, if n �=m,(1.2)

with ∫ 1

−1

[
Pα,β
n (x)

]2J α,β(dx) =
2α+β+1

2n+ α+ β + 1

Γ(n+ α+ 1)Γ(n+ β + 1)

Γ(n+ 1)Γ(n+ αβ + 1)
(1.3)

= h(α,β)
n .

The normalization is given by

(1.4) Pα,β
n (1) =

(
n+ α

n

)
.

The main reference for Jacobi polynomials is [19], see also [1], [2], [13] and
[14].

The Jacobi functions are defined, for each n, as

(1.5) F (α,β)
n (x) = Pα,β

n (x)(1− x)α/2(1 + x)β/2.

Therefore, from (1.2) one gets that the Jacobi functions {F (α,β)
n } are orthog-

onal on [−1,1] with respect to the Lebesgue measure,∫ 1

−1

Fα,β
n (x)Fα,β

m (x)dx= 0, if n �=m.

For any f ∈ L2([−1,1],J α,β), we consider its Fourier–Jacobi polynomial ex-
pansion

(1.6)

∞∑
n=0

f̂ (α,β)(n)Pα,β
n (x),

where

f̂ (α,β)(n) =
1

h
(α,β)
n

∫ 1

−1

f(y)Pα,β
n (y)J α,β(dy),

is the nth Fourier–Jacobi polynomial coefficient.1 Then its partial sum of f ,
sα,βm (f,x), can be written as

(1.7) sα,βm (f,x) =

∫ 1

−1

Kα,β
m (x, y)f(y)J α,β(dy),

where

Kα,β
m (x, y) =

m∑
n=0

Pα,β
n (x)Pα,β

n (y)

h
(α,β)
n

.

1 In [8], the expansions are considered with respect to the orthonormal family.
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The kernel Kα,β
m is called the Dirichlet–Jacobi kernel. Moreover, by orthog-

onality, we get ∫ 1

−1

Kα,β
m (x, y)J α,β(dy) = 1.

Given the Jacobi polynomial series expansion of f , (1.6), let us consider its
Abel summability

(1.8) fα,β(r, x) =
∞∑

n=0

rnf̂ (α,β)(n)Pα,β
n (x), 0< r < 1.

Using a classical argument and the estimate (see [19], (7.32.1))

(1.9)
∣∣Pα,β

n (x)
∣∣≤Cnq+1/2,

where q =max(α,β)≥−1/2, it is easy to see that the series (1.8) converges
uniformly and absolutely on [−1,1]. Therefore fα,β(r, x) has the integral
representation,

(1.10) fα,β(r, x) =

∫ 1

−1

Kα,β(r, x, y)f(y)J α,β(dy),

for f ∈ L1([−1,1], Jα,β). Here

Kα,β(r, x, y) =

∞∑
n=0

rn
Pα,β
n (x)Pα,β

n (y)

h
(α,β)
n

.(1.11)

Kα,β is called the Watson kernel. Observe that the kernel is symmetric in x
and y, i.e. K(α,β)(r, x, y) =K(α,β)(r, y, x). The positivity of this kernel was
initially proved by G. Gasper, see [11], [12]. The case of Abel summability
for Gegenbauer expansions was considered by B. Muckenhoupt and E. Stein
in their landmark paper in 1965 [16].

Analogously, for any f ∈ L2([−1,1]) we consider its Fourier–Jacobi function
expansion

(1.12)

∞∑
n=0

f̃ (α,β)(n)Fα,β
n (x),

where

f̃ (α,β)(n) =
1

h
(α,β)
n

∫ 1

−1

f(y)Fα,β
n (y)dy,

is the nth Fourier–Jacobi function coefficient. Then its partial sum s̃α,βm (f,x),
can be written as

(1.13) s̃α,βm (f,x) =

∫ 1

−1

K̃α,β
m (x, y)f(y)dy,
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where

K̃α,β
m (x, y)

=

m∑
n=0

Fα,β
n (x)Fα,β

n (y)

h
(α,β)
n

=

m∑
n=0

Pα,β
n (x)Pα,β

n (y)

h
(α,β)
n

× (1− x)α/2(1− y)α/2(1 + x)β/2(1 + y)β/2.

Now, given the Jacobi function series expansion of f (1.12), consider its Abel
summability

(1.14) f̃α,β(r, x) =

∞∑
n=0

rnf̃ (α,β)(n)Fα,β
n (x), 0< r < 1.

Therefore, we also get the integral representation,

(1.15) f̃α,β(r, x) =

∫ 1

−1

K̃α,β(r, x, y)f(y)dy,

for f ∈ L1([−1,1]), here

K̃α,β(r, x, y)

=

∞∑
n=0

rn
Fα,β
n (x)Fα,β

n (y)

h
(α,β)
n

=

∞∑
n=0

rn
Pα,β
n (x)Pα,β

n (y)

h
(α,β)
n

(1− x)α/2(1− y)α/2(1 + x)β/2(1 + y)β/2

=Kα,β(r, x, y)(1− x)α/2(1− y)α/2(1 + x)β/2(1 + y)β/2.

K̃α,β is called the modified Watson kernel for Jacobi functions.
From the previous representation and (1.15) we get,

f̃α,β(r, x) = (1− x)α/2(1 + x)β/2(1.16)

×
∫ 1

−1

Kα,β(r, x, y)(1− y)α/2(1 + y)β/2f(y)dy.

In 1936 Watson obtained the following representation for Kα,β(r, x, y), see
[10], page 272, and also [21],

Kα,β(r, x, y) = r(1−α−β)/2(1.17)

× d

dr

(
k1+α+β

∫ π/2

0

sec2+α+β ω cos(α− β)ω

Zα
1 Z

β
2 Y

dω

)
,
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where k = 1
2 (r

1/2 + r−1/2), s= k secω,

Y =

((
x− y

2

)2

+
(
s2 − 1

)(
s2 − xy

))1/2

,

Z1 = s2 − 1

2
(x+ y) + Y, and

Z2 = s2 +
1

2
(x+ y) + Y.

The integral in (1.17) can be proved that is convergent only if α+β >−1; since
s≥ 2, Y 2 ∼ s4,Z1 ∼ s2,Z2 ∼ s2, then taking the change of variable s= k secω,

∫ π/2

0

sec2+α+β ω cos(α− β)ω

Zα
1 Z

β
2 Y

dω ≤ k−(2+α+β)

∫ ∞

k

sα+β+1

Zα
1 Z

β
2 Y

k ds

s
√
s2 − k2

.

Assuming that 1/2< r < 1, and then 1< k < 3/2< 2, for 2< s<∞,

∫ ∞

2

sα+β+1

Zα
1 Z

β
2 Y

k ds

s
√
s2 − k2

∼ C

∫ ∞

k

sα+β+1

s2αs2βs2
ds√

s2 − k2

= C

∫ ∞

k

1

sα+β+2
ds=C(α,β)<∞,

therefore∫ π/2

0

sec2+α+β ω cos(α− β)ω

Zα
1 Z

β
2 Y

dω ≤ Ck−(1+α+β)

∫ 2

k

sα+β+1

s2αs2βs2
ds√

s2 − k2

= C(α,β).

The Watson kernel is good for localization. The deficits of this representation
are:

• First, the integral is only convergent for α+ β >−1,
• It is not clear from the representation that the kernel is positive.

There is another representation of the Watson kernel obtained by W. N.
Bailey in 1939 ([4], page 102, see also [3], page 11),

K(α,β)(r, x, y) =
Γ(α+ β + 2)(1− r)

2α+β+2Γ(α+ 1)Γ(β + 1)(1 + r)α+β+2

×
∑
n

∑
m

( (α+β+2)
2 )m+n(

(α+β+3)
2 )m+n

m!n!(α+ 1)m(β + 1)n

(
a2

k2

)m(
b2

k2

)n

=
Γ(α+ β + 2)(1− r)

2α+β+2Γ(α+ 1)Γ(β + 1)(1 + r)α+β+2

× F4

(
(α+ β + 2)

2
,
(α+ β + 3)

2
;α+ 1, β + 1;

a2

k2
,
b2

k2

)
,
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with a=

√
(1−x)(1−y)

2 , b=

√
(1+x)(1+y)

2 , and as before k = 1
2 (r

−1/2 + r1/2). F4

is the Appell hypergeometric function in two variables,

F4

(
α,β;γ, γ′;x, y

)
=
∑
n

∑
m

(α)m+n(β)m+n

m!n!(γ)m(γ′)n
xmyn.

Let us observe that the condition for absolute convergence of the F4 func-
tion is |x|1/2 + |y|1/2 < 1, see [20], and therefore the expression above for
K(α,β)(r, x, y) converges absolutely if a

k + b
k < 1 and that there is not restric-

tion on α,β, i.e., it is valid for any α >−1, β >−1.
Observe that by direct inspection of Bailey’s representation it is clear that

K(α,β)(r, x, y)≥ 0.

From the uniform convergence of the Jacobi polynomials series and the fact
that the system is complete, it can be proved, using the orthogonality, that∫ 1

−1

K(α,β)(r, x, y)J α,β(dy) = 1.

On the other hand, by Hölder’s inequality, it is easy to see that for 1≤ p≤∞,

(1.18)
∥∥fα,β(r, ·)

∥∥
p,α,β

≤ ‖f‖p,α,β ,
where

‖f‖p,α,β =

(∫ 1

−1

∣∣f(x)∣∣pJ α,β(dy)

)1/p

,

is the Lp norm with respect to the Jacobi measure J α,β(dy).
Moreover, we have the strong Lp-convergence of the Abel sum. We will

present an elementary and direct proof of this result, without further restric-
tion that α>−1, β >−1.

Lemma 1.1. For α >−1, β >−1

(1.19)
∥∥fα,β(r, ·)− f

∥∥
p,α,β

→ 0, as r→ 1,

for 1< p≤∞.

Proof. The proof will be done in cases, for different values of p.

(i) For the case p= 2, using Parserval’s identity, the positivity of the kernel
K(α,β)(r, x, y) and the completeness of {Pα,β

n }, we have immediately that
for f ∈ L2(J α,β),

∥∥fα,β(r, ·)− f
∥∥
2,α,β

=

∞∑
n=0

(
r2n − 1

)∣∣f̂ (α,β)(n)
∣∣2 → 0,

as r→ 1.
(ii) For p �= 2, fix λ > 0, and let f ∈ Lp(J α,β). Without any loss of generality

we may assume f ≥ 0. Write f as f = f1+f2 with |f1| ≤ λ, f1 ∈ L2(J α,β)
and let us take λ big enough that ‖f2‖p < ε.
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• Now if 2< p≤∞, then | f1λ | ≤ 1 implies | f1λ |p ≤ | f1λ |2,
∥∥fα,β

1 (r, ·)− f1
∥∥p
p,α,β

= 2pλp

∥∥∥∥12
(
f1
λ

)α,β

(r, ·)− 1

2

(
f1
λ

)∥∥∥∥
p

p,α,β

≤ 2pλp

∥∥∥∥12
(
f1
λ

)α,β

(r, ·)− 1

2

(
f1
λ

)∥∥∥∥
2

2,α,β

= 2p−2λp−2
∥∥fα,β

1 (r, ·)− f1
∥∥2
2,α,β

→ 0

as r→ 1, from the previous case. Now from (1.18)∥∥fα,β
2 (r, ·)− f2

∥∥p
p,α,β

≤ 2p
(∥∥fα,β

2 (r, ·)
∥∥p
p,α,β

+ ‖f2‖pp,α,β
)

≤ 2p+1‖f2‖pp,α,β < 2p+1εp.

• Finally, for 1≤ p < 2, since |f1| ≤ λ, using Hölder’s inequality, we have∥∥fα,β
1 (r, ·)− f1

∥∥p
p,α,β

≤ C
∥∥fα,β

1 (r, ·)− f1
∥∥2
2,α,β

.

The inequality for f2 is obtained similarly as in the previous case. �

The maximal function f∗
α,β for the Abel summability of the Jacobi polyno-

mial expansions is defined as

(1.20) f∗
α,β(x) = sup

0<r<1

∣∣fα,β(r, x)
∣∣= sup

0<r<1

∣∣∣∣
∫ 1

−1

Kα,β(r, x, y)f(y)J α,β(dy)

∣∣∣∣.
We will give an alternative proof, as a consequence of the main result of this
paper, that, for α + β > −1, f∗

α,β is weak-(1,1) continuous with respect to

J α,β , that is,

J α,β
{
f∗
α,β > λ

}
≤ Cα,β

λ
‖f‖1,α,β .(1.21)

On the other hand, using Bailey’s representation it is almost trivial to get,
for α >−1, β >−1

(1.22)
∥∥fα,β(r, ·)

∥∥
∞ ≤C‖f‖∞.

It follows then

(1.23)
∥∥f∗

α,β

∥∥
∞ ≤C‖f‖∞.

Therefore, by interpolation we get, for 1< p<∞,

(1.24)
∥∥f∗

α,β

∥∥
p,α,β

≤C‖f‖p,α,β .

For more details on the Jacobi maximal function can be found in [5], [6]
and [8].

After this paper was completed, we learned that there is some overlapping
with results obtained by A. Nowak, P. Sjögren and collaborators, see [17].
It is important to note that th Calderón–Zygmund decomposition for Jacobi
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measures was introduced in 1971 by Luis Cafarelli, as an auxiliary result, in
his doctoral dissertation, see [5].

2. Estimates of the Watson kernel

By the product rule in the Watson representation (1.17),

Kα,β(r, x, y) = r(1−α−β)/2 d

dr

(
k1+α+β

∫ π/2

0

sec2+α+β ω cos(α− β)ω

Zα
1 Z

β
2 Y

dω

)

we get four kernels A,B,C,D defined in the following way,

A = r(1−α−β)/2 d

dr

(
k1+α+β

)∫ π/2

0

sec2+α+β ω cos(α− β)ω

Zα
1 Z

β
2 Y

dω,

B = r(1−α−β)/2k1+α+β

∫ π/2

0

d

dr

(
Y −1

) sec2+α+β ω cos(α− β)ω

Zα
1 Z

β
2

dω,

C = r(1−α−β)/2k1+α+β

∫ π/2

0

d

dr

(
Z−α
1

) sec2+α+β ω cos(α− β)ω

Zβ
2 Y

dω,

D = r(1−α−β)/2k1+α+β

∫ π/2

0

d

dr

(
Z−β
2

) sec2+α+β ω cos(α− β)ω

Zα
1 Y

dω.

Then we have, see [6], pages 282–283 or [8], Lemma 4.1, pages 245–249,

Lemma 2.1. We have the following estimate for the Watson kernel,

(2.1) Kα,β(r, x, y)≤C(α,β)
(
1 +L(r, x, y)

)
,

where C(α,β) is a positive constant, depending on α,β only, L(r, x, y) is the
integral

L(r, x, y) = (1− r)

∫ 2

k

(s−min(x, y))1−α

((x− y)2 + (s− 1)(s−min(x, y)))3/2
ds

(s− k)1/2
,

where k = 1
2 (r

1/2 + r−1/2),0≤ x≤ 1.

For the proof of this lemma, the following estimates will be needed, for
detail see Appendix in [8]. Let 1≤ s≤ 2,0≤ x≤ 1, |y| ≤ 1. Then:

(i) s2 −min(x, y)≤ 4(s−min(x, y));
(ii) s−min(x, y)≤ 2(s− xy)≤ 4(s−min(x, y));
(iii) C1((x− y)2 + (s− 1)(s−min(x, y)))≤ Y 2 and Y 2 ≤C2((x− y)2 + (s−

1)(s−min(x, y)));
(iv) s2 −min(x, y)≤ Z1 ≤C(s2 −min(x, y));
(v) 1≤ s2 +max(x, y)≤ Z2 ≤C;
(vi) If ϕ(x, r) = (k− 1)1/2(k− x)1/2, then k− 1≤ φ(x, r)≤ k− x, for k > 1;
(vii) C1(1− r)2 ≤ k− 1≤C2(1− r2), if 0< r0 < r < 1.

Here C,C1,C2 denote positive constants. From these estimates, observe that:

• By (iii), Y 2 ∼ ((x− y)2 + (s− 1)(s−min(x, y))).
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• By (iv), Z1 ∼ (s2 −min(x, y)).
• By (v), Z2 is essentially a constant.

Observe that if −1 < x < 0 similar estimates hold, just changing the role
of α and β. For details of the proof of Lemma 1 see [8], Lemma 4.1.

Finally in [6], pages 284–286 and [8], Lemma 4.1, page 254, the following
estimate for L was obtained.

Lemma 2.2.

(2.2) L(r, x, y)≤Cα,β

∞∑
n=0

1

2n/2
1

J α,β(In(x, r))
χIn(x,r),

where In(x, t) = [x− 2nϕ(x, r), x+ 2nϕ(x, r)] ∩ [−1,1], χIn(x,r) is its charac-

teristic function and ϕ(x, r) = (k− 1)1/2(k− x)1/2.

Our aim in this paper to get another estimate for L(r, x, y) using super-
position of Natanson’s kernels. The following technical result, see (5.1) and
(5.2) of [8], is needed, for completeness the proof will be given.

Lemma 2.3. For k chosen as above, there exist constants C1 and C2 inde-
pendent of r such that,

(2.3) (1− r)

∫ 2

k

1

(s− k)1/2(s− 1)
ds < C1

and

(2.4) (1− r)

∫ 2

k

1

(s− k)1/2(s− 1)1/2(s− x)1/2
ds < C2.

Proof. Let us prove first (2.3). Observe that, by the estimate (vii) we have
(k− 1)∼ (1− r)2 i.e. (k− 1)1/2 ∼ (1− r). Then, integrating by parts,

(k− 1)1/2
∫ 2

k

1

(s− k)1/2(s− 1)
ds

= (k− 1)1/2
[
2(2− k)1/2 +

∫ 2

k

(s− k)1/2

(s− 1)2
ds

]
,

and

(k− 1)1/2
∫ 2

k

(s− k)1/2

(s− 1)2
ds ≤ (k− 1)1/2

∫ 2

k

1

(s− 1)3/2
ds

= (k− 1)1/2
∫ 2

k

1

(s− k+ k− 1)3/2
ds

≤
∫ 2

k

1

(k− 1)

1

(| s−k
k−1 |+ 1)3/2

ds

=
1

λ

∫ 2

k

k1

(
s− k

λ

)
ds < C,
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where λ= (k−1) and the Poisson type kernel k1(x) =
1

(|x|+1)3/2
. Observe that∫∞

−∞ k1(x)dx=
∫∞
−∞

1
(|x|+1)3/2

dx= 4.

The second estimate (2.4) follows immediately from (2.3). �

The following technical result is also needed for the proof of the coming
Theorem 2.6.

Lemma 2.4. For any η > 1

sup
0<|a|<1

1

[(z + a)2 + 1]η
≤ C

[z2 + 1]η
.

Proof. Let us consider two cases:

• If |z|> 3 that is, |z|
3 > 1, then for 0< |a|< 1

|z + a| ≥ |z| − |a|> 2|z|
3

+

(
|z|
3

− 1

)
≥ 2|z|

3
, so

|z + a|2 ≥ 4|z|2
9

.

Thus

1

[(z + a)2 + 1]η
≤ 1

[ 4|z|
2

9 + 1]η

≤ 1

[ 4|z|
2

9 + 4
9 ]

η
=

( 94 )
η

[|z|2 + 1]η
=

C

[|z|2 + 1]η
.

• If |z|< 3, then

1

[(z + a)2 + 1]η
≤ 1, and

1

10η
≤ 1

[z2 + 1]η
≤ 1,

thus
1

[(z + a)2 + 1]η
≤ 1≤ 10η

[z2 + 1]η
=

C

[z2 + 1]η
.

�

Definition 2.5. Given −∞≤ a < b≤∞, a Borel measure μ with support
in (a, b), a nonnegative kernel K(r, x, y) depending on a parameter r, that
satisfies

(i) K it is monotone increasing in y, for a < y < x, monotone decreasing in
y, for b > y > x

(ii) ∫ b

a

K(r, x, y)μ(dy)≤M,

where M is independent of x and r,

is called a Natanson’s kernel with respect to μ.
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Theorem 2.6. For α>−1, the expression

(2.5) L := (1− r)

∫ 2

k

(s−min(x, y))1−α

((x− y)2 + (s− 1)(s−min(x, y)))3/2
ds

(s− k)1/2

is bounded by a superposition of a family of Natanson’s kernels integrated
with respect to the parameter s.2 Calling K∗(x, y, r,α) that bounding kernel,

we have that
∫ 1

0
K∗(x, y, r,α)(1 − y)α dy is bounded from above independent

from x, r.

Proof. We will consider two cases,

(i) Case α≥ 0.

(i-1) If x≤ y < 1: Calling (L, I) the corresponding part of L in this range
we have

(L, I) = (1− r)

∫ 2

k

(s− x)1−α

((x− y)2 + (s− 1)(s− x))3/2
ds

(s− k)1/2

≤ (1− r)

∫ 2

k

1

(s− k)1/2
(s− x)−α

(s− 1)

× 1

[(s− 1)(s− x)]1/2
1

(( x−y
[(s−1)(s−x)]1/2

)2 + 1)3/2
ds.

Considering the Poisson type kernel

k2(x) =
1

(x2 + 1)3/2
,

we get, for λ= [(s− 1)(s− x)]1/2,

(L, I) ≤ (1− r)

∫ 2

k

(s− x)−α

(s− k)1/2(s− 1)

1

λ
k2

(
x− y

λ

)
ds

≤ (1− r)

∫ 2

k

(s− x)−α

(s− k)1/2(s− 1)
Kλ(x− y)ds

with

Kλ(x− y) =
1

[(s− 1)(s− x)]1/2
1

(( x−y
[(s−1)(s−x)]1/2

)2 + 1)3/2

=
1

λ
k2

(
x− y

λ

)
.

For fixed x, Kλ(x− y) is a Natanson’s kernel and moreover,

1

(s− x)α
Kλ(x− y)

2 We are following similar notation as in [8].
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is a Natanson’s kernel (since 1
(s−x)α does not depend on y). Hence, this

integral with respect to s is also a Natanson kernel.
Now if we integrate (L, I) with respect to the measure μα(dy) = (1−y)α dy,

noticing that on this range, (s− x)−α ≤ (1− y)−α,∫ ∞

−∞
k2(x)dx=

∫ ∞

−∞

1

(x2 + 1)3/2
dx= 2,

using also Lemma 2.3, we get

∫ 1

x

(L, I)(1− y)α dy

≤
∫ 1

0

(1− r)

∫ 2

k

(s− x)−α

(s− k)1/2(s− 1)
Kλ(x− y)ds(1− y)α dy

≤
∫ 1

0

(1− r)

∫ 2

k

1

(s− k)1/2(s− 1)
dsKλ(x− y)dy ≤C.

(i-2) If 0< y < x: Calling (L, II ) the corresponding part of L in this range,
using the same notation as in (i-1), we have

(L, II ) ≤ (1− r)

∫ 2

k

(s− y)1−α

(s− k)1/2(s− 1)(s− x)
Kλ(x− y)ds.

Now, writing

(s− y)1−α = (s− y)(s− y)−α

=
[
(s− x) + (x− y)

]
(s− y)−α,

we get two terms,

(L, II ) ≤ (1− r)

∫ 2

k

(s− y)−α

(s− k)1/2(s− 1)
Kλ(x− y)ds

+ (1− r)

∫ 2

k

(s− y)−α

(s− k)1/2(s− 1)(s− x)
(x− y)Kλ(x− y)ds

= (L, II 1) + (L, II 2).

The first term is analogous to case (i-1). But in this range

(s− y)−α ≤ (1− y)−α,

and

(x− y)Kλ(x− y)

≤ |x− y|
[(s− 1)(s− x)]1/2

1

(( x−y
[(s−1)(s−x)]1/2

)2 + 1)3/2
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≤C
[[ |x−y|
[(s−1)(s−x)]1/2

]2 + 1]1/2

(( x−y
[(s−1)(s−x)]1/2

)2 + 1)3/2

=C
[
(s− 1)(s− x)

]1/2 1

[(s− 1)(s− x)]1/2
1

(( x−y
[(s−1)(s−x)]1/2

)2 + 1)
.

Hence, by considering the Poisson type kernel k3(x) =
1

(x2+1) , we get, for

λ= [(s− 1)(s− x)]1/2,

(x− y)Kλ(x− y)≤C
[
(s− 1)(s− x)

]1/2 1
λ
k3

(
x− y

λ

)

=C
[
(s− 1)(s− x)

]1/2
K∗

λ(x− y).

Finally, for fixed x, (1− y)−αKλ(x− y) is increasing for y < x, so is the
case for (1− y)−αK∗

λ(x− y). Thus, they are (one-sided) Natanson’s kernels.
Therefore, (L, II ) is then dominated by the sum of the kernels, for y < x

(1− r)

∫ 2

k

1

(s− k)1/2(s− 1)(1− y)α
Kλ(x− y)ds,

and

(1− r)

∫ 2

k

[(s− 1)(s− x)]1/2

(s− k)1/2(s− 1)(s− x)(1− y)α
K∗

λ(x− y)ds.

Then, integrating (L, II ) respect to the measure μα(dy) = (1− y)α dy, on
this range, using (2.3), we get the uniform boundedness,

∫ x

0

(L, II )(1− y)α dy

≤
∫ 1

0

(1− r)

∫ 2

k

(1− y)−α

(s− k)1/2(s− 1)
Kλ(x− y)ds(1− y)α dy

+

∫ 1

0

(1− r)

∫ 2

k

[(s− 1)(s− x)]1/2(1− y)−α

(s− k)1/2(s− 1)(s− x)
K∗

λ(x− y)ds(1− y)α dy

≤
∫ 1

0

(1− r)

∫ 2

k

1

(s− k)1/2(s− 1)
Kλ(x− y)dsdy

+

∫ 1

0

(1− r)

∫ 2

k

[(s− 1)(s− x)]1/2

(s− k)1/2(s− 1)(s− x)
K∗

λ(x− y)dsdy

< C.

(ii) Case −1<α< 0.
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(ii-1) If x ≤ y < 1: Let (L, III ), be the corresponding part of L in this
range, as

(L, III ) ≤ (1− r)

∫ 2

k

(s− x)1−α

(s− k)1/2(s− 1)(s− x)

× 1

[(s− 1)(s− x)]1/2
1

(( x−y
[(s−1)(s−x)]1/2

)2 + 1)3/2
ds

= (1− r)

∫ 2

k

(s− x)−α

(s− k)1/2(s− 1)
Kλ(x− y)ds.

This kernel is decreasing for y > x. We need a bound for the integral with
respect to the measure μα(dy) = (1− y)α dy. Now, let us write

x− y =
[
x+ (1− s)− y

]
+ (s− 1),

and obtain

x− y

[(s− 1)(s− x)]1/2
=

x+ (1− s)− y

[(s− 1)(s− x)]1/2
+

s− 1

[(s− 1)(s− x)]1/2
.

If a= s−1
[(s−1)(s−x)]1/2

, then we dominate Kλ by

Kλ(x− y)≤ sup
a,|a|≤1

1

[(s− 1)(s− x)]1/2
1

[( (x+1−s)−y
[(s−1)(s−x)]1/2

+ a)2 + 1]3/2
.

Using Lemma 2.4, with η = 3/2, we get

sup
a,|a|<1

1

[(z + a)2 + 1]3/2
≤ C

[z2 + 1]3/2
.

Since α < 0, ψ(y) = (1 − y)α is an A1-Muckenhoupt weight with respect to
the Lebesgue measure, see [9], and therefore,∫ 1

x

(1− y)α

[(s− 1)(s− x)]1/2
dy

[( x+(1−s)−y
[(s−1)(s−x)]1/2

)2 + 1]3/2
≤CMψ

(
x+ (1− s)

)
,

where Mψ is the Hardy–Littlewood maximal function of ψ is a A1-weight, we
get

Mψ
(
x+ (1− s)

)
≤Cψ

(
x+ (1− s)

)
=C

[
1−

(
x+ (1− s)

)]α
=C(s− x)α.

Thus, by estimate (2.3)∫ 1

x

(L, III )(1− y)α dy ≤ C(1− r)

∫ 2

k

(s− x)−α

(s− k)1/2(s− 1)

×
∫ 1

x

Kλ(x− y)(1− y)α dy ds

≤ C.
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(ii-2) Finally, if 0< y < x: Let (L, IV ) be the corresponding part of L in
this range,

(L, IV ) ≤ (1− r)

∫ 2

k

1

(s− k)1/2(s− 1)(s− x)

× (s− y)1−α

[(s− 1)(s− x)]1/2(( x−y
[(s−1)(s−x)]1/2

)2 + 1)3/2
ds

= (1− r)

∫ 2

k

1

(s− k)1/2(s− 1)(s− x)
Kλ(x− y)ds.

Now, since α< 0

(s− y)1−α ≤Cα

[
(s− x)1−α + (x− y)1−α

]
,

we split the integral into two terms. The first term

(L, IV ,1) = Cα(1− r)

∫ 2

k

(s− x)−α

(s− k)1/2(s− 1)
Kλ(x− y)ds.

The first term can be handled in a similar way as in the case (ii-1), taking

x− y =
[
(x+ 1− s)− y

]
+ (s− 1),

and using again Lemma 2.4, with η = 3/2. We get as before,∫ 1

x

(L, IV ,1)(1− y)α dy ≤ C(1− r)

∫ 2

k

(s− x)−α

(s− k)1/2(s− 1)

×
∫ 1

x

Kλ(x− y)(1− y)α dy ds

≤ C.

For the second term,

(L, IV ,2) =Cα(1− r)

∫ 2

k

(x− y)−α

(s− k)1/2(s− 1)(s− x)
Kλ(x− y)ds,

the numerator can be rewritten as

(x− y)1−α

=
[
(s− 1)(s− x)

](1−α)/2
(

x− y

[(s− 1)(s− x)]1/2

)1−α

≤
[
(s− 1)(s− x)

](1−α)/2
[(

x− y

[(s− 1)(s− x)]1/2

)2

+ 1

](1−α)/2

.

Then

(x− y)−αKλ(x− y)

≤ [(s− 1)(s− x)](1−α)/2

[(s− 1)(s− x)]1/2

[( x−y
[(s−1)(s−x)]1/2

)2 + 1](1−α)/2

[( x−y
[(s−1)(s−x)]1/2

)2 + 1]3/2
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=
[(s− 1)(s− x)](1−α)/2

[(s− 1)(s− x)]1/2
1

[( x−y
[(s−1)(s−x)]1/2

)2 + 1]3/2−(1−α)/2

=
[
(s− 1)(s− x)

](1−α)/2
K∗∗

λ (x− y),

where

K∗∗
λ (x− y) =

1

[(s− 1)(s− x)]1/2
1

[( x−y
[(s−1)(s−x)]1/2

)2 + 1]3/2−(1−α)/2

=
1

λ
k4

(
x− y

λ

)

with λ= [(s− 1)(s− x)]1/2, and

k4(x) =
1

(x2 + 1)3/2−(1−α)/2
.

Since 3
2 −

1−α
2 = 1+ α/2> 1/2 k4 is a Poisson type kernel.

Finally, as

(s− 1)1/2(s− x)1/2(s− 1)−α/2(s− x)−α/2

≤ (s− 1)1/2(s− x)1/2(s− x)−α

then (L, IV ,2) is dominated by,

(1− r)

∫ 2

k

(s− x)−α

(s− k)1/2(s− 1)1/2(s− x)1/2
K∗∗

λ (x− y)ds.

Then, this is analogous to the case (ii-1), but with the kernel k4 and
therefore, using estimate (2.3), and weight theory we get that (L, IV ,2) is
bounded. �

3. Applications

We are going to obtain several consequences from Theorem 2.6.
First, we consider a result due to A. Zygmund (see [22], Vol. I, Lemma 7.1,

pages 154–155).

Theorem 3.1 (Zygmund). Given −∞ ≤ a < b ≤ ∞, a Borel measure μ
with support in (a, b) and a kernel K(r, x, ·) depending on a parameter r,
satisfying the following conditions

(3.1)

∫ b

a

∣∣K(r, x, y)
∣∣μ(dy)≤M1

and

(3.2)

∫ b

x

μ(x, y)V2

(
K(r, x, dy)

)
≤M2,

∫ x

a

μ(y,x)V2

(
K(r, x, dy)

)
≤M2.
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Here, M1,M2 are constants independent of x and r, μ(x, y) =
∫ x∨y

x∧y
μ(du)

and V2(K(r, x, ·)) is the (first) variation of the kernel K(r, x, y) in the variable
y, namely,

V2

(
K(r, x, ·)

)
= sup

∑
i

∣∣K(r, x, yi)−K(r, x, yi−1)
∣∣,

where the supremum is taken over all partitions of [a, b] and the integrals are
considered in the Lebesgue–Stieltjes sense.

Then, for f ∈ L1(μ), we have

(3.3)

∣∣∣∣
∫ b

a

K(r, x, y)f(y)μ(dy)

∣∣∣∣≤Mf∗
μ(x),

where M depends only on M1,M2 and

f∗
μ(x) = sup

x∈I

1

μ(I)

∫
I

f(y)μ(dy),

is the noncentered Hardy–Littlewood maximal function for f with respect to
the measure μ.

A kernel K(r, x, y) satisfying properties (3.1) and (3.2) will be called Zyg-
mund’s kernels.

Proof of Theorem 3.1. Using the integration by parts formula for Stieltjes
integrals, we have∫ b

x

K(r, x, y)μ(dy) =

(∫ b

x

μ(du)

)
K(r, x, b)−

∫ b

x

(∫ y

x

μ(du)

)
K(r, x, dy)

= μ(x, b)K(r, x, b)−
∫ b

x

μ(x, y)K(r, x, dy).

Therefore, by hypothesis

∣∣μ(x, b)K(r, x, b)
∣∣ ≤

∫ b

x

∣∣K(r, x, y)
∣∣μ(dy) +

∫ b

x

μ(x, y)K(r, x, dy)

≤
∫ b

x

∣∣K(r, x, y)
∣∣μ(dy) +

∫ b

x

μ(x, y)V2

(
K(r, x, dy)

)
≤M1 +M2.

Now, for f ∈ L1(μ) and using again the integration by parts formula,∫ b

x

f(y)K(r, x, y)μ(dy)

=

(∫ b

x

f(y)μ(dy)

)
K(r, x, b)−

∫ b

x

(∫ y

x

f(y)μ(dy)

)
K(r, x, dy)

=

(∫ b

x

f(y)μ(dy)

)
K(r, x, b)−

∫ b

x

(∫ b

x

f(y)μ(dy)

)
K(r, x, dy)
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=

(
1

μ(x, b)

∫ b

x

f(y)μ(dy)

)
μ(x, b)K(r, x, b)

−
∫ b

x

(
1

μ(x, y)

∫ b

x

f(y)μ(dy)

)
μ(x, y)K(r, x, dy).

Thus, ∣∣∣∣
∫ b

x

f(y)K(r, x, y)μ(dy)

∣∣∣∣
≤ f∗

μ(x)
∣∣μ(x, b)K(r, x, b)

∣∣+ f∗
μ(x)

∫ b

x

μ(x, y)V2

(
K(r, x, dy)

)
≤ (M1 +M2)f

∗
μ(x) +M2f

∗
μ(x) = (M1 + 2M2)f

∗
μ(x). �

In particular, Zygmund’s result implies Natanson’s lemma (see [15], Theo-
rem 1),

Corollary 3.2 (Natanson). Given −∞ ≤ a < b ≤ ∞, a Borel measure
μ with support in (a, b) and K(r, x, y) be a Natanson kernel. Then, for f ∈
L1(μ), we have

(3.4)

∣∣∣∣
∫ b

a

K(r, x, y)f(y)μ(dy)

∣∣∣∣≤Mf∗
μ(x).

Proof. We need to check that K satisfies the conditions of Zygmund’s re-
sult. Condition (3.1) is trivially satisfied and (3.2) are easily obtained from
the monotonicity conditions. �

In particular, Poisson type kernels are Natanson’s kernels and therefore
they satisfy the conditions of Zygmund’s lemma.

Now, as a consequence of Theorem 2.6 and using Zygmund’s lemma we
have the following theorem.

Theorem 3.3. Let α+ β >−1 and f ∈ L1(J α,β), define the operator

Jαf(x) =

∫ 1

0

(1− r)

∫ 2

k

(s−min(x, y))1−α

((x− y)2 + (s− 1)(s−min(x, y)))3/2
(3.5)

× ds

(s− k)1/2
(1− y)αf(y)dy.

Then,

(3.6) Jαf(x)≤Cf∗
Jα,β (x),

where f∗
Jα,β is the (noncentered) Hardy–Littlewood maximal function with re-

spect to the Jacobi measure J α,β .
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Proof. The idea of the proof is as follows. By using Theorem 2.6 (for both
cases −1 < α < 0 and 0 ≤ α) and applying Zygmund’s result to the bound-
ing kernel (which is a combination of Natanson’s kernels) for the measure
μα(dy) = (1− y)α, we get the desire estimate for Jαf .

We need to analyze two cases:

(i) Case α≥ 0. In this case we have, from the estimates in (i-1) and (i-2)
in the proof of Theorem 2.6, with the same notation used there,

Jαf(x) ≤ (1− r)

∫ 2

k

(s− x)−α

(s− k)1/2(s− 1)

∫ 1

x

Kλ(x− y)f(y)(1− y)α dy ds

+ (1− r)

∫ 2

k

(s− y)−α

(s− k)1/2(s− 1)

∫ x

0

Kλ(x− y)f(y)(1− y)α dy ds

+ (1− r)

∫ 2

k

(s− y)−α

(s− k)1/2(s− 1)(s− x)

×
∫ x

0

(x− y)Kλ(x− y)f(y)(1− y)α dy ds

≤ (1− r)

∫ 2

k

(s− x)−α

(s− k)1/2(s− 1)

∫ 1

x

Kλ(x− y)f(y)(1− y)α dy ds

+ (1− r)

∫ 2

k

(1− y)−α

(s− k)1/2(s− 1)

∫ x

0

Kλ(x− y)f(y)(1− y)α dy ds

+ (1− r)

∫ 2

k

(1− y)−α

(s− k)1/2(s− 1)(s− x)

×
∫ x

0

K∗
λ(x− y)f(y)(1− y)α dy ds.

Since Kλ(x− ·) and K∗
λ(x− ·) are Natanson’s kernels, applying Zygmund’s

result with respect to the measure μ(dy) = (1−y)α dy and Lemma 2.3, we get

Jαf(x)≤Cf∗
Jα,β (x).

(ii) Case −1<α< 0. In this case we have, from the estimates in (ii-1) and
(ii-2) in the proof of Theorem 2.6

Jαf(x) ≤ C(1− r)

∫ 2

k

(s− x)−α

(s− k)1/2(s− 1)

×
∫ 1

x

Kλ(x− y)f(y)(1− y)α dy ds

+Cα(1− r)

∫ 2

k

(s− x)−α

(s− k)1/2(s− 1)

×
∫ x

0

Kλ(x− y)f(y)(1− y)α dy ds



362 C. P. CALDERÓN AND W. O. URBINA

+ (1− r)

∫ 2

k

(s− x)−α

(s− k)1/2(s− 1)1/2(sx)1/2

×
∫ x

0

K∗∗
λ (x− y)f(y)(1− y)α dy ds.

Since Kλ(x−·) and K∗∗
λ (x−·) are Natanson’s kernels, applying Zygmund’s

result with respect to the measure μ(dy) = (1−y)α dy and Lemma 2.3, we get

Jαf(x)≤Cf∗
Jα,β (x). �

Observation. Notice that there is another operator

Jα,βf(x) =

∫ 0

−1

(1− r)

∫ 2

k

(s−min(x, y))1−α

((x− y)2 + (s− 1)(s−min(x, y)))3/2
(3.7)

× ds

(s− k)1/2
(1 + y)βf(y)dy.

With analogous arguments as in the previous result, for α + β > −1, we
have immediately

(3.8) Jα,βf(x)≤Cf∗
Jα,β (x).

Therefore, by the continuity properties of f∗
Jα,β , we have the following

corollary.

Corollary 3.4. For α,β >−1, the operators Jα and Jα,β are weak-(1,1)
continuous with respect to the Jacobi measure J α,β .

Then, using the inequality (2.1) and the two previous results, we get that
Jacobi maximal function f∗

α,β (see (3.13)) is weak (1,1) with respect to the
Jacobi measure.

Now, let us consider a Calderón–Zygmund’s decomposition for a nonatomic
Borel measure μ on R, implicit in Cafarelli’s doctoral dissertation [5] (compare
with the classical case, see [18]).

Theorem 3.5 (Calderón–Zygmund). Given −∞≤ a < b≤∞, a nonatomic
Borel measure μ with support on (a, b), λ > 0 and f ∈ L1(μ), f ≥ 0, then there
exists a family of nonoverlapping intervals {Ik}
(i) λ < 1

μ(Ik)

∫
Ik
f(y)μ(dy)≤ 2λ,

(ii) |f(x)| ≤ λ, a.e. μ, for x /∈
⋃

k Ik.

Proof.

• If 1
μ(a,b)

∫ b

a
f(y)μ(dy)> λ then

μ(a, b)<
1

λ

∫ b

a

f(y)μ(dy) =
1

λ
‖f‖1,

and then there is nothing to prove.
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• If 1
μ(a,b)

∫ b

a
f(y)μ(dy)≤ λ, then consider two intervals, I0,1, I0,2 with disjoint

interiors such that (a, b) = I0,1 ∪ I0,2 and μ(I0,1) = μ(I0,2) =
1
2μ(a, b). Let

us observe that we can not have that the inequality

1

μ(I0,i)

∫
I0,i

f(y)μ(dy)> λ,

hold for both i= 1 and i= 2 since otherwise,

1

μ(a, b)

∫
(a,b)

f(y)μ(dy)

=
2

μ(I0,1)

∫
I0,1

f(y)μ(dy) +
2

μ(I0,2)

∫
I0,2

f(y)μ(dy)> 4λ,

which is a contradiction, then we have that at least one of then (or even
both) satisfy

1

μ(I0,i)

∫
I0,i

f(y)μ(dy)≤ λ.

In that case consider again two intervals, Ii,1, Ii,2 with disjoint interiors such
that I0,i = Ii,1 ∪ Ii,2 and μ(Ii,1) = μ(Ii,2) =

1
2μ(I0,i) =

1
4μ(a, b) and iterate

the previous argument. If we have

1

μ(I0,i)

∫
I0,i

f(y)μ(dy)> λ,

then
1

μ(I0,i)

∫
I0,i

f(y)μ(dy) ≤ 1

μ(I0,i)

∫
(a,b)

f(y)μ(dy)

=
2

μ(a, b)

∫
(a,b)

f(y)μ(dy)≤ 2λ.

Set I0,i aside, it will be one of our chosen interval Ik.
This infinite recursion will give us a family {Ik} such that,

λ <
1

μ(Ik)

∫
Ik

f(y)μ(dy)≤ 2λ.

Set Gλ =
⋃∞

k=1 Ik, then

μ(Gλ) =

∞∑
k=1

μ(Ik)<
1

λ

∞∑
k=1

∫
Ik

f(y)μ(dy)≤ 1

λ

∫
Gλ

f(y)μ(dy)

≤ 1

λ

∫
R

f(y)μ(dy) =
1

λ
‖f‖1,μ.

Let us observe that if x /∈
⋃

k Ik then there is an infinite family of intervals
I containing x such that

1

μ(I)

∫
I

f(y)μ(dy)≤ λ,
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then by Lebesgue differentiation theorem, see Lemma 7 of [7], we get
|f(x)| ≤ λ a.e. μ, x /∈

⋃
k Ik.

Now, set μk =
1

μ(Ik)

∫
Ik
f(y)μ(dy) we can write f = g+ b where,

g(x) = fχR−Gλ
(x) +

∑
k

μkχIk(x)

and

b(x) = f(x)− g(x) =
∑
k

(
f(x)− μk

)
χIk(x).

g, b are called that good and bad part of f , respectively. Observe that
g ≤ 2λ in Gλ, the bad part is only nonzero in Gλ and

∫
Ik
b(y)μ(dy) = 0.

If G∗
λ =

⋃∞
k=1 I

∗
k where I∗k = 3Ik meaning that I∗k is the union of Ik with

two other intervals (one to the right and one to the left of it) with the same
μ measure, that is, I∗k = I ′k ∪ Ik ∪ I ′′k , with μ(I ′k) = μ(Ik) = μ(I ′′k ), then

μ
(
G∗

λ

)
=

∞∑
k=1

μ
(
I∗k
)
= 3

∞∑
k=1

μ(Ik)≤
3

λ
‖f‖1,μ. �

We can use Calderón–Zygmund decomposition for a kernel K(r, x, y) that
satisfies the conditions of Zygmund’s theorem.

Proposition 3.6. Given a nonatomic Borel measure μ, with support in
(a, b), and K(r, x, y) be a Zygmund’s kernel. Then for f ∈ L1(μ) and x /∈G∗

λ,

(3.9) sup
r

∣∣∣∣
∫ b

a

K(r, x, y)f(y)μ(dy)

∣∣∣∣≤Cλ.

Proof. We know by Zygmund’s lemma that∣∣∣∣
∫ b

a

K(r, x, y)f(y)μ(dy)

∣∣∣∣≤Mf∗
μ(x).

Now, using Calderón–Zygmund decomposition for f = g+ b, we get∫ b

a

K(r, x, y)f(y)μ(dy) =

∫ b

a

K(r, x, y)g(y)μ(dy) +

∫ b

a

K(r, x, y)b(y)μ(dy)

and as |g|< 2λ, a.e. μ, by (3.1),∣∣∣∣
∫ b

a

K(r, x, y)g(y)μ(dy)

∣∣∣∣< 2M1λ.

If x /∈G∗
λ, using integration by parts, where Ik = (ak, bk)∣∣∣∣

∫ b

a

K(r, x, y)b(y)μ(dy)

∣∣∣∣
=

∣∣∣∣
∑
k

∫
Ik

(
f(y)− μk

)
K(r, x, y)μ(dy)

∣∣∣∣
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=

∣∣∣∣
∑
k

∫ bk

ak

(
f(y)− μk

)
K(r, x, y)μ(dy)

∣∣∣∣
=

∣∣∣∣
∑
k

∫ bk

ak

(∫ y

ak

(
f(u)− μk

)
μ(du)

)
K(r, x, dy)

∣∣∣∣
as

∫ bk
ak

(f(u)− μk)μ(du) = 0, using that x /∈G∗
λ, and (3.2)∣∣∣∣

∫ b

a

K(r, x, y)b(y)μ(dy)

∣∣∣∣ ≤ Cλ
∑
k

∫
Ik

μ(Ik)V2

(
K(r, x, dy)

)

≤ Cλ
∑
k

∫
Ik

μ(x, y)V2

(
K(r, x, dy)

)

≤ Cλ

∫
Gλ

μ(x, y)V2

(
K(r, x, dy)

)

≤ Cλ

∫ b

x

μ(x, y)V2

(
K(r, x, dy)

)
≤CλM2.

Thus, for x /∈G∗
λ

sup
r

∣∣∣∣
∫ b

a

K(r, x, y)f(y)μ(dy)

∣∣∣∣≤Cλ. �

This result could be extended to the case of measures that do have atoms.
The following result was proved implicitly by L. Cafarelli in [5],

Theorem 3.7. For α,β >−1, the Jacobi measure J α,β is a doubling mea-
sure.

Proof. Let us consider first the measure μ(dy) = ya, in [0,1], a >−1. Then
we will see that μ is a doubling measure on [0,1].

Let k ≥ 2 and Ik,j = [k2−j , (k+ 1)2−j ] a dyadic interval. Observe that

μ(Ik,j) =

∫ (k+1)2−j

k2−j

ya dy =
2−j(a+1)

a+ 1

[
(k+ 1)a+1 − ka+1

]
.

Now let us consider 3Ik,j the interval with the same center (k+ 1/2)2−j and
3 times the length of Ik,j that is, 3Ik,j = [(k− 1)2−j , (k+ 2)2−j ], then

μ(3Ik,j) =

∫ (k+2)2−j

(k−1)2−j

ya dy =
2−j(a+1)

a+ 1

[
(k+ 2)a+1 − (k− 1)a+1

]
.

Thus,

μ(3Ik,j)

μ(Ik,j)
=

(k+ 2)a+1 − (k− 1)a+1

(k+ 1)a+1 − ka+1

=
(1+ 2

k )
a+1 − (1− 1

k )
a+1

(1 + 1
k )

a+1 − 1
.
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It can be proved that the quotient
μ(3Ik,j)
μ(Ik,j)

is increasing in k for a ∈ (0,1) and

decreasing for a ∈ (−1,0)∪ (1,∞). By L’Hopital rule,

lim
k→∞

μ(3Ik,j)

μ(Ik,j)
= lim

k→∞

2(1 + 2
k )

a + (1− 1
k )

a

(1 + 1
k )

a
= 3.

Therefore if a ∈ (0,1),

Ca =
3a+1

2a+1 − 1
≤ μ(3Ik,j)

μ(Ik,j)
≤ 3

and elsewhere

3≤ μ(3Ik,j)

μ(Ik,j)
≤ 3a+1

2a+1 − 1
=Ca.

Similarly, using the same arguments, we can prove that μ is also a doubling
measure on [−1,0].

Now observe that, by a change of variable, on [0,1] the measure ya dy is
equivalent to (1− y)a dy, in the following sense∫ 1

0

f(y)(1− y)α dy =

∫ 1

0

f(1− u)uα du=

∫ 1

0

f(u)uα du,

and clearly there is a one-to-one correspondence between f and f . Similarly,
on [−1,0] the measure ya dy is equivalent to (1 + y)a dy.

Finally, as a consequence of the previous results we have that the Jacobi
measure J α,β(dy) = (1− y)α(1 + y)β dy in (0,1) is equivalent to yα dy and is
equivalent to yβ dy in (−1,0). Therefore, J α,β is then a doubling measure on
[−1,1]. �

Now that we know that the Jacobi measure J α,β is a doubling measure we
can use the result of A. P. Calderón [7], in order to get the Ap weight theory
for J α,β . Remember a function ω > 0, is an Ap weight with respect to J α,β ,
ω ∈Ap, if [

1

J α,β(B)

∫
B

ω(y)J α,β(dy)

]
(3.10)

×
[

1

J α,β(B)

∫
B

ω(y)−1/(p−1)J α,β(dy)

]p−1

≤Cp,

for 1< p<∞ and

(3.11) MJα,βω(x)≤C1ω(x),

for p= 1. For a complete exposition of the Ap weight theory see, for instance,
the book of J. Duoandikoetxea [9].

In what follows, we will use the following notation for a measure μ(dx) =
g(x)dx, ∫ b

a

μ(dy) =

∫ b

a

g(y)dy =G(b)−G(a).
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We want to consider some interesting A1 weights for the Jacobi measure.
Observe that by the factorization result (see Duoandikoetxea [9], Proposi-
tion 7.2, page 136) they are like building blocks for Ap weights for p > 1.
First of all, we need the following technical result.

Lemma 3.8. Let μ be a nonnegative Borel measure on [0,1) and absolutely
continuous that is, μ(dx) = g(x)dx where g is nonnegative and continuous.
Then if f is a nonincreasing nonnegative function, then

1

G(x)−G(a)

∫ a

x

f(y)g(y)dy

is also nonincreasing function. The same result is true for a nonnegative Borel
measure μ on (−1,0].

Proof. Since

d

dx

(
1

G(a)−G(x)

∫ a

x

f(y)g(y)dy

)

=
−f(x)g(x)(G(a)−G(x)) + (

∫ a

x
f(y)g(y)dy)g(x)

(G(a)−G(x))2

=
g(x)(−f(x)(G(a)−G(x)) +

∫ a

x
f(y)g(y)dy)

(G(a)−G(x))2
≤ 0,

as g ≥ 0 and f(x)
∫ a

x
g(y)dy ≥

∫ a

x
f(y)g(y)dy. Therefore, the quotient is non-

increasing as claimed. �

We will use the previous result to consider lateral maximal functions. If
we consider the left lateral maximal function of nonincreasing nonnegative
function f ,

f∗
−(a) = sup

0≤x≤a

1

G(a)−G(x)

∫ a

x

f(y)g(y)dy,

we have, by Lemma 3.8,

f∗
−(a) =

1

G(a)−G(0)

∫ a

0

f(y)g(y)dy =
1

G(a)

∫ a

0

f(y)g(y)dy,

as G(0) = 0.
By analogous argument, we have that for a nonincreasing nonnegative func-

tion f , its the right lateral maximal function equals,

f∗
+(a) = sup

0≤a≤x

1

G(x)−G(a)

∫ x

a

f(y)g(y)dy = f(a+).

The case of a general nonnegative Borel measure μ can be obtained using
Helly’s selection principle.

Now, let us consider the A1 weights for the Jacobi measure.
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Lemma 3.9. (i) For 1<α<∞, let us consider the power measure μα(dx) =
xα dx on [0,1), then the function ωα(x) = xα,−1<α< 0, α+α >−1 is a A1

weight with respect to μα.
(ii) Similarly, considering the power measure μβ(dx) = xβ dx on [−1,0),

then the function ωβ(x) = xβ ,−1 < β < 0, β + β > −1 is an A1 weight with
respect to μβ .

Proof. By previous considerations, the left maximal function with respect
to μα is equal to,

C

xα+1

∫ x

0

tαtα dt=
C

xα+1

∫ x

0

tα+α dt

=
C

xα+1
xα+α+1 =Cxα,

and the right maximal functions simply xα, thus the function ωα(x) =
xα,−1<α< 0, α+ α>−1 is an A1 weight with respect to the measure μα.

Similarly, on [−1,0) ωβ(x) = xβ ,−1 < β < 0, β + β > −1 is an A1 weight

with respect to the measure μβ(dx) = xβ dx,1< β <∞. �

Now we have the following result for the Jacobi measure. This result ex-
tends the set of weights that were considered in [8], where only positive power
were considered.

Theorem 3.10. Given the Jacobi measure J α,β(dx) = (1− x)α(1+ x)β dx
on [−1,1], the functions

(3.12) ωα,β(x) = (1− x)α(1 + x)β ,

are A1 weights with respect to J α,β for α+ α >−1, β + β >−1.

Proof. By Lemma 3.9 and similar arguments as above, the function
ωα(x) = (1 − x)α,−1 < α < 0, α + α > −1 is an A1 weight with respect
to the measure να(dx) = (1 − x)α dx and similarly, the function ωβ(dx) =

(1 + x)β dx,−1< β < 0, β + β >−1>−1 is an A1 weight with respect to the
measure νβ(dx) = (1 + x)β dx on [−1,0) and from there we get our result
immediately. �

Finally, as a consequence of Theorem 3.10, we have the following result for
Abel summability of Jacobi function expansions. The maximal function f̃∗

α,β

for Jacobi function expansions is defined as

(3.13) f̃∗
α,β(x) = sup

0<r<1

∣∣f̃α,β(r, x)
∣∣= sup

0<r<1

∣∣∣∣
∫ 1

−1

K̃α,β(r, x, y)f(y)dy

∣∣∣∣.
Then,
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Theorem 3.11. For α < 0, β < 0 such that α+ β >−1, the Abel summa-
bility of Jacobi function expansions we have for max[ 2

2−|α| ,
2

2−|β| ] < p <

min[ 2
|α| ,

2
|β| ], ∥∥f̃α,β

∗
∥∥
p
≤C‖f‖p.

Proof. Let us consider only the case of the interval [0,1] with α< 0, the case
[−1,0] is totally analogous. From (1.16) we have, by the maximal inequality
of the Hardy–Littlewood function Mνα with respect to the measure να(dx) =
(1− x)α dx,

∫ 1

0

K̃α,β(r, x, y)f(y)dy

≤Cβ(1− x)α/2
∫ 1

0

Kα,β(r, x, y)(1− y)α/2f(y)dy

=Cβ(1− x)α/2
∫ 1

0

Kα,β(r, x, y)
[
(1− y)−α/2f(y)

]
(1− y)α dy

≤CβMνα

(
(1− ·)−α/2f

)
(x)(1− x)α/2.

Since this bound is independent of r, we get

sup
0<r<1

∫ 1

0

K̃α,β(r, x, y)f(y)dy ≤CβMνα

(
(1− ·)−α/2f

)
(x)(1− x)α/2.

Therefore, by the L2 continuity of Mνα with respect to the measure να,

∥∥f̃α,β
∗

∥∥
2
≤

∫ 1

0

[
sup

0<r<1

∫ 1

0

K̃α,β(r, x, y)f(y)dy

]2
dx

≤ Cβ

∫ 1

0

[
Mνα

(
(1− ·)−α/2f

)]2
(x)(1− x)α dx

≤ Cβ

∫ 1

0

[
(1− x)−α/2f(x)

]2
(1− x)α dx

≤ Cβ

∫ 1

0

[
f(y)

]2
dy =C‖f‖22.

Thus, ∥∥f̃α,β
∗

∥∥
2
≤C‖f‖2.

Analogously, for the Lp inequality. If p > 2,

∥∥f̃α,β
∗

∥∥
p
≤

∫ 1

0

[
sup

0<r<1

∫ 1

0

K̃α,β(r, x, y)f(y)dy

]p
dx

≤ Cβ

∫ 1

0

[
Mνα

(
(1− ·)−α/2f

)]p
(x)(1− x)pα/2 dx
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and observe that

(1− x)pα/2 = (1− x)pα/2−α+α = (1− x)δ+α, δ = pα/2− α= α(p− 2)/2;

(1− x)δ+α is a Ap(να)-weight if δ+α= αp/2>−1, i.e. p < 2/|α|, and there-
fore, by the Lp continuity of Mνα with respect to the measure να,∫ 1

0

[∫ 1

0

K̃α,β(r, x, y)f(y)dy

]p
dx ≤ Cβ

∫ 1

0

(1− x)−αp/2
[
f(x)

]p
(1− x)αp/2 dx

= Cβ

∫ 1

0

[
f(x)

]p
dx=Cβ‖f‖pp.

If 1< p< 2, (1− x)pα/2−α is a Ap(να)-weight if and only if

(1− x)(pα/2−α)(−1/(p−1)) = (1− x)(−pα/2(p−1)+α/(p−1))

= (1− x)(−qα/2+qα/p),

is a Aq(να)-weight,
1
p + 1

q = 1, see [9]. But

−qα/2 + qα/p=−qα/2 + qα/p= qα(1/p− 1/2) = γ,

and therefore (1 − x)(pα/2−α)(−1/(p−1)) = (1 − x)γ is a Aq(να dy)-weight for
q > 2. Then∫ 1

0

[∫ 1

0

K̃α,β(r, x, y)f(y)dy

]q
dx ≤ Cβ

∫ 1

0

(1− x)−αq/2
[
f(x)

]q
(1− x)αq/2 dx

= Cβ

∫ 1

0

[
f(x)

]q
dx=Cβ‖f‖qq.

From the previous case, the condition p < 2/|α| holds if and only if q > 2
2−|α| ,

so the general condition for p is

2

2− |α| < p<
2

|α| .

Finally, the bilateral condition in [−1,1] is then

max

[
2

2− |α| ,
2

2− |β|

]
< p<min

[
2

|α| ,
2

|β|

]
. �

Observation. For the case of α,β positive, the previous result was ob-
tained in [8].
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