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HELICOIDAL MINIMAL SURFACES IN R3

OSCAR M. PERDOMO

Abstract. In 1841, Delaunay (J. Math. Pures Appl. 6 (1841)
309–320) showed that the intersection of a constant mean cur-
vature surface of revolution in R3 and a plane Π that contains

its axis of symmetry l can be described as the trace of the focus

of a conic when this conic rolls without slipping in the plane Π

along the line l. In the same way surfaces of revolution are foli-
ated by circles perpendicular to the axis of symmetry, helicoidal

surfaces are foliated by helices, all of them symmetric to a line l.

Roughly speaking, helicoidal surfaces are surfaces invariant un-
der a screw-motion. In this paper, we show that the intersection

of a helicoidal minimal surface S in R3 and a plane π perpen-
dicular to line l—where l is the axis of symmetry of the screw

motion—is characterized by the property that if we roll the curve

C = S ∩ π on a flat treadmill located on another plane Π, then,

the point P = π∩ l describes a hyperbola on the plane Π centered

at the fixed point of contact of the treadmill with the curve C.

This way of generating a curve using another curve, similar to the

well known “Roulette,” was introduced by the author in (Pacific

J. Math. 258 (2012) 459–485) and it was called the “Treadmill-
Sled.” We will also prove several properties of the TreadmillSled,

in particular we will classify all curves that are the TreadmillSled
of another curve.

1. Introduction

The surface of revolution generated by the regular curve α = (y(s), z(s))
with z(s) �= 0 is given by

φ(s, t) =
(
z(s) sin(t), y(s), z(s) cos(t)

)
.
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Figure 1. An unduloid and the construction of its profile curve.

The curve α is called the profile curve. In [2], Delaunay proved that a
surface of revolution has constant mean curvature, CMC, if and only if, it is
a sphere, a cylinder or if its profile curve lies in the trace made by the focus
of a conic, when this conic rolls along the y-axis. When the conic used is a
parabola, the surface is minimal and it is called catenoid; if the conic used is a
hyperbola, the surface is called a nodoid and if the conic used is an ellipse, the
surface is called an unduloid. Since an ellipse has two foci, the trace of each
one of them generates an undoloid. It is not difficult to see that these two
unduloids are essentially the same, one is a translation of the other. Figure 1
shows how the profile curve of an unduloid is constructed using an ellipse.

When we roll the parabola its focus traces a curve of infinite length. Fig-
ure 2 shows a catenoid and its profile curve.

When we roll a set of hyperbolas, their foci trace two curves of finite length,
each curve generates a CMC surface. It can be proven that we can translate
one of these surfaces to obtain a smooth connected surface with constant
mean curvature. If we repeat this connected piece over and over, we obtain
a complete CMC surface. In Figure 3 we show, the trace of the foci of the
two-branch hyperbola when one of its branches is rolled on a line, the two-
piece CMC surface and the connected piece made by gluing the translation of
one of the connected components of the initial two-piece surface to the other
connected component.

In order to compare the main result in this paper with Delaunay’s result,
let us think of the operator Roll that takes regular curves in R2 into curves
in R2 given in the following way: For a regular curve α : [a, b]→R2, let s(t)
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Figure 2. A catenoid and the construction of its profile curve.

Figure 3. A nodoid and the construction of its profile curve.

denote the length of the curve from α(a) to α(t) and let us define

Roll(α) =

{
Tt

(
0
0

)
: Tt is an oriented isometry in R2, Tt

(
α(t)

)
=

(
s(t)
0

)

and dTt

(
α′(t)

|α′(t)|

)
=

(
1
0

)}
.

Notice that Roll(α) is the “Roulette” of the curve α when the rolling occurs
over the x-axis and the tracing point in the plane that contains α is the origin.
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With this operator, Delaunay’s theorem implies that if α : [0, l]→R2 is a
piece of a conic with focus at the origin, then Roll(α) is the profile curve of a
surface of revolution with constant mean curvature. Notice how the origin of
the curve α plays an important role in the definition of Roll(α).

The helicoidal surface generated by the regular curve α = (x(s), z(s)) is
given by

φ(s, t) =
(
x(s) cos(wt) + z(s) sin(wt), t,−x(s) sin(wt) + z(s) cos(wt)

)
,

where w > 0 is fixed. The curve α is called the profile curve. Before explaining
our interpretation for the profile curve of helicoidal minimal surface we need to
explain the notion of “TreadmillSled” introduced by the author in [7]. Think
of the operator TSS that takes regular curves in R2 into curves in R2 given
in the following way: for a regular curve α : [a, b]→R2, let us define

TSS(α) =

{
Tt

(
0
0

)
: Tt is an oriented isometry in R2, Tt

(
α(t)

)
=

(
0
0

)

and dTt

(
α′(t)

|α′(t)|

)
=

(
1
0

)}
.

The letters TSS stand for TreadmillSled Set. Notice that the only difference
in the geometrical interpretation for Roll(α) and TSS(α) is that Roll(α) is the
curve that we obtain by rolling the curve α without slipping along a line, and
TSS(α) is the curve that we obtain by rolling the curve α with full slipping so
that at every time the point of α that is making contact with the line is not
moving forward but staying in the same spot. Therefore, the curve α will not
look like rolling anymore but it will look like moving on a treadmill. Notice
how the origin of curve α plays an important role in the definition of TSS(α).
Figure 4 shows the TreadmillSled of the graph of a polynomial of degree 3.
In this particular example, the graph of the polynomial does not contain the
origin. We can easily see that, α contains the origin if and only if TSS(α)
contains the origin. We will use x and z for the coordinates of the plane that

Figure 4. The TreadmillSled of the graph of a cubic polynomial.
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contains the curve α(s) and u and v for the coordinates of the plane that
contains TTS(α).

We are ready to state our main theorem:

Theorem 1.1. A complete helicoidal surface

φ(s, t) =
(
x(s) cos(wt) + z(s) sin(wt), t,−x(s) sin(wt) + z(s) cos(wt)

)
is minimal if and only if the TreadmillSled of its profile curve either is the

u-axis and φ is a helicoid or it is one of the branches of the hyperbola v2

M2 −
w2u2 = 1 for some nonzero M .

Besides a detailed proof of the theorem above, in this paper we will show
several properties for the TreadmillSled Operator. For a motivation of the
study of this operator, we refer to the following papers [3], [5], [6], [7].

As more applications of the TreadmillSled, in [7], the author showed that
a helicoidal surface has zero Gauss curvature if and only if the TreadmillSled
of its profile curve lies in a vertical semi-line contained in the upper or lower
plane (see Figure 5).

Also in the same paper the author showed that a helicoidal surface has
constant mean curvature 1 if and only if the TreadmillSled of its profile satisfies
the following equation

(1.1) u2 + v2 − v√
1 +w2u2

=M for some M >−1

4
.

Also, Khuns and Palmer in [6] found a dynamical interpretation for heli-
coidal surfaces with constant anisotropic mean curvature.

Besides the nice dynamical interpretation of the TreadmillSled, this oper-
ator essentially represents a change of coordinates. Actually, one of the main

Figure 5. The TreadmillSled of the profile curve of a flat
helicoidal surface lies in a vertical semiline.
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aspects in the papers [6] and [7] is the simplification of an ordinary differential

equation, ODE, after changing to “TreadmillSled coordinates,” that is, after

considering the ODE for the TS(α) instead of the ODE for α.

For purposes of a better understanding, we will find an explicit parametriza-

tion for the TreadmillSled of a curve and we will be referring to this parame-

trization of the TreadmillSled as just TS; in this way, TS becomes an operator

that takes a parametrized regular curve into a parametrized curve. We will

show that this operator acts like the derivative operator for functions. For

example,

• Given α : [a, b]→R2, TS(α) is an expression of α and α′.
• If TS(α) = TS(β), then α and β differ by a “constant.” This time the

constant does not represent a translation on the graph like in the case of

the derivative operator but it represents an oriented rotation that fixes

the origin. More precisely, identifying R2 with the complex numbers, if

TS(α) = TS(β) then β = eicα for some constant c.
• When γ is in the image of the operator TS, there is a formula for TS−1(γ)

that depends on γ, γ′ and only one antiderivative. The ambiguity of this

antiderivative is responsible for the existence of the whole 1 parametric

family of curves with the same TreadmillSled.

• If we change the orientation of α, that is, if we consider the curve β(t) =

α(−t), then TS(β)(t) =−TS(α)(−t).

If we look at Figure 4, we notice in this example that, the curve that is a

TreadmillSled have the property that its velocity vector is horizontal where

the curve intercepts the v axis. This is not a coincidence; actually we will

show that a curve γ(t) = (u(t), v(t)) is the TreadmillSled of a regular curve α

if and only if

• v′(t) =−f(t)u(t) for some continuous function f and

• v(t)f(t)− u′(t) is a positive function.

From the first property, we see that if u(t0) = 0, then v′(t0) = 0 and there-

fore the velocity vector γ′(t0) is horizontal on points along the v-axis. The

second property is the reason why a whole vertical line cannot be the Tread-

millSled of a regular curve. For a vertical line, u′(t) always vanishes and there-

fore when the line touches the u-axis, the function v(t)f(t)− u′(t) vanishes

making the second property fail at this point. Also notice that if the vertical

semi-line is contained in the v-axis, then by the relation v′(t) =−f(t)u(t), we

must have that v′(t) vanishes and therefore γ reduces to just a point. It is

easy to see that the TreadmillSled of a circle centered at the origin is just a

point in the v-axis. Notice that if the profile curve of a helicoidal surface is a

circle centered at the origin then the surface is a cylinder.
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2. The φ-TreadmillSled of a curve

Given a curve α, we have that Roll(α) and TSS(α) are curves constructed
using a motion of the plane containing the curve α and a pencil placed at the
origin of this plane. It is clear that the curve obtained using the curve α and a
tracing point different from the origin can be obtained by using a translation
of α and the origin as tracing point. Therefore, there is not loss of generality
by assuming that the point describing Roll(α) or TSS(α) is the origin. The
roulette, which is related with the rolling of a curve α along another curve β,
can be defined as

Roulette(α) =

{
Ts

(
0
0

)
: Ts is an oriented isometry in R2,

Ts

(
α(s)

)
= β(s) and dTt

(
α′(s)

)
= β′(s)

}
.

In the previous expression we are assuming that both curves, α and β are
parametrized by arc-length, and again, this is the roulette described when the
tracing point is located at the origin.

2.1. Definition and interpretation. Let us start this section with a defi-
nition that extends the notion of TreadmillSled. This extension is similar to
the one that we obtain when we generalize the notion Roll(α), which is the
Roulette over a line, to the notion of Roulette over any curve. In this gener-
alization from Roll(α) to Roulette(α), we are allowing the point of contact to
move along a general curve instead of just a line, and we are also adjusting or
moving the plane containing α to force the velocity vector α′(s) to be aligned
with the velocity vector β′(s) instead of just the vector (1,0) (the velocity
vector of the horizontal line). Since the TreadmillSled of a curve α is a rolling
with full slipping, then, the point of contact is fixed and we cannot generalize
this notion by moving the curve α along a curve β, nevertheless, we can force
the velocity vector of α to be aligned with any direction we wish.

Here is the definition of this generalization of the notion of TreadmillSled.

Definition 2.1. Given a regular curve α : [a, b]→R2 and a function φ :
[a, b]→R, we define the φ-TreadmillSled of α as the set of points{

Ts

(
0
0

)
: Ts is an oriented isometry in R2, Ts

(
α(s)

)
=

(
0
0

)

and dTs

(
α′(s)

|α′(s)|

)
=

(
cos(φ(s))
sin(φ(s))

)}
.

This set of points will be denoted by φ-TS(α).

Remark 2.2. Notice that the definition of the φ-TS(α) is independent of
the parametrization, it only depends on the orientation of the curve. That
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is, if h : [c, d]→ [a, b] is a function with positive derivative and α̃(t) = α(h(t))

and φ̃(t) = φ(h(t)), then φ̃-TS(α̃) = φ-TS(α).

It is not difficult to see that the φ-TreadmillSled of α can be viewed as the
curve generated by doing the following steps:

• Imagine that the curve α is in a plane which can freely move. Moreover,
let us assume that there is a hole in the origin of this plane and also let us
assume that we have placed a pencil in this hole.

• Imagine that another plane, this one fixed, contains a treadmill based at
the origin with a device that allows the treadmill to incline at any angle.

• The curve α in the moving plane will generate another curve in the fixed
plane, the φ-TreadmillSled of α.

• The φ-TreadmillSled of α is the curve drawn on the fixed plane by the
pencil located at the origin of the moving plane, when the curve α passes
on the treadmill with the property that, anytime the point α(s) is on the
treadmill, the treadmill is aligned in the direction (cos(φ(s)), sin(φ(s))).

2.1.1. Generalization of the Roulette. We can extend the φ-TreadmillSled and
the Roulette in the following way.

Definition 2.3. Given two curves α : [0, l1] → R2 and β : [0, l2] → R2

parametrized by arc-length, and two functions ρ : [0, l1] → [0, l2] and
φ : [0, l1]→R, we can define the Generalized Roulette of α over β with func-
tions ρ and φ as

GR(α) =

{
Ts

(
0
0

)
: Ts is an oriented isometry in R2, Ts

(
α(s)

)
= β

(
ρ(s)

)

and dTs

(
α′(s)

)
=

(
cos(φ(s))
sin(φ(s))

)}
.

Remark 2.4. With this definition we have that if ρ(s) = s and φ(s) satisfies
the equation β′(s) = (cosφ(s), sinφ(s)), then GR(α) agrees with the Roulette
of α. If ρ(s) = 0 for all s and β is any curve that satisfies β(0) = (0,0), then
GR(α) agrees with the φ-TreadmillSled of α.

2.2. Parametrization of the φ-TreadmillSled. The following proposition
will provide a formula to find the φ-TreadmillSled of a curve α.

Proposition 2.5. Let α : [a, b]→R2 be a regular curve in R2, if α(s) =

(x(s), y(s))T =
(
x(s)
y(s)

)
, then,

(2.1) β(s) =A
(
θ(s)

)
α(s) =−A

(
−φ(s)

)
A

(
ρ(s)

)
α(s)

is a parametrization of the φ-TreadmillSled of α. Here

A(τ) =

(
cos(τ) sin(τ)
− sin(τ) cos(τ)

)
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and

θ(s) = ρ(s)− φ(s) + π and

(
cos(ρ(s))
sin(ρ(s))

)
=

1

|α′(s)|α
′(s).

Proof. We will use the parameter s to describe points in the set φ-TS(α).
For a fixed s ∈ [a, b], let us find an oriented isometry ofR2 such that Ts(α(s)) =(
0
0

)
and dTs(

α′(s)
|α′(s)| ) =

(
cos(φ(s))
sin(φ(s))

)
. We know that

Ts

(
u
v

)
=A

(
θ̃(s)

)(
u
v

)
+

(
c1(s)
c2(s)

)
.

Notice that once we find θ̃(s), c1(s) and c2(s), using the Definition 2.1, we
get that β(s) = (c1(s), c2(s))

T is a point in φ-TS(α); and therefore,
when we vary s in the interval [a, b], we obtain that β(s) = (c1(s), c2(s)) is
a parametrization of φ-TS(α).

Since

dTs

(
v1
v2

)
=A

(
θ̃(s)

)(
v1
v2

)
and dTs

(
α′(s)

|α′(s)|

)
=

(
cos(φ(s))
sin(φ(s))

)

we have that

A
(
θ̃(s)

)(
cos(ρ(s))
sin(ρ(s))

)
=

(
cos(φ(s))
sin(φ(s))

)

and therefore,

A
(
θ̃(s)

)
A

(
−ρ(s)

)(
1
0

)
=A

(
−φ(s)

)(
1
0

)
.

Since A(τ1 + τ2) = A(τ1)A(τ2), the last equation implies that A(θ̃(s) −
ρ(s) + φ(s))

(
1
0

)
=

(
1
0

)
, which implies that θ̃(s) = ρ(s)− φ(s).

Now, using the equation Ts(α(s)) =
(
0
0

)
we get that(

c1(s)
c2(s)

)
=−A

(
θ̃(s)

)
α(s) =A

(
θ(s)

)
α(s).

Since β(s) = (c1(s), c2(s))
T , then the proposition follows. �

2.3. TreadmillSled as a parametrized curve. The definition of Tread-
millSled of a curve given in the Introduction corresponds with the φ-Tread-
millSled when φ is the zero function. Sometimes we will view φ-TS(α) not as a
set but as the parametrized curve described in (2.1). In particular, we have the
following way to define the TreadmillSled not as a set but as a parametrized
curve.

Definition 2.6. Let α : [a, b]→R2 =
(
x(s)
y(s)

)
be a regular curve. We define

the TreadmillSled of α as the parametric curve TS(α) : [a, b]→R2 given by

TS(α)(s) =
1√

x′(s)2 + y′(s)2

(
−x′(s)x(s)− y′(s)y(s)
x(s)y′(s)− y(s)x′(s)

)
.
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The following remark gives us some insight about the nature of the operator
φ-TreadmillSled defined in the set of regular curves. As we already noticed,
the φ-TreadmillSled of a curve is independent of the parametrization as long
as the orientation is preserved. Therefore, there is not loss of generality if
we assume that the curves in the domain of the operator φ-TreadmillSled are
parametrized by arc-length.

Remark 2.7. Let us define J =
(
0 −1
1 0

)
. If α is an arc-length parametrized

curve and
(
u(s)
v(s)

)
=TS(α), then,

u=−
〈
α,α′〉 and v =

〈
α′, Jα

〉
where 〈·, ·〉 is the Euclidean inner product.

With this definition of J we have that the curvature of α is k(s) = 〈α′′(s),

J(α′(s))〉. Notice that if α′(s) =
(
cos(ρ(s))
sin(ρ(s))

)
, then k(s) = ρ′(s). Therefore, if we

know the curvature k(s) of a curve parametrized by arc-Length and a given

angle for the velocity vector, let’s say α′(a) =
(
cos(ρ0)
sin(ρ0)

)
, then

TS(α) =−A
(
ρ(s)

)
α(s) where ρ(s) =

∫ s

a

k(u)du+ ρ0.

2.4. The φ-TreadmillSled and complex numbers. The parametrization
given in Proposition 2.5 can be viewed in the following way.

Corollary 2.8. If we identify each point
(
x1

x2

)
∈ R2 with the complex

number x1 + ix2, then

φ-TS(α) = eiφTS(α).

For any curve α(s) = x1(s) + ix2(s). Moreover, if the function φ is fixed,
then, the φ-TreadmillSled of two curves is the same, if and only if the Tread-
millSled of the curves is the same.

One of the reasons we introduce this extension to the notion of Tread-
millSled is because it provides an interpretation for the curve h(t)α(t) when
h : [a, b]→ C, α : [a, b]→ C are curves in the complex plane with |h(t)| = 1.
The following corollary provides a way to program the inclination on a tread-
mill (find the function φ) if we want to get the curve eig(t)α(t) as the φ-
TreadmillSled of α.

Corollary 2.9. If α : [a, b]−→C∼=R2 is a regular curve with curvature
function κ and g : [a, b]→R is a function, then

eig(t)α(t) = φ-TS(α),

where φ(t) =
∫ t

a
κ(τ)|α′(τ)|dτ + ρ0 + g(t) + π and α′(a) =

(
cos(ρ0)
sin(ρ0)

)
.
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2.5. The inverse image of the TreadmillSled operator. In this section
we will point out that even though the TreadmillSled operator is not one to
one, given a curve β in the range of the operator TreadmillSled, there is only
a one-parametric family of curves whose image is the curve β, moreover, all
these curves in the inverse image of the curve β differ only by an oriented
rotation about the origin. More precisely, we have the following proposition.

Proposition 2.10. Let α1 : [a, b]→R2 and α2 : [a, b]→R2 be two curves
parametrized by arc-length. TS(α1) = TS(α2) if and only if α2(s) =A(τ)α1(s)
for some constant τ .

Proof. Let ρ1(s) and ρ2(s) be functions such that
(
cos(ρi(s))
sin(ρi(s))

)
= α′

i(s). If

α2(s) =A(τ)α1(s), then

α′
2(s) =A(τ)

(
cos(ρ1(s))
sin(ρ1(s))

)
=

(
cos(ρ1(s)− τ)
sin(ρ1(s)− τ)

)
.

Therefore, we may assume that ρ2(s) = ρ1(s)− τ . Using Proposition 2.5, we
obtain that

TS(α2) =A(ρ2 + π)α2 =A(ρ1 − τ + π)A(τ)α1 =A(ρ1 + π)α1 =TS(α1).

Therefore, we have proven that if α2 = A(τ)α1, then TS(α1) = TS(α2).
Now let us assume that TS(α1) = TS(α2). Let us fix an s0 ∈ [a, b] such
that |α1(s0)| �= 0. Since TS(α1)(s0) = TS(α2)(s0) then |α1(s0)| = |α2(s0)|.
Let τ be a real number such that A(τ)α1(s0) = α2(s0) and let us consider
α3(s) =A(τ)α1(s). We have, TS(α3) = TS(α2), and moreover, we have that

α3(s0) = α2(s0). Using Definition 2.6 we get that if α(s) =
(
x(s)
y(s)

)
is a curve

parametrized by arc-length and TS(α)(s) =
(
u(s)
v(s)

)
, then

u(s) = −x′(s)x(s)− y′(s)y(s),

v(s) = x(s)y′(s)− y(s)x′(s).

For values of s such that x(s)2 + y(s)2 > 0, we get that

x′(s) = − 1

x(s)2 + y(s)2
(
x(s)u(s) + y(s)v(s)

)
,

y′(s) =
1

x(s)2 + y(s)2
(
x(s)v(s)− y(s)u(s)

)
.

By the Existence and Uniqueness theorem of ordinary differential equations
we get that the conditions α3(s0) = α2(s0) and TS(α3) = TS(α2) imply that
α2(s) = α3(s) for all s near s0. Since both curves are regular, by a continu-
ity argument we conclude that the real number τ is independent of s0 and
therefore α2(s) = α3(s) for all s. We then get α2 =A(τ)α1 for some τ . This
finishes the proof of the proposition. �
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2.6. The range of the TreadmillSled operator and a formula for
the inverse of the TreadmillSled. In this section, we will characterize the
range of the operator TreadmillSled. Moreover, we will provide two easy-
to-check properties such that, any curve that satisfies them, must be the
TreadmillSled of another curve. Moreover, for any curve γ that satisfy these
two easy-to-check properties we will find an explicit formula for a curve α
whose TreadmillSled is the curve γ. Under the assumption that a curve γ is in
the range of the operator TS, the formula for the inverse of the TreadmillSled
provided below was found in [6].

Proposition 2.11. Let γ(s) =
(u(s)
v(s)

)
be a regular curve. γ is the Tread-

millsled of a regular curve α if and only if v′(s) =−f(s)u(s) for some contin-
uous function f and vf − u′ > 0. More precisely, if f, v and u satisfy the two
previous conditions, and F (s) is an antiderivative of f(s), then,

TS(α) = γ where α(t) =−A
(
−F (t)

)
γ(t).

Proof. Let us assume that γ(s) is the TreadmillSled of a curve α. Let us
first consider the case when α is parametrized by arc-Length. If we denote by
kα the curvature of α, then, using Remark 2.7 we obtain,

u=−
〈
α,α′〉 and v =

〈
α′, Jα

〉
.

Therefore,

v′ =
〈
α′′, Jα

〉
+

〈
α′, Jα′〉= kα

〈
Jα′, Jα

〉
= kα

〈
α′, α

〉
=−kαu

and

u′ =−1−
〈
α,α′′〉=−1− kα

〈
α,Jα′〉 =−1 + kα

〈
Jα,α′〉=−1 + kαv.

Taking f = kα, we conclude that v′ = −fu and fv − u′ = 1. If we now
consider a regular curve α̃, then we have that α̃(t) = α(h(t)) where α is
parametrized by arc-length and h(t) is a function with h′(t)> 0. Therefore,

by either Remark 2.2 or by Definition 2.6, we get that if γ̃ =
(
ũ
ṽ

)
is the Tread-

millSled of α̃, then γ̃(t) = γ(h(t)) where γ =
(
u
v

)
is the TreadmillSled of α.

Since α is parametrized by arc-length, then v′(h(t)) = −f(h(t))u(h(t)) for
some continuous function f and fv− u′ = 1. A direct verification shows that
f̃(t) = h′(t)f(h(t)) is a continuous function that satisfies ṽ′(t) = −f̃(t)ũ(t),
and

ṽ(t)f̃(t)− ũ′(t) = h′(t)v
(
h(t)

)
f
(
h(t)

)
− h′(t)u′(h(t)) = h′(t)> 0.

This inequality finishes the proof of one of the implications of the proposi-
tion. Let us assume now that the functions u, v are given and that v′ =−fu
for some continuous function f , and that fv− u′ > 0. We need to prove that
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if F ′ = f then

α(t) =−A
(
−F (t)

)
γ(t)

satisfies that TS(α) = γ. Using the fact that

dA(τ)

dτ
=A

(
τ +

π

2

)
=A(τ)A

(
π

2

)
=−A(τ)J

we get that

α′ =−fA(−F )Jγ −A(−F )γ′ =−A(−F )
(
fJγ + γ′).

Therefore,〈
α′, α′〉 = 〈

fJγ + γ′, fJγ + γ′〉 = f2〈γ, γ〉+ 2f
〈
Jγ, γ′〉+ 〈

γ′, γ′〉.
Before we continue with the proof, we point out that the set {s : u(s) = 0}

cannot contain an open set because of the regularity of the curve γ. Indeed, if
(a, b) is an open interval contained in {s : u(s) = 0} and s0 ∈ (a, b), then clearly
u′(s0) = 0 and, using the equation v′(s0) = f(s0)u(s0) we conclude that v

′(s0)
is also zero, which is impossible because we are assuming that γ′(s) does not
vanish for any s. As a consequence of this observation, we have that if two
continuous functions agree in the complement of the set {s : u(s) = 0}, then,
they agree in the whole domain of the function γ.

For every point where the function u does not vanish, we have that f =−v′

u .
Moreover, we get that

〈
α′, α′〉 =

(v′)2

u2

(
u2 + v2

)
− 2

v′

u

(
uv′ − vu′)+ (

u′)2 + (
v′

)2

=

(
u′ +

vv′

u

)2

=
(
fv− u′)2.

Since we have that fv−u′ > 0, then we conclude that |α′|= fv−u′ anytime
u does not vanish.

Since we have that {s : u(s) = 0} does not contains an open interval, then,
by the continuity of the functions |〈α′, α′〉| and fv − u′ we conclude that
|〈α′, α′〉|= fv − u′ > 0 everywhere, and therefore α is a regular curve. More-
over, we have

TS(α) =
1

|α′|

(
−〈α′, α〉
〈α′, Jα〉

)

=
1

|α′|

(
−〈γ, fJγ + γ′〉
〈fJγ + γ′, Jγ〉

)

=
1

|α′|

(
−〈γ, γ′〉

f〈γ, γ〉+ 〈γ′, Jγ〉

)
.

Since,

−
〈
γ, γ′〉=−vv′ − uu′ = vfu− uu′ = u

(
vf − u′) = u|α′|
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and,

f〈γ, γ〉+
〈
γ′, Jγ

〉
= −v′

u

(
u2 + v2

)
+ uv′ − vu′ =−v2v′

u
− vu′

= v
(
fv− u′) = v|α′|

we conclude that TS(α) = γ. This completes the proof of the proposition. �

Remark 2.12. The regularity condition for the curve γ in the previous
proposition can be replaced by the weaker condition that γ′ does not vanish
on an open set, that is, it can be replaced by the condition that the curve γ
is not constant on a open interval.

3. A dynamical interpretation for helicoidal minimal surfaces

Helicoidal minimal hypersurfaces have been understood for a long time. For
a detailed study, we refer to the last section of the last chapter of the book of
Differential Geometry by Graustein [4]. We have that all the isometric surfaces
(except for the catenoid) from the well-known family of surfaces that starts
with a helicoid and ends with a catenoid are helicoidal minimal surfaces. See
Figure 6. Actually, every helicoidal minimal surface belongs to one of these
families.

Figure 6. A helicoid (left), a helicoidal minimal surface
(center) and a catenoid (right) are part of a family of iso-
metric minimal surfaces.
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Figure 7. The TreadmillSled of the profile curve of a heli-
coidal minimal surface is either the u-axis or a hyperbola. In
the notation of Theorem 3.1, in this figure, we have w = 1
and M = 1.

A similar result for helicoidal CMC surfaces was proven in [1] by Do Carmo
and Dajczer. They proved that every helicoidal surface belongs to a family
of isometric surfaces that continuously move from an unduloid to a nodoid.
In this section, we provide a dynamical interpretation for the profile curve of
a helicoidal minimal surface (see Figure 7). Let us state and prove the main
theorem in this section.

Theorem 3.1. A complete helicoidal surface

φ(s, t) =
(
x(s) cos(wt) + z(s) sin(wt), t,−x(s) sin(wt) + z(s) cos(wt)

)
is minimal if and only if the TreadmillSled of its profile either is the u-axis

and φ is a helicoid or it is one of the branches of the hyperbola v2

M2 −w2u2 = 1
for some nonzero M .

Proof. Let us assume that the profile curve α(s) = (x(s), z(s)) is parame-
trized by arc-length. If TS(α)(s) = (ξ1(s), ξ2(s)) then by Definition 2.6 we
have

ξ1(s) =−x′(s)x(s)− z′(s)z(s) and ξ2(s) = x(s)z′(s)− z(s)x′(s).

Since we are assuming that α is parametrized by arc-length, there exists a
function θ such that α′(s) = (cos(θ(s)), sin(θ(s)). From the previous equation,
we get that

θ′(s) = x′(s)z′′(s)− z′(s)x′′(s).
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With this definition of θ(s) and the definition of the function ξ1(s) and
ξ2(s) given above, we obtain that

x(s) = −ξ1(s) cos
(
θ(s)

)
+ ξ2(s) sin

(
θ(s)

)
and

z(s) = −ξ1(s) sin
(
θ(s)

)
− ξ2(s) cos

(
θ(s)

)
.

A direct computation shows that

ν =

(
sin(wt− θ)√
1 +w2ξ21

,− wξ1√
1 +w2ξ21

,
cos(wt− θ)√

1 +w2ξ21

)

is a Gauss map of the immersion φ and, with respect to this Gauss map, the
first and second fundamental forms are given by

E = 1, F =−wξ2, G= 1+w2
(
ξ21 + ξ22

)
and

e =
θ′√

1 +w2ξ21
, f =

−w√
1 +w2ξ21

, g =
w2ξ2√
1 +w2ξ21

.

Using the values above we get that the mean curvature H of the φ is given
by

H =
−w2ξ2 + θ′(1 +w2(ξ21 + ξ22))

2(1 +w2ξ21)
3
2

.

Therefore, the equation H = 0, that is, the minimality of the immersion φ,
implies

θ′ =
w2ξ2

1 +w2(ξ21 + ξ22)
.

From the definition of ξ1 and ξ2 we get that

ξ′1 = −x′′x−
(
x′)2 − z′′z −

(
z′

)2
= θ′x sin(θ)− θ′z cos(θ)− 1

= θ′ξ2 − 1.

Likewise we obtain that ξ′2 = −θ′ξ1. Therefore if φ is minimal, replacing
the expression for θ′ above, we get that

ξ′1 =
w2ξ22

1 +w2(ξ21 + ξ22)
− 1,

ξ′2 = − w2ξ1ξ2
1 +w2(ξ21 + ξ22)

.

A direct verification shows that if (ξ1(s), ξ2(s)) satisfies the differential
equation above then,

ξ2(s)√
1 +w2ξ1(s)2

=M for some constant M.

If M = 0, then ξ2(s) = 0. That is, in this case the TreadmillSled of α
is the u-axis. If M is not zero, we get by squaring the centered equation
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above, that the TreadmillSled lies in one of the branches of the hyperbola
v2

M2 −w2u2 = 1. Therefore, one implication of the theorem follows. We will use
the inverse formula for the TreadmillSled, see Proposition 2.11, to prove the
other implication. Let us assume that the TreadmillSled of the profile curve
α is the horizontal line γ(s) = (γ1, γ2) = (−s,0). In this case the function f

from Proposition 2.11 is given by f =−γ′
2(s)

γ1(s)
= 0, since f is continuous we have

that the first of the two easy-to-check properties holds. Since γ2f−γ′
1 = 1> 0,

then the second of the two easy-to-check properties holds too. In this case
F (s) = c where c is any constant. Therefore, it follows that an inverse of the
horizontal line is given by

α(s) =−
(

cos(−c) sin(−c)
− sin(−c) cos(−c)

)(
−s
0

)
=

(
s cos(c)
s sin(c)

)
.

That is, α is a line through the origin and therefore the surface φ is a
helicoid. Now, let us assume that the TreadmillSled of the profile curve sat-

isfies the equation v2

M2 − w2x2 = 1. We can assume that this TreadmillSled

is parametrized as γ(s) = (γ1, γ2) = (− 1
w sinh(s),M cosh(s)). In this case, the

function f from Proposition 2.11 is given by f = −γ′
2(s)

γ1(s)
= Mw, since f is

continuous we have that the first of the two easy-to-check properties holds.

Since γ2f − γ′
1 =

1+M2w2

w cosh(s), then the second of the two easy-to-check
properties holds too. In this case, we can take the function F (s) = Mws.
Therefore, using Proposition 2.11, we get that an inverse of the branch of the
hyperbola is

α(s) = −
(

cos(−Mws) sin(−Mws)
− sin(−Mws) cos(−Mws)

)(
− 1

w sinh(s)
M cosh(s)

)

=

(
M cosh(s) sin(Mws) + 1

w sinh(s) cos(Mws)
−M cosh(s) cos(Mws) + 1

w sinh(s) sin(Mws)

)
.

A direct verification shows that if we define the functions x(s) and z(s) by
the equation α(s) = (x(s), z(s)), then, φ(s, t) = (x(s) cos(wt) + z(s) sin(wt), t,
−x(s) sin(wt) + z(s) cos(wt)) is minimal. This finishes the proof of the theo-
rem. �
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