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RIGIDITY OF DERIVATIONS IN THE PLANE AND
IN METRIC MEASURE SPACES

JASUN GONG

Abstract. Following the work of Weaver, we study generalized
differential operators, called (metric) derivations, and their linear

algebraic properties. In particular, for k = 1,2 we show that

measures on R
k that induce rank-k modules of derivations must

be absolutely continuous to Lebesgue measure. An analogous

result holds true for measures concentrated on k-rectifiable sets
with respect to k-dimensional Hausdorff measure.

These rigidity results also apply to the metric space setting
and specifically, to spaces that support a doubling measure and a

p-Poincaré inequality. Using our results for the Euclidean plane,

we prove the 2-dimensional case of a conjecture of Cheeger, which
concerns the non-degeneracy of Lipschitz images of such spaces.

1. Introduction

In this work, we consider Weaver’s theory of (metric) derivations [Wea00],
which are generalizations of differential operators on Riemannian manifolds.
For metric spaces equipped with a Borel regular measure, derivations are
linear operators from the class of bounded Lipschitz functions to the class
of essentially bounded functions with respect to certain weak topologies; see
Lemma 2.3 and Definition 2.5.

On R
n equipped with the standard metric, Rademacher’s theorem states

that every Lipschitz function is almost everywhere (a.e.) differentiable with
respect to the Lebesgue measure. Put one way, the validity of Rademacher’s
theorem is encapsulated in the structure of a metric space, if there exists a
nonzero derivation with respect to a fixed measure on that space.
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1.1. Rigidity of measures and derivations. The framework of [Wea00]
includes many examples, such as Riemannian manifolds, the self-similar frac-
tal spaces of Laakso [Laa00], and infinite-dimensional spaces such as Banach
manifolds and abstract Wiener spaces. In each example, there are natural
choices for the metric and measure, but one may inquire as to how flexible
these choices can be made.

Question 1.1. On a given metric space, which measures induce nontrivial
derivations? Of those, how many can we expect?

For a fixed space, the set of derivations admits a natural module structure,
so the notions of linear independence and basis are well defined for derivations.
We therefore determine “how many” derivations exist on a space in terms of
the rank of the module.

To clarify, Question 1.1 is not simply a matter of the Hausdorff dimensions
of the relevant spaces, but of subtler issues of geometry as well. Given a line in
R

n, for instance, 1-dimensional Hausdorff measure induces a rank-1 module of
derivations [Wea00, Theorem 38]. On the other hand, the standard Sierpiński
carpet in R

2 equipped with its natural Hausdorff measure (of dimension log3 8)
does not admit any nonzero derivations [Wea00, Theorem 41].

In this paper, we will focus on the case of Euclidean spaces. The following
result indicates that, for k = 1,2, there are few choices of Radon measures on
(Rk, | · |) that induce rank-k modules of derivations.

Theorem 1.2. Let k ∈ {1,2}. If μ is a Radon measure on (Rk, | · |) that
induces a rank-k module of derivations, then it is absolutely continuous to
Lebesgue measure. Moreover, derivations with respect to μ are linear combi-
nations of the differential operators {∂/∂xi}ki=1 with scalars in L∞(Rk, μ).

The class of Lipschitz functions on a space clearly depends on the choice
of metric on that space. So in terms of derivations, Theorem 1.2 can be
viewed as a rigidity result for measures on R

k that obey a Rademacher-type
theorem.

Regarding the k = 2 case, the proof uses a result of Alberti, Csörnyei, and
Preiss [ACP05] about the structure of Lebesgue null sets in R

2. Roughly
speaking, it asserts that every Lebesgue null set in R

2 (that is, a subset of
zero Lebesgue measure) splits into a horizontal part and a vertical part. So
given a measure μ that is concentrated on such a set, we also show that
each part admits a generalized “tangent” vector field, but whose components
satisfy a linear dependence relation for all derivations with respect to μ; see
Lemma 4.11.

1.2. Applications to metric spaces. Though formulated for Euclidean
spaces, the results in Section 1.1 are also relevant to the general setting of
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metric measure spaces—that is, metric spaces equipped with Borel regular
measures.

To obtain a reasonable setting for analysis, we restrict our focus to spaces
that support doubling measures. Recall that a Borel measure μ on (X,d) is
called doubling if there exists κ≥ 1 so that

(1.1) 0< μ
(
B(x,2r)

)
≤ κμ

(
B(x, r)

)
<∞

holds for all x ∈X and all r > 0. Spaces supporting such measures are par-
ticular cases of spaces of homogeneous type [CW77]; in particular they have
finite Hausdorff dimension and admit generalized dyadic-cube decompositions
[Chr90]. Intuitively, the doubling condition (1.1) ensures that the space X
has good scaling properties, from which we obtain a rich theory of “zeroth
order” calculus—that is, good analogues of Riesz potentials, the Lebesgue
differentiation theorem, and other elements of harmonic analysis.

For a theory of first-order calculus, however, we also require the spaces to
support a generalized Poincaré inequality. Indeed, on R

n the inequality takes
the form

−
∫
B(x,r)

|f − fB(x,r)|dx≤C(n,p)r

(
−
∫
B(x,r)

|∇f |p dx
)1/p

for all p ≥ 1 and all Lipschitz f : Rn → R. Here mean values are denoted
by

fA :=−
∫
A

f dx :=
1

|A|

∫
A

f dx.

So at small scales, the inequality asserts that the slopes (f − fB(x,r))/r are
comparable to the usual gradients |∇f | in an averaged sense.

There is an analogous formulation of the Poincaré inequality for metric
spaces supporting doubling measures. In this setting, upper gradients replace
the usual gradients, but there remains the same consequence that Lipschitz
functions have good infinitesmal behavior [HK98], [Sha00]. Indeed, Cheeger
[Che99] has shown that Lipschitz functions on such spaces are also a.e. dif-
ferentiable; see Theorem 5.7. As a result, these spaces admit generalized dif-
ferentiable structures, and Keith has extended the result for a more general
class of spaces [Kei04a].

In particular, Theorem 1.2 gives rise to geometric rigidity theorems in cases
when the metric space embeds isometrically into a Euclidean space. For exam-
ple, it implies an affirmative answer to a conjecture of Cheeger [Che99, Con-
jecture 4.63] when the generalized differentiable structure is 2-dimensional—
that is, the N ≤ 2 case of Theorem 5.7. The statement of the conjecture is
technical, but combined with [Che99, Theorem 14.2] it implies the following
fact.
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Theorem 1.3. Let (X,d) be a complete metric space that supports a dou-
bling measure μ and a p-Poincaré inequality. If the corresponding measurable
differentiable structure is (at most) 2-dimensional and if there is an isomet-
ric embedding ι : X → RN , for some N ∈ N, then the image ι(Xm) of each
coordinate chart Xm is an n(m)-rectifiable set.

Recently Bate has proven a more general version of the same result [Bat12,
Corollary 6.10]. Though his methods are independent of ours, his argument
also relies on the results of Alberti, Csörnyei, and Preiss about Lebesgue null
sets in R

2 [ACP05].
In the context of geometric measure theory, it is a fact that every n-

rectifiable set in RN agrees with a countable union of n-dimensional, C1-
smooth submanifolds, up to a set of zero n-dimensional Hausdorff measure
[Mat95, Theorem 15.21]. Theorem 1.3 therefore asserts that 2-dimensional
spaces supporting Euclidean metrics and nontrivial derivations must also have
locally Euclidean geometry (up to negligible subsets).

As a special case, Theorem 1.2 implies additional rigidity for measures
in the plane. The case of R was proven by Björn, Buckley, and Keith
[BBK06].

Theorem 1.4. Let μ be a doubling measure on R2. If (R2, | · |, μ) supports
a p-Poincaré inequality, then μ is absolutely continuous to Lebesgue measure.

The hypothesis of a Poincaré inequality is necessary. Namely, there exist
doubling measures on R

n that give positive mass to Lebesgue null sets; for
examples, see [KW95], [Wu98], and [GKS10].

We note that Keith has proven [Che99, Conjecture 4.63] for 1-dimensional
differentiable structures, and that our methods are independent of his. His
proof relies on a fact about sets of non-differentiability of Lipschitz functions
on R [PT95]. Alberti, Csörnyei, and Preiss have recently announced an anal-
ogous fact in R

2 [ACP05, Theorem 7.5] and from this, Keith’s techniques will
also prove the 2-dimensional case of Cheeger’s conjecture; see also the proof
in [Bat12].

1.3. Plan of the paper. Section 2 begins by introducing terminology and
recalling basic facts about Lipschitz functions. It also contains the basics
of Weaver’s theory, clarifies the equivalence of definitions from [Wea00] and
[Hei07], and gives new facts about derivations.

The case of derivations on 1-dimensional sets in Rn is treated in Section 3;
this includes the setting of 1-rectifiable sets. In Section 4, we discuss the
structure of Lebesgue null sets in R

2 and the rigidity of measures that in-
duce rank-2 modules of derivations. Section 5 begins with basic facts about
spaces admitting a Poincaré inequality and concludes with a proof of the
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2-dimensional case of Cheeger’s conjecture; we also explore the relationship
between several open problems.

2. Preliminaries

2.1. Notation and preliminaries. The identity map on a set S is denoted
by idS . For real-valued functions f and g, we denote their pointwise minimum
and maximum as f ∧ g and f ∨ g, respectively.

For a measure μ on a set X and a μ-measurable subset A of X , the restric-
tion measure μ
A is defined as

(μ
A)(E) := μ(A∩E)

for all μ-measurable subsets E in X . If μ = μ
A, then we say that μ is
concentrated on A. A collection {Xi}∞i=1 of μ-measurable subsets of X is
a μ-measurable decomposition of X if μ is concentrated on

⋃∞
i=1Xi and if

μ(Xi ∩Xj) = 0 holds whenever i �= j.
Given p ∈ [1,∞] and a measure μ on a set X , the standard norm on the

Banach space Lp(X,μ) is denoted by ‖ · ‖μ,p. We will write ‖f‖∞ for the
supremum norm of a function f , whenever it exists. As indicated before,
given a function u ∈ L1

loc(X,μ) and a subset A ⊂X with 0 < μ(A) <∞, its
mean value is

uA :=−
∫
A

udμ=
1

μ(A)

∫
A

udμ.

On a metric space X , a measure μ is Radon if it is Borel regular and if
balls have positive finite μ-measure. We will denote α-dimensional Hausdorff
measure on a metric space X by Hα

X . For X = R
n, we write Hα =Hα

X and
mn for the Lebesgue measure.

The standard basis of vectors on R
n is denoted by {e1, e2, . . . , en}. If V

is a linear subspace of Rn, then projV : Rn → V is the orthogonal projection
map onto V . For j = 1,2, . . . , n, the standard partial differential operators on
R

n are denoted by ∂j := ∂/∂xj . The class of smooth functions on R
n with

compact support is denoted by C∞
0 (Rn).

2.2. Lipschitz functions. Let (X,ρX) and (Y,ρY ) be metric spaces. Recall
that a function f : X → Y is Lipschitz if

(2.1) L(f) := sup

{
ρY (f(x), f(y))

ρX(x, y)
: x, y ∈X,x �= y

}
<∞

and we refer to L(f) as the Lipschitz constant of f .
We write Lip(X;Y ) for the space of Lipschitz maps from X to Y and

Lipb(X;Y ) for the subspace of bounded Lipschitz maps in Lip(X;Y ). For
Y =R, we write

Lip(X) := Lip(X;R) and Lipb(X) := Lipb(X;R).



1114 J. GONG

We now recall some basic properties of Lipschitz maps. Their proofs are
elementary and we omit them.

Lemma 2.1. Let X , Y , and Z be metric spaces.

(1) If f ∈ Lip(X;Y ) and g ∈ Lip(Y ;Z), then g ◦ f ∈ Lip(X;Z).
(2) Lip(X) is a vector space, and Lipb(X) is an algebra over R.
(3) If f and g are functions in Lip(X), then so are f ∨ g and f ∧ g.
(4) Let A be a closed subset of X . If f ∈ Lip(A), then there exists F ∈ Lip(X)

so that F |A= f and L(F ) = L(f).

Part (4) of Lemma 2.1 is known as the McShane–Whitney extension of a
Lipschitz function [McS34]. For f ∈ Lip(A), an explicit formula is

F (x) := inf
{
f(a) +L(f)d(x,a) : a ∈A

}
.

Combining Parts (3) and (4), we obtain an analogous fact for Lipb(X).

Lemma 2.2. Let A be a closed subset of X . If f ∈ Lipb(A), then there exists
fA ∈ Lipb(X) so that fA|A= f , L(fA) = L(f), and ‖fA‖∞ = ‖f‖∞.

We refer to fA as the bounded McShane extension of f . Note that Lipb(X)
is a Banach space with respect to the norm

(2.2) ‖f‖Lip := ‖f‖∞ ∨L(f).

For a proof, see [Wea99, Proposition 1.6.2(a)]. In fact, Lipb(X) is a dual
Banach space [AE56]; see also [Wea96, Propositions 2 and 8].

Lemma 2.3 (Weaver, 1996). Let X be a metric space.

(1) Lipb(X) is a dual Banach space with respect to the norm ‖ · ‖Lip.
(2) If {fα}α∈I is a bounded net in Lipb(X), then fα converges weak-∗ to f

in Lipb(X) if and only if fα converges pointwise to f .

The next lemma follows from the first lemma and from several explicit
constructions in [Wea99, Sections 1.7 and 2.2].

Lemma 2.4. If X is a separable metric space, then the pre-dual of Lipb(X)
is a separable Banach space.

Proof. Clearly, ρ2 := ρ ∧ 2 is a metric on X and the metric space X2 :=
(X,ρ2) is separable because (X,ρ) is separable. By [Wea99, Proposition 1.7.1],
we have the isometric isomorphism Lipb(X)∼=Lipb(X2).

Let X+
2 be the set of all points in X2 as well as one additional point e, so

X+
2 =X ∪ {e}. We may extend ρ2 to a metric ρ+2 on X+

2 by the rule

ρ+2 (x, e) :=

{
diam(X2), x �= e,
0, x= e.

Now consider the space of functions given by

Lip0
(
X+

2

)
:=

{
f ∈ Lip

(
X+

2

)
: f(e) = 0

}
.



RIGIDITY OF DERIVATIONS IN THE PLANE 1115

By [Wea99, Proposition 1.6.2(b)], Lip0(X
+
2 ) is a Banach space with respect

to the norm f �→ L(f). Moreover, by [Wea99, Theorem 1.7.2] we also have
the isometric isomorphism Lip0(X

+
2 )∼=Lipb(X2).

Clearly X+
2 is bounded, so by [Wea99, Theorem 2.2.2] the pre-dual of

Lip0(X
+
2 ) is isometrically isomorphic to the Arens–Eells space AE(X+

2 ). Since
X+

2 is a bounded, separable metric space, it follows by construction [Wea99,
Definition 2.2.1] that AE(X+

2 ) is a separable Banach space. Thus, the desired
result follows from the isometric isomorphism Lipb(X)∼= [AE(X+

2 )]∗. �

2.3. Derivations and basic properties. Here and in what follows, triples
of the form (X,ρ,μ) will denote a metric space (X,ρ) equipped with a Borel
measure μ.

Definition 2.5 (Weaver). A derivation δ : Lipb(X)→ L∞(X,μ) is a linear
map that satisfies

(1) the Leibniz Rule: δ(fg) = fδg+ gδf holds for all f, g ∈ Lipb(X);
(2) Weak-∗ continuity on bounded sets: if {fi}i∈I is a bounded net in Lipb(X)

so that fi
∗
⇀f , then δfi

∗
⇀δf in L∞(X,μ).

The set of derivations on (X,ρ,μ) is denoted by Υ(X,μ).

Remark 2.6. The Leibniz rule implies that δ(1) = 2δ(1), so δc= 0 holds
for every constant c ∈R.

Remark 2.7. Property (2) in Definition 2.5 is better known as bounded
weak-∗ continuity, which refers to continuity with respect to the bounded
weak-∗ topology on the space of linear operators between Banach spaces. For
more about this topology, see [DS88, Theorem V.5.3].

We will refer to Property (2) as the continuity property of derivations, or
simply as continuity. For separable metric spaces, this property reduces to
familiar modes of continuity from functional analysis. In particular, Defini-
tion 2.5 agrees with that in [Hei07, p. 68].

Lemma 2.8. Let (X,ρ) be a separable metric space, let μ be a measure on
X , and let δ : Lipb(X)→ L∞(X,μ) be a linear operator.

(1) If δ ∈Υ(X,μ), then δ is a bounded operator.
(2) δ ∈Υ(X,μ) holds if and only if δ satisfies the Leibniz rule and is weak-∗

continuous with respect to sequences in Lipb(X).

Proof. Suppose there is a δ ∈ Υ(X,μ) with the property that, for each
n ∈N, there exists fn ∈ Lipb(X) so that ‖fn‖Lip ≤ 1 and ‖δfn‖∞,μ ≥ n.

By Lemma 2.4, Lipb(X) is the dual of a separable Banach space, so by
the Banach–Alaoglu theorem [Rud91, Theorem 3.17], it follows that there
is a weak-∗ convergent subsequence {fnm}∞m=1. The sequence {δfnm}∞m=1 is
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weak-∗ convergent in L∞(X,μ), by the continuity property of derivations, and
therefore bounded. On the other hand, we have, by hypothesis,

‖δfnm‖∞,μ ≥ nm →∞
as m→∞. This is a contradiction, which gives Part (1).

Since Lipb(X) has a separable pre-dual, by [Rud91, Theorem 3.16] the
weak-∗ topology on B̄(0,R) ⊂ Lipb(X) is metrizable. As a result, weak-∗
convergence on bounded sets in Lipb(X) agrees with weak-∗ convergence with
respect to sequences; this gives Part (2). �

By Lemma 2.8, each derivation in Υ(X,μ) has a well-defined operator norm
whenever X is separable. We will denote this norm by

(2.3) ‖δ‖op := sup
{
‖δf‖∞,μ : f ∈ Lipb(X),‖f‖Lip ≤ 1

}
.

We now give two examples of metric measure spaces and their derivations.
They are [Wea00, Section 5B] and [Wea00, Corollary 35], respectively.

Example 2.9. For i= 1,2, . . . , n, each ∂i lies in Υ(Rn,mn). The continuity
follows from an integration by parts argument.

Example 2.10. If μ is any measure on R that is concentrated on the
“middle-thirds” Cantor set, then Υ(R, μ) = 0. This fact follows from Lemma
3.2, but the original proof in [Wea00] relies on the total disconnectedness and
self-similarity of the Cantor set.

As stated in the Introduction, the set Υ(X,μ) is a module over the ring
L∞(X,μ). Indeed, for δ ∈Υ(X,μ) and λ ∈ L∞(X,μ), we define λδ ∈Υ(X,μ)
by the rule

(λδ)f(x) := λ(x)δf(x).

Definition 2.11. A set {δi}Mi=1 generates Υ(X,μ) if, for all δ ∈Υ(X,μ),

there are scalars {ci}Mi=1 in L∞(X,μ) so that δ =
∑M

i=1 ciδi.
A set {ηi}Ni=1 is linearly independent in Υ(X,μ) if whenever there are

scalars {λi}Ni=1 in L∞(X,μ) so that
∑

i λiηi = 0, then each λi is zero. The rank
of the module Υ(X,μ) is the largest cardinality of any linearly independent
set in Υ(X,μ).

The next lemma follows directly from Definition 2.11, so we omit the proof.

Lemma 2.12. Let N ∈ N and let A be a μ-measurable subset of X with
μ(A)> 0. If {δi}Ni=1 is a linearly independent set in Υ(X,μ), then {χAδi}Ni=1

is also a linearly independent set in Υ(X,μ).

Example 2.13 ([Wea00, Theorem 37]). For X = Rn, {∂i}ni=1 is a lin-
early independent set that generates Υ(Rn,mn). Moreover, as L∞(Rn,mn)-
modules,

Υ
(
R

n,mn

)∼= n⊕
i=1

L∞(
R

n,mn

)
.
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More generally, let X be a compact Riemannian manifold and let μ be the
volume element. Then Υ(X,μ) is isomorphic to the L∞(X,μ)-module of
bounded measurable sections of the tangent bundle TX .

Derivations are also known as measurable vector fields [Wea00], [Hei07]. In
the remainder of the section, we investigate properties of derivations which
are similar to those of vector fields on smooth manifolds.

2.4. Locality and applications. On a smooth manifold M , vector fields
are local objects; that is, their action on a function ϕ ∈C∞(M) near a point
x ∈M depends only on the behavior of ϕ near x. The next theorem shows
that derivations enjoy a similar property, called the locality property. It is a
special case of [Wea00, Theorem 29]; see also [Hei07, Theorem 13.3].

Theorem 2.14 (Weaver, 2000). Let μ be a Radon measure on X . If A is
a μ-measurable subset of X , then we have the L∞(X,μ)-module isomorphism

Υ(A,μ)∼=
{
χAδ : δ ∈Υ(X,μ)

}
.

By definition, each δ ∈Υ(X,μ) acts only on bounded Lipschitz functions.
In the case of Radon measures μ, however, the domain of definition of δ
extends to include all Lipschitz functions.

Theorem 2.15. Let μ be a Radon measure on X . For each δ ∈Υ(X,μ),
there is a linear map δ̄ : Liploc(X) → L∞

loc(X,μ) with the following proper-
ties:

(1) for all f ∈ Lipb(X), we have δ̄f = δf ,
(2) for all f ∈ Lip(X) and all balls B in X , we have

χB δ̄f = χBδ
(
(f |B)B

)
,

(3) the Leibniz rule holds for δ̄;
(4) if X is separable, then for all f ∈ Lip(X), we have

‖δ̄f‖∞,μ ≤ ‖δ‖opL(f).

To reiterate, (f |B)B refers to the bounded McShane extension of f |B.
Theorem 2.15 will follow from the next lemma and a locality argument.

Lemma 2.16. Let X be a separable metric space, let μ be a Radon measure
on X , and take a μ-measurable decomposition {Xi}∞i=1 of X . Suppose that
for each i ∈ N, there exists δi ∈Υ(Xi, μ) so that ‖δi‖op ≤ 1. Then the linear
operator δ : Lipb(X)→ L∞(X,μ), given by

δf :=

∞∑
i=1

χXiδi(f |Xi)

determines a derivation in Υ(X,μ), with ‖δ‖op ≤ 1.
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Proof. For each f ∈ Lipb(X), we have

μ
({

x :
∣∣δf(x)∣∣> 1

})
≤

∞∑
i=1

μ
({

x ∈Xi :
∣∣δi(f |Xi)(x)

∣∣> 1
})

= 0.

Therefore δf is well defined in L∞(X,μ) with ‖δf‖μ,∞ ≤ 1. The map δ is
clearly linear and satisfies the Leibniz rule. To check continuity, let {fα}α∈I

be a net in Lipb(X) so that fα → 0 and supα ‖fα‖Lip ≤ L holds, for some
L ∈ [0,∞).

Let ε > 0 be arbitrary. For each h ∈ L1(X,μ), there is an N ∈N so that

∞∑
i=N+1

∫
Xi

|h|dμ≤ ε

2L‖δ‖op
.

Moreover, for each i= 1,2, . . . ,N , we have h|Xi ∈ L1(Xi, μ), so the bound∣∣∣∣
∫
Xi

hδfα dμ

∣∣∣∣=
∣∣∣∣
∫
Xi

hδi(f |Xi)dμ

∣∣∣∣< ε

2N

follows from the continuity of δi. We then compute∣∣∣∣
∫
X

hδfα dμ

∣∣∣∣ ≤
∣∣∣∣∣

N∑
i=1

∫
Xi

hδfα dμ

∣∣∣∣∣+
∞∑

i=N+1

‖δfα‖μ,∞
∫
Xi

|h|dμ

≤N
ε

2N
+L‖δ‖op

ε

2L‖δ‖op
= ε.

As a result, we have δfα
∗
⇀ 0 in L∞(X,μ), which proves the lemma. �

Proof of Theorem 2.15. Without loss of generality, take a μ-measurable
decomposition {Xn}∞n=1 of X where each Xn is a bounded set. (For example,
fix a base point a ∈X and put Xn :=B(a,n) \B(a,n− 1) for n ∈N.) Put

δ̄f :=

∞∑
n=1

χXnδ
(
(f |Xn)

Xn
)
.

Indeed, δ̄f is well defined because f |Xn ∈ Lipb(Xn) holds, for all n ∈ N.
Clearly δ̄ is linear. By Theorem 2.14, we have

χXnδ
(
(f |Xn)

)Xn
= χXnδf

for all f ∈ Lipb(X) and all n ∈N, so Property (1) follows. Similarly, for each
n ∈N and each ball B in X , Property (2) follows from

χB∩XnδXnδ
(
(f |Xn)

)Xn
= χB∩Xnδ

(
(f |B)B

)
.

By a similar argument, Property (3) is a consequence of Property (2), the
locality property, and the Leibniz rule for δ. Now suppose that X is separable.
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Letting {xn}∞n=1 be a countable dense subset of X , put X0 = ∅ and for each
n ∈N, put

Xn :=B(xn,1/2)
∖(

n−1⋃
k=0

Xk

)
and fn := f − inf

Xn

f.

Since each set Xn has diameter at most 1, we obtain

‖fn‖∞ =
∣∣∣sup
Xn

f − inf
Xn

f
∣∣∣≤ L(f)diam(Xn) = L(f).

Invoking Lemma 2.8 and the estimate above, we now compute∥∥δXn(f |Xn)
∥∥
μ,∞ =

∥∥δ((f |Xn)
Xn

)∥∥
μ,∞ =

∥∥δ((fn|Xn)
Xn

)∥∥
μ,∞

≤ ‖δ‖op‖fn|Xn‖Lip ≤ ‖δ‖opL(f).
This gives Property (4) and proves the theorem. �

2.5. Pushforward derivations. Recall that for smooth manifolds M and
N with respective tangent bundles TM and TN , every smooth bijective map
fromM to N induces a pushforward operator on vector fields. Indeed, for each
smooth vector field v : M → TM we obtain a new vector field f#v : N → TN
from the rule

f#v(x) :=Df
(
f−1(x)

)
v.

A similar procedure holds for derivations, by means of pushforward measures.
Recall that on a measure space (X,μ), a set Y , and a map T : X → Y , one
defines the pushforward measure T#μ on Y by the rule

T#μ(A) := μ
(
T−1(A)

)
.

It is well known that if μ is a Borel measure and T a Borel map, then T#μ is
a Borel measure and we have the “change of variables” formula

(2.4)

∫
Y

ϕd(T#μ) =

∫
X

ϕ ◦ T dμ

whenever ϕ : Y →R is a Borel function; see [Mat95, Theorem 1.19].

Lemma 2.17. Let X , Y be metric spaces, let μ be a Radon measure on
X , and let π ∈ Lip(X;Y ). For each δ ∈ Υ(X,μ), there is a unique π#δ ∈
Υ(Y,π#μ) so that

(2.5)

∫
Y

h(π#δ)f d(π#μ) =

∫
X

(h ◦ π)δ(f ◦ π)dμ

holds for all h ∈ L1(Y,π#μ) and all f ∈ Lipb(Y ). If X is separable, then

(2.6) ‖π#δ‖op ≤
(
1∨L(π)

)
‖δ‖op.

We refer to π#δ as the pushforward (derivation) of δ with respect to π.
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Proof of Lemma 2.17. Put ν := π#μ. For h ∈ L1(Y, ν), formula (2.4) gives
h ◦π ∈ L1(X,μ), with ‖h‖ν,1 = ‖h◦π‖μ,1. For each f ∈ Lipb(Y ), define a map
λf,π : L1(Y, ν)→R by

λf,π(h) :=

∫
X

(h ◦ π)δ(f ◦ π)dμ.

Clearly λf,π is linear and bounded, so there is a unique function (π#δ)f ∈
L∞(Y, ν) which satisfies, for all h ∈ L1(Y, ν), the identity∫

Y

h(π#δ)f dν =

∫
X

(h ◦ π)δ(f ◦ π)dμ.

As constructed, the map π#δ : f �→ (π#δ)f satisfies formula (2.5). Moreover,
it is linear because δ is linear; the same is true of the Leibniz rule.

To show that π#δ is continuous, suppose {fα}α∈I is a net in Lipb(Y ) that
converges pointwise to 0 and so that C := supα ‖fα‖Lip <∞. Clearly fα ◦ π
converges pointwise to 0, and from the estimates{‖fα ◦ π‖∞ ≤ ‖fα‖∞ ≤C,

L(fα ◦ π)≤ L(fα)L(π)≤CL(π)
(2.7)

the net {fα ◦π}α∈I is bounded in Lipb(X). By Lemma 2.3 and the continuity

of δ, we obtain δ(fα ◦ π) ∗
⇀ 0 in L∞(X,μ). Since h ∈ L1(Y, ν) implies h ◦ π ∈

L1(X,μ), it follows that (π#δ)fα
∗
⇀ 0 in L∞(Y, ν).

Let f ∈ Lipb(Y ). If X is separable, then by the estimates (2.7), we obtain∥∥(π#δ)f
∥∥
μ,∞ = ‖λf,π‖op ≤ ‖h‖ν,1

∥∥δ(f ◦ π)
∥∥
μ,∞

≤ ‖h‖ν,1‖δ‖op‖f ◦ π‖Lip
≤ ‖h‖ν,1‖δ‖opC

(
1∨L(π)

)
‖f‖Lip.

This implies inequality (2.6). Lastly, suppose that δ′ ∈ Υ(Y, ν) also satisfies
formula (2.5). By linearity, we have, for all h ∈ L1(Y, ν) and all f ∈ Lipb(Y ),∫

Y

h
(
π#δ − δ′

)
fδν = 0.

This means that π#δ = δ′, which gives the desired uniqueness. �

For π ∈ Lip(X;Y ), note that Υ(X,μ) is an L∞(Y,π#μ)-module. Indeed,
for λ ∈ L∞(Y,π#μ), f ∈ Lipb(X), and δ ∈Υ(X,μ), the action is given by

(2.8) (λδ)f := (λ ◦ π)δf.
Recall that an embedding π : X → Y is bi-Lipschitz if π and π−1 are both
Lipschitz maps; it is λ-bi-Lipschitz if L(π)≤ λ and L(π−1)≤ λ.

So if π is bi-Lipschitz, then the proof of Lemma 2.17 (with π−1 for π) also
shows that Υ(Y,π#μ) is an L∞(X,μ)-module. Under an appropriate choice of
measures, we now obtain a “functorial” property of pushforward derivations
with respect to bi-Lipschitz embeddings.
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Corollary 2.18. Let (X,ρX , μ) and (Y,ρY , ν) be metric measure spaces,
with μ a Borel measure, and let π : X ↪→ Y be a bi-Lipschitz embedding. If
ν and π#μ are mutually absolutely continuous, then Υ(X,μ) and Υ(Y, ν) are
isomorphic as L∞(X,μ)-modules.

2.6. The Chain Rule. On Euclidean spaces, derivations exhibit behavior
similar to that of the differential operators {∂i}ni=1. For instance, they satisfy a
weak form of the Chain Rule from differential calculus. To formulate this fact,
recall that by Theorem 2.15, each δxj is a well-defined function in L∞(Rn, μ)
for j = 1,2, . . . , n.

Lemma 2.19. Let μ be a Radon measure on R
n. For each f ∈ Lip(Rn),

there exist functions {gif}n=1 ⊂ L∞(Rn, μ) so that∥∥gif∥∥μ,∞ ≤ L(f),(2.9)

δf =
n∑

i=1

gifδxi.(2.10)

If f is smooth, then gif = ∂if for i= 1,2, . . . , n.

We refer to Lemma 2.19 as the Chain Rule for derivations. Its proof uses
a classical fact about approximation of smooth functions [CH53, Theorem
II.4.3].

Lemma 2.20. Let ϕ ∈ C∞(Rn). For each compact subset K of Rn, there
is a sequence of polynomials {Pm}∞m=1 so that on K, we have the uniform
convergence Pm → f and ∂iPm → ∂if , for 1≤ i≤ n.

Proof of Lemma 2.19. Since R
n is a countable union of closed cubes

{Qk}∞k=1, it suffices to show formula (2.10) for χQk
δ in place of δ. By the

locality property, we therefore assume that δ ∈Υ(Qk, μ).
We now argue by cases. Formula (2.10) clearly holds when f = xj , for each

j = 1,2, . . . , n, and where gif is the Kronecker symbol εij . If f is a polynomial,
then for each a ∈N, the Leibniz rule implies a “power rule”

δ
(
xa
j

)
= axa−1

j δxj

which further implies formula (2.10), with gif := ∂if .
We next assume that f is a smooth Lipschitz function on R

n. By Lemma
2.20, there is a sequence of polynomials {Pm}∞m=1 which converges uniformly
to f on K and where {∇Pm}∞m=1 converges uniformly to ∇f . This implies

that Pm
∗
⇀ f in Lipb(Qk), and by continuity of δ, we obtain δPm

∗
⇀ δf in

L∞(Qk, μ). On the other hand, the convergence ∇Pm →∇f is uniform, hence

weak-∗. It follows that ∂iPmδxi
∗
⇀∂ifδxi in L∞(Qk, μ) and by uniqueness of

limits, we obtain formula (2.10), where again gif := ∂if .
For the general case, let ε > 0 be arbitrary, let ηε be a smooth, symmetric

mollifier, and consider convolutions fε := f ∗ ηε. It is a fact [EG92, Theorem
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4.2.1.1] that if f is continuous, then fε converges locally uniformly to f .
Moreover, the bound L(fε)≤ L(f) follows from the computation∣∣fε(x)− fε(y)

∣∣ ≤ ∫
Rn

ηε(z)
∣∣f(x− z)− f(y− z)

∣∣dz
≤

∫
Rn

ηε(z)L(f)
∣∣(x− z)− (y− z)

∣∣dz ≤ L(f)|x− y|.

This implies that fε
∗
⇀ f in Lipb(Qk) and from the continuity of δ, we also

have δfε
∗
⇀δf in L∞(Qk, μ).

However, note that formula (2.10) holds for each fε, where gif = ∂ifε, and

note that {∂if1/a}∞a=1 is a bounded sequence in L∞(Rn, μ), for each i. It
follows from the Banach–Alaoglu theorem that there are weak-∗ convergent
subsequences {∂if1/ab

}∞b=1 with weak-∗ limits gif .

By uniqueness of limits, formula (2.10) holds for f with these choices of
gif . Since the norm on L∞(Rn, μ) is lower semi-continuous (with respect to

the weak-∗ topology), it follows that∥∥gif∥∥μ,∞ ≤ lim inf
b→∞

‖∂if1/ab
‖μ,∞ ≤ L(f)

which further implies (2.9). �

The next corollary is a criterion for detecting nonzero derivations on R
n.

It follows directly from Lemma 2.19, so we omit the proof.

Corollary 2.21. Let μ be a Radon measure on R
n and let δ ∈Υ(Rn, μ).

If δxj = 0 holds for each j = 1,2, . . . , n, then δ = 0.

3. Derivations on 1-dimensional sets

Adapting the terminology in [Fal86], a subset of R
n is called a k-set if

it is Hk-measurable and has σ-finite Hk-measure. In this section, we will
focus on the following fact about measures concentrated on 1-sets and their
derivations.

Theorem 3.1. Let μ be a Radon measure on R
n. If μ is concentrated on

a 1-set, then the module Υ(Rn, μ) has rank at most 1.

The proof uses facts from geometric measure theory, which are discussed
in Section 3.2. We begin with a special case.

3.1. The case of R. Using the Borel regularity of Lebesgue measure, we
prove Theorem 1.2 for k = 1, which is a characterization of Υ(R, μ). To
this end, recall that every Radon measure μ on R admits a decomposition
μ= μAC + μS , where μAC is absolutely continuous to m1 and μS is singular
to m1 [Fol99, Theorem 3.8].
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Lemma 3.2. Let μ be a Radon measure on R. If μS is concentrated on a
Lebesgue null set E, then for all δ ∈Υ(R, μ) and all f ∈ Lipb(R),

(3.1) δf(x) =

{
δ(idR)(x)f

′(x), for x ∈R \E,

0, for x ∈E,

where f ′ is the classical derivative of f . Moreover, as L∞(R, μ)-modules,

Υ(R, μ)∼= L∞(R, μAC).

Proof. Let δ ∈Υ(R, μ) and f ∈ Lipb(R) be arbitrary. For subsets of R \E
we have μ= μAC , so by Rademacher’s theorem, f is differentiable μ-a.e. on
R \E. The Chain Rule for derivations then implies that

δf(x) = δ(idR)(x)f
′(x)

for μAC -a.e. x ∈R and hence for μ-a.e. x ∈R \E.
To show χEδf = 0, assume by locality (Theorem 2.14) that E is bounded.

In particular, let E ⊂ [0,1], so χEδ ∈Υ([0,1], μ).
Since m1(E) = 0, for each j ∈N there is a open set Oj so that E ⊂Oj and

m1(Oj)< 2−j . We next define functions ϕj : [0,1]→R by the formula

ϕj(x) :=

∫ x

0

(1− χOj )dm1.

Clearly ‖ϕj‖Lip ≤ 1 holds, for each j. Estimating further, we see that

0≤ x− ϕj(x) =

∫ x

0

χOj dm1 ≤m1(Oj)≤ 2−j ,

and hence {ϕj}∞j=1 converges pointwise to the identity on R. By Lemma 2.3,
this is equivalent to weak-∗ convergence in Lipb([0,1]), and by continuity, we

obtain δϕj
∗
⇀δ(idR) in L∞([0,1], μ).

However, if O′
j is a connected component of Oj , then by construction,

ϕj |O′
j is constant for each j. The locality property implies that δϕj(x) = 0

holds for μ-a.e. x ∈O′
j ∩ [0,1], for each j, and hence χEδϕj = 0. By continuity

we obtain χEδ(idR) = 0, and by the Chain Rule we further obtain χEδf = 0.
This proves formula (3.1).

Consider maps S : Υ(R, μ)→ L∞(R, μAC) and T : L∞(R, μAC)→Υ(R, μ)
given by S(δ) := δ(idR) and T (λ) := λ(d/dx). Clearly, S and T are homomor-
phisms of L∞(R, μ)-modules. Using (3.1) and the previous estimates,

(T ◦ S)(δ) = T
(
χR\Eδ(idR)

)
= χR\Eδ(idR)(d/dx) = δ

and hence S ◦T = idΥ(R,μ). A similar computation gives S ◦T = idL∞(R,μ). �
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3.2. The general case. We now introduce two types of sets in R
n.

Definition 3.3. Let k ∈ N A subset E in R
n is k-rectifiable if, for some

λ ∈ (1,∞) it admits a Hk-measurable decomposition of the form

(3.2) E =N ∪
∞⋃
i=1

fi(Ai),

where Hk(N) = 0 and where, for each i ∈ N, Ai is a compact subset of Rk

with mk(Ai)> 0 and fi : Ai →R
n is a λ-bi-Lipschitz embedding.

A subset F in R
n is purely k-unrectifiable if Hk(E ∩ F ) = 0 holds for all

k-rectifiable sets E in R
n.

Remark 3.4. This definition of k-rectifiability differs substantially from
the standard one; see [Mat95, Definition 15.3] or [Fed69, Definition 3.2.14(1)].
However, by [Fed69, Lemma 3.2.18] these definitions are equivalent.

Indeed, each k-set is a union of sets of the above types [Mat95, Theorem
15.6].

Lemma 3.5. Let n ∈ N and let k be an integer in [0, n]. If A is a k-set
in R

n, then there is a Hk-measurable decomposition A= E ∪ F , where E is
k-rectifiable and F is purely k-unrectifiable.

To prove Theorem 3.1, we will use an alternative characterization of purely
k-unrectifiable subsets in R

n [Mat95, Theorem 18.1]. Below, G(n;k) denotes
the space of k-dimensional subspaces of Rn and “almost everywhere” refers
to the Haar measure on G(n;k). When k = 1, this measure is equivalent to
(normalized) surface measure on the half-sphere {x ∈ S

n−1 : xn > 0}.
Theorem 3.6 (Besicovitch–Federer). For 0 ≤ k ≤ n, let F be a k-set in

R
n. Then F is purely k-unrectifiable if and only if for a.e. V ∈ G(n;k), the

image projV (F ) has Hk-measure zero.

In the remainder of the section, we assume k = 1. The proof of Theorem 3.1
is split into two cases.

Lemma 3.7. Let μ be a Radon measure on R
n that is concentrated on

a purely 1-unrectifiable set of Hausdorff dimension (at most) one. Then
Υ(Rn, μ) = 0.

Proof. By Theorem 3.6, F satisfies H1(projV (F )) = 0 for a.e. V ∈ G(n; 1).
In particular, there exist subspaces {Vi}ni=1 ⊂ G(n; 1) whose union spans R

n

and so that H1(projVi
(F )) = 0 holds, for each 1≤ i≤ n.

Put pi := projVi
. Since H1(pi(F )) = 0, we observe that pi#μ is singular to

H1
Vi. By identifying Vi with R, we further observe that Υ(Vi, p
i
#μ) = 0.

We claim that δpi = 0 holds for all δ ∈Υ(Rn, μ); if not, the set

Fi :=
{
x ∈ F : δpi(x) �= 0

}
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has positive μ-measure. For each bounded domain Ω in R
n, (2.5) implies

0<

∫
Rn

χΩ∩Fiδp
i dμ=

∫
Vi

χpi(Ω∩Fi)p
i
#δ(idR)d

(
pi#μ

)
.

However, the rightmost term is zero because pi#δ ∈Υ(Vi, p
i
#μ); therefore pi#δ

is zero. Since Ω was arbitrary, the claim follows.
Lastly, the linear functions {pi}ni=1 generate the coordinates {xi}ni=1. This

implies that δxi = 0 holds μ-a.e. for each i, so by the Chain Rule for deriva-
tions, we conclude that δ = 0. �

In the case of 1-rectifiable sets, the next lemma extends a result of Weaver
[Wea00, Theorem 38] to arbitrary Radon measures on R

n.

Lemma 3.8. Suppose that μ is a Radon measure on R
n that is concentrated

on a 1-rectifiable set E. If Υ(Rn, μ) is nontrivial, then Υ(Rn, μ) has rank-1.

One can further show that the generator of Υ(Rn, μ) is given by f �→
χEDapf , where Dapf is the approximate derivative of the restriction f |E.
For more about approximate derivatives, see [Fed69, Section 3.1.22].

Proof of Lemma 3.8. Let E be a 1-rectifiable set on which μ is concen-
trated. As a first case, assume that E = f(A), where A⊂R satisfiesm1(A)> 0
and where f : A→R

n is a bi-Lipschitz embedding. By Lemma 2.17, for each
δ ∈Υ(Rn, μ) there is a unique element f−1

# δ in Υ(A,ν), where ν := f−1
# μ.

If νAC = 0, then f−1
# δ = 0 follows from Lemma 3.2. Let h ∈ L1(Rn, μ) and

ϕ ∈ Lipb(R
n) be arbitrary. By formula (2.5) and the previous identity,∫

Rn

hδϕdμ =

∫
A

(
h ◦ f−1

)
f−1
# δ

(
ϕ ◦ f−1

)
dν

=

∫
A

(
h ◦ f−1

)
λ

(
χA′

d

dx

)(
ϕ ◦ f−1

)
dν

=

∫
Rn

h(λ ◦ f)f#
(
χA′

d

dx

)
ϕdμ.

so f#(χA′d/dx) generates Υ(Rn, μ).
For the general case, let E =

⋃∞
i=1 fi(Ai), where each Ai is compact and

each fi : Ai →R
n is 2-bi-Lipschitz. Indeed, if N is an H1-null set in R

n, then
N is purely 1-unrectifiable and by Lemma 3.7, Υ(N,μ) = 0.

Put Ei := fi(Ai) and μi := μ
Ei. By the previous case, the derivation

δi := (fi)#(χA′
i
d/dx)

generates Υ(Ei, μ), where each A′
i is a subset of Ai on which (f−1

i )#μi is
concentrated. Moreover, from estimate (2.6), we have

‖δi‖op ≤
(
1∨L(fi)

)
‖χA′

i
d/dx‖op ≤ 2.
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By Lemma 2.16, the map δ0 :=
∑∞

i=1 χEiδi is a well-defined element of Υ(Rn,
μ). For each i ∈N and each δ ∈Υ(Rn, μ), put

λi :=
((
f−1
i

)
#
δ
)
(idR) and λ :=

∞∑
i=1

χEiλi.

By an analogous argument as above, we obtain δ = λδ0. In addition, for each
i ∈N, the set Ei is bounded and hence

‖χEiλi‖μ,∞ ≤
∥∥(f−1

i

)
#
δ
∥∥
op
‖idEi‖Lip

≤
(
1∨L

(
f−1
i

))
‖δ‖op

(
1∨ diam(Ei)

)
≤ 2‖δ‖op.

By Part (1) of Lemma 2.8, δ is a bounded operator, so λ ∈ L∞(Rn, μ). �

Proof of Theorem 3.1. Let A be a 1-set on which μ is concentrated. By
Lemma 3.5, we have the H1-decomposition A=E∪F , where E is 1-rectifiable
and F is purely 1-unrectifiable.

If μ(F ) > 0, then by the locality property and by Lemma 3.7, the set
{χF δ1, χF δ2} is linearly dependent in Υ(Rn, μ). It follows from Lemma 2.12
that {δ1, δ2} is also linearly dependent in Υ(Rn, μ).

If instead μ(F ) = 0, then μ is concentrated on E and hence μ= μ
E. Let δ0
be the generator of Υ(Rn, μ
E). For each i= 1,2 there is a nonzero function
λi ∈ L∞(Rn, μ) so that χEδi = δi = λiδ0. We now put

Λ1(x) := χspt(λi)

[
1∧ λ2(x)

λ1(x)

]
and Λ2(x) := χspt(λ2)

[
1∧ λ1(x)

λ2(x)

]
.

By construction, Λ1δ1 − Λ2δ2 = 0. Neither Λ1 nor Λ2 is zero, otherwise one
of λ1 and λ2 is zero, which is a contradiction. �

4. Derivations on 2-dimensional sets

Let μ be a Radon measure on R. As a consequence of Theorem 3.2, if μ is
singular to Lebesgue measure, then Υ(R, μ) has rank 0. A similar statement
holds true for Radon measures on R

2.

Theorem 4.1. Let μ be a Radon measure on R
2. If μ is singular to

Lebesgue measure, then the module Υ(R2, μ) has rank 1.

Recall that the proof of Theorem 3.2 consists of selecting open covers for
a Lebesgue null set (on which μ is concentrated). From these covers, one
constructs a sequence of uniformly Lipschitz functions on R that converges to
the identity.

The proof of Theorem 4.1 follows similar ideas. However, in order to con-
struct analogous functions, we will use recent results of Alberti, Csörnyei, and
Preiss about the structure of Lebesgue null sets [ACP05]. This provides covers
of such sets with a suitable geometry. In what follows, we refer to Lebesgue
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null sets simply as null sets, Lebesgue singular measures as singular measures,
and so on.

4.1. Null sets in R
2. We begin with a few definitions from [ACP05].

Definition 4.2. An x1-curve in R
2 is a graph of the form

γ1(f) :=
{(

t, f(t)
)
: t ∈R

}
,

where f : R→R is 1-Lipschitz. We call f the (Lipschitz) parametrization of
γ = γ1(f). For δ > 0, an x1-stripe of thickness δ is a set of the form

N 1(g; δ) :=
{
(t, y) :

∣∣y− g(t)
∣∣≤ δ/2

}
,

where g : R→R is also 1-Lipschitz. An x2-curve and a x2-stripe (of thickness
δ) are similarly defined.

We now state a covering theorem for null sets in R
2 [ACP05, Theorem 2];

for an earlier version of this result, see [Mat97]. The case of compact null sets
follows from the proof in [ACP05, pp. 4–5].

Theorem 4.3 (Alberti–Csörnyei–Preiss, 2005). Let E be a null set in R
2.

Then there is a decomposition E = E1 ∪ E2, where each set Ei satisfies the
following property: for each ε > 0, there are xi-stripes {N i(f i

j ; δ
i
j)}∞j=1 so that

their union covers Ei and so that
∑∞

j=1 δ
i
j < ε.

If E is compact, then for each ε > 0, there exist N ∈ N and δ > 0 so
that each Ei can be covered by N many xi-stripes N i(f i

j ; δ), with Nδ < ε,

and so that each f i
j is piecewise-linear with finitely many points of non-

differentiability.

Remark 4.4. Strictly speaking, the argument in [ACP05] only shows that
shows that for each ε > 0, the null set E can be covered by unions of x1- and
x2-stripes {N 1,ε

i }∞i=1 and {N 2,ε
j }∞j=1, respectively, with the desired properties.

However, one easily obtains the subsets E1 and E2 by putting

E1 :=

∞⋂
k=1

∞⋃
i=1

N 1,1/k
i and E2 :=E \E1.

The next theorem will be a crucial step in the proof of Theorem 4.1.

Theorem 4.5. Let E be a compact null set in R
2. In addition to the

properties given in Theorem 4.3, for i= 1,2 and for each ε > 0 the covering
xi-stripes for Ei can be chosen to have pairwise-disjoint interiors.

To prove the theorem, we first require a lemma. It guarantees that xi-
curves associated to the covering xi-stripes can be chosen without transversal
crossings. (The basic idea to is to take pointwise maxima among the collection
of xi-curves, and iterate. See Figure 1.)



1128 J. GONG

Figure 1. Uncrossing x1-curves, for n= 2.

Lemma 4.6. Let i= 1,2. For each collection of xi-curves {αj}Nj=1, there is

a collection of xi-curves {βj}Nj=1, with βj := γi(fj), so that

(4.1) α1 ∪ · · · ∪ αN = β1 ∪ · · · ∪ βN

and so that, for all t ∈R and all 1< j ≤N , we have

(4.2) fj−1(t)≤ fj(t).

If the curves {αj}Nj=1 are piecewise-linear, then so are the curves {βj}Nj=1.

Proof. By symmetry, we assume that i = 1. We argue by induction, and
for N = 1, the lemma trivially holds with β1 = α1.

Fix n ∈N and let {αj}n+1
j=1 be any collection of x1-curves. By the induction

hypothesis, for {αj}nj=1 there are x1-curves {bj}nj=1 which satisfy (4.1) and
(4.2). For j = 1,2, . . . , n, let gj : R → R be the parametrization of bj , so
gj ≤ gj+1, and let gn+1 be the parametrization of αn+1. We now define

hj :=

{
g1 ∨ gn+1, j = 1,

gj ∨ hj−1, 1< j ≤ n,
fj :=

⎧⎪⎨
⎪⎩
g1 ∧ gn+1, j = 1,

gj ∧ hj−1, 1< j ≤ n,

hn, j = n+ 1.

By construction, for each x ∈ R and each k, there is a unique index j so
that gk(x) = fj(x). Putting βj := γ1(fj), we see that equation (4.1) holds for

the collections of curves {αj}n+1
j=1 and {βj}n+1

j=1 .
For each j, we have gj ≤ gj+1 by hypothesis and hj ≤ hj+1 by construction,

so

fj = gj ∧ hj−1 ≤ gj ≤ gj+1,

fj = gj ∧ hj−1 ≤ gj ∨ hj−1 = hj .

By definition of fj+1, it follows that inequality (4.2) holds for all j. �

For Theorem 4.5, the basic idea is that if xi-stripes overlap, then by un-
crossing the corresponding xi-curves, the top stripe can then be “pushed” off
the bottom one. See Figure 2.
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Figure 2. Choosing stripes with pairwise-disjoint interiors.

Proof of Theorem 4.5. Let ε > 0 be given. By Theorem 4.3, for each set Ei

there is a δ > 0 and there are xi-stripes {N i(gij ; δ)}Nj=1 so that their union cov-

ers Ei, so that each gij is piecewise-linear, and so that Nδ < ε. The argument

is symmetric, so we assume that i= 1. We also write gj := gij .

By Lemma 4.6, there are 1-Lipschitz functions {fj}Nj=1 so that the x1-

curves {γ1(gj)}Nj=1 and {γ1(fj)}Nj=1 satisfy equations (4.1) and (4.2). Put

h1,j :=

{
f1, j = 1,
fj ∨ (f1 + δ), j > 1.

By construction, for j > 1 none of the N 1(h1,j ; δ) meets the interior of the
stripe N 1(h1,1; δ). It also remains that h1,j ≤ h1,j+1. We now claim that

(4.3)

N⋃
j=1

N 1(fj ; δ)⊂
N⋃
j=1

N 1(h1,j ; δ).

Fix (t, y) ∈N 1(fj ; δ). If h1,j(t) = fj(t), it follows by construction that (t, y) ∈⋃N
j=1N 1(h1,j ; δ). If instead h1,j(t) = f1(t) + δ, the point (t, y) satisfies

δ/2 <
∣∣y− f1(t)

∣∣,(4.4)

fj(t) < f1(t) + δ = h1,j(t),(4.5)

where again, j > 1. From inequality (4.5), we obtain

y−
(
f1(t) + δ

)
≤ y− fj(t)≤ δ/2.

Since j > 1 and (t, y) ∈N 1(fj ; δ), we may further assume by inequality (4.2)
that y− f1(t)> δ/2. This in turn gives the estimate

−δ/2 = δ/2− δ < y− f1(t)− δ

from which we obtain (t, y) ∈N 1(h1,j ; δ). This gives the set inclusion (4.3).
We now iterate the argument. For k = 1,2, . . . ,N , put

hk,j :=

{
hk−1,j , j ≤ k,
fk ∨ (hk,k + δ), j > k.
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Arguing similarly, we see that inclusion (4.3) holds with hk,j in place of h1,j

and that, for k ≤ j ≤N , none of the stripes N 1(hk,j ; δ) meets the interiors of
the previous k many x1-stripes. Thus, {N 1(hj,j ; δ)}Nj=1 is the desired collec-

tion of x1-stripes for E
1. �

Before returning to derivations, we recall a fact [ACP05, Remark 3(ii)]
about the geometry of E1 and E2. For completeness, we prove it below.

Lemma 4.7. Let E be a null set in R
2 and let L ∈ (0,1). For {i, k}= {1,2},

if Ei is the subset from Theorem 4.3 and if g : R→R is L-Lipschitz, then

H1
(
Ei ∩ γk(g)

)
= 0.

Proof. By Theorem 4.3, for each ε > 0 there are xi-stripes N i
j :=N i(f i

j ; δ
i
j),

j ∈ N so that Ei ⊂
⋃

j N i
j and so that

∑
i δ

i
j < ε. Clearly, the same union of

xi-stripes also covers the subset Ei ∩ γk(g).
For each j ∈N, let pj be the point in γk(g)∩N i

j with least xk-coordinate.

Note that γk(g)∩N i
j can be covered by the set C(pj)∩N i

j , where C(pj) is a

one-sided cone with vertex pj , direction �ek, and opening angle 2 tan−1(1/L).
In particular, C(pj) ∩ N i

j has diameter at most Cδij , where C is a positive
constant depending only on L.

In this way we cover Ei ∩ γk(g) with open sets {Oj}∞j=1, each of diameter

at most 2Cδij and hence at most 2Cε. We now estimate:

H1
(
Ei ∩ γk(g)

)
≤ limsup

ε→0

∞∑
j=1

diam(Oj)≤ limsup
ε→0

∞∑
j=1

2Cδij < 2Cε.

Since ε > 0 was arbitrary, the lemma follows. �
4.2. Approximating the coordinate functions. In this section, we prove
Theorems 4.1 and 1.2. The proof of Theorem 4.1 consists of two main steps,
each of which is a separate lemma below.

Lemma 4.8. Let E be a compact null set in R2 and let E1 and E2 be as in
Theorem 4.5. For i ∈ {1,2}, there exist Lipschitz functions {ϕi,j}∞j=1 on R

2

so that

(1) ϕi,j converges pointwise to x2;
(2) each ϕi,j is 3-Lipschitz and piecewise linear;
(3) for each p ∈ Ei there is a closed neighborhood K containing p so that

ϕi,j |K depends only on the variable xi.

To simplify the proof, we divide it into cases of increasing geometric com-
plexity.

Proof of Lemma 4.8. By Theorems 4.3 and 4.5 we have E =E1∪E2, where
each Ei has the following properties: given j ∈ N, there are numbers N ∈ N

and δ > 0 and xi-stripes {N i(fl,j ; δj)}Nl=1 so that
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(1′) Ei ⊂
⋃Nj

l=1N i(fl,j ; δ) and Nδ < 2−j ;
(2′) for l �= l′, the interiors of N i(fl,j ; δ) and N i(fl′,j ; δ) are disjoint;
(3′) each fl,j is a piecewise-linear function, with finitely many points of non-

differentiablity.

For simplicity, let i= 1 and E ⊂ [0,1]2. For each l, put N 1
l :=N 1(fl,j ; δ).

To emphasize the dependence on j, put Mj :=R2 \
⋃

lN 1
l . Now put

ϕ1,j(p) :=

∫
{p1}×[0,p2]

χMj dH1,

where p= (p1, p2) ∈R
2. Property (1′) then implies that

0≤ p2 −ϕ1,j(p1)≤
N∑
j=1

∫
{p1}×R

χN 1
l
dH1 =Nδ < 2−j

from which we obtain Property (1).

Claim 4.9. The sequence {ϕ1,j}∞j=1 is uniformly 3-Lipschitz.

Let p= (p1, p2) and q = (q1, q2) be points in R
2. We argue by cases.

Case A: p and q lie on the same vertical line. By construction, ϕ1,j is
1-Lipschitz in the variable x2. The claim then follows from

(4.6)
∣∣ϕ1,j(p)−ϕ1,j(q)

∣∣≤ |p2 − q2| ≤ |p− q|.

Case B: p and q lie on the same stripe N 1
l . Since ϕ1,j is constant on each of

the vertical segments N 1
l ∩ ({p1}×R) and N 1

l ∩ ({q1}×R), the corresponding
(lower) endpoints p′ = (p1, fl,j(p1)− δ/2) and q′ = (q1, fl,j(q1)− δ/2) satisfy

(4.7) ϕ1,j(p) = ϕ1,j

(
p′
)

and ϕ1,j(q) = ϕ1,j

(
q′
)
.

By Property (2′), the interiors of {N 1
l }Nl=1 are pairwise disjoint. A ray with

initial point p′ and direction −�e2 goes through l− 1 stripes of thickness δ, so

(4.8) ϕ1,j

(
p′
)
= fl,j(p1)− (l− 1)δ and ϕ1,j

(
q′
)
= fl,j(q1)− (l− 1)δ.

Since L(fl,j)≤ 1, the claim follows from equations (4.7) and (4.8):{ |ϕ1,j(p)−ϕ1,j(q)| = |ϕ1,j(p
′)−ϕ1,j(q

′)|
= |fl,j(p1)− fl,j(q1)| ≤ |p1 − q1| ≤ |p− q|.(4.9)

Case C: p, q /∈ Mj , and both points lie between the same pair of stripes.
The argument is similar to Case B. If p and q lie between N 1

l+1 and N 1
l , for

some l, then put p′′ := (p1, fl,j(p1) + δ/2) and q′′ := (q1, fl,j(q1) + δ/2). From
the observation

ϕ1,j(p) = p′′2 − lδ and ϕ1,j(q) = q′′2 − lδ,

we obtain estimates (4.8) and (4.9) as before.
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Figure 3. A possible configuration for p, q, p′, and q′.

Case D: p and q are arbitrary. Suppose that p and q are separated by a
boundary curve α of some stripe N 1

l . See Figure 3. Without loss of generality,
let

α=
{
(x1, x2) : x2 = fl,j(x1) + δ/2

}
and moreover, assume p lies below α and q lies above α:{

p′2 := fl,j(p1) + δ/2≥ p2,

q′2 := fl,j(q1) + δ/2≤ q2.

Note that p′ := (p1, p
′
2) and q′ := (q1, q

′
2) lie on the same vertical lines as p and

q, respectively, and both p′ and q′ lie on α.
Using the Triangle Inequality and inequalities (4.6) and (4.9),⎧⎪⎪⎪⎨

⎪⎪⎪⎩
|ϕ1,j(p)−ϕ1,j(q)| ≤ |ϕ1,j(p)−ϕ1,j(p

′)|+ |ϕ1,j(p
′)−ϕ1,j(q

′)|
+ |ϕ1,j(q

′)−ϕ1,j(q)|
≤ |p2 − p′2|+ |fl,j(p1)− fl,j(q1)|+ |q2 − q′2|
≤ |p2 − p′2|+ |p1 − q1|+ |q2 − q′2|.

(4.10)

Claim 4.10. For all choices of p2 ≤ p′2 and q′2 ≤ q2, we have∣∣p2 − p′2
∣∣+ ∣∣q′2 − q2

∣∣≤ |p2 − q2|+
∣∣p′2 − q′2

∣∣.
The argument is combinatorial, so we further proceed by sub-cases. Con-

sider intervals Ip := [p′2, p2] and Iq := [q2, q
′
2].

Subcase D1: Ip and Iq are disjoint. Relative to p2 ≤ q2 or q2 ≤ p2, the
union [p2, p

′
2]∪ [q′2, q2] lies in either [p2, q2] or [q

′
2, p

′
2], so the claim follows from∣∣p2 − p′2

∣∣+ ∣∣q′2 − q2
∣∣≤ |p2 − q2| ∨

∣∣p′2 − q′2
∣∣≤ |p2 − q2|+

∣∣p′2 − q′2
∣∣.

Subcase D2: Ip ⊂ Iq . Under this set inclusion, we have the identities

Iq =
[
p′2, q

′
2

]
∪ [p2, q2], Ip =

[
p′2, q

′
2

]
∩ [p2, q2]

from which we obtain the claim, also as an identity:∣∣p2 − p′2
∣∣+ ∣∣q′2 − q2

∣∣ =m1(Ip) +m1(Iq)

=m1

([
p′2, q

′
2

]
∪ [q2, p2]

)
+m1

([
p′2, q

′
2

]
∩ [q2, p2]

)
= |p2 − q2|+

∣∣p′2 − q′2
∣∣.

By symmetry, the claim also holds for Iq ⊂ Ip.
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Subcase D3: Ip �⊂ Iq, Ip �⊂ Ip, and Ip ∩ Iq �= ∅. Of the intervals [q2, p2] and
[p′2, q

′
2], one is Ip ∪ Iq and the other is Ip ∩ Iq . We then compute∣∣p2 − p′2

∣∣+ ∣∣q′2 − q2
∣∣ =m1(Ip) +m1(Iq)

=m1(Ip ∪ Iq) +m1(Ip ∩ Iq) = |p2 − q2|+
∣∣q′2 − p′2

∣∣.
This proves Claim 4.10. Using this and (4.10), Claim 4.9 follows from∣∣ϕ1,j(p)−ϕ1,j(q)

∣∣ ≤ ∣∣p2 − p′2
∣∣+ |p1 − q1|+

∣∣q2 − q′2
∣∣

≤ |p2 − q2|+ |p1 − q1|+
∣∣p′2 − q′2

∣∣
≤ |p2 − q2|+ 2|p1 − q1| ≤ 3|p− q|.

Let O be any connected component of Mj . From the argument in Case C,
the restriction ϕ1,j |O is a translate of x2, so ϕi,j |O is piecewise linear. On
the other hand, by Property (3′), each fl,j is piecewise-linear, so by Case B,
the restriction of ϕi,j to any x1-stripe N 1

j is also piecewise linear. Both types

of sets O and N 1
j partition R

2, so ϕ1,j must be piecewise-linear on all of R2.
This gives Property (2).

Lastly, recall from Case B that for all stripes N 1
l , we have

(4.11) ϕ1,j(p) = fl,j(p1) + (l− 1)δ

for all p = (p1, p2) ∈ N 1
l . This gives Property (3): for all p ∈ E1, there is a

closed neighborhood K containing p so that ϕ1,j |K depends only on x1. �

4.3. Linearly independent derivations on R
2. Using the approximating

sequence from Lemma 4.8, we proceed to a linear dependence relation for
derivations (with respect to singular measures).

Lemma 4.11. Let μ be a singular Radon measure on R
2, and let E be

a subset on which μ is concentrated. There exist F 1, F 2 ⊂ R
2 and g1, g2 ∈

L∞(R2, μ) so that E = F 1 ∪ F 2 and so that, for all δ ∈Υ(R2, μ),{
δx2 = g1δx1, μ-a.e. on F1,
δx1 = g2δx2, μ-a.e. on F2.

(4.12)

Proof. We proceed by cases.
Case 1: assume that E is compact, so by Lemma 4.8 there exist piecewise-

linear, 3-Lipschitz functions {ϕ1,j}∞j=1 and {ϕ2,j}∞j=1 that satisfy Properties
(1) and (2) of Lemma 4.8. Assume again that i= 1 and put ϕj := ϕ1,j .

From the proof of Lemma 4.8, each ϕj is formed from a covering of E1 by
x1-stripes {N 1(fl; δ)}Nl=1 with Nδ < 2−j . Moreover, the set of non-differentia-
bility of ϕj consists of two parts:

(1) a finite union of x1-stripe boundaries, written Γ :=
⋃

l ∂N 1(fl; δ);
(2) a finite union of vertical line segments, written � :=

⋃
k �k, where each

segment �l projects to a point of non-differentiability of fl.
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Let δ1, δ2 ∈ Υ(R2, μ) be arbitrary and write N 1
l := N 1(fl; δ). Several re-

ductions follow, which we state below as claims.

Claim 4.12. Lemma 4.11 is true for μ(R2 \ �) = 0.

We may assume that μ(�) > 0, so χ� �= 0. Since H1(E1 ∩ �k) = 0 holds
for each k, it follows from Lemma 4.7 that E1 ∩ � is purely 1-unrectifiable.
Moreover, by Theorem 3.7, we have χ�δ = 0, for all δ ∈Υ(R2, μ), from which
we obtain χ�(δ1 + δ2) = 0. This proves the claim.

Claim 4.13. Lemma 4.11 is true for μ(R2 \ Γ) = 0.

For each j ∈ N, let Sl := ∂N 1(fl; δ), so ϕj is non-differentiable on Sl. In
particular, every such Sl is a Lipschitz curve, hence 1-rectifiable, so by Theo-
rem 3.8 the module Υ(Sl, μ) has rank-1. This means that the set {χSl

δi}2i=1

is linearly dependent, and by Lemma 2.12, so is {χΓδi}2i=1. The claim follows.
Without loss of generality, assume that E1 =E1 \ (�∪Γ). By Theorem 4.5,

fl is piecewise-linear and f ′
l (R \ proj

R×0(�)) is a finite set in R. We may then
cover E1 by a finite union of sets of the form

N 1
l (ξ) :=

{
p ∈N 1

l : f ′
l (p1) = ξ

}
.

Note that the restriction of ϕ1,j to the interior of N 1
l (ξ) is linear and hence

smooth. From formulas (2.10) and (4.11), we then obtain the μ-a.e. identity

χN 1
l (ξ)

δϕ1,j = χN 1
l (ξ)

f ′
l δx1,

for all l and all ξ. Putting G1
j :=

∑N
l=1 χN 1

l
f ′
l , we further obtain

δϕ1,j =G1
jδx1

μ-a.e. on E1. Clearly ‖G1
j‖∞,μ ≤ 1 holds for each j, and by the Banach–

Alaoglu theorem there is a weak-∗ convergent subsequence {G1
jm

}∞m=1 in

L∞(R2, μ); let G1 be the weak-∗ limit. For all δ ∈Υ(R2, μ), we also have

G1
jmδx1

∗
⇀G1δx1 in L∞(

R
2, μ

)
.

However, by Property (1) of Lemma 4.8, we have ϕ1,j
∗
⇀x2 in Lipb(R

2) and

by continuity of δ, we obtain δϕ1,j
∗
⇀ δx2 in L∞(R2, μ) for all δ. Putting

F 1 :=E1 and g1 :=G1, formula (4.12) follows from uniqueness of limits.
Case 2: For non-compact E, consider subsets in R

2 of the form

Qab := [a, a+ 1)× [b, b+ 1), a, b ∈ Z.

Indeed, each Q =Qab is bounded and therefore has finite μ-measure. From
the Borel regularity of μ, there are sequences of compact sets {Kc}∞c=1 so that

lim
c→∞

μ
(
(E ∩Q) \Kc

)
= 0.

Since Kc is compact, there exist subsets F 1
c , F

2
c in R

2 so that

Kc = F 1
c ∪ F 2

c
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and there exist functions G1
c ∈ L∞(R2, μ) so that the identity

(4.13) χKcδx2 = χKcG
1
cδx1

holds μ-a.e. on F 1
c , for all δ ∈Υ(R2, μ). We now put

F i :=
⋃
abc

F i
c , for i= 1,2,

Ec :=

{
K1, c= 1,
Kc \Kc−1, c≥ 2,

g1 :=
∑
c

χEcG
1
c .

Clearly, E =
⋃

cEc and E = F 1 ∪F 2. From (4.13) and from the definitions of
Ec and g1, we also obtain (4.12) for i= 1. The lemma follows. �

Proof of Theorem 4.1. If μ is a singular Radon measure on R
2, then let E

be a null set on which μ is concentrated. Let δ1, δ2 ∈Υ(R2, μ) be arbitrary.
By Theorem 4.11, there are subsets F 1 and F 2 so that E = F 1 ∪ F 2 and

there are functions g1, g2 ∈ L∞(R2, μ) so that the system of equations (4.12)
holds μ-a.e. for δ1 and for δ2. Now consider{

λ1 := χF 1δ2x1 + χF 2δ2x2,
λ2 := χF 1δ1x1 + χF 2δ1x2.

(4.14)

We first observe that, for μ-a.e. p ∈ F 1, we have the identities

χF 1(λ1δ1 − λ2δ2)x1 = χF 1(δ2x1δ1x1 − δ1x1δ2x1) = 0,

χF 1(λ1δ1 − λ2δ2)x2 = χF 1(δ2x1δ1x2 − δ1x1δ2x2)

= χF 1(δ2x1g1δ1x1 − δ1x1g1δ2x1) = 0.

Arguing similarly for F 2, we see that λ1δ1 −λ2δ2 annihilates both x1 and x1.
By Lemma 2.19, it follows that λ1δ1 − λ2δ2 = 0.

Now suppose that both λ1 and λ2 are zero. By Equations (4.12) and (4.14),
the four functions δ1x1, δ1x2, δ2x1, and δ2x2 would all be zero, which implies
that δ1 = δ2 = 0. This is a contradiction, so either λ1 �= 0 or λ2 �= 0, and
therefore the set {δ1, δ2} is linearly dependent in Υ(R2, μ). �

We now prove the rigidity theorem for derivations.

Proof of Theorem 1.2. We argue by contradiction. For k = 2, let μ be a
Radon measure on R

2. If μS �= 0, then let A be a null set on which μS

is concentrated. For any two derivations δ1, δ2 in Υ(R2, μ), the restrictions
χAδ1, χAδ2 lie in Υ(R2, μS), by Theorem 2.14, and by Theorem 4.1, there
exist functions λ1, λ2 ∈ L∞(R2, νS), not both zero, so that

λ1(χAδ1) + λ2(χAδ2) = 0.

So from the choice of scalars Λi = χAλi, i = 1,2, we see that {δ1, δ2} is a
linearly dependent set in Υ(R2, μ).
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A similar argument holds for k = 1, with Lemma 3.2 in place of Theo-
rem 4.1. �

In the previous section, we studied Radon measures concentrated on 1-sets.
From Lemma 3.2 we deduced Theorem 3.1, which asserts that the rank of such
modules of derivations is at most one. As an application of Theorem 4.1, we
now deduce the following result about derivations on 2-sets in R

n.

Proposition 4.14. Let μ be a Radon measure on R
n.

(1) If μ is concentrated on a 2-set A, then Υ(Rn, μ) has rank at most 2.
(2) If A contains a purely 2-unrectifiable subset of positive H2-measure, then

Υ(Rn, μ) has rank at most 1.

Sketch of Proof. By Lemma 3.5, we have A=E∪F , where E is 2-rectifiable
and F is purely 2-unrectifiable. It is easy to see that derivations restricted to
E are pushforwards of derivations on R

2; by Theorem 1.2, the rank of Υ(E,μ)
is therefore at most 2.

For the purely 2-unrectifiable part, by Theorem 3.6 the image of F under
a generic projection is a null set in R

2. This produces linear dependence
relations betwen derivations as in Lemma 4.11. Arguing similarly as in the
proof of Lemma 3.7, these linear relations can be “pulled back” to R

n. By
choosing scalars λi ∈ L∞(Rn, μ) similarly to those in the proof of Theorem 4.1,
we conclude that Υ(F,μ) must have rank at most 1. �

5. Derivations on spaces supporting a Poincaré inequality

We now turn to the class of metric measure spaces which admit a Poincaré
inequality in a suitably weak sense. These were first considered in the work of
Heinonen and Koskela in their study of quasiconformal mappings on metric
spaces [HK98], and it is known that such spaces possess good geometric prop-
erties, such as quasi-convexity [DS90]. As stated before in the Introduction,
Cheeger has also proven an analogue of the Rademacher theorem on such
spaces [Che99].

In what follows, we discuss facts about Sobolev spaces on metric measure
spaces that support a p-Poincaré inequality and then construct derivations on
such spaces with respect to the underlying measure. As an application, we
also prove the 2-dimensional case of Cheeger’s conjecture about the structure
of such measures.

5.1. Calculus on metric spaces. As before, (X,ρ,μ) denotes a metric
measure space. Here and in the remainder of the section we assume that μ is
doubling, as defined in Equation (1.1).

Remark 5.1. If X admits a doubling measure then the metric on X is
also doubling, that is: there exists N ∈ N so that every ball B in X can be
covered by N balls of half the radius of B.
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By iterating the doubling property above, we see that every ball B in X is
a separable metric space. It follows from Part (2) of Lemma 2.8 that a linear
operator δ : Lipb(B)→ L∞(B,μ) is weak-∗ continuous on bounded sets if and
only if it is sequentially weak-∗ continuous.

Following [HK98], we now introduce the notion of an upper gradient.

Definition 5.2. Let u : X →R be Borel. A Borel function g : X → [0,∞]
is an upper gradient for u if the inequality

(5.1)
∣∣u(y)− u(x)

∣∣≤ ∫ b

a

g
(
γ(t)

)
dt

holds for all rectifiable curves γ : [a, b]→X which are parametrized by arc-
length and which satisfy x= γ(a) and y = γ(b).

Definition 5.3. We say that (X,ρ,μ) supports a p-Poincaré inequality if
there exist Λ≥ 1 and C > 0 so that for all balls B in X and all u ∈ L1

loc(X,μ),
we have

(5.2) −
∫
B

|u− uB|dμ≤C diam(B)

(
−
∫
ΛB

gp dμ

)1/p

,

whenever g is an upper gradient of u. As a shorthand, we call (X,ρ,μ) a p-PI
space if μ is doubling and if (X,ρ,μ) admits a p-Poincaré inequality.

Following [Che99, Section 2], for u ∈ Lp(X,μ) we now define

(5.3) ‖u‖1,p := ‖u‖μ,p + inf
{gi}

lim inf
i→∞

‖gi‖μ,p,

where the infimum is taken over all sequences {ui}∞i=1 in Lp(X,μ) so that
ui → u in Lp-norm and so that gi is a upper gradient for ui, for each i ∈N.

Definition 5.4. The Sobolev space H1,p(X,μ) is the subspace of functions
u ∈ Lp(X,μ) for which ‖u‖1,p <∞.

Indeed, ‖ · ‖1,p is a norm on H1,p(X,μ), but more is true; the next theorem
summarizes [Che99, Theorems 2.7, 2.10, 2.18, 4.48].

Theorem 5.5 (Cheeger, 1999). The space (H1,p(X,μ),‖ ·‖1,p) is a Banach
space. Moreover, it enjoys the following properties:

(1) if p > 1 and if (X,ρ,μ) is a p-PI space, then H1,p(X,μ) is reflexive;
(2) for each f ∈H1,p(X,μ), there exists gf ∈ Lp(X,μ) so that

‖f‖1,p = ‖f‖μ,p + ‖gf‖μ,p.

If g is an upper gradient of f , then gf ≤ g holds μ-a.e. on X .

We call gf the minimal (generalized) upper gradient of f .
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Remark 5.6. Shanmugalingam has defined Newtonian spaces N1,p(X,μ)
that are isometrically equivalent to the spaces H1,p(X,μ), for p ∈ (1,∞)
[Sha00, Theorem 4.10]. Her approach uses the notion of weak upper gradi-
ents, and the spaces N1,p(X,μ) are norm completions of functions in Lp(X,μ)
which admit weak upper gradients in Lp(X,μ). Moreover, for p ∈ (1,∞) we
have

W 1,p
(
R

n
)∼=H1,p

(
R

n,mn

)∼=N1,p
(
R

n,mn

)
For further details, see [Sha00], [Hei01, Chapters 5–6], and [Hei07].

For f ∈ Lip(X), the constant L(f) is always an upper gradient for f but
rarely the minimal generalized upper gradient. We instead consider the upper
and lower pointwise Lipschitz constants of f , defined as{

Lip[f ](x) := limsupy→x
|f(x)−f(y)|

ρ(x,y) ,

lip[f ](x) := lim infr→0 supρ(x,y)≤r
|f(x)−f(y)|

r ,
(5.4)

respectively. It is clear from formula (5.4) that, for all x ∈X ,

(5.5) lip[f ](x)≤ Lip[f ](x)≤ L(f).

Semmes has shown that Lip[f ] and lip[f ] are upper gradients of f [Sem95,
Lemma 1.20]. Moreover, for p-PI spaces X , we have the μ-a.e. identities
[Che99, Theorem 6.1]

(5.6) gf (x) = Lip[f ](x) = lip[f ](x).

5.2. Derivations from differentiability. We now state a Rademacher-
type theorem for p-PI spaces. To fix notation, for f : X →R

k and a ∈R
k, we

write a • f :=
∑

i aifi for their (pointwise) inner product.

Theorem 5.7 (Cheeger, 1999). Let (X,ρ,μ) be a p-PI space. There exists
N ∈N and a μ-measurable decomposition {Xn}∞n=1 with the following proper-
ties: for each n ∈N, there exist k = k(n) ∈N, 1≤ k ≤N and ξn ∈ Lip(X;Rk)
so that

(1) There exists K =K(n)> 0 so that for all x ∈Xn,

(5.7) K ≤ inf
{
Lip

[
a • ξn

]
(x) : a ∈R

k, |a|= 1
}
.

(2) For each f ∈ Lip(B), there is a unique map Dnf : X →R
k, with compo-

nents in L∞(Xn, μ), so that for μ-a.e. x ∈Xn,

(5.8) limsup
y→x

∣∣∣∣f(y)− f(x)−Dnf(x) • (ξn(y)− ξn(x))

ρ(x, y)

∣∣∣∣= 0.

Put ξn := (ξn1 , . . . , ξ
n
k ). To mimic the terminology of manifolds, we refer

to ξni as (Cheeger) coordinates on Xn, to (ξn,Xn) as (Cheeger) coordinate
charts on X , and to Dnf as the (Cheeger) differential of f on Xn.
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Remark 5.8. Inequality (5.7) is a tacit consequence of the proof of [Che99,
Theorem 4.38] and is used to show ξni ∈ L∞(Xn, μ). In fact, the measurable
decomposition is chosen so that it is valid on each Xn.

Equation (5.8) is a reformulation of Part (iii) of [Che99, Theorem 4.38]. In
the notation of [Che99],

Dαf(z) =
(
bα1 (z;f), . . . , b

α
k (z;f)

)
.

On R
n, the coordinate xi is precisely the Lipschitz function whose gradient

is the vector ei. The next corollary is an analogue of this fact for p-PI spaces,
and it follows directly from the uniqueness of Cheeger differentials.

Corollary 5.9. Assuming the hypotheses of Theorem 5.7, let n ∈ N and
let 1≤ i≤ k(n). Then Dnξni (x) = ei holds for μ-a.e. x ∈Xn.

For a p-PI space (X,ρ,μ), Cheeger and Weaver have shown that Υ(X,μ) is
nontrivial [Wea00, Theorem 43]. However, their argument is non-constructive,
so we will prove a quantitative form of their theorem below.

Theorem 5.10. Let (X,ρ,μ) be a p-PI space. For f ∈ Lip(X) and n ∈N,
let Dnf : Xn → Rk be as in Theorem 5.7. For 1≤ i≤ k, the linear operator
δni : Lip(Xn)→ L∞(Xn, μ) given by

(5.9) δni f :=Dnf • ei
is a derivation in Υ(Xn, μ).

To prove Theorem 5.10, we require two lemmas. The first is similar to the
L∞-regularity argument in [Che99, p. 457].

Lemma 5.11. Let (X,ρ,μ) be a p-PI space. For each n ∈ N, there exists
C =C(n)> 0 so that for all f ∈ Lip(X) and μ-a.e. x ∈Xn, we have∣∣δnf (x)∣∣≤C Lip[f ](x).

Proof. Fix x ∈Xn and put a0 =Dnf(x)/|Dnf(x)|. By Part (2) of Theo-
rem 5.7, we have

Lip
[
a0 • ξn

]
(x) =

1

|Dnf(x)| limsup
y→x

|Dnf(x) • (ξn(y)− ξn(x))|
ρ(x, y)

=
1

|Dnf(x)| limsup
y→x

|f(y)− f(x)|
ρ(x, y)

=
Lip[f ](x)

|Dnf(x)| .

By Theorem 5.7, there exists K = K(n) > 0 so that for μ-a.e. x ∈ Xn, in-
equality (5.7) holds for all |a|= 1. In particular, the vector a0 has norm 1, so
from the above identity, we obtain the lemma with C = 1/K. �

Lemma 5.12. Let p > 1, let n ∈ N, and let {fa}∞a=1 be a sequence in

Lipb(X
n) so that fa

∗
⇀ 0. If B is a ball in X so that μ(B ∩Xn) > 0, then

fa|B ⇀ 0 in H1,p(B ∩Xn, μ).
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Proof. Let B be a ball in X so that μ(B ∩Xn)> 0. In what follows, we
write

Bn :=B ∩Xn

and for each a ∈N, we write fa = fa|B.
Let {fab

}∞b=1 be any subsequence of {fa}∞a=1. Note that {fab
}∞b=1 is a

bounded set in H1,p(Bn, μ) because by Equations (5.5) and (5.6), we have

‖f‖μ,p :=
[∫

Bn

|f |p dμ
]1/p

≤ ‖f‖∞
(
diam(B)

)1/p
,

‖gf‖μ,p :=
[∫

Bn

|gf |p dμ
]1/p

≤
[∫

Bn

L(f)p dμ

]1/p
= L(f)

(
diam(B)

)1/p
for each f ∈H1,p(X,μ). Therefore, for C ′ :=C(diam(B))1/p, we obtain

‖fab
‖H1,p(Bn,μ) ≤C ′.

By Theorem 5.5 and weak compactness, there is a further subsequence hc :=
fabc

, c ∈N, and a function h ∈H1,p(Bn, μ) so that hc ⇀h in H1,p(Bn, μ). We
now invoke Mazur’s lemma, so there is a sequence of (finite) convex combina-

tions h̃c :=
∑

α λcαhα which converge in norm to h in H1,p(Bn, μ). In partic-

ular, h̃c converges in norm to h in Lp(Bn, μ), so there is a further subsequence

{h̃cd}∞d=1 that converges μ-a.e. to h on Bn.

By hypothesis, fa
∗
⇀ 0 in Lipb(X

n). Since ‖fa‖Lip ≤ C, it follows from
Lemma 2.3 that fa converges pointwise to 0, and therefore hc also converges
pointwise to 0. A sharper form of Mazur’s lemma1 also assures that h̃c con-
verges pointwise to 0, and therefore h̃cd also converges pointwise to 0. This
shows that h = 0 μ-a.e. on Bn, so every subsequence of {fa}∞a=1 has a fur-
ther subsequence which converges weakly to 0 in H1,p(Bn, μ). It follows that
fa ⇀ 0 in H1,p(B,μ). �

Proof of Theorem 5.10. Let n,k ∈ N be as given in Theorem 5.7, and let
δni : Lipb(X

n)→ L∞(Xn, μ) be the map from formula (5.9).
By the uniqueness of Cheeger differentials, the map f �→ Dnf is linear,

so each δni is linear. It is known that Dn satisfies the Leibniz rule [Che99,
Equation 4.43], and by a similar argument as above, δni also satisfies the
Leibniz rule. It remains to show that δni is continuous. By Lemma 2.8 and
Remark 5.1, it suffices to check weak-∗ convergent sequences in Lipb(X

n).

To this end, let {fa}∞a=1 ⊂ Lipb(X
n) satisfy fa

∗
⇀ 0 and supα ‖fa‖Lip ≤ C,

for some C ∈ (0,∞). Fix p ∈ (1,∞), and let q = p/(p− 1). As a shorthand,
we suppress the notation dμ below.

1 This fact follows from applying the usual form of Mazur’s lemma to each of the sequences

{fa}∞a=α, for α ∈ N, and then taking an appropriate “diagonal” subsequence.
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Let ψ ∈ L1(X,μ) be given, and fix ε > 0 and x0 ∈Xn. Since
∫
X
|ψ| is finite,

there exists R> 0 so that

(5.10)

∫
X\B(x0,R)

|ψ| ≤ ε

3C ′ .

Put B = B(x0,R). Since μ(B)<∞, Lq(B,μ) is a dense subset of L1(B,μ),
so there exists ϕ ∈ Lq(B,μ) so that

(5.11)

∫
B

|ψ−ϕ| ≤ ε

3C ′ .

Now consider the linear operator given by

Tϕ(f) :=

∫
B∩Xn

ϕδni f.

Put C ′′ :=C(n)‖ϕ|B‖μ,q . From formula (5.6) and Lemma 5.11, we obtain

∣∣Tϕ(f)
∣∣≤ ∫

B

|ϕ|
∣∣δni f ∣∣≤C(n)

∫
B

|ϕ|gf ≤C ′′‖f‖H1,p(B,μ)

for all f ∈ Lipb(X
n), so Tϕ is a bounded linear functional on Lipb(X

n) ∩
H1,p(B,μ). By the Hahn–Banach theorem, it extends to an element in the
dual [H1,p(B ∩Xn, μ)]∗, which we also call Tϕ.

From our hypothesis we have fa
∗
⇀ 0 in Lipb(X

n), so by Lemma 5.12, we
obtain fa ⇀ 0 in H1,p(B,μ). This implies that, for sufficiently large a ∈N,

(5.12)
∣∣Tϕ(fa)

∣∣= ∣∣∣∣
∫
B

ϕδni fa

∣∣∣∣≤ ε

3
.

We now combine estimates (5.10) through (5.12) to obtain∣∣∣∣
∫
X

ψδni fa

∣∣∣∣ ≤
∣∣∣∣
∫
X\B

ψδni fa

∣∣∣∣+
∣∣∣∣
∫
B

(ψ−ϕ)δni fa

∣∣∣∣+
∣∣∣∣
∫
X

ϕδni fa

∣∣∣∣
≤ C ′

∫
X\B

|ψ|+C ′
∫
B

|ψ−ϕ|+
∣∣∣∣
∫
B

ϕδni fa

∣∣∣∣
≤ C ′ ε

3C ′ +C ′ ε

3C ′ +
ε

3
= ε.

Since the above estimates hold for all ε > 0, we obtain∫
X

ψδni fa → 0.

However, ψ ∈ L1(X,μ) was also arbitrary, so δni fa
∗
⇀ 0 in L∞(Xn, μ). �
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5.3. Geometric rigidity and Cheeger’s conjecture. As discussed in the
introduction, Theorem 5.7 indicates that p-PI spaces have good infinitesmal
geometry, in the sense of a differentiability property for Lipschitz functions.

Regarding the global geometric structure of such spaces, the following result
was proven by Cheeger [Che99, Theorem 14.2]. In addition to the hypotheses
for differentiability, as in Theorem 5.7, one further requires that the coordinate
charts remain nondegenerate in a measure-theoretic way.

Theorem 5.13 (Cheeger, 1999). Let (X,d) be a complete metric space that
supports a doubling measure and a p-Poincaré inequality, for some 1< p<∞.
Assume in addition that X admits an isometric embedding ι : X → R

N for
some N ∈N. If Hk(n)(Xn)> 0, then ι(Xn) is k(n)-rectifiable.

In light of this theorem, Cheeger has conjectured that the images of coordi-
nate charts are always measurably non-degenerate [Che99, Conjecture 4.63].

Conjecture 5.14 (Cheeger, 1999). Let (X,ρ,μ), {Xn}∞n=1 and ξn : X →
R

k(n) be as in Theorem 5.7. Then Hk(n)(ξn(Xn))> 0.

Since Lipschitz maps do not increase Hausdorff dimension, the validity of
Conjecture 5.14 is consistent with the hypothesis of Theorem 5.13.

Several special cases of Conjecture 5.14 are known. Cheeger has proven it
under the hypothesis that μ is lower Ahlfors regular [Che99, Theorem 13.12]
with exponent k(n); that is, there exists C ≥ 1 so that

C−1rk(n) ≤ μ
(
B(x, r)

)
holds, for all x ∈X and all r > 0. Keith has also proven the conjecture for
the case k = 1, but without additional hypotheses [Kei04a].

Using results from Section 4, we now prove the conjecture for k = 2 and
without additional hypotheses. To begin, we prove a lower bound for the rank
of Υ(X,μ).

Lemma 5.15. Let (X,ρ,μ) be a p-PI space. If {δni }ki=1 are the derivations
from formula (5.9), then they form a linearly independent set in Υ(Xn, μ).

Proof. We argue by contradiction. Suppose there exist {λi}ki=1 in L∞(Xn,
μ), not all zero, so that δ′ :=

∑
i λiδ

n
i is zero. As a result, χBδ

′g = 0, for all
g ∈ Lip(X) and for all balls B which meet Xn.

In particular, let g = ξni . From Corollary 5.9, it follows that δni ξ
n
i = 1 and

δni ξ
n
j = 0 whenever i �= j. Computing further,

0 = χBδ
′ξnj = χB

k∑
i=1

λiδ
n
i ξ

n
j = χBλi.

So each λi is zero on every ball B, and λi = 0 holds μ-a.e. on Xn. �
Lemma 5.16. Let (X,ρ,μ) be a p-PI space, and let {Xn}∞n=1 and ξn : X →

R
k be as in Theorem 5.7. Then Υ(Rk, ξn#(μ
Xn)) has rank at least k.
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Proof. By Lemma 5.15, the measure μ
Xn admits a linearly independent
set of k derivations on Xn. We now claim that for 1≤ i≤ k, the pushforward
derivations δ′i := ξn#δ

n
i form a linearly independent set in Υ(Rk, νn), where

νn := ξn#(μ
Xn).

Let {λi}ki=1 be functions in L∞(Rk, νn) so that δ′ :=
∑

i λiδ
′
i is zero. This

implies that for all f ∈ Lip(Rk) and all balls B in R
k, we have χBδ

′f = 0.
In particular, put f = xj and observe that for i �= j, we have δ′ixj = 0.

Indeed, it follows from Lemma 2.17, Corollary 5.9, and formula (5.9) that for
each h ∈ L1(Rk, νn) and each ball B in R

k,∫
B

hδ′ixj dνn =

∫
(ξn)−1(B)

(
h ◦ ξn

)
δni ξ

n
j dμ= 0.

Next, put Zn := {δ′ixi = 0} and h := χZn . A similar computation gives

0 =

∫
B

hδ′ixi dνn =

∫
(ξn)−1(B)

χ(ξn)−1(Zn)δ
n
i ξ

n
i dμ

= μ
((
ξn

)−1
(B ∩Zn)

)
= ξn#μ(B ∩Zn).

Letting B = B(0,m), for m ∈ N, we obtain ξn#μ(Zn) = 0 and therefore

δ′ixi(x) �= 0 for ξn#μ-a.e. x ∈R
k. From these observations, we conclude that

0 = δ′xj =

k∑
i=1

λiδ
′
ixj = λjδ

′
jxj

holds, for each 1≤ j ≤ k, and therefore λj = 0. This proves the lemma. �

Corollary 5.17. If k = k(n) = 2, then ξn#(μ
Xn) is a nonzero measure

on R
2 that is absolutely continuous to Lebesgue 2-measure. In particular,

Conjecture 5.14 and Theorem 1.3 are true for k = 2.

Proof. Put νn := ξn#(μ
Xn). By Lemma 5.16, the module Υ(Rk, νn) has
rank at least k, so νn must be nonzero. For k = 2, this implies that νn is
absolutely continuous to m2; supposing otherwise, if νn had nonzero Lebesgue
singular part, then by Theorem 4.1, the rank of Υ(R2, νn) would be at most 1.

By the definition of pushforward measure, νn is concentrated on the image
set ξn(Xn). Because νn is nonzero, we see that νn(ξ

n(Xn))> 0, and because
νn is absolutely continuous to m2, we further obtain m2(ξ

n(Xn))> 0. �

Lastly, we prove the rigidity theorem for doubling measures on R
2 that

support a Poincaré inequality (as formulated in the Introduction). We begin
with a lemma.

Lemma 5.18. Assuming the hypotheses of Theorem 1.4, let {Xn}∞n=1 be
the measurable decomposition of X = R

2 from Theorem 5.7. Then Υ(Xn, μ)
has rank at most 2, for all n ∈N.
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Proof. If {δi}3i=1 were linearly independent in Υ(X,μ), then the derivations{
δ′1 := (δ1x2)δ2 − (δ2x2)δ1,

δ′2 := (δ2x1)δ1 − (δ1x1)δ2
(5.13)

satisfy δ′ixj = 0 μ-a.e. on R2 whenever i �= j, as well as the μ-a.e. identity

δ′1x1 = δ′2x2 �= 0

on R
2, otherwise the Chain Rule would imply that δ′i = 0, so {δi}3i=1 would

be linearly dependent. On the other hand, (5.13) implies that the derivation

δ′3 :=
(
δ′1x1

)
δ3 − (δ3x1)δ

′
1 − (δ3x2)δ

′
2

=
(
δ′1x1

)
δ3 − (δ3x1)

[
(δ1x2)δ2 − (δ2x2)δ1

]
− (δ3x2)

[
(δ2x1)δ1 − (δ1x1)δ2

]
=

(
δ′1x1

)
δ3 +det

[
δ1x1 δ1x2

δ3x1 δ3x2

]
δ2 +det

[
δ2x2 δ2x1

δ3x2 δ3x1

]
δ1

acts as zero on every polynomial in R
2 and hence, on every f ∈ Lipb(R

2). This
therefore contradicts the linear independence of {δi}3i=1, since δ′1x1 must be
nonzero in L∞(R2, μ). �

Proof of Theorem 1.4. Assuming all of the hypotheses, let {Xn}∞n=1 again
denote the measurable decomposition ofX =R

2 from Theorem 5.7. Moreover,
a theorem of Keith [Kei04b, Theorem 2.7] states that on each chart Xn,
coordinates can be chosen to be “distance vectors”—that is, there exist points

{pi}k(n)i=1 on X so that

ξn(x) :=
(
d(x, p1), . . . , d(x, pk(n))

)
satisfies the differentiability property (5.8).

Applying Theorem 5.10 and Lemma 5.18, each Υ(Xn, μ) must either have
rank-1 or rank-2. If Υ(Xn, μ) has rank-1, for some n ∈N, then fix a coordinate
function ξn(x) = |x− p| on Xn.

Let x = (x1, x2) be a point of μ-density in Xn. By rotating the space as
necessary, assume that x and p do not lie on the same vertical line or the
same horizontal line, and let θ be the acute angle formed by the line joining
x to p and the horizontal line containing x.

Choosing sequences {yi}∞i=1 and {zi}∞i=1 in R
2, both converging to x and

yi1 − x1

|yi − x| → 1 and
zi1 − x1

|zi − x| → 0, as i→∞,

a trigonometric computation then yields the limit

lim
i→∞

|yi − p| − |x− p|
|yi − x| = lim

i→∞

1

|yi − x|
|yi − p|2 − |x− p|2
|yi − p|+ |x− p|

= lim
i→∞

|yi − x|2 − 2|x− p||yi − x| cosθ
|yi − x|(|yi − p|+ |x− p|)
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= lim
i→∞

|yi − x| − 2|x− p| cosθ
|yi − p|+ |x− p| =− cos θ �= 0

and by a similar computation, the limit

lim
i→∞

|zi − p| − |x− p|
|zi − x| =− sin θ �= 0.

Applying Theorem 5.7 to the Euclidean coordinate function f(x) = x1 and
using the above limits, it follows that

Dnf(x) cosθ = lim
i→∞

yi2 − x2 −Dnf(z)(|yi − p| − |x− p|)
|yi − x|

= 0= lim
i→∞

zi2 − x2 −Dnf(z)(|zi − p| − |x− p|)
|zi − x|

= 1−Dnf(x) sinθ

which is a contradiction. Therefore each Υ(Xn, μ) must have rank-2, so the
desired conclusion follows from Theorem 1.2. �

It is interesting to note that Lemma 5.16 holds true for all k ∈N. We would
obtain all cases of Cheeger’s measure conjecture if an analogue of Theorem 4.1
were also true for all k ∈ N. Recalling further, Theorem 4.1 relies crucially
on Theorem 4.5, which is an adaptation of the covering theorem of Alberti,
Csörnyei, and Preiss (Theorem 4.3).

There are other covering theorems for null sets in R
k, for all k ∈N [ACP05,

Proposition 8.4]. However, for k ≥ 3, such covers consist of neighborhoods of
both 1-dimensional curves and (k − 1)-dimensional hypersurfaces in R

k. It
is easy to see that the argument in Section 4 generalizes for the “(k − 1)-
dimensional” part of a mk-null set, but not the “1-dimensional” part.
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