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ON THE LEFSCHETZ AND HODGE-RIEMANN THEOREMS

TIEN-CUONG DINH AND VIET-ANH NGUYEN

ABSTRACT. We give an abstract version of the hard Lefschetz
theorem, the Lefschetz decomposition and the Hodge—Riemann
theorem for compact Kahler manifolds. Some examples are stud-
ied for compact symplectic K&dhler manifolds.

1. Introduction

Let X be a compact Kéahler manifold of dimension n and let w be a Kéahler
form on X. Denote by HP4(X,C) the Hodge cohomology group of bidegree
(p,q) of X with the convention that HP9(X,C) = 0 outside of the range
0<p,g<n. When p,g >0 and p+ ¢ <n, put Q:=w" P~ ¢ and define a
Hermitian form @ = Qq on H?1(X,C) by

Q({a}.{B)) = o (-1) = E /X aABAQ

for smooth closed (p,q)-forms o and . The last integral depends only on the
classes {a}, {#} of a, B in HP(X,C).

The classical Hodge-Riemann theorem asserts that @ is positive-definite
on the primitive subspace H?4(X,C)pyim of HP4(X,C) which depends on Q
and is given by

HP9(X,C)prim = {{a} € H?(X, C), {a} » {2} » {w} =0},
where -« denotes the cup-product on the cohomology ring ®H*(X,C), see,
for example, Demailly [5], Griffiths and Harris [15] and Voisin [25].

Still under the assumption that  :=w™ P79 the hard Lefschetz theorem
says that the linear map {a} — {a} « {Q} defines an isomorphism between
HP4(X,C) and H" 9" P(X,C). Moreover, the following Lefschetz decom-
position

HPY(X,C)={w}~ H """ 1(X,C) ® H”(X,C)prim
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is orthogonal with respect to the Hermitian form @). Consequently, we deduce
easily from the above theorems the signature of @ in term of the Hodge
numbers AP :=dim HP*4(X,C). For example, when p = ¢ =1 the signature
of Q is equal to (A% —1,1).

The above three theorems are not true if we replace {2} with an arbitrary
class in H" P~¢""P~4(X R), even when the class contains a strictly positive
form, see, for example, Berndtsson and Sibony [4, §9] and Remark 2.9 below.
Our aim here is to give sufficient conditions on {2} for which these theorems
still hold. We will say that such a class {Q} satisfies the Hodge-Riemann the-
orem, the hard Lefschetz theorem and the Lefschetz decomposition theorem
for the bidegree (p,q).

If E is a complex vector space of dimension n and E its complex conjugate,
we will introduce in the next section the notion of Hodge-Riemann cone in
the exterior product A¥ E® A" E with 0 < k < n, see Definition 2.1 below. In
practice, E is the complex cotangent space at a point x of X and we obtain
a Hodge-Riemann cone associated with X. Here is our main result.

THEOREM 1.1. Let (X,w) be a compact Kahler manifold of dimension n.
Let p,q be non-negative integers such that p+q <n and Q a closed smooth
form of bidegree (n—p—q,n—p—q) on X. Assume that Q takes values only
in the Hodge—Riemann cone associated with X. Then {Q} satisfies the Hodge—
Riemann theorem, the hard Lefschetz theorem and the Lefschetz decomposition
theorem for the bidegree (p,q).

Roughly speaking, the hypothesis of Theorem 1.1 says that at every point
x of X, we can deform € continuously to w™ P77 in a “nice way.” However,
we do not need that the deformation depends continuously on x and a priori
the deformation does not preserve the closedness nor the smoothness of the
form.

We deduce from Theorem 1.1 the following corollary using a result due to
Timorin [24], see Proposition 2.2 below.

COROLLARY 1.2. Let (X,w) be a compact Kdhler manifold of dimension n.
Let p, q be non-negative integers such that p+q <n and wy,...,wn_p—q be
Kdhler forms on X. Then the class {wi A -+ Awn_p_q} satisfies the Hodge—
Riemann theorem, the hard Lefschetz theorem and the Lefschetz decomposition
theorem for the bidegree (p,q).

The last result was obtained by the authors in [10], see also Cattani [6]
for a proof using the theory of variations of Hodge structures. It solves a
problem which has been considered in some important cases by Khovanskii
[19], [20], Teissier [22], [23], Gromov [16] and Timorin [24]. The reader will
find some related results and applications of the above corollary in Cattani
[6], de Cataldo and Migliorini [7], Gromov [16], Dinh and Sibony [9], [11] and
Keum, Oguiso and Zhang [18], [28].
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This paper is organized as follows. We begin Section 2 by defining the
notion of Hodge-Riemann forms. This notion plays a key role in this work.
Next, we will establish some of its important properties. This preparatory
material is necessary for us to prove Theorem 1.1 in Section 3. Section 4 is
devoted to a thorough study of an explicit family of Hodge—Riemann forms
in the context of compact symplectic Kéhler manifolds.

2. Hodge—Riemann forms

In this section, we introduce the notion of Hodge-Riemann form in the
linear setting and we will discuss some basic properties of these forms.

Let E be a complex vector space of dimension n and E its conjugate space.
Denote by VP4 the space A\* E @ A?E of (p,q)-forms with the convention
that VP9 :=0 unless 0 < p,q <n. Recall that a form w in V! is a Kdhler
form if it can be written as

w=1tdzy Ndz1 + - +idz, NdZ,

for some coordinate system (z1,...,2,) of E, where z; ® Z; is identified with
dz; \ de.

Recall also that a form © in V** with 0 < k < n, is real if Q = . Let Vﬂg’k
denote the space of real (k,k)-forms. A form Q in V¥F is positive® if it is a
combination with positive coefficients of forms of type i**a Anw with a € VFO,
So, positive forms are real. If 2 is positive its restriction to any subspace of
E is positive. A positive (k, k)-form 2 is strictly positive, if its restriction to
any subspace of dimension k£ of E does not vanish. The powers of a Kéahler
form are strictly positive forms. Fix a Kéhler form w as above.

DEFINITION 2.1. A (k, k)-form Q in V** is said to be a Lefschetz form for
the bidegree (p,q) if k=n —p — g and the map a — a A ) is an isomorphism
between VP4 and V"~ ¢"P. A real (k,k)-form Q in Vﬂf’k is said to be a
Hodge-Riemann form for the bidegree (p,q) if there is a continuous deforma-
tion Q, € V" with 0 <t <1, Qp = and €, =w* such that

(%) Q; Aw? is a Lefschetz form for the bidegree (p —r,q — 1)

for every 0 <r < min{p,q} and 0 <t <1. The cone of such forms  is called
the Hodge—Riemann cone for the bidegree (p,q). We say that Q is Hodge—
Riemann if it is a Hodge-Riemann form for any bidegree (p,q) with p+ ¢=
n—k.

Note that the property (x) for ¢ =1 is a consequence of the linear version
of the classical hard Lefschetz theorem. The Hodge—Riemann cone is open in
Vﬂf * and a priori depends on the choice of w. In practice, to check that a

1 There are two other notions of positivity but we will not use them here.
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form is Hodge—Riemann is usually not a simple matter. We have the following
result due to Timorin in [24].

PROPOSITION 2.2. Let k be an integer such that 0 <k <n. Let wy,...,wk
be Kdhler forms. Then Q :=wi A--- Awy is a Hodge—Riemann form.

Consider a square matrix M = (a;;)1<i,j<k Wwith entries in VL1, Assume
that M is Hermitian, that is, o;; = a; for all 4, j. We say that M is Griffiths
positive if for any row vector § = (1, ...,0;) in C*\ {0} and its transpose ‘6,

9M'0 is a Kahler form. We call Griffiths cone the set of (k,k)-forms in V**
which can be obtained as the determinant of a Griffiths positive matrix M as
above. We are still unable to answer the following question.

PROBLEM 2.3. Is the Griffiths cone contained in the Hodge—Riemann cone?

The affirmative answer to the question would allow us to obtain a tran-
scendental version of the hyperplane Lefschetz theorem which is known for the
last Chern class associated with a Griffiths positive vector bundle, see Voisin
[25, p. 312]. Another fact which allows us to believe in the affirmative answer
is that the Griffiths cone contains the wedge-products of Kahler forms (case
where M is diagonal) which are Hodge-Riemann according to Proposition 2.2.

Note also that for the above problem it is enough to check the condition
() for t =0 and r =0. Indeed, we can consider Q;, the determinant of the
Griffiths positive matrix M; := (1 —¢)M + tIw, where [ is the identity matrix.
It is enough to observe that €; A w?” is the determinant of the Griffiths posi-
tive (k + 2r) x (k 4 2r) matrix which is obtained by adding to M; a square
block equal to w times the identity 2r x 2r matrix.

The following question is also open.

PROBLEM 2.4. Let 4, 0<t <1, be a continuous family of strictly positive
(k,k)-forms in Vﬂg’k with Q= Q and Q1 = w*. Assume the property () in
Definition 2.1 for r =0 and for this family ;. Is Q always a Hodge—Riemann
form for the bidegree (p,q)?

Note that the strict positivity of € implies the property (%) for r =
min{p, ¢}. This is perhaps a reason to believe that the answer to the above
problem is affirmative. An interesting point here is that the cone of all forms
) as in Problem 2.4 does not depend on w. The following result gives a partial
answer to the question.

PROPOSITION 2.5. Let €; be as in Problem 2.4. Assume moreover that
min{p,q} <2. Then Q is a Hodge-Riemann form for the bidegree (p,q).

Fix a coordinate system (z1,...,2,) of E such that w=1idz Adz; +--- +
idz, N\ dZ,. So, this Kdhler form is invariant under the natural action of the
unitary group U(n). We will need the following lemma.
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LEMMA 2.6. Let a be a form in VP9~1 with ¢ >2 and p+q <n. Assume
that for every ¢ € VO we can write a Ao =w A B for some 3 € VP~La—1,
Then we can write o =w A~y for some € VP~1472,

Proof. Let M denote the set of all forms o € VP9~ ! satisfying the hy-
pothesis of the lemma. Observe that M is invariant under the action of
U(n). So, it is a linear representation of this group. Let P; denote the prim-
itive subspace of VP~59717J that is, the set of ¢ € VP~5971=J such that
¢ AwnTPTIT242 — (. Tt is well-known that the P; are irreducible representa-
tions of U(n) and they are not isomorphic one to another, see, for example,
Fujiki [13, Proposition 2.2]. Moreover, we have the Lefschetz decomposition

Vp’qilz @ wj/\Pj.

0<j<min{p,q—1}

The space w’ A P; is also a representation of U(n) which is isomorphic to P;.
Therefore, it is enough to show that M does not contain F.
Consider the form

a:=dzag N---NdZg Ndzg1 N - Ndzpig.

A direct computation shows that « is a form in Py. Observe that o Adz; does
not contain any factor dz; A dz;. Therefore, a ¢ M because a A dz; does not
belong to w A VP~14=1 The lemma follows. U

Given nonnegative integers p, g such that p+ ¢ <n and a real form € of
bidegree (n — p —q,n — p — q), define the Hermitian form @ by

Q(a, B) = iU (—1) " 2F 2 L (ABAQ) for a,B€ VP,
where * is the Hodge star operator. Define also the primitive subspace
PPi={aecVP?: a NQAw=0}.

The classical Lefschetz theorem asserts that the wedge-product with w de-
fines a surjective map from V"?~¢"~P to V—a+1Ln=p+1 Tt kernel is of dimen-
sion dim VP4 — dim VP~ 14~!, Therefore, if the map o — QA « is injective on
VP4 the above primitive space has dimension dim V74 —dim VP~ %91 which
does not depend on §2.

We also need the following lemma.

LEMMA 2.7. Let Q; be a continuous family of real (k,k)-forms in Vﬂg’k with
D=0, O =wk and 0 <t < 1. Assume that Q, is Lefschetz for the bidegree
(p,q) for every 0 <t <1 and Q; Aw? A« is Lefschetz for the bidegree (p —
1,q—1) for every 0 <t < 1. Then, for every form o in VP4~ (resp. VP~1:4)
satisfying a AQ Aw =0, a belongs to w A VP~1472 (resp. w A VP=2471),

It is worthy to note here that since o — Q; A w? A a is isomorphic from
yp=la=l o yn=atln=p+l for only 0 <t <1 (and not for every 0 <t < 1!),
the intersection w A VP~19=1 0 PP4 is in general, non-zero.
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Proof. Let V' denote the space of forms 8 € VP2 such that Q(8,¢) =0
for every ¢ in w A VP~1L4=1 4 pPrd. The hypothesis implies that @ is non-
degenerate. Therefore, we obtain

dimw A VP17 4 dim PP = dim VP~ 147! 4 dim VP — dim VP!
= dim VP9
and hence
dim V = dim V4 — dim(w A VP~H971 4 PP9) = dim (w A VP41 0 PP,

On the other hand, by definition of PP?, the space w A VP~14—1 0 prd ig
contained in V. We deduce that these two spaces coincide.

Let a € VP4~1 such that a AQ Aw =0 (the case a € VP19 can be treated
in the same way). Fix a form ¢ in V%!, By Lemma 2.6 and the above
discussion, we only need to show that o A ¢ belongs to V. It is clear that
Q(aNp,¢)=0for ¢ € wAVP~1471 Tt remains to show that Q(a A p,¢) =0
for ¢ € PP4. For this purpose, it is enough to consider the case where ¢ = dz;
since {dz1,...,dz,} is a basis of V1.

Denote by Q; and PP’ the Hermitian form and the primitive space asso-
ciated with Q; which are defined as above. Moreover, since Q; A w? A « is
Lefschetz for the bidegree (p — 1,q — 1), the intersection w A VP~1L4=1 0 pPd
is zero for every 0 < t < 1. Using the continuous deformation 2; of {2, we ob-
tain as in Proposition 2.8 below that @ is positive-definite on P*? for every
0 <t <1. Since the dimension of P? is constant, this space depends con-
tinuously on ¢. Hence, the restriction of @) to PP'¢ is semi-positive. Observe
that o A dz; is in PP»?. Hence,

Q(a/\dEj,a/\dEj) > 0.

The sum over j of Q(a A dZj,a A dZ;) vanishes since a AQAw=0. We
deduce that all the above inequalities are in fact equalities. Now, since @ is
semi-positive on PP9, by Cauchy-Schwarz’s inequality, Q(« A dz;,¢) =0 for
¢ € PP4. This completes the proof. O

Proof of Proposition 2.5. Assume without loss of generality that ¢ < p.
Observe that for every o« non-zero in V" %750 we have im=k=9"q A @ A
Qy Aw® > 0. So, we only have to consider the case ¢ =2 and to check the
property (x) for r =1. We will show that the map a+— Q; Aw A « is injective
on VP! and the map a+ Q; Aw? A « is injective on VP~1:1. The result will
follow easily.

Let X denote the set of ¢ satisfying the above property. By continuity, ¥ is
open in [0,1]. Moreover, by the Lefschetz theorem, it contains the point 1.
Assume that ¥ is not equal to [0,1]. Let top <1 be the minimal number such
that ]tg, 1] C ¥. We will show that ¢y € ¥ which is a contradiction. Up to a
re-parametrization of the family €;, we can assume for simplicity that o = 0.
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Consider a form o € VP! such that Q Aw A a=0. We deduce from
Lemma 2.7 that o = w Ay with v € VP~1.0, We have y AFAQ Aw?=0. The
positivity of Q implies that v =0 and then & =0. So, the map a+— QAwA «
is injective on VP!, By dimension reason, this map is bijective from V7! to
yn=ln=r So O, Aw is Lefschetz for the bidegree (p,1) for every 0 <t <1.
By the positivity of Q, the form Q; Aw? is Lefschetz for the bidegree (p — 1,0)
for every 0 <t < 1. Consequently, we are in the position to apply again
Lemma 2.7 but to ; Aw instead of €; and (p,1) instead of (p,q). We obtain
as above that the map o+ QA w? A« is injective on VP~1:1. Therefore, 0 is
a point in Y. This completes the proof. O

We give now fundamental properties of Hodge-Riemann forms that we will
use in the next section. We fix a norm on each space V**.

PROPOSITION 2.8. Let Q be a form satisfying the condition (x) in Defini-
tion 2.1 for r=0,1. Then the space VP splits into the Q-orthogonal direct
sum

VP = PPy A yr—Lla-1

and the Hermitian form Q is positive-definite on PP4. Moreover, for any
constant c; > 0 large enough, there is a constant ca > 0 such that

lal? < aQa,a) + calla AQAW|? for a € VP,

Proof. The Q-orthogonality is obvious. By the classical Lefschetz theorem,
the wedge-product with w defines an injective map from VP~14=1 to VP4,
Therefore, we have

dim V7?4 = dim PP¢ + dim VP~ 1971 = dim PP? + dimw A VP11,

On the other hand, the property (x) for r =1 implies that the intersection of
PP4 and w A VP14~ is reduced to 0. We then deduce the above decompo-
sition of VP2, Of course, this property still holds if we replace 2 with ;.

Denote by Q¢ and PP? the Hermitian form and the primitive space as-
sociated with €; which are defined as above. Since the dimension of P/
is constant, this space depends continuously on ¢. By the classical Hodge-
Riemann theorem, @, is positive-definite on PF?. If Q) is not positive-definite
on PP9, there is a maximal number ¢t such that (), is not positive-definite.
The maximality of ¢ implies that @) is positive-definite on PP*¢ when s > t.
It follows by continuity that there is an element o € PP, « # 0, such that
Q:(a, ) =0 for € PP?. By definition of P, this identity holds also for
BE€wAVP L4~ We then deduce that the identity holds for all 3 € VP9, It
follows that a A Q; = 0. This is a contradiction. So, @ is positive-definite on
PP,

We prove now the last assertion in the proposition for a fixed constant ¢q
large enough. Consider a form a € VP4. The first assertion implies that we
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can write
a=p+wAy with g€ PP? and v € yr—la-l
and we have
Qo) =Q(B, B) + Qw Ay, wA7).
Since the wedge-product with Q Aw? defines an isomorphism between VP~ 1:¢—1
and V7?9 tLn—P+1 there is a constant ¢ > 0 such that

c*Iny/\Q/\wzH <7l §c||fy/\Q/\w2|| =cllaAQAw|.
Therefore, there is a constant ¢’ > 0 such that
lall® < ¢ (18117 + 1711%) < ¢IIBI* + ' lan Q2 aw|?.

Finally, since @ is positive-definite on PP'¢ and since ¢; > 0 is large enough,
we obtain

N1B)17 < c1Q(8,8) = c1 (Qe,a) = Q(w Ay, w A7)
< aQ(a,a) + el
<cQ(a,q) +0103H’y/\9/\w2H2
=c1Q(a,a) +erlanQAw|?.
We then deduce the estimate in the proposition by taking ¢y :=c’c?4+c;¢3. O

REMARK 2.9. Consider the following strictly positive forms, exhibited by
Berndtsson and Sibony [4, §9],

Q. = (idzy AdZy) A (idzg A dZo) + (idzg A dZ3) A (idzg A dZy) + ew?® € V22

where € > 0 and dimE =4. (). is not a Lefschetz form for the bidegree
(1,1) if and only if the determinant of the linear map V1! 3 a— Q. A o with
respect to any fixed bases of V1! and V33 vanishes. So by expanding this
determinant it is not difficult to see that €. is not a Lefschetz form if and
only if € is a root of a suitable finite family of polynomials. Moreover, for
large enough, the determinant of the linear map associated to £ €. tends to
that of w? which is non-zero since w? is a Lefschetz form. So the above family
contains a non-zero polynomial. Consequently, for all but a finite number of
values of € >0, Q. is a Lefschetz form for the bidegree (1,1). In particular,
Q¢ is a Lefschetz form for all € > 0 small enough. By the positivity of €,
Q. Aw? is clearly a Lefschetz form for the bidegree (0,0). Recall from [4, §9]
that for every ¢ > 0 small enough, there is y* =~F € V11 \ {0} such that
YEAQ. Aw=0 and that

YTAYFAQ >0>7" Ay AQ..
So by Proposition 2.8, Q. is not Hodge—Riemann for the bidegree (1,1). This

example shows that the condition on the existence of a continuous deformation
in Definition 2.1 is necessary.
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3. Lefschetz and Hodge—Riemann theorems

In this section, we prove Theorem 1.1. Corollary 1.2 is then deduced from
that theorem and Proposition 2.2. We will use the results of the last section
for E the complex cotangent space of X at a point and w the Kéhler form
on X. So, we can define at every point of X a Hodge-Riemann cone for
bidegree (p,q). We now use the notation in Theorem 1.1. Let &79(X) (resp.
L2 (X)) denote the spaces of smooth (resp. L?) forms on X of bidegree (p, q).
Recall that Q € &*P~2""P~9(X) is a closed form that takes values only in
the Hodge—Riemann cone.

PropPOSITION 3.1. Assume that p,q > 1. Then, for every closed form f €
&P9(X) such that { f} € H?9(X,C)prim, there is a formue L2 (X)) such
that

dduNQAw=fANQAw.
Proof. Consider the subspace H of L2 ., .. 1(X) defined by
H:={ddaNQAw:ae & PHX)}

and the linear form ~ on H given by
h(dd°a AQAw) == (—1)PTott / aNfAQAwW.
X

We prove that h is a well-defined bounded linear form with respect to the
L?-norm restricted to H.
We claim that there is a constant ¢ > 0 such that

||aldcoz||L2 < cHddca AQ /\wHLQ.

Indeed, recall that () is a Hodge-Riemann form for the bidegree (p,q) for
all x € X. Therefore, we use the inequality in Proposition 2.8 applied to dd“«
instead of o and the complex cotangent spaces of X instead of E. Since X
is compact, we can find common constants ¢; and cs for all cotangent spaces.
We then integrate over X and obtain

[dd°a||%, < e1Q(dda, dda) + ez||dd°a A Q Aw]|[2,,
where @ is defined in Section 1. Using Stokes’ formula, we obtain

Q(dd°a, dd°a) = iP=(~1) / dd°a A dd@ A Q= 0.
X

We then deduce easily the claim.
Now, by hypothesis the smooth form f A Q Aw is exact. Therefore, there
is a form g € &7~ 9"P(X) such that

dd°g=fAQAw,
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see, for example, [5, p. 41]. Using again Stokes’ formula and the above claim,

we obtain
= ‘/ dd°aNg
X

/a/\f/\Q/\w‘:‘/ aANddg
X X

< |lgllzz ||ddcoz||L2 <c|lgllz Hddcoz AQ /\wHLQ.

It follows that h is a well-defined form whose norm in L? is bounded by c||g|| 2.

By the Hahn—Banach theorem, we can extend h to a bounded linear form
on L2 1, .+1(X). Let u be a form in L2 (X) that represents h. It
follows from the definition of h that

/ uNdd°aNQANw= (—1)’””1“/
b's b's

p—1,g—1

oz/\f/\Q/\wz—/ fAaNQAwW
X

for all test forms o € £9-1P~1(X). The form u satisfies the proposition. [
We have the following result.

PRrROPOSITION 3.2. Let u be as in Proposition 3.1. Then there is a form
v € &EPLITY(X) such that ddv = dd u.

Proof. We can assume without loss of generality that p < g. The idea is to
use the ellipticity of the Laplacian operator associated with 0 and a special
inner product on &77(X). We first construct this inner product. Fix an
arbitrary Hermitian metric on the vector bundle A"*(X) of differential (r, s)-
forms on X with (r, s) # (p,q) and denote by (-, -) the associated inner product
on &% (X).

Using the first assertion in Proposition 2.8, for any a, o’ € &P4(X), we can
write in a unique way

a=B+wAy and o =p+wAy

with 3,8 € &79(X) and 7,y € &P~1H971(X) such that BAQ Aw =0 and
B ANQAw=0. Define an inner product (-,-) on &74(X) by setting

(.a):=Q(8,8) +(1.,7) = Qe 8') + (1),
where (7,7’ is calculated using the previously fixed Hermitian metric on the
vector bundle A?~"*"!(X). This inner product is associated with a Hermitian
metric on A\P?(X).
Using the positivity of @ given in Proposition 2.8, we see that ( deﬁneb a
Hermitian metric on &74(X). Consider now the norm |lal := \/ a,a). Then
there is a constant ¢ > 0 such that

e (1Bllzz + 1vllz2) < llell < e(lIBllcz + 1vl2).-

Consider the (p, ¢)-current h := dd“u — f which belongs to a Sobolev space.
We have
Oh=0, Oh=0 and hAQAw=0.
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The last identity says that if we decompose h as we did above for a, o,
the second component in the decomposition vanishes. Therefore, (Ja,h) =
Q(0a, h) for any form a € £7971(X). Using Stokes’ formula, we obtain

(Do, h) :Q(ga,h):ip_q(—l)p+q_1+(pﬂ)(gﬂil)/ aNOhAQ=0.
X

If 9" is the adjoint of 0 with respect to the considered inner products, we
deduce that & h=0. On the other hand, Oh = 0. Therefore, h is a harmonic
current with respect to the Laplacian operator 00" + 5*5, see Section 5 in
[26, Chapter IV]. Consequently, by elliptic regularity, h is smooth, see, for
example, Theorem 4.9 in [26, Chapter IV]). Hence, dd®u is smooth. We deduce
the existence of v € &7~ 1971(X) such that dd°v = dd‘u, see, for example, [5,
p. 41]. O

End of the proof of Theorem 1.1. Let f be a closed form in &7:9(X) such
that {f} € HP%(X,C)prim. We first show that Q({f},{f}) > 0. Let v be the
smooth (p —1,q — 1)-form given by Proposition 3.2. Then we have

(f —ddv) AQAw=0.

Here, we should replace dd“v with 0 when either p =0 or ¢ = 0. Using Propo-
sition 2.8 at each point of X, after an integration on X, we obtain

ipma(—1) POE / (f — dd°v) A (F — dd°v) AQ >0,
X
Using Stokes’ formula and that f is closed, we obtain

/f/\f/\Q:/(ffddcv)/\(f—ddci)/\ﬂ.
X X

Therefore, Q({f},{f}) > 0. The equality occurs if and only if f = dd°v, that
is, {f} =0. Hence, {Q} satisfies the Hodge—Riemann theorem for the bidegree
(p,q)-

We deduce that the map {a} — {a} « {Q} is injective on H?9(X,C)prim.
If {a} is a class in HP9(X,C) such that {a} « {Q} =0, {a} is a primitive
class and hence {a} =0. Therefore, {2} satisfies the hard Lefschetz theorem
for the bidegree (p,q).

The classical hard Lefschetz theorem implies that {a} — {a} « {w} is an
injective map from HP~'?~1(X,C) to H?9(X,C). Therefore,

dim{w} v HP~1771(X,C) = dim HP~ 177 1(X, C).

This Lefschetz theorem also implies that {a} — {a} « {w} is a surjective map
from H"~%"~P(X,C) to H"~9ttn=P+l(X C). This together with the hard
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Lefschetz theorem for {Q} yield
dim H?%(X, C) prim = dim H?9(X,C) — dim H"~9+1"=PH (X C)
= dim H?(X,C) — dim H?~ 77 }(X,C)
= dim H?4(X,C) — dim{w} « HP~H171(X,C).
The hard Lefschetz theorem can also be applied to {Q Aw?} and to the bide-
gree (p—1,q —1). We deduce that the intersection of {w} — HP~1471(X C)

and H?9(X,C)prim is reduced to 0. This together with the above dimension
computation gives us the following decomposition into a direct sum

HP9(X,C) = {w} — HP"171(X,C) ® HPI(X, C)prim.

Finally, the previous decomposition is orthogonal with respect to @@ by defi-
nition of primitive space. So, {2} satisfies the Lefschetz decomposition theo-
rem. O

REMARK 3.3. In order to obtain the Hodge—Riemann theorem and the
hard Lefschetz theorem (resp. the Lefschetz decomposition), it is enough to
assume the property (x) in Definition 2.1 for r =0,1 (resp. r=0,1,2). When
(%) is satisfied for all r, we can apply inductively these theorems to Q2 A w?"
and then obtain the signature of  on H?7(X,C).

4. A family of Hodge—Riemann forms

This section contains an experimental study of Hodge-Riemann forms in
the holomorphic symplectic setting. From now on, assume that n = 2m and
we consider on E = C?™ the coordinate system (z1,...,%m,¥1,---,Ym), the
standard Kahler form

w:=tdry ANdT1 + - +idrm NdTp +idyr Ady, + -+ + idy, A dY,,
and the standard symplectic form
o:=dri Ndyy + -+ dxp, A dyp,.
The main purpose of this section is to establish the following result.
ProrosITION 4.1. The form
Q= (07 +tw?) A (05)™ P70 AwP IR

is a Hodge—Riemann form for the bidegree (p,q) for g=0 or 1, g <p<m/2,
vg<v<m-—p—1andteRy, wherevy:=—1 and

p(m—p) _
. when p <+/2(m+1) -1,
moptd _ 2(m+1) whenp>+/2(m+1)—1.
Note that when ¢ =0, Proposition 4.1 holds also for v =m — p. As a direct

consequence of Theorem 1.1 and Proposition 4.1 applied to ¢ =0, we obtain
the following result.
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THEOREM 4.2. Let (X,w, o) be a compact symplectic Kihler manifold of di-
mension n = 2m, where w is a Kdahler form and o is a holomorphic symplectic
(2,0)-form on X. Let p,q,v be non-negative integers such that ¢ <p <m/2,
vg<v<m—p and ¢=0 or 1, where v, is defined as above. Then the class
of (0 ANT)™"P=V A wP=9H2Y gatisfies the Hodge—Riemann theorem, the hard
Lefschetz theorem and the Lefschetz decomposition theorem for the bidegree

(p,q).

Theorem 4.2 may be useful in the study of the automorphism group of
X, see, for example, [9], [11], [18], [21], [28]. Note that by Proposition 2.5
the results still hold if we use the primitive space associated to Q A w’ for
another Kahler form w’. It is worthy to note also that the lower bound on v is
necessary even when p = ¢ =1, see Remark 4.6 below. However, when X is an
irreducible compact symplectic Kéhler manifold and p = ¢ =1, Theorem 4.2
for v =0 can be deduced from results by Beauville [1] and Bogomolov [2], [3],
see also Fujiki [13] and Enoki [12], Huybrechts [17]. In this case, we can show
that Theorem 4.2 holds without lower bound for v.

The remaining part is devoted to the proof of Proposition 4.1. In order to
simplify the notation, we often drop the letter d and the sign A, for example,
we will write

W=1T1T1 + - + T T + 1Yy + -+ WYmYy,
and
o=T1Y1+  + TmYm.

The most inconvenience due to this simplification is the identities like x1y; =
—y12x1 involving in the next computation.

For a Lie group G we use the terminology: a G-module and a representation
of G interchangeably. The unitary symplectic group Sp(m) is identified to
the group of matrices in GL(2m,C) which preserve 0,7 and w. Its action
on E extends naturally to the vector spaces VP4 := AP E@ AYE and V¥ :=
@p gk VP4, In the sequel, we give some properties of V7 and V* which
are seen as such Sp(m)-modules. We refer to Fujiki [13] for details. Let
VP4 be the set of forms o in VP4 such that a{o,7,w}?*™ P~7 =0, where
{0,7,w}*™~P~4 is the family of monomials of degree 2m —p — ¢ on 0,7, w.
This is the universally effective subspaces of VP4 which is also a representation
of Sp(m). We will also consider the set Vj? of forms in V¢ which can be
written as polynomials in 0,7 and w. This is a representation of Sp(m) which
is isomorphic to a direct sum of copies of the trivial representation since 0,7
and w are invariant. Define also VX :=@,, _, VP% and Vi =P, _, V5"

A representation is said to be isotropic or W -isotropic if it is isomorphic
to a direct sum W @ --- & W of an irreducible representation W. If Visa
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representation, there is a unique maximal representation \7W C V which is W-
isotropic and we call it the W -isotropic component of V. Any representation
is isomorphic to the direct sum of its isotropic components.

Define for all non-negative integers k,v, s such that v < sand v+s<k<m

Zk,u,s = 331?1 e zuyy ZSign(I, J)nyJa
where the sum is taken over {I,J} such that I C {v+1,...,k —v}, |I| =
k—v —s, J is the complement of I in {v+1,...,k —v} and sign(I, J) is the
signature of the permutation {v +1,...,k — v}~ {I,J}. The form Zj, s is
of bidegree (k — s,s) in V.
Consider the diagonal subgroup of Sp(m)

D(m) := {diag(sl,...76m7af1, . ..,5;1),51- eC,le| = 1},
and the set

U= {(k,r) eN% k+r<2m,k>r and k =7 modulo 2}.

Fix an arbitrary pair (k,r) € U and let v := k;”. Observe that for v < s <
k — v, the eigenvalue €7 - g2, e of Z, s appears as the highest non-
zero term in the character (Laurent polynomial in e1,...,&,,) of the action of
D(m) on the Sp(m)-module V¥~%* with respect to the lexicographical order.
Let Wy, be the irreducible representation of Sp(m) characterized by this
property. So, given (k,r) € ¥, the smallest Sp(m)-module of V*~% spanned
by Zj. s is isomorphic to W, , for v <s <k —wv. Let Uy, be the vector space
of Vsk spanned by the forms Zj , .

The following result is deduced from Proposition 2.4 in Fujiki [13] and
its proof. It implies, in particular, that the family of equivalent classes of
irreducible Sp(m)-submodules of V* is naturally in bijective correspondence
to the pairs (k,r) € U. As Fujiki mentioned in his paper, it is likely true for
all £ <2m.

PROPOSITION 4.3. Assume that k <m. Then V¥ is the direct sum of the
subspaces Vi A VE=t with 0 <t <k. The Wy, .-isotropic component of VF
is isomorphic as Sp(m)-module to Wy, , @ Uy, where Uy, is identified with
{v} x Uk, for some non-zero vector v € Wy, and Sp(m) acts trivially on the
second factor of Wy, » ® Uy . Moreover, the other isotropic components of VEk
vanish.

For the reader’s convenience, we summarize here Fujiki’s arguments.

Proof. Let H be the real quaternion division algebra. We identify H™
equipped with the standard quaternion inner product to the underlying real
Euclidean space RY™. Hence, the natural action of Sp(m) on H™ induces the
natural inclusion Sp(m) < SO(4m,R). The standard action of SO(4m,R)
on R*™ extends naturally to V¥ and V*. On the other hand, since H* :=
H\ {0} ~ Sp(1) xz, R*, the componentwise quaternionic multiplication H* x
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H™ — H™ also induces the natural inclusion Sp(1) < SO(4m,R). Conse-
quently, the Lie algebra sl(2,C) which is the complexification of the Lie alge-
bra sp(1) of Sp(1) acts C-linearly on V¥ by the Lie derivative.

A H*-module W is said to be of weight k, if ¢ € R* acts on W via the multi-
plication by ¢*. The family of equivalent classes of irreducible representations
of H* is naturally in bijective correspondence to the set of pairs

{(k,r) e N2 k> r and k =r modulo 2}7

where k corresponds to the weight of the representation. Let V}, , denote the
irreducible representation of H* corresponding to the pair (k,7). The char-
acterization of r will be given later on. By the definition of VX we see easily
that it is a H*-module of weight k. Consequently, we obtain the following

decomposition
k k;
vi= @ v
ri(k,r)ev

where VX" is the Vj ,-isotropic component of V*. Since Sp(1) is the central-
izer of Sp(m), it follows that the isotropic components of V¥ (with respect
to a given irreducible representation of Sp(m)) is equal to the direct sum of
those of V.

For W :=V}, ., consider the induced action on W¢ of the natural action of
s(2,C) on V*. Let

=y B) x=(0) v=(10)

be the standard C-basis of s[(2,C). We have the following canonical Hodge
decomposition
W= wre, W =wer,
ptq=k
This coincides with the eigenspace decomposition of W with respect to the
action of H, where W?? corresponds to the eigenvalue p — gq. Moreover,

o WP =£( if and only if kgr <p,q< k;”;

o X : WP~ WrPtha—l if p ¢ satisfy kgT <p,p+1,g—1,q< kgr;

o« X(WSHT) =0,

Recall from the discussion preceding the proposition that Z , s € VE with
k=r Now we will show that X defines a Sp(m) isomorphism from the
smallest Sp(m)-submodule of V*~%* spanned by Zk,v,s to that spanned by
Zyv,s—1 and that X maps Zj, ,, s to Z , s—1. Indeed, the properties of X listed
above show that X : V01 ~ V10 and X (V1Y) =0. Arguing as in Lemma 2.8
in [13], we obtain that

X(Ti) = i, X(7;) = —xs, X(zi) =0, X(yi) =0.

V=
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Since X acts on V¥ as a (Lie) derivative, a straightforward computation
implies the above assertion. Next, we deduce from the equality X (Z, ) =0
and the properties of X listed above that Z ., € VE]”. Hence, the forms
Zy,u,s and then the vector space Uy, are also contained in Vc_k?r.

Consequently, by identifying Zj , s with Wy, ® Z . s, we may consider
Wi.r ® Ug,r, in a natural way, as a Sp(m)-submodule of the W}, ,-isotropic
component of VE’“ Namely, {v} x Uy, is identified with Uy, for some non-zero
vector v € Wy, and Sp(m) acts trivially on the second factor of Wy, @ Uy, .
This is, in fact, an equality, that is, we have that V5" =W, . ® Uy,r, which
implies, in turn, that

‘/sk = @ Wk',r & Uk,r-

ri(k,r)ew

This, combined with part 4 and part 5 of Proposition 2.4 in [13], gives the
proposition.

The proof of the last identities has been carried out in part 3 of Proposi-
tion 2.4 in [13, pp. 121-122]. However, there is one point in Fujiki’s argument
which needs to be more explicit. Namely, the way Fujiki applies the classical
invariant theory for Sp(m) (see the last lines in [13, p. 121]) should be written
down more concretely for the reader’s convenience. For the sake of simplicity,
we will clarify his argument in a simpler setting. More specifically, we will
prove that a form « € V¢ is Sp(m)-invariant (i.e., A*a =« for A € Sp(m))
if and only if « is generated by o, 7, w (i.e., a = h(o,7,w) for a polyno-
mial h € Clt1,t2,t3]). Note that this proof also works in Fujiki’s context of
Sp(m)-invariant tensors making the obviously necessary changes.

Let o € VP9 be Sp(m)-invariant. Let (ZT/) be the 2m X 1 matrix consisting
of the forms dz;, dy;. The matrix (g) is defined in a similar way. Let
A €Sp(n). Since A € U(2m), we have A="'A"1 and

(o) =2 (5) (o) =(5) - (&)
We represent « as a polynomial f in 4m variables (z,y; z,w), where
dvi(z,y;2,w) =25, dyi(z,y;2,w) =y,
dz;(z,y; z,w) = z;, dy;(z,y; z,w) = w;.
The above equalities, combined with the assumption A*a = «, A € Sp(m),
implies the following invariant property of f:

fla,yizw) = f (A @ AT (;)) .

Note that Sp(m) = Sp(2m,C) N U(2m). Consequently, we deduce from Lem-
ma 7.1.A in [27] that the invariant property of f is also valid for all A €

Sp(2m,C). Recall that ‘AJA = J for A € Sp(2m,C), where J := (f)id ig)
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and id is the identity matrix in GL(m,C) and that J~! = —J. Introduce a
new polynomial g € Clx,y; z, w] defined by

9(z,y;2,w) = f <Js,y;J‘1 (5})) .

This, coupled with the invariant property of f and the above mentioned prop-
erties of J, imply that

oo =s(4(2):a(3)). Acswane.

So, we are able to apply the First Fundamental Theorem for Sp(2m,C) to
g (see, e.g., Theorem 5.2.2 in [14]). Let ¢ be the standard skew symmetric

form in C?™. We infer that f is generated by &(z,y;z,v), E(x,y;J(;)),
E(J(;);J(fu)). In other words, {o,w,7} is a set of generators for the ring of
all Sp(m)-invariant forms. d

We deduce from this proposition the following lemma that we will use later.

LEMMA 4.4. Assume that p+ q <m. Then every representation I C VP4
contains a non-zero vector in (V0p+q_k AUgr) NVPY for some (k,7) € ¥ de-
pending on F with k <p+q.

Proof. Replacing F' with a suitable subspace allows us to assume that F
is isomorphic to Wy, for some (k,r) € ¥ with £ <p+¢q. We only have to
show that F' contains a non-zero vector in Vopﬂ*k A Ug,r. Proposition 4.3
implies that the W, .-isotropic component of VP*4 is isomorphic to Wy, ®
(VETIF AUL ) where VETTF AU, is identified with {v} x (VZTT % AU,
for some non-zero vector v € Wy, .. The space F is identified with a subspace
of Wi, ® (Vopﬂfk AUy ) which, by Schur’s lemma, is equal to Wy, , ® {u} for

some non-zero vector u in prJrq*k AUy . It follows that F' contains u. O

Now we define
Vs 1= *((Gﬁ)mf‘qwzs),
where * is the Hodge star operator. The following lemma will be used repeat-
edly in our computation.

LEMMA 4.5. We have

m!(2s)!(m — s)!
VYs=— 4
s!
In particular, we have
m—s

= ot 1)
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Proof. The form (07)™ *w? is of maximal degree. So, we have

(Ua)m_swgs =7s (ixlfl)@ylyl) T (ixmfm) (iymym>‘

Write 2, :=y; for 1 < j <m. When we develop the expression ¢”"~*5""~* x

w2 any non-zero term has the form

(@ 950) (T Yio )@Yy ) - (T, Tn, )00k, Thy ) - (T, Ty, )

where {j1,...,Jm—s}, {l1,---,lm—s} are two permutations of a set J C {1,...,
m} with |J| =m — s, K the complement of J in {1,...,m} and {k1,...,kos}
is a permutation of K U (m + K). All these terms are equal to

(i2171) (iy171) -+ (1@ @) (1Y Y )-
So, 7, is the number of such terms. A simple computation on the number of
J and the numbers of permutations gives

Yo = (mm ) (m — s)l(m — 5)1(2s)\.

-5
The lemma follows. 0
We first take granted the following claim.
CLAIM. FEvery form Q) as in Proposition 4.1 is Lefschetz.

End of the proof of Proposition 4.1. The proof uses a decreasing induction
on v. Applying the claim to Q Aw?” with 0 < r < ¢, we deduce that QAw?" is a
Lefschetz form for the bidegree (p —r,q— ). Recall that the Hodge-Riemann
cone is open. So, for v =m — p — 1, since w?™ P9 is Hodge-Riemann, 2 is
Hodge-Riemann when ¢t is large enough. It follows from the claim applied to
QA w? that Q is Hodge-Riemann for the bidegree (p,q) for every ¢ > 0.

Assume now the case where v is replaced with v + 1, that is,

Q/ = (0’5 + tw2) (O_E)m—pfv72wpfq+2v+2

is Hodge-Riemann for the bidegree (p,q) and for every ¢ > 0. Since this is
true for ¢t =0, we deduce by continuity that  is Hodge—Riemann for the
bidegree (p,q) and for ¢ large enough. Therefore, the claim implies that Q is
Hodge—Riemann for the bidegree (p, ¢) and for every ¢ > 0. This also ends the
proof. O

We now give the proof of the claim. It is divided into two cases.

Case 1. Assume that ¢ =0. Consider a non-zero form o € VP0, Tt is
enough to check that iP* a@) is a non-zero positive form. For this purpose,
we can assume that Q = (07)"w?™P~2" with 0 <r <m —p.

By Fujiki’s theorem [13, Proposition 2.6], the map S+ So” is injective
on VP0 when r <m — p. Therefore, ao” is a non-zero form in V?*+2"0, So,
we can choose (1,0)-forms §; such that ao” B -+ Bom—p—2r does not vanish.
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Since this form is of bidegree (2m,0), it is a multiple of z1 - Zpmy1 - Ym.
Therefore, it is not difficult to see that

i aa(oo)" (iB15) - (iB2m—p=2rBam—p-2r)

is a non-zero positive form. This implies the result because iﬁjﬁj < cw for ¢
a large enough positive constant.

Case 2. Assume that ¢ =1. Let F C VP! be the set of a such that o2 = 0.
Suppose in order to get a contradiction that F' # 0. Since (2 is invariant under
Sp(m), F is a representation of Sp(m). By Lemma 4.4, there are integers
k<p+1,v=0,1and forms P, € VP ""*17% for max{v,k — p} <s <1 such

that
o= Z PsZk,u,s

is a non-zero form in F.

If v#£0, we can write o = 217, with o independent of the variables
z1, 1. The equation af2 =0 is equivalent to the equation o’} =0 where
) is obtained from Q by deleting the terms which depend on z7, y;. This
reduces the problem to the case of lower dimension and lower degrees. More
precisely, the last equation contradicts the result obtained in Case 1. Now,
assume that v =0. Write for simplicity Z, instead of Zj, ;. Observe that
p+q—k is even.

Using the notation u:=m—p—v—1gives m=u+v+p+1 and

Q= (07 + tw?) (07) WP~ T2V

There are three subcases to consider.
Subcase 2(a). Assume that k=p—1. We have

a=M\0oZi 4+ wZy with (A, \y) € C?\ {0},

where
k
Z1:le...xj_lijjﬂ--.xk and ZO:l‘l"'l‘k;.
j=1

We will consider the expansion of af? in coordinates x;,y; for ¢ < k. Then,
the equation af) =0 induces some equations on forms depending only on the
other coordinates, that is, equations on forms on C?*”~2*_ In order to simplify
the notation, in this space o and w will denote also the standard symplectic
and Kahler forms. We will consider €2 as a polynomial in o, 7, w and we will
also consider derivatives in that variables. The constants 75 are defined as in
Lemma 4.5 but for C*™~2* instead of C?™.

Consider the coefficient of (z1y17;) - (zryrT,) in af). This is a form
bidegree (2m — 2k — 1,2m — 2k — 1) in C>™~2*_ Here is the kind of argument
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that we use repeatedly in the computation. In order to obtain the coefficient
of (x1917,) - - - (xxYrTYy), for example, in

— —\u+1, k+2v
0Ty 1Y Tip1 p(00) T w

_ — —u+1 _u+2, k+2v
=T ~xj_1ijj+1 o TRO g w

we have to take z;y; from a factor o and y;5; with [ # j from a factor w.
Now, since the coefficient of (x1y17;) - (ZryrT;) in af) vanishes, we obtain
the following equation on forms on C?™~2* where the first factor k represents

the number of choices for j and i*~!, i* come from the factors w, that is,
i=0w/0(yy,) i .
g1, O0%(0Q)) 0" (W)
k-1 k
k A Ao =0.
‘ do OF—1 " i okw 2

Multiplying this equation with w in order to get forms of maximal degree and
using the x-operation, we obtain

k+20)! k+2v+2)!
[k(u+2)ﬁ%+1 + k(u + 1)%
{(k-i—?v—i—l)! (k + 2v + 3)!

C S A O 3T

’7v+2t:| >\1

’}/v+2t:| )\2 =0.

C?m=2F we obtain the equation

Using the last assertion in Lemma 4.5 for
ai1A +iajpA2 =0,
where
ar:=k(u+2) v+ (u+1)+k(u+1)(k+2v+1)(k+2v+2)t
and
az:=(k+2v+1)(v+1)(u+1)+(k+2v+1)(k+20+2)(k+2v+3)t.

Now, consider the coefficient of x1(22yaTs) - (xxyxTs) in . This is a
form of maximal bidegree in C*™~2¥. Observe that the first term in Z; does
not contribute to this coefficient. Therefore, we obtain the following equation
where the factor & — 1 represents the number of the other terms in Z;

oF (o) OF1(w)

k—2 k—1 —

1 (k—l)m)\l +1 W)\Q—O

Using *x-operation gives
k+2v)! k+2v+2)!

[(k —D(u+ Q)W%H + (k—1)(u+ 1)%%&% A1
J(k+2v+1)! (k+2v + 3)! B
+ { 20+ 2)! Yo+1+ 20+ 4)! Yot2t| A2 =0.

(C2m—2k

Using the last assertion in Lemma 4.5 for , we obtain the equation

a21 A1 +iageAy =0,
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where
ag:=(k—1)(u+2)(v+2)(u+1)+(k—1)(u+1)(k+2v+1)(k+2v+2)t
and
age = (k+20+1)(v+2)(u+1) + (k+ 20+ 1) (k + 2v + 2)(k + 20 + 3)t.
Since the above equations have a non-trivial solution (A1, A2), we have

ail a2
a21 A22

=0.

A simple computation gives
A’ + Bt +C =0,
where

A= (k+2v+3)(k+2v+2)%(k+2v+ 1)*(u+ 1),
B:=(k+2v+2)(k+2v+1)(u+1)
X (4uv2 + 2kuv 4 10uv + Tu + ku + 602 + kv + 17v+13—k2),
C:=(w+2)(v+1)(u+2)(u+1)>2(k+2v+1).
Since m > 2p, we have u + v > k. Therefore, A, B, C are positive. This is a

contradiction since ¢ > 0. Hence, Subcase 2(a) cannot happen.
Subcase 2(b). Assume now that k =p+ 1. Then o = AZ; with A € C* and

k

le E xl"'xj—lijj—‘rl“'l‘p—‘rl'
i=1

Consider the coefficients of

(217191) (T2Y2Y2) (T3Y3Y3) * + (Tp+1Yp+1Yps1)
in a2 =0. We obtain

ortiQ) Lt ort1iQ

Z'P-l-l p—————— =
Owpt1 0o 07 QwP—1

This gives us
(u+1Dow+1)+ (p+20v)(p+2v+1)(v+ 1)t
—p(u+1)%(v+1) —p(p+2v)(p+2v + 1)ut = 0.

Define
(p+2v)(p+2v+1)t

L o TRy

We obtain
v+ (v+ Dt —plu+1) — put’' =0.
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Recall that u=m —p —v — 1. So, the above expression is non-zero for all
t € R, if and only if

(v B p(;%Jr—lp)) (U _p(m —pp+—11) - 1) S0

Since the last inequality is true by the hypothesis that

p(m —p)
p+1
we get the desired contradiction. This completes the proof in this subcase.
Subcase 2(c). Assume now that k <p—1. If p— 1 — k= 2s, then we write
a=o0°p, and replace o, Q, p,v with 3, (67)°Q,p — 2s,v+ s, we can reduce the
problem to the last case with lower degree p. Therefore, it suffices to verify
that last inequality in Subcase 2(b) still holds for the new values of p, v after
this reduction. So, it is enough to check the condition v > v}, where v is the
maximum of the function
[O’p} S sis (p—2s)(m —p-+2s) .
2 p+1—2s

Setting x :=p+ 1 — 2s, the above function can be rewritten as

_ _ 2
qb(sc)::2(x 1)(m2—;1 )+ _p—;—l7

This function attains its maximum at x :=1/2(m+ 1) and it is not difficult
to check that v} =wv;. The proof is thereby completed.

v>v >

)

x € [0,00).

REMARK 4.6. When p=¢ =1 and o = Z; as in Subcase 2(b) and § = 217,
a straighforward computation shows that caw?™ =2 < 0 whereas aa(oa)™ ! >
0> BB(c7)™!. Consequently, both positive forms w?™~2 and (¢7)™ ! have
the same primitive space P1'!, which is, by Proposition 4.3, the Sp(m)-
submodule of V1! spanned by a and 3. However, Q 2m-> is positive-definite
on PY! whereas Q(o)m-1 is not semi-definite on P, Another consequence
is that by continuity, there is an integer v with 0 <v <m —2 and t € R, such
that the corresponding form €2 in Proposition 4.1 is not Hodge—Riemann. In
general (e.g., for tori), the Hodge-Riemann form @Q,2m-2 and the Beauville—
Bogomolov form @ (,5)ym-1 do not have the same signature.
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