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ON THE (1, p)-POINCARÉ INEQUALITY

PETTERI HARJULEHTO, RITVA HURRI-SYRJÄNEN
AND ANTTI V. VÄHÄKANGAS

Abstract. We show that s-John domains satisfy the (1, p)-Poin-
caré inequality for all finite p > p0. We prove that the lower

bound p0 is sharp. We formulate a conjecture concerning (q, p)-
Poincaré inequalities in s-John domains, 1≤ q ≤ p.

1. Introduction

A bounded domain G in R
n, n≥ 2, is said to be a (q, p)-Poincaré domain

if there exists a finite constant c such that inequality,

(1.1)

(∫
G

∣∣u(x)− uG

∣∣q dx) 1
q

≤ c

(∫
G

∣∣∇u(x)
∣∣p dx) 1

p

,

holds for all u ∈W 1,p(G); here 1≤ p <∞, 1≤ q <∞, and uG is the integral
average of u. Poincaré inequalities are useful in analysis, especially in the
theory of partial differential equations. They have been widely studied in the
case q ≥ p, see, for example, the book of Maz’ya and Poborchi [16]. Poincaré
inequalities, (1.1), in the case 1≤ q ≤ p have been considered on general do-
mains, for example, in [15, Section 6.4], see also [8]. Maz’ya [15], Theorem
6.4.3/2 on p. 344, gives a characterization for domains which support (1.1)
when q < p. The characterisation is given in terms of capacity.

We also study the case 1≤ q ≤ p. Clearly, by Hölder’s inequality, if a given
domain is a (p, p)-Poincaré domain, then it is a (q, p)-Poincaré domain for
every 1≤ q ≤ p. The benefit is that the inequality with q < p can be satisfied
by more irregular domains than the inequality with q = p. We provide a
sharp quantitative version of this statement for s-John domains. They form
a large class of irregular domains including the widely used 1-John domains
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and domains that satisfy the quasihyperbolic boundary condition. Our result
is given in terms of the upper Minkowski dimension, dimM, which has been
previously used with Poincaré inequalities on domains, for example, in [2], [4].

Let us turn to a detailed discussion of the objectives and results of the
present paper. Throughout the paper, we will assume that n≥ 2.

The following notation will be convenient to us:

C(q, p, s, λ,n) :=
(p− q)(λ− n)

pq
+

(s− 1)(n− 1)

p
.

Smith and Stegenga proved in [17, Theorem 10] that an s-John domain G in
R

n is a (p, p)-Poincaré domain if 1≤ p <∞ and C(p, p, s,n,n)< 1 i.e. if

p > (s− 1)(n− 1).

For another proof of this fact, see [7, Corollary 6]. IfC(p, p, s,n,n) = 1 and 1≤
p <∞, then we know in some special cases that G is a (p, p)-Poincaré domain.
This is true, for instance, in case of rooms and passages -type domains, [9,
Remark 5.9] and [5, Example 6.1.1], and s-cups [16, Section 5.1]. We exclude
here the discussion about the case q > p, for that in s-John domains we refer
to [7], [11].

Let us formulate a conjecture.

Conjecture 1.1. The following statements hold under the assumption
that 1≤ q ≤ p <∞, s > 1, and λ ∈ [n− 1, n).

First, let G be an s-John domain in R
n such that dimM(∂G) ≤ λ. Then

G is a (q, p)-Poincaré domain if either (1) or (2) holds:

(1) C(q, p, s, λ,n)≤ 1 and 1≤ q = p <∞;
(2) C(q, p, s, λ,n)< 1 and 1≤ q < p <∞.

Conversely, if neither (1) nor (2) holds, there is an s-John domain G in
R

n such that dimM(∂G) = λ and G is not a (q, p)-Poincaré domain.

Our main contribution is a verification of Conjecture 1.1 in the case of
1 = q < p and λ < n. This case is special, and the general case seems to be
more difficult.

The following negative result of ours covers the converse statement in Con-
jecture 1.1. It is restricted to the case λ < n.

Theorem 1.2. Let s > 1 and λ ∈ [n− 1, n). There is an s-John domain
Gs in R

n such that dimM(∂Gs) = λ and Gs is not a (q, p)-Poincaré domain
if either (1) or (2) holds:

(1) C(q, p, s, λ,n)> 1 and 1≤ q = p <∞;
(2) C(q, p, s, λ,n)≥ 1 and 1≤ q < p <∞.

This theorem is based on a novel counterexample: Proposition 5.1, Theo-
rem 5.6, and Theorem 5.7. Suppose s > 1, 1≤ q ≤ p <∞, and

C(q, p, s,n,n) =C(1, p, s,n,n)> 1.
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By Theorem 1.2 with parameter λ sufficiently close to n, we obtain an s-John
domain Gs in R

n such that Gs is not a (1, p)-Poincaré domain. In particular,
it is not a (q, p)-Poincaré domain.

The first statement in Conjecture 1.1 is partially covered by the following
positive result of ours. The proof can be found in Section 4.

Theorem 1.3. Let s > 1, 1< p<∞, and λ ∈ [n−1, n]. Let G be an s-John
domain in R

n such that dimM(∂G)≤ λ. If C(1, p, s, λ,n)< 1, i.e., if

(1.2) p >
s(n− 1)− λ+ 1

n− λ+ 1
,

then G is a (1, p)-Poincaré domain.

Conjecture 1.1 is true in the case of 1 = q < p <∞. This follows by com-
bining Theorem 1.2 and Theorem 1.3.

Structure of the paper. We formulate and prove a decomposition theo-
rem for a (q, p)-Poincaré inequality, 1 ≤ q < p < ∞, Theorem 3.1 which we
use when we prove Theorem 1.3. We formulate and prove several lemmata
in Section 4 in order to obtain sharp upper bounds for the requirements in
Theorem 3.1. In order to show the sharpness of our result, we introduce
the s-version of a 1-John domain, Definition 5.2, using the concept of an s-
apartment. Given a 1-John domain and its Whitney decomposition the rough
idea is to place an s-apartment into each Whitney cube. The upper Minkowski
dimension of the boundary of a 1-John domain is inherited by the s-version,
Proposition 5.4, and the s-version is an s-John domain, Proposition 5.5. With
the s-version of an explicitly constructed 1-John domain, we are able to prove
Theorem 1.2.

2. Notation

Let D and G be bounded domains in R
n, n ≥ 2, and let 1 ≤ q ≤ p <∞.

An open n-dimensional ball centered at x and with radius r > 0 is denoted by
Bn(x, r). We let Q be a cube in R

n, whose sides are parallel to the coordinate
axes with xQ the center and �(Q) the side-length. By tQ, t > 0, we mean the
cube that is centered at the same point xQ but whose side-length is t�(Q).
The Lebesgue measure of a measurable set E in R

n is written as |E|.
We say that D is a (q, p)-Poincaré domain if there is a finite positive

constant κq,p(D) such that

(2.1)

(∫
D

|u− uD|q dy
) 1

q

≤ κq,p(D)

(∫
D

|∇u|p dy
) 1

p

for all u ∈W 1,p(D); where

uD :=

∫
D

u(x)dx=
1

|D|

∫
D

u(x)dx
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is the integral average of function u over D, and the constant κq,p(D) depends
only on n, p, q and D. By Hölder’s inequality D is a (q, p)-Poincaré domain
whenever D is a (p, p)-Poincaré domain and furthermore κq,p(D)≤ κp,p(D).
The inequality (2.1) is often written in the form(∫

D

|u− uD|q dy
) 1

q

≤ κq,p(D)|D| 1q− 1
p

(∫
D

|∇u|p dy
) 1

p

and κq,p(D)|D| 1q− 1
p is called a (q, p)-Poincaré constant.

Remark 2.1. We frequently use the well-known fact

κq,p(Q)≤ κp,p(Q)≤ c(n)|Q| 1
n

for a cube Q, [6, p. 157].

By WD we denote a Whitney decomposition of the domain D. This is
a family of those closed dyadic cubes Q in the Whitney decomposition of
R

n \ ∂D for which Q⊂D. However, we modify the standard construction, cf.
[18, p. 167], such that WD consists of cubes Q for which 9

8 diam(Q)≤ 1 and

(2.2) κq,p

(
int

9

8
Q

)
≤ c(n)

∣∣∣∣98Q
∣∣∣∣

1
n

≤ 1.

If the domain D is clear from the context we write simply W for WD. For
every k ∈N, we write

Wk :=
{
Q ∈WD : �(Q) = 2−k

}
and by �Wk we denote the number of cubes in this family. Note that WD =⋃∞

k=0Wk.

Let E in Rn be a non-empty bounded set. By Hλ(E) we mean the λ-
dimensional Hausdorff measure of E. The Hausdorff dimension of E is written
as dimH(E). The upper Minkowski dimension of E is

dimM(E) := sup
{
d≥ 0 : limsup

r→0+
Md(E,r) =∞

}
,

where

Md(E,r) :=
|E +Bn(0, r)|

rn−d
:=

|
⋃

x∈E Bn(x, r)|
rn−d

, r > 0,

is the d-dimensional Minkowski precontent.

3. Poincaré decomposition

The following Poincaré decomposition is from [8] which, in turn, is based
on [9]. A collection C(D) = {D0,D1, . . . ,Dk} of bounded domains in R

n with
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Dk =D is said to be a chain from D0 to D whenever Di ∩Dj 	= ∅ if and only
if |i− j| ≤ 1. The length of a chain C(D) is denoted by �(C(D)) = k.

Let Π be a collection of bounded (q, p)-Poincaré domains. Let us fix con-
stants N ≥ 1 and c1 > 0. We call Π a (q, p)-Poincaré decomposition of a
domain G, if

(i) G=
⋃

D∈ΠD;
(ii)

∑
D∈Π χD(x) ≤ NχG(x) for all x ∈ R

n, where χG is the characteristic
function of G; and

(iii) there is a domain D0 ∈Π such that for each D ∈Π there exists a chain
C(D) = {D0,D1, . . . ,D�(C(D))−1,D} of domains in Π with

(3.1) max
{
|Di|, |Di−1|

}
≤ c1|Di ∩Di−1|

for i= 1, . . . , �(C(D)).

For each D in Π, we fix a chain C(D) satisfying (3.1) and call this the
Poincaré chain from D0 to D. For a fixed A ∈Π, we write

A(Π) :=
{
D ∈Π : A ∈ C(D)

}
.

Various chains and/or decompositions are available in the literature, for
example [1], [3], [7], [9], [10], [11], [17]. The optimal (q, p)-Poincaré inequalities
for rooms and passages-type domains are obtained in [8] by using a Poincaré
decomposition arising from the geometry of the underlying domain.

We prove a slight modification of [8, Theorem 2.4] and [9, Theorem 4.4].
For the sake of completeness, we present the proof.

Theorem 3.1. Let 1≤ q < p <∞. Let G be a bounded domain in R
n and

let Π be a (q, p)-Poincaré decomposition of G. If κq,p(D)≤ 1 for every D ∈Π
and there are positive and finite constants c and κ such that

(3.2)
∑
D∈Π

κq,p(D)
pq

p−q−κ |D| ≤ c,

and for every A ∈Π

(3.3)
∑

D∈A(Π)

�
(
C(D)

)q−1|D| ≤ cκq,p(A)
−κ

p−q
p |A|,

then the domain G is a (q, p)-Poincaré domain.

Proof. Let D0 be a fixed domain in Π. The Hölder’s inequality yields(∫
G

∣∣u(x)− uG

∣∣q dx) 1
q

≤ 2

(∫
G

|u(x)− uD0 |q dx
) 1

q

.

By the elementary inequalities

|a+ b|q ≤ 2q−1
(
|a|q + |b|q

)
, |a+ b| 1q ≤ |a| 1q + |b| 1q ,
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with 1≤ q <∞, we obtain(∫
G

∣∣u(x)− uD0

∣∣q dx) 1
q

≤
(∑

D∈Π

∫
D

∣∣u(x)− uD0

∣∣q dx) 1
q

(3.4)

≤ c

(∑
D∈Π

∫
D

∣∣u(x)− uD

∣∣q dx) 1
q

︸ ︷︷ ︸
=: I

+ c

(∑
D∈Π

∫
D

|uD − uD0 |q dx
) 1

q

︸ ︷︷ ︸
=: II

.

The term I in (3.4) is estimated by the (q, p)-Poincaré inequality in D and
Hölder’s inequality for sums with (pq ,

p
p−q )

I ≤
(∑

D∈Π

κq,p(D)q|D|1−
q
p

(∫
D

∣∣∇u(x)
∣∣p dx) q

p
) 1

q

(3.5)

≤
(∑

D∈Π

(
κq,p(D)q|D|1−

q
p
) p

p−q

) p−q
pq

(∑
D∈Π

∫
D

∣∣∇u(x)
∣∣p dx) 1

p

≤ c

(∫
G

∣∣∇u(x)
∣∣p dx) 1

p

,

where in the last inequality we used the estimate∑
D∈Π

κq,p(D)
pq

p−q |D| ≤
∑
D∈Π

|D| ≤N |G|<∞,

which follows from the properties of the (q, p)-Poincaré decomposition Π and
the boundedness of G.

We are left to handle the term II in (3.4). Let us connect every domain D ∈
Π to the fixed domain D0 by a Poincaré chain C(D) = (D0,D1, . . . ,Dk−1,D).
By the inequality (

k∑
i=1

ti

)q

≤ kq−1
k∑

i=1

tqi ,

with 1≤ q <∞, we obtain

II ≤
(∑

D∈Π

∫
D

�
(
C(D)

)q−1
�(C(D))∑

i=1

|uDi − uDi−1 |q dx
) 1

q

=

(∑
D∈Π

∫
D

�
(
C(D)

)q−1
�(C(D))∑

i=1

∫
Di∩Di−1

|uDi − uDi−1 |q dy dx
) 1

q
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≤
(∑

D∈Π

|D|�
(
C(D)

)q−1
�(C(D))∑

i=1

|Di ∩Di−1|−12q−1

{∫
Di

∣∣u(y)− uDi

∣∣q dy
+

∫
Di−1

∣∣u(y)− uDi−1

∣∣q dy}
) 1

q

.

By the (q, p)-Poincaré inequality and condition (3.1)

II ≤ c

(∑
D∈Π

|D|�
(
C(D)

)q−1
�(C(D))∑

i=1

|Di ∩Di−1|−1

·
{
κq,p(Di)

q|Di|1−
q
p

(∫
Di

∣∣∇u(y)
∣∣p dy) q

p

+ κq,p(Di−1)
q|Di−1|1−

q
p

(∫
Di−1

∣∣∇u(y)
∣∣p dy) q

p
}) 1

q

≤ c

(∑
D∈Π

|D|�
(
C(D)

)q−1 ∑
A∈C(D)

κq,p(A)q|A|−
q
p

(∫
A

|∇u|p dy
) q

p
) 1

q

.

︸ ︷︷ ︸
=: III

Rearranging the double sum and using (3.3), we obtain

III ≤
(∑

A∈Π

∑
D∈A(Π)

�
(
C(D)

)q−1|D|κq,p(A)q|A|−
q
p

(∫
A

|∇u|p dy
) q

p
) 1

q

≤ c

(∑
A∈Π

κq,p(A)q−κ
p−q
p |A|1−

q
p

(∫
A

|∇u|p dy
) q

p
) 1

q

.

By Hölder’s inequality with (pq ,
p

p−q ) and by (3.2), this yields

III ≤ c

(∑
A∈Π

(
κq,p(A)q−κ

p−q
p |A|1−

q
p
) p

p−q

) p−q
pq

(∑
A∈Π

∫
A

∣∣∇u(y)
∣∣p dy) 1

p

≤ c

(∫
G

|∇u|p dy
) 1

p

.

This completes the proof. �

Remark 3.2. Theorem 3.1 is a generalization of [9, Theorem 4.4], where
Hurri showed that G is a (p, p)-Poincaré domain if condition (3.3) is replaced
by

(3.6)
∑

D∈A(Π)

�
(
C(D)

)p−1|D| ≤ cκp,p(A)−p|A|



912 P. HARJULEHTO, R. HURRI-SYRJÄNEN AND A. V. VÄHÄKANGAS

and condition (3.2) is omitted. Note that condition (3.3) gives condition (3.6)
by a limiting process: If we choose κ = pq/(p− q), then condition (3.2) holds.
Condition (3.3) is now∑

D∈A(Π)

�
(
C(D)

)q−1|D| ≤ cκq,p(A)−q|A|,

which yields (3.6) as q→ p.

Remark 3.3. The two conditions (3.2) and (3.3) were used in the proof of
Theorem 3.1 to establish the following estimate:

(3.7)
∑
A∈Π

( ∑
D∈A(Π)

�
(
C(D)

)q−1|D|κq,p(A)q|A|−
q
p

) p
p−q

<∞.

An examination of the proof reveals that the two conditions above can be
replaced with (3.7) in the formulation of Theorem 3.1. We will use this single
condition later to obtain sharp estimates in s-John domains.

4. Proof of Theorem 1.3

First, we need some preparations. The actual proof of Theorem 1.3 is
presented at the end of this section.

Let us begin with definition of s-John domains.

Definition 4.1. Let s ≥ 1. A bounded domain G in R
n, n≥ 2, is an s-

John domain if there exists a point x0 in G and a constant c > 0 such that
every point x in G can be joined to x0 by a rectifiable path γ : [0, l] → G
parametrized by its arc length for which γ(0) = x, γ(l) = x0, l≤ c, and

dist
(
γ(t), ∂G

)
≥ ts/c for t ∈ [0, l].

The point x0 is called an s-John center of G.

Observe the following reductions: The case λ= n in Theorem 1.3 follows
from Theorem 10 in [17]. Hence, we can assume that λ < n. Choose λ′ ∈ (λ,n)
such that (1.2) is true if λ is replaced by λ′. Then dimM(∂G)< λ′ and hence
we may assume that dimM(∂G) is strictly less than λ ∈ [n − 1, n). This
assumption is later used with the aid of the following lemma.

Lemma 4.2. Let K in R
n be a compact set such that

dimM(K)< λ, where λ ∈ [n− 1, n).

There is a positive constant c as follows: Assume that {B1,B2, . . . ,BN} is a
family of N disjoint balls in R

n, each of which is centered in K and whose
radius is r ∈ (0,1]. Then N ≤ cr−λ.
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Proof. By definition, we have

inf
a>0

{
sup

r∈(0,a)

|K +Bn(0, r)|
rn−λ

}
= limsup

r→0+
Mλ(K,r)<∞.

In particular, there is a ∈ (0,1) such that

(4.1) sup
r∈(0,a)

|K +Bn(0, r)|
rn−λ

=C <∞.

We consider a family {B1, . . . ,BN} of disjoint balls in R
n, each of which is

centered in K and whose radius is r ∈ (0,1]. We separate two cases I and II:
Case I. r ∈ [a,1]. In this case, we have

N ≤ cn

N∑
i=1

|Bi|
rn

≤ cna
−n

N∑
i=1

|Bi|= cna
−n

∣∣∣∣∣
N⋃
i=1

Bi

∣∣∣∣∣
≤ cna

−n
∣∣K +Bn(0, r)

∣∣≤ cna
−n

∣∣K +Bn(0,1)
∣∣= c1 ≤ c1r

−λ.

Case II. r ∈ (0, a). The estimate (4.1) yields

N ≤ cnr
−n

N∑
i=1

|Bi| ≤ cnr
−n

∣∣K +Bn(0, r)
∣∣= cnr

−λ |K +Bn(0, r)|
rn−λ

≤ cnCr−λ = c2r
−λ.

Combining the Cases I and II the required estimate holds true with a
constant c=max{c1, c2}. �

For the proof of Theorem 1.3, we fix a Whitney decomposition W =WG

satisfying (2.2).
We write

9

8
W :=

{
int

9

8
Q : Q ∈W

}
.

In order to equip this family with Poincaré chains, we fix Q0 ∈W and state
that the s-John center of G is xQ0 . We wish to join Q0 to every cube R in W .
It is convenient first to connect xR to xQ0 by an s-John path γR that joins
a sequence of midpoints of intersecting Whitney cubes to each other. Indeed,
such a path will yield a Poincaré chain with nice properties. The following
construction is essentially from [17, p. 86]. Other constructions are used in
[9], [12].

Fix a rectifiable path γ that is parametrized by its arc length and joins
the points xR and xQ0 as in Definition 4.1. Assume that xQ0 lies in one of
the cubes intersecting R. Then join xR to xQ0 by an arc that is contained in
R∪Q0 and whose length is comparable to �(R). Otherwise there is r > 0 such
that γ(r) lies in the boundary of a cube P ∈W that intersects R and γ(t)
belongs to a cube that is not intersecting R whenever t ∈ (r, �(γ)]. Now we
connect the midpoint of xR to the midpoint of xP by an arc whose length is
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comparable to �(R) and that is contained in R∪P . Then we iterate the steps
above but with R replaced by P . This procedure is repeated until we reach
xQ0 . Finally, we collect the arcs in the order that they were constructed, and
arc length parametrize them by a path γR. It is straightforward to verify that

(4.2) ts ≤ cdist
(
γR(t), ∂G

)
if t ∈

[
0, �(γR)

]
,

where c > 0 depends on the s-John constant of G and n.
We define P (R), R ∈W , to be the union of those cubes in W whose mid-

points lie in the trace of γR. If Q ∈W , we write

S(Q) :=
⋃{

R ∈W : Q⊂ P (R)
}
.

This is the shadow of Q. Let D ∈ 9
8W . Then D = int 98Q for some Q ∈W ,

and we define C(D) to be the Poincaré chain{
int

9

8
R : R ∈W and R⊂ P (Q)

}
that is ordered by reversing the order as γR hits the midpoints of these cubes.
The cube D0 := int 98Q0 is the first and int 98Q is the last.

It follows from the construction above that the family 9
8W equipped with

these Poincaré chains is a (1, p)-Poincaré decomposition of G.
For j, k ∈N and σ ≥ 1, we define

Wj,k,σ :=
{
Q ∈Wj : 2

−(j−k)n ≤
∣∣S(Q)

∣∣≤ σ · 2−(j−k−1)n
}
.

The following lemma gives crucial estimates for the cardinality of such a family
of cubes.

Lemma 4.3. Let s > 1 and G be an s-John domain in R
n such that

dimM(∂G)< λ, where λ ∈ [n− 1, n). Then there is σ ≥ 1 such that

(4.3) Wj =

[j−j/s]⋃
k=0

Wj,k,σ for every j ∈N.

Furthermore, if k ∈ {0,1, . . . , [j − j/s]}, we have

(4.4) �Wj,k,σ ≤ c2−kn2j(n+1+(λ−n−1)/s).

The positive constant c depends on s, n, ∂G, and the s-John constant of the
domain G.

Proof. Let us fix j ∈ N and begin with a covering argument. The 5r-
covering theorem, see, for example, [14, p. 23], implies that there is a finite
family

F ⊂
{
Bn

(
x,2−j/s

)
: x ∈ ∂G

}
of disjoint balls such that

(4.5) ∂G⊂
⋃

B∈F
5B.
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We claim that, if Q ∈Wj , then there exists B ∈ F such that Q⊂ c1B. Here
c1 is a constant depending on n only. To verify this, let y ∈ ∂G be a closest
point in ∂G to the midpoint xQ of Q. Using the covering property (4.5) yields

a point x in ∂G such that Bn(x,2−j/s) ∈ F and y ∈Bn(x,5 · 2−j/s). Now, if
z ∈Q, we have

|z − x| ≤ |z − xQ|+ |xQ − y|+ |y− x| ≤ c2−j + c2−j + 5 · 2−j/s < c12
−j/s.

It follows that Q⊂Bn(x, c12
−j/s) = c1B

n(x,2−j/s) as required.
Next, we fix Q ∈Wj and any ball B := Bn(x,2−j/s) in F such that Q ⊂

c1B. We claim that

(4.6) S(Q)⊂Bn
(
x, c22

−j/s
)
,

where c2 > c1 is a constant depending on s, n and the s-John constant of G.
To show this, we let R ∈W be a cube for which Q⊂ P (R). Consider the path
γR which connects xR to xQ0 and satisfies (4.2). Because Q⊂ P (R), we find
that γR(t) = xQ for some t. Using the properties of Whitney cubes and (4.2),
we obtain

|xR − xQ|s ≤ ts ≤ cdist
(
γR(t), ∂G

)
= cdist(xQ, ∂G)≤ c2−j .

It follows that

diam(R) ≤ cdist(xR, ∂G)

≤ c|xR − xQ|+ cdist(xQ, ∂G)≤ c2−j/s + c2−j ≤ c2−j/s.

Hence, if y ∈R, we have

|y− x| ≤ |y− xR|+ |xR − xQ|+ |xQ − x|
≤ c2−j/s + c2−j/s + c12

−j/s < c22
−j/s.

The inclusion (4.6) follows.
As a consequence of (4.6), we have

2−jn = |Q| ≤
∣∣S(Q)

∣∣≤ σ · 2−jn/s

for a constant σ ≥ 1 depending on s, n, and the s-John constant of G. In
particular, we see that (4.3) is valid with this constant.

It remains to prove the estimate (4.4). In order to do this, we establish the
following auxiliary estimate

(4.7) �
{
Q ∈Wj : Q⊂ P (R)

}
≤ c32

j(1−1/s) if R ∈W .

Here the constant c3 depends on s, n, and the s-John constant of G. In order
to see this, we fix R ∈W and let γR be the path connecting xR to xQ0 . Let
Q1, . . . ,QM ∈Wj be cubes such that Qi ⊂ P (R) for every i ∈ {1,2, . . . ,M}.
We number these cubes in the same order as γR hits their midpoints. In
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particular, if γR(t) = xQM
, then γR[0, t] joins the midpoints of M cubes whose

side-length is 2−j . Using (4.2), we obtain

(M − 1)2−j ≤ t≤ cdist
(
γR(t), ∂G

)1/s
= cdist(xQM

, ∂G)1/s ≤ c2−j/s.

It follows that M ≤ c32
j(1−1/s) as required in (4.7).

Then we fix k ∈ {0,1, . . . , [j − j/s]} where [j − j/s] is the integer part of
j − j/s. Fix also B := Bn(x,2−j/s) ∈ F . First, we estimate the number of
cubes that are included in c1B. Inclusion (4.6) yields

�{Q ∈Wj,k,σ : Q⊂ c1B}
≤

∑
Q∈Wj,k,σ

Q⊂c1B

2(j−k)n
∣∣S(Q)

∣∣≤ 2(j−k)n
∑

Q∈Wj,k,σ

∣∣S(Q)∩ c2B
∣∣

≤ 2(j−k)n
∑

Q∈Wj,k,σ

∑
R∈W

Q⊂P (R)

|R ∩ c2B|= 2(j−k)n
∑
R∈W

∑
Q∈Wj,k,σ

Q⊂P (R)

|R ∩ c2B|.

Now (4.7) shows that the last term above is bounded by

c32
(j−k)n2j(1−1/s)|c2B| ≤ c42

−kn2j(n+1−1/s−n/s).

Here c4 is a constant depending on s, n, and the s-John constant of G.
From the considerations above, it follows that

(4.8) �Wj,k,σ ≤
∑
B∈F

�{Q ∈Wj,k,σ : Q⊂ c1B} ≤ c4
∑
B∈F

2−kn2j(n+1−1/s−n/s).

Recall that F is a family of disjoint balls, each of which is centered in ∂G
and whose radius is 2−j/s ∈ (0,1]. Therefore, Lemma 4.2 yields �F ≤ c2jλ/s.
Combining this estimate with (4.8) allows us to conclude that

�Wj,k,σ ≤ c2jλ/s2−kn2j(n+1−1/s−n/s).

Simplifying the exponents gives us (4.4). �

Proof of Theorem 1.3. By using both Remark 2.1 and (2.2), we obtain

κ1,p(D)≤ c(n)|D| 1
n ≤ 1 for every D ∈ 9

8W . Hence, according to Remark 3.3,
it suffices to verify the finiteness of

Σ :=
∑

A∈ 9
8W

( ∑
D∈A( 9

8W)

|D||A|1/n−1/p

)p/(p−1)

.

From the definitions and the estimate | 98Q| ≤ cn|Q| it follows that

Σ≤ c
∑
Q∈W

(∣∣S(Q)
∣∣|Q|1/n−1/p

)p/(p−1)
.
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By using (4.3) from Lemma 4.3, we can write

Σ≤ c

∞∑
j=0

[j−j/s]∑
k=0

∑
Q∈Wj,k,σ

(∣∣S(Q)
∣∣|Q|1/n−1/p

)p/(p−1)
.

Then, by using the definition of Wj,k,σ and (4.4) from Lemma 4.3, we obtain
the estimate

Σ ≤ c
∞∑
j=0

[j−j/s]∑
k=0

2−kn2j(n+1+(λ−n−1)/s) ·
(
2−(j−k)n · 2−jn(1/n−1/p)

)p/(p−1)

= c

∞∑
j=0

[j−j/s]∑
k=0

2kn(p/(p−1)−1)2j(n+1+(λ−n−1)/s−np/(p−1)−p/(p−1)+n/(p−1)).

We fix j and k as in the summation above. Then

kn

(
p

p− 1
− 1

)
≤ n(j − j/s)

(
p

p− 1
− 1

)
=

jn(1− 1/s)

p− 1
.

Using also the trivial estimate [j − j/s]≤ j, we find that

Σ ≤ c
∞∑
j=0

j · 2j(n(1−1/s)/(p−1)+n+1+(λ−n−1)/s−np/(p−1)−p/(p−1)+n/(p−1))

≤ c

∞∑
j=0

j · 2j(ns−s+λp−λ−np−p+1)/s(p−1).

By (1.2), we see that the last series converges. �

5. Failure of a (1, p)-Poincaré inequality

Theorem 1.3 states that an s-John domain G in R
n with s > 1 is a (1, p)-

Poincaré domain if dimM(∂G)≤ λ ∈ [n− 1, n), p ∈ (1,∞), and

(5.1) p >
s(n− 1)− λ+ 1

n− λ+ 1
.

We show that this result is sharp by constructing an s-John domain Gs in
R

n such that dimM(∂Gs) = λ and Gs is not a (1, p)-Poincaré domain if (5.1)
fails.

The construction is based on modifying a given 1-John domain G such that
the resulting domain Gs, known as the s-version of G, is an s-John domain
containing multiple copies of rooms and s-passages at every size-scale 2−j .
The number of these copies at each scale depends on the upper Minkowski
dimension of ∂G or, more precisely, on the number of Whitney cubes at each
scale. The modification also preserves the upper Minkowski dimension so that
dimM(∂G) = dimM(∂Gs).
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Before the modification procedure can take place, we need to find suitable
1-John domains in R

n. Such domains G with

dimM(∂G) = λ ∈ [n− 1, n)

are constructed in the proof of the following proposition.

Proposition 5.1. Let n≥ 2 and λ ∈ [n− 1, n). There is a 1-John domain
G in R

n such that dimM(∂G) = λ and

(5.2) limsup
k→∞

2−λk · �Wk > 0.

Here �Wk denotes the number of those cubes in WG whose side-lengths are
2−k.

Proof. We describe the construction in the case n= 2. The general case is
similar.

Let us denote Q := [−1,1]× [−1,1]⊂R
2, κ ∈ (0,1), and r(κ) := (1−κ)/2 ∈

(0,1/2). Let us write

z1 :=
(
κ+ r(κ), κ+ r(κ)

)
,

and let z2, z3, z4 stand for the corresponding symmetric points in the three
remaining quadrants in any order. Let S1, S2, S3, S4 be similitudes that are
defined by Si(x) := r(κ)x+ zi, i= 1,2,3,4. Reasoning as in [14, pp. 66–67],
we see that there is a non-empty compact set K in Q for which

(5.3) K = S1(K)∪ S2(K)∪ S3(K)∪ S4(K).

The similitudes S1, S2, S3, S4 satisfy an open set condition [14, p. 67]. Hence,
we can use both Corollary 5.8 and Theorem 4.14 in [14] to see that

dimM(K) = dimH(K) =− log 4

log r(κ)
.

Notice that − log 4/ log r(κ) reaches all the values in (0,2) if we let κ vary
between (0,1). In particular, there exists κ= κ(λ) ∈ (0,1) for which the upper
Minkowski dimension of the corresponding compact set Kλ := K is λ. We
define G to be the open set

G :=Bn(0,2) \Kλ.

Since ∂G= ∂Bn(0,2)∪Kλ, we see that dimM(∂G) = λ.
We omit the proof of the evident fact that G is a 1-John domain. This

proof can be based on that the iterations

(5.4)

4⋃
i1=1

· · ·
4⋃

im=1

Si1 ◦ · · · ◦ Sim(Q)

will converge to Kλ in the Hausdorff metric.
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The inequality (5.2) is not immediately clear, so let us verify it. For this
purpose, we write

Q1
0 := [−κ,κ]× [−κ,κ]⊂Q,

where κ= κ(λ) is defined above. For every m ∈N, we re-index the 4m disjoint
cubes

Si1 ◦ · · · ◦ Sim

(
Q1

0

)
, i1, i2, . . . , im ∈ {1,2,3,4},

by labeling them as Qi
m, i = 1, . . . ,4m, in some fixed order. From (5.3), it

follows that intQ1
0 ⊂Q \Kλ. Because (5.4) converges to Kλ in the Hausdorff

metric, we see that Q1
0∩Kλ contains the four corner points of Q1

0. These facts
and (5.3) imply that intQi

m ⊂Q\Kλ ⊂G and the intersection Qi
m∩Kλ ⊂ ∂G

contains the four corner points of Qi
m for every m ∈N and i= 1,2, . . . ,4m.

Let us fix m ∈N. The previous observations imply that there are 4m cubes
R1,R2, . . . ,R4m in WG that are determined by requiring that the midpoint of
Qi

m is in Ri. Using also the properties of Whitney cubes, we find a constant
N ∈N such that

2−N�(Ri)< �
(
Qi

m

)
= 2κ

(
1− κ

2

)m

≤ 2N �(Ri), i= 1,2, . . . ,4m.

By the pigeonhole principle, there is an index k(m) ∈ Z for which we have
�Wk(m) ≥ 4m/2N and

2−N−k(m) < 2κ

(
1− κ

2

)m

≤ 2N−k(m).

Solving m gives us the inequalities

(5.5)
k(m)−N + log2(2κ)

log2(2/(1− κ))
≤m<

k(m) +N + log2(2κ)

log2(2/(1− κ))
.

By using the first inequality in (5.5) and the identity

λ=− log 4

log r(κ)
=

2

log2(2/(1− κ))
,

we obtain the estimate

(5.6) �Wk(m) ≥ 4m/2N ≥ (2N)−14
−N+log2(2κ)
log2(2/(1−κ))︸ ︷︷ ︸

=:cN,κ

·2
2k(m)

log2(2/(1−κ)) = cN,κ2
k(m)λ.

The second inequality in (5.5) implies that limm→∞ k(m) =∞. Hence, using
also (5.6), we have

sup
{
�Wk · 2−λk : k ≥ k0

}
≥ cN,κ > 0 if k0 ∈N.

The inequality (5.2) follows by taking the limit as k0 →∞. �
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Let us fix s > 1 and let Q in R
n be a closed cube that is centered at

x= (x1, . . . , xn), and whose side-length is �(Q) = �≤ 1. That is,

Q :=

n∏
i=1

[xi − �/2, xi + �/2].

The room in Q is the open cube

R(Q) := int

(
1

4
Q

)
=

n∏
i=1

(xi − �/8, xi + �/8)

whose center is x and side-length is �/4. The s-passage in Q is the open set

Ps(Q) :=

(
n−1∏
i=1

(
xi − (�/8)s, xi + (�/8)s

))
× (xn + �/8, xn + �/4).

Note that �/8< 1 and s > 1, so that we have (�/8)s < �/4. Hence Ps(Q)⊂ 1
2Q.

The long s-passage in Q is the open set

Ls(Q) :=

(
n−1∏
i=1

(
xi − (�/8)s, xi + (�/8)s

))
× (xn, xn + �/2)⊂Q.

The s-apartment of Q is the set

(5.7) As(Q) := Ls(Q)∪Q \
(
∂R(Q)∪ ∂Ps(Q)

)
⊂Q,

see Figure 1.

Figure 1. The s-apartment As(Q).
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Definition 5.2. If G in R
n is a 1-John domain and s > 1, then the

s-version of G is the domain

Gs :=Q0 ∪
⋃

Q∈WG
Q �=Q0

As(Q).

Recall that WG is a Whitney decomposition of a bounded domain G, and Q0

is the Whitney cube containing the 1-John center x0 of G.

Remark 5.3. Since the s-apartment in Q ∈WG is a subset of Q, we have

Gs ⊂
⋃

Q∈WG

Q=G.

The boundary of the s-version of G is given by

∂Gs = ∂G∪
⋃

Q∈WG
Q �=Q0

∂As(Q) \ ∂Q.

In particular, the countable stability of the Hausdorff dimension implies that
dimH(∂Gs) = dimH(∂G).

The upper Minkowski dimension is lacking the countable stability prop-
erty. Therefore, we need the following computation to verify that the upper
Minkowski dimension of the boundary is preserved.

Proposition 5.4. Let G in R
n be a 1-John domain. Then dimM(∂G) =

dimM(∂Gs) for every s > 1.

Proof. Because ∂G⊂ ∂Gs, the upper Minkowski dimension of ∂G is bound-
ed by the upper Minkowski dimension of ∂Gs. Fix λ > dimM(∂G). It remains
to show that

limsup
r→0+

Mλ(∂Gs, r)<∞.

Let us fix r ∈ (0,1) and an integer J such that 2J < r−1 ≤ 2J+1. Remark 5.3
yields

(5.8)
∣∣∂Gs+Bn(0, r)

∣∣≤ ∣∣∂G+Bn(0, r)
∣∣+ ∣∣∣∣ ⋃

Q∈WG

(
∂As(Q) \∂Q

)
+Bn(0, r)

∣∣∣∣.
By using the properties of Whitney cubes, we have∣∣∣∣ ⋃

Q∈WG

�(Q)<2−J

(
∂As(Q) \ ∂Q

)
+Bn(0, r)

∣∣∣∣(5.9)

≤
∣∣∣∣ ⋃

Q∈WG

�(Q)<2−J

(
Q+Bn(0, r)

)∣∣∣∣≤ ∣∣∂G+Bn(0, cr)
∣∣.

Here the constant c≥ 1 is independent of r.
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On the other hand, we have∣∣∣∣ ⋃
Q∈WG

�(Q)≥2−J

(
∂As(Q) \ ∂Q

)
+Bn(0, r)

∣∣∣∣(5.10)

≤
J∑

j=0

∑
Q∈Wj

∣∣(∂As(Q) \ ∂Q
)
+Bn(0, r)

∣∣.
We bound �Wj by the number Nj of those cubes whose side-length is 2−j and
which belong to the Whitney decomposition of Rn \∂G. Since dimM(∂G)< λ
and |∂G| = 0, see [13, Corollary 6.4], we can use Theorem 3.12 in [13] to
conclude that Nj is bounded by a constant multiple of 2jλ. Also, the Lebesgue
measure of (∂As(Q) \ ∂Q) + Bn(0, r) is bounded by a constant multiple of
r · �(Q)n−1 if Q ∈Wj and 0≤ j ≤ J . Combining the estimates above yields

J∑
j=0

∑
Q∈Wj

∣∣(∂As(Q) \ ∂Q
)
+Bn(0, r)

∣∣(5.11)

≤ cr ·
J∑

j=0

2j(λ−n+1) ≤ cr2J(λ−n+1) = crn−λ.

In the penultimate step, we used the estimate λ > dimM(∂G)≥ n− 1.
By combining the estimates (5.8), (5.9), (5.10), and (5.11) above, we find

that

limsup
r→0+

Mλ(∂Gs, r)≤ limsup
r→0+

2 · |∂G+Bn(0, cr)|+ crn−λ

rn−λ
<∞.

In the last step, we used the estimate λ > dimM(∂G). �

Proposition 5.5. Let s > 1 and let G be a 1-John domain in R
n with

1-John center x0 in G. Then the s-version of G, denoted by Gs, is an s-John
domain with s-John center x0.

Proof. Let x be a point in Gs and δ : [0, l]→G, l ≤ c, be a path parame-
trized by its arc length such that δ(0) = x, δ(l) = x0, and

(5.12) dist
(
δ(t), ∂G

)
≥ t/c for t ∈ [0, l];

where the positive constant c is independent of x and δ(t) 	= x0 if t < l.
We will construct a path γ : [0, l1]→Gs connecting x to x0 as in the def-

inition of s-John domains. The idea behind the construction is to follow the
path δ if this is possible, and to modify it otherwise in a quantitatively con-
trolled manner. Note that the modification may be required since ∂G is a
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Figure 2. E(Q).

proper subset of ∂Gs. To take care of the additional boundary points, we let
Q ∈WG, Q 	=Q0, and define

E(Q) :=

n∏
i=1

(xi − 3�/8, xi + 3�/8)⊂Q,

where x= (x1, . . . , xn) is the center of Q and �= �(Q), see Figure 2. For later
purposes, it is convenient to define E(Q0) = ∅.

The following estimates are used while constructing the path γ. Here κ ∈
(0,1) is a constant that is independent of the Whitney cubes. First,

(5.13) dist(y, ∂Gs)≥ κ�(Q) for y ∈Q \E(Q) and Q ∈WG.

A useful property of Whitney cubes is the following:

(5.14) �(Q)≥ κdist(y, ∂G) for y ∈Q and Q ∈WG.

We also use the following observation: Let Q ∈WG, Q 	= Q0. Then we can
join any pair of points z ∈ E(Q) and ω ∈ ∂Q by using a rectifiable path
parametrized by its arc length π : [0, ρ]→Q∩Gs such that

(5.15) �(Q)≥ κρ

and

(5.16) ∀t ∈ [0, ρ] : dist
(
π(t), ∂Gs

)
≥
{
κts, if z ∈E(Q);

κ�(Q), if z ∈ ∂E(Q).

The construction of γ is based on an iterative algorithm. Hence, it is
convenient to introduce the following invariant that allows us to keep track
of the partial path that has already been constructed during the previous
steps. We say that γr satisfies the (r, u)-invariant if r ≥ 0, u ∈ [0, l], and
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γr : [0, r] → Gs is a path parametrized by its arc length and satisfying the
following conditions (1)–(3):

(1) r ≤ 8κ−1u;
(2) γr(0) = x, γr(r) = δ(u);
(3) dist(γr(t), ∂Gs)≥ τts if t ∈ [0, r].

In (3) we have written

τ =min
{
κ,8−sκs+2c−s

}
> 0.

Our goal is to construct γ = γl1 which satisfies the (l1, l)-invariant. Before the
construction, let us introduce the following three steps that are used in the
iterative process.

Step I. Let us assume that

δ(0) = x ∈E(Q) for some Q ∈WG.

Recall that we have defined E(Q0) = ∅ and therefore Q 	= Q0. Since δ will
reach x0 ∈Q0, there is u ∈ (0, l] such that δ(u) ∈ ∂Q. Let us join z = x ∈E(Q)
to ω = δ(u) ∈ ∂Q by a path γσ : [0, σ]→Q ∩Gs satisfying (5.15) and (5.16)
with ρ = σ. We claim that γσ satisfies the (σ,u)-invariant. First, it is a
rectifiable path parametrized by its arc length whose trace lies in Gs. The
other conditions:

(1) By (5.15) we have u≥ dist(∂Q,E(Q)) = �(Q)/8≥ 8−1κσ.
(2) We have γσ(0) = x and γσ(σ) = δ(u).
(3) If t ∈ [0, σ] we use (5.16) for dist(γσ(t), ∂Gs)≥ κts ≥ τts.

Step II. Let us assume that γr satisfies the (r, u)-invariant and

γr(r) = δ(u) ∈ ∂E(Q) for some Q ∈WG.

There is a time ū ∈ (u, l] such that δ(ū) ∈ ∂Q. Join z = δ(u) ∈ ∂E(Q) to
ω = δ(ū) ∈ ∂Q by a path Π : [0, σ]→Q∩Gs satisfying both (5.15) and (5.16)
with ρ= σ. Then, we define

γr+σ(t) =

{
γr(t) for t ∈ [0, r];

Π(t− r) for t ∈ [r, r+ σ].

We claim that γr+σ satisfies the (r + σ, ū)-invariant. It is an arc length
parametrized path whose trace lies in Gs. The other conditions:

(1) We have ū− u≥ dist(∂Q,∂E(Q)) = �(Q)/8. Using also (5.15) yields

(5.17) r+ σ ≤ 8κ−1u+ κ−1�(Q)≤ 8κ−1(u+ ū− u) = 8κ−1ū.

(2) We have γr+σ(0) = γr(0) = x and γr+σ(r+ σ) = Π(σ) = δ(ū).
(3) If t ∈ [0, r] we have dist(γr+σ(t), ∂Gs) = dist(γr(t), ∂Gs) ≥ τts. If t ∈

(r, r+ σ], we use (5.16), (5.14), (5.12), and (5.17) for the estimate

dist
(
γr+σ(t), ∂Gs

)
= dist

(
Π(t− r), ∂Gs

)
≥ κ�(Q)≥ κ2 dist

(
δ(ū), ∂G

)
≥ κ2c−1ū≥ 8−1κ3c−1t.
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Note that again by (5.17), we have 0< t≤ 8κ−1ū≤ 8κ−1l≤ 8κ−1c. Since
1− s≤ 0, we obtain

t= t1−sts ≥
(
8κ−1c

)1−s
ts = 81−sκs−1c1−sts.

Hence, we have the estimate dist(γr+σ(t), ∂Gs)≥ (8−sκs+2c−s)ts ≥ τts.

Step III. Let us assume that γr satisfies the (r, u)-invariant and

γr(r) = δ(u) ∈Q \E(Q) for some Q ∈WG.

By following δ from time u forwards, we will first arrive either at x0 or ∂E(Q)
for some Q0 	=Q ∈WG. Denote by ū ∈ [u, l] this time of arrival, and define

γr+ū−u(t) =

{
γr(t) for t ∈ [0, r],

δ(t− r+ u) for t ∈ [r, r+ ū− u].

We claim that γr+ū−u satisfies the (r + ū − u, ū)-invariant. It is a path
parametrized by its arc length and whose trace lies in Gs. The other proper-
ties:

(1) Let ε ∈ [0, ū− u]. Since 8κ−1 > 1, we have

(5.18) r+ ε≤ 8κ−1u+ ε≤ 8κ−1(u+ ε).

Setting ε= ū− u yields r+ ū− u≤ 8κ−1ū.
(2) We have γr+ū−u(0) = γr(0) = x and γr+ū−u(r+ ū− u) = δ(ū).
(3) If t ∈ [0, r] we have dist(γr+ū−u(t), ∂Gs) = dist(γr(t), ∂Gs)≥ τts.

Assuming that t ∈ [r, r+ ū− u], we have

dist
(
γr+ū−u(t), ∂Gs

)
= dist

(
δ(t− r+ u), ∂Gs

)
.

Let us fix Qt ∈ WG such that δ(t − r + u) ∈ Qt \ E(Qt). By using (5.13),
(5.14), (5.12), and (5.18), we see that

dist
(
δ(t− r+ u), ∂Gs

)
≥ κ�(Qt)≥ κ2 dist

(
δ(t− r+ u), ∂G

)
≥ κ2c−1(u+ t− r)

≥ κ2c−1
(
8κ−1

)−1
(r+ t− r) = 8−1κ3c−1t.

Inequalities (5.18) yield

0< t≤ r+ ū− u≤ 8κ−1ū≤ 8κ−1l≤ 8κ−1c.

Proceeding as in the end of Step II, we obtain the estimate

dist
(
γr+ū−u(t), ∂Gs

)
≥ τts.

Having introduced these steps, we can now construct the path γ as follows.
Let x ∈Q ∈WG. If x ∈ E(Q), we apply Step I and obtain γσ satisfying the
(σ,u)-invariant. Otherwise we write σ = u = 0 and define γ0(0) = x. In any
case, this procedure yields a path γσ which satisfies the (σ,u)-invariant and
the condition γσ(σ) ∈ Q \ E(Q) with Q ∈ WG. Assuming that γσ(σ) 	= x0,
we then proceed by invoking either Step II or Step III, depending on the
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situation. We keep on iterating these steps in alternating turns until, after a
finite number of steps, we obtain a path γl1 satisfying the (l1, l)-invariant as
required. The process will end because every time we invoke Step II, we make
at least

min
{
�(Q)/8 : Q ∈WG and δ[0, l]∩Q 	= ∅

}
> 0

of progress along the path δ. This is seen by examining the proof of the
condition (1) in Step II. �

We can now state one of the main result in this section.

Theorem 5.6. Let G in R
n be a 1-John domain such that

dimM(∂G) = λ ∈ [n− 1, n).

Then, for every s > 1, the s-version of G is an s-John domain with
dimM(∂Gs) = λ and it is not a (q, p)-Poincaré domain if 1≤ q ≤ p <∞ and

(5.19)
(p− q)(λ− n)

pq
+

(s− 1)(n− 1)

p
> 1.

Proof. Let us assume that s > 1. The s-version of G is an s-John domain
by Proposition 5.5. The upper Minkowski dimension of ∂Gs is λ by Proposi-
tion 5.4.

Let us then verify the claim concerning the (q, p)-Poincaré property. Choose
λ′ ∈ (0, λ) so that (5.19) is true with λ replaced by λ′. Hence, by denoting λ′

by λ, we may assume that the upper Minkowski dimension of ∂G is strictly
greater than λ ∈ (0, n). This fact is used as follows:

By both Theorem 3.12 and Lemma 6.5 in [13], we obtain the estimate

1≤ limsup
m→∞

2−λm · Nm ≤ c limsup
m→∞

2−λm ·
(

m+2∑
M=m−2

�WM

)
;

where Nm denotes the number of cubes in the Whitney decomposition of
R

n \ ∂G whose side-length is 2−m and c is a positive constant depending only
on G and n. Choose k0 ∈N such that

limsup
m→∞

2−λ(m+2−k0) ·
(

m+2∑
M=m−2

�WM

)
> 10.

Let k ∈N and then choose m :=m(k)>max{k, k0,− log2 �(Q0)}+ 2 and j =
j(k) ∈ {m− 2, . . . ,m+ 2} such that

(5.20) �Wj ≥
(

m+2∑
M=m−2

�WM

)/
5≥ 10 · 2λ(m+2−k0)/5≥ 2 · 2λ(j−k0).

Let us write Mj := 2[λ(j−k0)], where [λ(j − k0)] means the integer-part of
λ(j − k0)≥ 0, and choose cubes

Q1
j , . . . ,Q

2Mj

j ∈Wj \ {Q0}.
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This can be done because of (5.20).
Let Q=Qi

j for some i. To the s-apartment As(Q) in Q, we associate the
function uAs(Q) : Gs → R which has linear decay along the nth variable in
Ps(Q) and satisfies

(5.21) uAs(Q)(x) =

{
�(Q)(λ−n)/q, if x ∈R(Q);

0, if x ∈Gs \ (R(Q)∪ Ps(Q)).

Its partial derivatives in D′(Gs) are given by

(5.22) ∇uAs(Q) =
(
0, . . . ,0,−8�(Q)(λ−n)/q−1χPs(Q)

)
pointwise almost everywhere.

Let us define

(5.23) uj :=

Mj∑
i=1

uAs(Qi
j)
−

2Mj∑
i=Mj+1

uAs(Qi
j)
∈W 1,p(Gs).

Note that

(5.24) (uj)Gs =
1

|Gs|

∫
Gs

uj = 0

because the integrals of functions uAs(Qi
j)

are independent of i. It is also

important to realize that the supports of the functions uAs(Qi
j)

are mutually

disjoint as i varies.
Using (5.24) and (5.21), we obtain

Aj :=

(∫
Gs

∣∣uj − (uj)Gs

∣∣q)1/q

=

(
2Mj∑
i=1

∫
Gs

|uAs(Qi
j)
|q
)1/q

(5.25)

≥
(
2 · 2λ(j−k0)−1 · 2−j(λ−n) · 4−n · 2−jn

)1/q
= cn,q,λ,k0 ;

where cn,q,λ,k0 > 0 depends on the indicated parameters. On the other hand,
by using (5.22), we obtain

Bj :=

(∫
Gs

|∇uj |p
)1/p

(5.26)

=

(
2Mj∑
i=1

∫
Gs

|∇uAs(Qi
j)
|p
)1/p

≤
(
2 · 2λ(j−k0)

·
(
8 · 2−j((λ−n)/q−1)

)p ·
(
2 ·

(
2−j/8

)s)n−1 · 2−j/8
)1/p

= cn,s,p,λ,k02
j(1−(p−q)(λ−n)/pq−(s−1)(n−1)/p);

where cn,s,p,λ,k0 > 0 depends on the indicated parameters.
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By combining the estimates (5.25) and (5.26), we obtain

(5.27)
Aj

Bj
≥ cn,s,p,q,λ,k02

j(−1+(p−q)(λ−n)/pq+(s−1)(n−1)/p).

Recall that j = j(k) ≥ k. Hence, by using both (5.27) and (5.19), we find
that the sequence (Aj(k)/Bj(k))

∞
k=1 tends to ∞ as k →∞. This allows us to

conclude that Gs is not a (q, p)-Poincaré domain. �

Under further assumptions, we can replace the inequality in (5.19) by the
identity. This is the content of the following theorem which can be used to
provide sharp counter-examples if q < p.

Theorem 5.7. Let G be a 1-John domain in R
n such that

limsup
k→∞

2−λk · �Wk > 0, where λ= dimM(∂G) ∈ [n− 1, n).

Then, for every s > 1, the s-version of G is an s-John domain with
dimM(∂Gs) = λ and it is not a (q, p)-Poincaré domain if 1≤ q < p <∞ and

(5.28)
(p− q)(λ− n)

pq
+

(s− 1)(n− 1)

p
≥ 1.

Proof. According to Theorem 5.6, we only need to verify that Gs is not a
(q, p)-Poincaré domain if the left-hand side of (5.28) is equal to one. To this
end, we choose k0 ∈N such that

limsup
k→∞

2−λ(k−k0) · �Wk > 2.

This allows us to inductively choose indices j(k), k ∈N, such that

max
{
k0,− log2 �(Q0)

}
< j(1)< j(2)< · · ·

and �Wj(k) ≥ 2 · 2λ(j(k)−k0) for every k ∈ N. For every j = j(k), we proceed
as in Theorem 5.6; we begin from (5.20) and continue until we reach (5.23).
This yields functions uj(k) ∈W 1,p(Gs). Then, for each m ∈N we define

vm =

m∑
k=1

uj(k) ∈W 1,p(Gs).

Estimating further as in the proof of Theorem 5.6, we have (vm)Gs = 0 and

Cm :=

(∫
Gs

∣∣vm − (vm)Gs

∣∣q)1/q

=

(
m∑

k=1

2Mj(k)∑
i=1

∫
Gs

|uAs(Qi
j(k))

|q
)1/q

≥ cn,q,λ,k0m
1/q.
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Furthermore, by using (5.28), we have

Dm :=

(∫
Gs

|∇vm|p
)1/p

=

(
m∑

k=1

2Mj(k)∑
i=1

∫
Gs

|∇uAs(Qi
j(k))

|p
)1/p

≤ cn,s,p,λ,k0m
1/p.

Concluding from above and using the assumption that q < p, we find that

Cm

Dm
≥ cn,s,p,q,k0,λm

1/q−1/p m→∞−−−−→∞.

This shows that Gs is not a (q, p)-Poincaré domain. �
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