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VARIATIONAL BOUNDS FOR A DYADIC MODEL OF THE
BILINEAR HILBERT TRANSFORM

YEN DO, RICHARD OBERLIN AND EYVINDUR ARI PALSSON

Abstract. We prove variation-norm estimates for the Walsh
model of the truncated bilinear Hilbert transform, extending re-
lated results of Lacey, Thiele, and Demeter. The proof uses anal-
ysis on the Walsh phase plane and two new ingredients: (i) a vari-
ational extension of a lemma of Bourgain by Nazarov–Oberlin–
Thiele, and (ii) a variation-norm Rademacher–Menshov theorem
of Lewko–Lewko.

1. Introduction

In this paper, we consider a variation-norm analog of the following maximal
operator

H∗[f1, f2](x) = sup
k

∣∣∣∣ ∑
|IP |≥2k

|IP |−1/2〈f1, φP1〉〈f2, φP2〉φP3(x)

∣∣∣∣,
where we sum over P in a collection P of dyadic rectangles in R

+ × R
+

of area four (also known as quartiles) and φP1 , φP2 , φP3 denote dyadic wave
packets adapted to appropriate subsets of P , see Section 2 for details. Note
that we have suppressed the notational dependency on P for simplicity (and
all implicit constants in this paper shall be independent of the underlying
collection of quartiles). The non-maximal variant of H∗ is known as the
quartile operator and was introduced in [10] as a discrete model of the bilinear
Hilbert transform. The operator H∗ serves as a dyadic model for both the
maximal bilinear Hilbert transform and the bilinear maximal function [3] (cf.
[11], [2]). See also the discussion after (2).

Our aim here is to bound the operator formed by replacing the �∞ norm
in the definition of H∗ by a stronger variation-semi-norm. Given an exponent
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r ≥ 1 write

‖g‖V r
k
= sup

N,k0<···<kN

(
N∑
j=1

∣∣g(kj)− g(kj−1)
∣∣r)1/r

,

where the supremum is over all strictly increasing finite-length sequences of
integers. Setting

Hr[f1, f2](x) =

∥∥∥∥ ∑
|IP |≥2k

|IP |−1/2〈f1, φP1〉〈f2, φP2〉φP3(x)

∥∥∥∥
V r
k

,

we will prove the following theorem.

Theorem 1.1. Suppose r > 2, and p1, p2, q satisfy

1

q
=

1

p1
+

1

p2
,

2

3
< q <∞, 1< p1, p2 ≤∞,

then for some constant C =C(p1, p2, r)<∞ we have

(1)
∥∥Hr[f1, f2]

∥∥
Lq ≤C‖f1‖p1‖f2‖p2 .

We became interested in bounds for Hr while studying the following bilin-
ear operator

(2) Br[f1, f2](x) =

∥∥∥∥ 1

2t

∫ t

−t

f1(x+ y)f2(x− y)dy

∥∥∥∥
V r
t

.

The simpler maximal variant of Br is the bilinear maximal function studied
in [3]. An oscillation-norm variant1 of Br was also considered in [2]. Bounds
for the simpler linear version of Br, that is, the variation-norm analog of
the centered Hardy–Littlewood maximal function, proved in [1], can be used
to strengthen the Birkhoff ergodic theorem on the pointwise convergence of
linear ergodic averages. Similarly, bounds on the more delicate Br and its
oscillation-norm variants are useful for studies of pointwise convergence of
bilinear ergodic averages, see, for example, [2]. While the oscillation-norm
estimates in [2] are just enough for this purpose, bounds on Br give more
quantitative information about the related rate of convergence. In this paper,
only the dyadic variant Hr of Br will be considered, which is technically
simpler than the continuous setting and therefore allows for a relatively clear
and accessible illustration of the main ideas, which we expect to be useful in
forthcoming study of Br.

1 More precisely, [2] proves estimates on a finite sum of oscillations, however the implicit

constant depends on the number of oscillations being measured.
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1.1. Structure of the paper. We essentially follow the framework of [3],
[11], although the argument is slightly reorganized and simplified to reflect
the modern language of time-frequency analysis. The main new ingredients
in the proof are variational extensions of several maximal theorems, including
a variation-norm extension of the Rademacher–Menshov theorem obtained
in [5] and an extension of a lemma of Bourgain [1] to the variation-norm
setting obtained in [8] (cf. [9]). These auxiliary results and other background
materials are summarized in Sections 2 and 3. Several technical lemmas are
proven in Sections 4 and 5, and we show how they imply Theorem 1.1 in
Section 6.

1.2. Notational conventions. We use | · | to denote Lebesgue measure,
cardinality, or an understood norm depending on context. The indicator
function of a set E is written 1E . Dyadic intervals are half-open on the right,
that is, of the form [n2k, (n+ 1)2k) for integers n,k.

2. Terminology

In this paper, a tile is a dyadic rectangle in R
+×R

+ of area one. A quartile
is defined analogously, except with area four instead of one. Each quartile
P = IP × ωP can be written as the disjoint union of four tiles P1, P2, P3, P4

where Pi = IPi × ωPi , IPi = IP , and ωPi is the ith dyadic grandchild of ωP ,
in increasing order from left to right.

The Walsh wave-packet φp associated to a tile p can be defined as follows.

First, if p= I × [0,2n) then φp(x) = 2−n/21I(x). To extend the definition to
all tiles, we use the following recursive formulas where the subscripts l and r
denote the left and right halves of a dyadic interval:

(3) φI×ωr =
1√
2
(φIl×ω − φIr×ω), φI×ωl

=
1√
2
(φIl×ω + φIr×ω).

It is not hard to see that φp and φp′ are orthogonal if p∩ p′ = ∅.
Given a collection of quartiles T , a “top frequency” ξT ∈R

+, and a dyadic
“top interval” IT ⊂R

+, we say that (T, ξT , IT ) form a tree if for every P ∈ T ,
IP ⊂ IT and ξT ∈ ωP . Letting ωT be the dyadic interval of length |IT |−1

containing ξT , we write pT for the tile IT × ωT .
For i= 1, . . . ,4 a tree is said to be i-overlapping if for every P ∈ T , ξT ∈ ωPi .

We will say that a tree is i-lacunary if it is j-overlapping for some j = i. One
can check that if T is i-lacunary then the tiles {Pi}P∈T are pairwise disjoint.

To define a notion of size that is compatible with Hr, we will need to
linearize and dualize the variation-norm. For each x consider an increasing
integer-valued sequence {kj(x)}∞j=−∞, and a sequence {aj(x)}∞j=−∞ such that
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∑∞
j=−∞ |aj(x)|r

′ ≤ 1. Then an appropriate choice of such sequences guaran-
tees that, for every x,

(4)
∑
P∈P

|IP |−1/2〈f1, φP1〉〈f2, φP2〉φP3(x)aP (x)≥
1

2
Hr[f1, f2](x),

where aP (x) := am(x) if m=m(P,x) is the (clearly unique) integer satisfying
2km−1(x) ≤ |IP |< 2km(x), and 0 if such m does not exist.

Thus, to prove (1), it suffices to give a corresponding bound for the left side
above which is independent of the choice of sequences. Fixing these sequences
once and for all, we write

φ̃P3(x) = aP (x)φP3(x),

and when i = 3 write φ̃Pi(x) = φPi(x).
2 For collections of quartiles P and

functions f on R
+ we define

(5) sizei(P, f) = sup
T⊂P

(
1

|IT |
∑
P∈T

∣∣〈f, φ̃Pi〉
∣∣2)1/2

,

where the supremum is over all i-lacunary trees contained in P.
Let Ak denote the dyadic averaging operator

Ak[f ](x) =
1

|I|

∫
I

f(y)dy,

where I is the unique dyadic interval of length 2k containing x. Sums of wave
packets in lacunary trees can be truncated using Ak as follows:

Claim 2.1. Suppose that T is a i′-overlapping tree. Then for i = i′ there
is ν ∈ {0,1} such that for any coefficients {cP }P∈T

(6)
∑

P∈T :|IP |>2k+ν

cPφPi = sgn(φpT
)Ak

[
sgn(φpT

)
∑
P∈T

cPφPi

]
.

Moreover, ν = 0 when {i, i′}= {1,2} or {3,4}, and ν = 1 otherwise.

Proof. If ν = 0, one can check using (3) that

sgn(φpT
)φPi =±|IP |−1/2(1(IP )l − 1(IP )r),

where choice of sign ± is uniform over x. If ν = 1, then similarly

sgn(φpT
)φPi =±|IP |−1/2

(
(1((IP )l)l − 1((IP )l)r )± (1((IP )r)l − 1((IP )r)r)

)
.

The claim then follows by inspection of averages. �

2 At first glance this notation might seem slightly abusive, but since each tile is contained

in a unique quartile, φ̃p is defined implicitly for any tile p.
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A consequence of (6) is that for each x∥∥∥∥ ∑
P∈T :|IP |≥2k

cPφPi(x)

∥∥∥∥
V r
k

(7)

=

∥∥∥∥Ak

[
sgn(φpT

)
∑
P∈T

cPφPi

]
(x)

∥∥∥∥
V r
k

.

3. Auxiliary estimates

We will start by recalling three variation-norm bounds which will be of
later use. The first is a special case of a theorem of Lépingle [4].

Lemma 3.1. Suppose r > 2 and 1< t <∞. Then∥∥Ak[f ](x)
∥∥
Lt

x(V
r
k )

≤Cr,t‖f‖Lt .

Now, let Ξ be any finite subset of R+, and for each integer k let Ωk be the
set of dyadic intervals of length 2−k which intersect Ξ. Let

(8) Δk[f ] =
∑
ω∈Ωk

∑
I:|I|=2k

〈f,φI×ω〉φI×ω.

Note that while the definition of Δk[f ] involves an infinite sum, for each x
only finitely many terms are nonzero. Equivalently,

Δk[f ] =
∑
ω∈Ωk

(1ω f̂ )̌ .

The following lemma follows from [9, Lemma 9.2], see also [8], which is a
variation-norm extension of a lemma of Bourgain [1].

Lemma 3.2. Suppose r > 2 and ε > 0. Then∥∥Δk[f ](x)
∥∥
L2

x(V
r
k )

≤Cr,ε|Ξ|ε‖f‖L2 .

Below, we have a variation-norm Rademacher–Menshov theorem which was
proven in [5], see also the proof of Theorem 4.3 in [8].

Lemma 3.3. Let X be a measure space and f1, . . . , fN be orthogonal func-
tions on X . Then∥∥∥∥∥

n∑
j=1

fj(x)

∥∥∥∥∥
L2

x(V
2
n )

≤C
(
1 + log(N)

)( N∑
j=1

‖fj‖2L2

)1/2

.

Finally, we will need the following John–Nirenberg type lemma. See, for
example, the proof of Lemma 4.2 in [7].
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Lemma 3.4. Let {c(P )}P∈P be a collection of coefficients. Denote

A1,∞ = sup
T⊂P

1

|IT |

∥∥∥∥
(∑

P∈T

∣∣c(P )
∣∣2 1IP
|IP |

)1/2∥∥∥∥
L1,∞

,

A2 = sup
T⊂P

1

|IT |1/2

∥∥∥∥
(∑

P∈T

∣∣c(P )
∣∣2 1IP
|IP |

)1/2∥∥∥∥
L2

,

where both supremums are over (say) all i-lacunary trees. Then

(9) A2 ≤CA1,∞.

4. A variation-norm size bound

Let M t denote the dyadic Lt-Hardy–Littlewood maximal operator

(10) M t[f ](x) = sup
k

(
Ak

[
|f |t

]
(x)

)1/t
.

Proposition 4.1. Let λ > 0, r > 2, and 1 < t <∞. Suppose that P is a
collection of quartiles such that for each P ∈P

(11) IP ⊂
{
M t[f ]> λ

}
.

Then for each i

sizei(P, f)≤Cr,tλ.

Proof. Using Lemma 3.4, it follows from (5) that

sizei(P, f)≤C sup
T⊂P

|IT |−1/t

∥∥∥∥
(∑

P∈T

∣∣〈f, φ̃Pi〉
∣∣2 1IP
|IP |

)1/2∥∥∥∥
Lt

which, by the usual Rademacher function argument, is

≤Ct sup
T⊂P

sup
{bP }P∈P

|IT |−1/t

∥∥∥∥∑
P∈T

bP 〈f, φ̃Pi〉φPi

∥∥∥∥
Lt

,

where the right supremum is over all sequences {bP }P∈P of ±1’s.
Let t′ = t/(t− 1). For any nonempty i-lacunary tree T ⊂P and any binary

sequence {bP }, by duality we have

|IT |−1/t

∥∥∥∥∑
P∈T

bP 〈f, φ̃Pi〉φPi

∥∥∥∥
Lt

≤ |IT |−1/t‖1IT f‖Lt sup
g:‖g‖

Lt′=1

∥∥∥∥∑
P∈T

bP 〈g,φPi〉φ̃Pi

∥∥∥∥
Lt′

≤ λ sup
‖g‖

Lt′=1

∥∥∥∥∑
P∈T

bP 〈g,φPi〉φ̃Pi

∥∥∥∥
Lt′

(
using (11)

)
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≤ λ sup
‖g‖

Lt′=1

∥∥∥∥ ∑
P∈T :|IP |≥2k

bP 〈g,φPi〉φPi(x)

∥∥∥∥
Lt′

x (V r
k )

(by def. of φ̃Pi)

= λ sup
‖g‖

Lt′=1

∥∥∥∥Ak

[
sgn(φpT

)
∑
P∈T

bP 〈g,φPi〉φPi

]
(x)

∥∥∥∥
Lt′

x (V r
k )

(
by (7)

)

≤Cr,t′λ sup
‖g‖

Lt′=1

∥∥∥∥∑
P∈T

bP 〈g,φPi〉φPi

∥∥∥∥
Lt′

(by Lemma 3.1)

≤Cr,t′λ (by standard dyadic Calderón–Zygmund theory).

Note that much of the argument above is superfluous unless i= 3. �

5. A variation-norm size lemma

The main result in this section is Proposition 5.1, and its proof requires
Propositions 5.2 and 5.3. We assume throughout this section that ε > 0 and
r > 2, and all implicit constants are allowed to depend on ε and r.

Proposition 5.1. Let P be a finite collection of quartiles. Suppose |f | ≤
1E . Then for each α satisfying

sizei(P, f)2 ≤ α

we can find a collection of trees T, each contained in P, satisfying

sizei

(
P \

⋃
T∈T

T, f

)2

≤ 1

4
α,

∑
T∈T

|IT | ≤Cα−(1+ε)|E|.
(12)

Proof. Let j1, j2, j3 be an enumeration of {1,2,3,4} \ {i} and P1
0 =P. If

there is a j1-overlapping tree S ⊂P1
0 satisfying

(13)
1

|IS |
∑
P∈S

∣∣〈f, φ̃Pi〉
∣∣2 ≥ 1

4
α

then let S1
1 be such a tree, chosen in the following manner:

(i) If j1 < i, then we pick such S1
1 with inf ωS1

1
maximal.

(ii) If j1 > i, then we pick such S1
1 with inf ωS1

1
minimal.

We then let T 1
1 be the maximal (with respect to inclusion) tree contained in

P1
0 with top data (IS1

1
, ξS1

1
).

Now, consider P1
1 =P1

0 − T 1
1 and iterate the above selection process until

no trees satisfying (13) can be found (the process must stop in finite time due
to the assumption that P is finite), we obtain trees T 1

1 , . . . , T
1
n1

and S1
1 , . . . , S

1
n1

where S1
1 , . . . , S

1
n1

are j1-overlapping trees and satisfy (13), and with S1
i ⊂ T 1

i

for each i.
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We then consider the remaining tile collection P2
0 =P1

0−T 1
1 −· · ·−T 1

n1
and

repeat the same process as above, but choosing j2-overlapping trees instead
of j1-overlapping trees. This gives S2

1 , . . . , S
2
n2

which are inside more general

trees T 2
1 , . . . , T

2
n2
. Finally, we select j3-overlapping trees from the remaining

tile collection and obtain j3-overlapping trees S3
1 , . . . , S

3
n3

which are inside

trees T 3
1 , . . . , T

3
n3
.

By construction, we have

sizei(Q, f)2 ≤ 1

4
α where Q=P

∖ ⋃
k=1,2,3

nk⋃
l=1

T k
l .

Thus, it remains to show that for each k

nk∑
l=1

|ISk
l
| ≤Cα−(1+ε)|E|.

To verify this estimate, first note that the sets
⋃

P∈Sk
l
Pi indexed by l are

pairwise disjoint. Indeed, suppose Pi ∩ P ′
i = ∅, P ∈ Sk

l , P
′ ∈ Sk

l′ , and l < l′.
By geometry, the maximality/minimality of inf ωSk

l
guarantees that P ′ ∈ T k

l ,

contradicting the fact that P ′ ∈ Sk
l′ .

Now, if i = 3 then by orthogonality of the φ̃Pi and (13) we have

nk∑
l=1

|ISk
l
| ≤Cα−1‖f‖22

which implies (12) (the assumption that f ≤ 1E guarantees that any sizei(P,
f)≤ 1 and so we may assume that α≤ 4).

If i= 3, orthogonality between φ̃P3 is not available, and we apply Proposi-
tion 5.2 below. �

Proposition 5.2. Suppose that T is a finite collection of 3-lacunary trees
such that the elements of {P3 : P ∈

⋃
T∈T T} are pairwise disjoint and fur-

thermore for each T ∈T

(14)
1

|IT |
∑
P∈T

∣∣〈f, φ̃P3〉
∣∣2 ≥ α.

Then for N :=
∑

T∈T 1IT we have

(15) ‖N‖L1 ≤Cα−(1+ε)‖f‖2+2ε
L2+2ε .

Proof. We’ll show that if c > 0 is sufficiently small then for λ≥ 1∣∣{N > λ}
∣∣≤ |Eλ|+

1

100

∣∣{N > λ/4}
∣∣, where(16)

Eλ :=
{
M2f > cα1/2λ1/(2+2ε)

}
,
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and M2f is the L2 dyadic Hardy–Littlewood maximal function (see (10)).
Once this is done, we can integrate both sides of (16),

‖N‖L1 ≤
∫

|Eλ|dλ+

∫
1

100

∣∣{N > λ/4}
∣∣dλ

=Cα−(1+ε)
∥∥M2f

∥∥2+2ε

2+2ε
+

1

25
‖N‖L1

≤Cα−(1+ε)‖f‖2+2ε
2+2ε +

1

25
‖N‖L1 ,

and obtain the desired claim (15).
Let I be the collection of maximal dyadic intervals contained in {N > λ/4}.

This collection clearly covers {N > λ}. Thus, (16) will follow if for any I ∈ I
that intersects the set Eλ it holds that∣∣{N > λ} ∩ I

∣∣≤ 1

100
|I|.

To see this, take I be such an interval. Then

‖1If‖L2 ≤ |I|1/2 inf
x∈I

M2[f ](x)(17)

≤ |I|1/2cα1/2λ1/(2+2ε).

It follows from the maximality of I that

{N > λ} ∩ I ⊂ {NI > λ/4} where NI :=
∑

T∈T:IT⊂I

1IT .

Finally, applying Proposition 5.3 with 1If in place of f and {T ∈T : IT ⊂ I}
in place of T, we obtain for some C ′ depends on r, ε′:∣∣{NI ≥ λ/4}

∣∣≤C ′α−1λ−(1−ε′)‖1If‖2L2

≤C ′α−1λ−(1−ε′)c2αλ
1

1+ε |I|
(
by (17)

)
≤ |I|/100,

where the last inequality follows by choosing ε′ = ε
1+ε , and a sufficiently small

choice of c depending on C ′. �

Proposition 5.3. Suppose that T and N are as in the hypotheses of Propo-
sition 5.2. Then

(18)
∣∣{x : N(x)> λ

}∣∣≤Cα−1 ‖f‖2L2

λ1−ε
.

Proof. We may assume λ≥ 1 as N is integer valued. We first estimate

(19)
∣∣{x : N(x)> λ

}∣∣≤∑
l≥0

∣∣{2lλ <N ≤ 2l+1λ
}∣∣.
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It is clear that trees T with IT ⊂ {N > 2l+1λ} make no contribution to the
lth set in the display above. Thus, letting

Tl :=
{
T ∈T : IT ⊂

{
N > 2l+1λ

}}
and Nl =

∑
T∈Tl

1IT , we have{
2lλ <N ≤ 2l+1λ

}
⊂
{
Nl > 2lλ

}
.

Note that in the evaluation of Nl at each point, only a nested sequence of top
intervals are involved, and the smallest of them intersects {N ≤ 2l+1λ}. It
follows that

(20) ‖Nl‖L∞ ≤ 2l+1λ.

By Chebyshev and (14), with Pl =
⋃

T∈Tl
T we have∣∣{Nl > 2lλ

}∣∣≤ (
α2lλ

)−1 ∑
P∈Pl

∣∣〈f, φ̃P3〉
∣∣2.

Consequently, together with (19), it will suffice for (18) to show∥∥∥∥ ∑
P∈Pl

〈f, φ̃P3〉φP3

∥∥∥∥
L2

≤C
(
2lλ

)ε‖f‖L2 .

Invoking duality and unravel the definition of φ̃P3 , this follows from

(21)

∥∥∥∥ ∑
P∈Pl:|IP |≥2k

〈f,φP3〉φP3(x)

∥∥∥∥
L2

x(V
r
k )

≤C
(
2lλ

)ε‖f‖L2 .

In the rest of the proof, we show (21).
We will repeatedly use a “long-jump/short-jump” decomposition to esti-

mate the variation-norm. Namely, if {kj} is any strictly increasing sequence
of integers, then for r ≥ 2 we have

(22)
∥∥g(k)∥∥

V r
k
≤C

(∥∥g(kj)∥∥V r
j
+
∥∥g(k)∥∥

�2j (V
r
kj≤k<kj+1

)

)
,

where the notation ‖ · ‖V r
a≤k<b

indicates that, in the variation-norm, we only

consider sequences lying between a and b (in the case that b= a+ 1, we set
the value to 0).

The first step in proving (21) is the following decomposition of Pl.

(i) Let J1 be the collection of top intervals of elements of Tl.
(ii) For m≥ 1 let Im be the set of maximal intervals in Jm.
(iii) Let Jm+1 = Jm \ Im.
(iv) Let Pl,m ⊂Pl contains those quartiles P such that there exists an ele-

ment of Im that contains IP , but no such exists in Im+1.



VARIATIONAL BOUNDS FOR THE QUARTILE OPERATOR 115

It then follows from (20) that Jm = Im = ∅ for m> 2l+1λ. Furthermore,
every x that contributes to the left hand side of (21) is contained in a chain
I1 ⊃ · · · ⊃ IM(x) of intervals, where Ii ∈ Ii. Forming a sequence {kj(x)} based
on the lengths of these intervals, and applying (22) pointwise, it follows that
the left side of (21) is

≤C

∥∥∥∥∥
n∑

m=1

∑
P∈Pl,m

〈f,φP3〉φP3(x)

∥∥∥∥∥
L2

x(V
r
n≤2l+1λ

)

(23)

+C

∥∥∥∥ ∑
P∈Pl,m:|IP |≥2k

〈f,φP3〉φP3(x)

∥∥∥∥
L2

x(�
2
m(V r

k ))

.(24)

By Lemma 3.3, we can bound (23) by

≤C
(
1 + log

(
2lλ

))([2l+1λ]∑
m=1

∥∥∥∥ ∑
P∈Pl,m

〈f,φP3〉φP3

∥∥∥∥
2

L2

)1/2

.

It then follows from disjointness of P3’s that the above display is controlled
by the right-hand side of (21).

It remains to bound (24). For each I ∈ Im let P(I) be the set of elements
of Pl,m whose time interval is inside I . Note that these collections form a
partition of Pl,m. Using Fubini and spatial orthogonality, we can rewrite (24)
as

(25) C

(
2l+1λ∑
m=1

∑
I∈Im

∥∥∥∥ ∑
P∈P(I):|IP |≥2k

〈f,φP3〉φP3(x)

∥∥∥∥
2

L2
x(V

r
k )

)1/2

.

It suffices to show that, for each m and each I ∈ Im,∥∥∥∥ ∑
P∈P(I):|IP |≥2k

〈f,φP3〉φP3(x)

∥∥∥∥
L2

x(V
r
k )

(26)

≤C
(
2lλ

)ε∥∥∥∥ ∑
P∈P(I)

〈f,φP3〉φP3(x)

∥∥∥∥
L2

x

(the desired bound for (25) then follows from disjointness of P3’s).
Let T(I) be the set of trees in Tl that intersect P(I), then

(27)
∣∣T(I)

∣∣≤ 2l+1λ.

Indeed, the top interval of any T ∈TI must contain I , since otherwise it would
be contained in some element of Im+1 and so T ∩ Pl,m = ∅, contradiction.
Consequently, |T(I)| is equal to the value of

∑
T∈T(I) 1T on I . The above

estimate then follows from (20).



116 Y. DO, R. OBERLIN AND E. A. PALSSON

Now, by splitting T(I) and absorbing a factor, we may assume that there
is an i′ = 3 such that every element of T(I) is i′-overlapping. Let ν be as in
Claim 2.1 with i= 3.

Form Ωj and Δk as in (8) using the collection Ξ of top frequencies of
elements of T(I). By (27) we have |Ξ| ≤ 2l+1λ.

Let k1, . . . , kN be the increasing enumeration of those k’s such that

|Ωk+4|> |Ωk−4|.
Since |Ωk| ≤ |Ξ|, it follows that N ≤ 8|Ξ| ≤ 2l+4λ.

Below and for the rest of the current proof, all quartiles are in P(I), in
particular in the summations. Applying (22), we have∥∥∥∥ ∑

|IP |≥2k

〈f,φP3〉φP3(x)

∥∥∥∥
L2

x(V
r
k )

(28)

≤C

∥∥∥∥ ∑
|IP |≥2kj

〈f,φP3〉φP3(x)

∥∥∥∥
L2

x(V
r
j )

+C

∥∥∥∥ ∑
2k≤|IP |<2kj+1

〈f,φP3〉φP3(x)

∥∥∥∥
L2

x(�
2
j (V

r
kj≤k<kj+1

))

.

Since N ≤ 2l+2λ, it is clear from Lemma 3.3 that the first term on the right
of (28) is controlled by the right-hand side of (26).

We will show that kj ≤ k < kj+1 then

(29)
∑

2k≤|IP |<2kj+1

〈f,φP3〉φP3 =Δk−(ν+1)

[ ∑
2kj≤|IP |<2kj+1

〈f,φP3〉φP3

]
.

Since |Ξ| ≤ 2l+1λ, it follows from (29) and Lemma 3.2 that, for each j,∥∥∥∥ ∑
2k≤|IP |<2kj+1

〈f,φP3〉φP3(x)

∥∥∥∥
L2

x(V
r
kj≤k<kj+1

)

≤C
(
2lλ

)ε∥∥∥∥ ∑
2kj≤|IP |<2kj+1

〈f,φP3〉φP3(x)

∥∥∥∥
L2

.

Taking �2 sum over j, the second term on the right of (28) is clearly controlled
by the right-hand side of (26).

It remains to show (29). It is clear from the definition of ν that if k ≤
log2 |IP | then Δk−ν−1[φP3 ] = φP3 . Therefore, it remains to show

Δk−ν−1[φP3 ] = 0

if 2kj ≤ |IP | < 2k. Assume that this is not the case. Then one interval in
Ωk−ν−1 must intersect ωP3 . Since k > n := log2 |IP |, one interval in Ωn−ν

must also intersect ωP3 . By definition of ν, this interval and the dyadic



VARIATIONAL BOUNDS FOR THE QUARTILE OPERATOR 117

interval of length 2ν−n containing ξT are siblings, that is, they share the same
dyadic parent, here T is the tree where P lives. Thus,

|Ωn−ν |> |Ωn−ν−1|
therefore |Ωn+5| > |Ωn−3|. But kj < n + 1 ≤ k < kj+1 so this violates the
choice of {kj}. �

6. Proof of Theorem 1.1

Recall from (4) that our aim is to prove that the operator

(30)
∑
P∈P

|IP |−1/2〈f1, φ̃P1〉〈f2, φ̃P2〉φ̃P3(x)

is bounded from Lp1 × Lp2 into Lq whenever 2
3 < q <∞ and 1< p1, p2 ≤∞.

Without loss of generality, we can assume that P is finite, provided that the
estimates are uniform in P.

Despite the possibility that q < 1, the “restricted type” interpolation meth-
od of [6] allows one to deduce bounds on (30) from certain estimates for

Λ(f1, f2, f3) =
∑
P∈P

|IP |−1/2
3∏

i=1

〈fi, φ̃Pi〉.

Specifically, our desired bounds follows from Proposition 6.1 and its symmetric
variants (whose proofs are analogous). Below, we say H ⊂G is a major subset
if |H| ≥ |G|/2.

Proposition 6.1. Let r > 2 and E1,E2,E3 be subsets of R
+ of positive

measures. Assume |fi| ≤ 1Ei for every i. Then there exists a major subset

Ẽ1 of E1 such that in any neighborhood of (−1
2 ,

1
2 ,1) we can find an α =

(α1, α2, α3) with α1 + α2 + α3 = 1 satisfying

∣∣Λ(f11Ẽ1
, f2, f3)

∣∣≤Cr,α

3∏
i=1

|Ei|αi .

Proof. By (dyadic) dilation symmetry, we can assume |E1| ∈ [1/2,1). Fix

q > 1 close to 1 to be chosen later. Then we choose Ẽ1 =E1 \ F where

F =

3⋃
i=1

{
Mq[1Ei ]≥C|Ei|1/q

}
with C is chosen sufficiently large to guarantee that |F | ≤ 1

4 .

Now, without loss of generality assume that f1 is supported in Ẽ1. Then
the quartiles that contribute to Λ belong to P= {P ∈P : IP ⊂ F}. Note that
by Proposition 4.1 we have

(31) Si := sizei(P, fi)≤C|Ei|1/q.
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Here C and other implicit constants below can depend on r, q, and βi (defined
below).

Applying Proposition 5.1 repeatedly, we obtain a decomposition of P into
collections of trees (Tn)n∈Z with

(32)
∑

T∈Tn

|IT | ≤C2n,

and furthermore for any T ∈Tn we have

(33) sizei(T, fi)≤C2−n/(2q)|Ei|1/(2q).
Now, for any tree T we have

(34)
∑
P∈T

|IP |−1/2
3∏

i=1

∣∣〈fi, φ̃Pi〉
∣∣≤ 4|IT |

3∏
i=1

sizei(T, fi).

To show (34), by further decomposing T we can assume that it is i-overlapping
for some i ∈ {1,2,3,4}. If i = 4, we will estimate for every P ∈ T

|IP |−1/2
∣∣〈fi, φ̃Pi〉

∣∣≤ sizei(T, fi)

and apply Cauchy–Schwarz to estimate the remaining bilinear sum by

|IT |
∏

j∈{1,2,3}\{i}
sizej(T, fj).

The case i= 4 is even simpler, one can apply the above �∞ × �2 × �2 estimate
in any order.

Applying (32), (33), (34), we obtain

∣∣Λ(f1, f2, f3)∣∣≤C
∑
n

2n
3∏

i=1

min
(
Si,2

−n/(2q)|Ei|1/(2q)
)
.

For any β1, β2, β3 ∈ [0,1] we can further estimate by

≤CS1S2S3

∑
n

2nmin

(
1,2−n

β1+β2+β3
2q

3∏
i=1

|Ei|
βi
2q S−βi

i

)
.

The above estimate is a two sided geometric series if we choose βi’s such that
β1 + β2 + β3 > 2q (which is possible if q is close to 1). We obtain

∣∣Λ(f1, f2, f3)∣∣≤C

3∏
i=1

S1−γi

i |Ei|γi/(2q), γi := 2qβi/(β1 + β2 + β3)

≤C

(
3∏

i=1

|Ei|1−
γi
2

)1/q (
using (31)

)
.

Since |E1| ∼ 1, we can ignore its contribution in the above estimate. Now, by
sending (q, β1, β2, β3) to (1,1,1,0) inside the region {β1+β2+β3 > 2q}∩{0≤
β1, β2, β3 ≤ 1< q}, we obtain the desired claim. �
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[4] D. Lépingle, La variation d’ordre p des semi-martingales, Z. Wahrsch. Verw. Gebiete

36 (1976), no. 4, 295–316. MR 0420837
[5] A. Lewko and M. Lewko, Estimates for the square variation of partial sums of

Fourier series and their rearrangements, J. Funct. Anal. 262 (2012), no. 6, 2561–
2607. MR 2885959

[6] C. Muscalu, T. Tao and C. Thiele, Multi-linear operators given by singular multipliers,
J. Amer. Math. Soc. 15 (2002), no. 2, 469–496 (electronic). MR 1887641

[7] C. Muscalu, T. Tao and C. Thiele, Lp estimates for the biest. I. The Walsh case,
Math. Ann. 329 (2004), no. 3, 401–426. MR 2127984

[8] F. Nazarov, R. Oberlin and C. Thiele, A Calderón Zygmund decomposition for multiple
frequencies and an application to an extension of a lemma of Bourgain, Math. Res.

Lett. 17 (2010), no. 2–3, 529–545. MR 2653686
[9] R. Oberlin, Bounds on Walsh model for Mq,∗-Carleson and related operators, Rev.

Mat. Iberoam. 29 (2013), 829–857. MR 3090139
[10] C. Thiele, Time-frequency analysis in the discrete phase plane, Ph.D. thesis, Yale

University, 1995. MR 2692998
[11] C. Thiele, The maximal quartile operator, Rev. Mat. Iberoam. 17 (2001), no. 1, 107–

135. MR 1846092

Yen Do, Department of Mathematics, Yale University, New Haven, CT 06511,

USA

E-mail address: yen.do@yale.edu

Richard Oberlin, Department of Mathematics, Louisiana State University, Ba-

ton Rouge, LA 70803-4918, USA

E-mail address: oberlin@math.lsu.edu

Eyvindur Ari Palsson, Department of Mathematics, University of Rochester,

Rochester, NY 14627-0251, USA

E-mail address: palsson@math.rochester.edu

http://www.ams.org/mathscinet-getitem?mr=1019960
http://www.ams.org/mathscinet-getitem?mr=2417419
http://www.ams.org/mathscinet-getitem?mr=1745019
http://www.ams.org/mathscinet-getitem?mr=0420837
http://www.ams.org/mathscinet-getitem?mr=2885959
http://www.ams.org/mathscinet-getitem?mr=1887641
http://www.ams.org/mathscinet-getitem?mr=2127984
http://www.ams.org/mathscinet-getitem?mr=2653686
http://www.ams.org/mathscinet-getitem?mr=3090139
http://www.ams.org/mathscinet-getitem?mr=2692998
http://www.ams.org/mathscinet-getitem?mr=1846092
mailto:yen.do@yale.edu
mailto:oberlin@math.lsu.edu
mailto:palsson@math.rochester.edu

	Introduction
	Structure of the paper
	Notational conventions

	Terminology
	Auxiliary estimates
	A variation-norm size bound
	A variation-norm size lemma
	Proof of Theorem 1.1
	Acknowledgments
	References
	Author's Addresses

