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GENERALIZATIONS OF PRIMARY ABELIAN Cα GROUPS

PATRICK W. KEEF AND PETER V. DANCHEV

To the memory of Charles K. Megibben (October 22, 1936–March 2, 2010)
who defined and investigated the concepts upon which it is based

Abstract. A valuated pn-socle is Cα n-summable if for every
ordinal β < α, it has a β-high subgroup that is n-summable (i.e.,

a valuated direct sum of countable valuated groups). This gener-
alizes both the classical concepts of a Cα group due to Megibben

and of an n-summable valuated pn-socle developed by the au-
thors. The notion is first analyzed in the category of valuated

pn-socles and then applied to the category of Abelian p-groups.

In particular, results of Nunke on the torsion product and re-
sults of Keef on the balanced projective dimension of Cω1 groups

are recast into statements involving valuated pn-socles and their
related groups.

0. Terminology and introduction

The term “group” will mean an Abelian p-group, where p is a prime fixed
for the duration of the paper. Our terminology and notation will be based
upon [4], [5] and [7]. We also make use of concepts related to valuated groups
and valuated vector spaces that can be found, for example, in [24] and [6], and
that we briefly review: Let O be the class of ordinals and O∞ = O ∪ {∞},
where we agree that α<∞ for all α ∈O∞. A valuation on a group V is a func-
tion | |V : V →O∞ such that for every x, y ∈ V , |x± y|V ≥min{|x|V , |y|V }
and |px|V > |x|V . As a result, for all α ∈O∞, V (α) = {x ∈ V : |x|V ≥ α} is a
subgroup of V with pV (α)⊆ V (α+1). We say V is α-bounded if V (α) = {0};
the length of V is the least ordinal α such that V (α) = V (∞).

A homomorphism between two valuated groups is valuated if it does not
decrease values and an isometry if it is bijective and preserves values. If
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{Vi}i∈I , is a collection of valuated groups, then the usual direct sum, V =⊕
i∈I Vi, has a natural valuation, where V (α) =

⊕
i∈I Vi(α) for every α ∈O∞.

If W is any subgroup of V , then restricting | |V to W turns it into a valuated
group with W (α) = W ∩ V (α) for all α ∈ O∞. A valuated group W with
pW = {0} is called a valuated vector space; so each W (α) will be a subspace
of W . We say a valuated vector space is free if it is isometric to a valuated
direct sum of cyclic groups (of order p). If V is a valuated group, then its
socle V [p] = {x ∈ V : px= 0} is a valuated vector space, and V is summable
if V [p] is free. A group G is a valuated group using the height function (also
denoted by | |G) as its valuation; in this case G(α) = pαG, and G is said to
be separable if it is ω-bounded, or equivalently, pω-bounded. So if n is a fixed
positive integer, then the pn-socle of G, written G[pn] = {x ∈ G : pnx = 0},
can be viewed as a valuated group.

In [2], an ∞-bounded valuated group V was defined to be a valuated pn-
socle if pnV = {0} and for every x ∈ V [pn−1] and every ordinal β < |x|V , there
is a y ∈ V with x = py and β ≤ |y|V . It easily follows that an ∞-bounded
valuated vector space is a valuated p-socle. The pn-socle of a reduced group
G is always a valuated pn-socle. (The parallel requirements that V be ∞-
bounded and that G be reduced are convenient, but not strictly speaking
necessary.)

A valuated pn-socle V is said to be n-summable if it is isometric to the val-
uated direct sum of a collection of countable valuated groups (each of which
will also be a valuated pn-socle). It was shown in [2] that the theory of n-
summable valuated pn-socles parallels the theory of direct sums of countable
groups (or dsc groups for short—see Chapter XII of [5] for standard results
on these groups). For example, in [2], Theorem 2.7, which parallels [5], Theo-
rem 78.4, it was shown that two n-summable valuated pn-socles are isometric
iff their Ulm functions agree, where the Ulm function of V is defined by
fV (α) = r(V (α)[p]/V (α+ 1)[p]).

The parallel between n-summable valuated pn-socles and dsc groups can
be extended. A subgroup X of a valuated group V is nice if every coset
a+X has an element of maximal value (such an element is called proper).
In [2], Theorem 2.1, which parallels [5], Theorem 81.9, it was proved that the
ω1-bounded n-summable valuated pn-socles can be characterized using nice
systems and nice composition series. Naturally, a group G is n-summable if
G[pn] is n-summable as a valuated pn-socle. In [2], Theorem 3.8, it was shown
that G is a dsc group iff it is n-summable for every positive integer n. Various
properties of these groups are established in [3], [12], [17], [18] and [19].

In [20], Megibben introduced a generalization of the classical notion of a
separable group. If λ≤ ω1 is a limit ordinal, then G is a Cλ group if G/pβG
is pβ-projective for all β < λ. In fact, if G is a Cλ group, then for each β < λ,
G/pβG will of necessity be a dsc group. Clearly, every group is a Cω group.
In [16], using an idea due to Nunke [23], this definition was extended in the
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following manner: If α≤ ω1, then G is a Cα group if for every β < α, G has
a pβ-high subgroup which is a dsc group (where H is pβ-high in G if it is
maximal with respect to intersecting pβG trivially). In papers such as [13],
[14], [15], etc., it was shown that there is a close relationship between dsc
groups, Cα groups and the torsion product.

The purpose of this paper is to extend the above parallel between n-
summable valuated pn-socles and dsc groups. This is done in two stages.
In Section 1, we concentrate on valuated pn-socles. We begin by defining
the torsion product of two valuated pn-socles (Lemma 1.10). We will use
the notation V 
W for the torsion product. This notation is considerably
more convenient, more compact, and more accurately reflects that this is a
product which is related to the tensor product ⊗. We then define a valuated
pn-socle V to be Cα n-summable iff for each β < α, V has a β-high subgroup
which is n-summable (where, again, a subgroup is β-high in V if it is maximal
with respect to intersecting V (β) trivially). We generalize an important re-
sult of [23] by showing that if V and W are valuated pn-socles, V has length
α and W (α) �= {0}, then V 
 W is n-summable iff V is n-summable and
W is Cα n-summable (Theorem 1.19). The critical step in this discussion
(Theorem 1.15) constructs a valuated splitting of a particular short exact se-
quence. This construction is related to the fact that a pα+1-pure subgroup
of a pα-pure projective group is, in fact, a summand (cf. the proof of [5],
Theorem 82.3). In general, we are forced to use combinatorial arguments to
replace the homological machinery of [21] and [22].

In Section 2, the above results are applied to groups, with one important
distinction. In Section 1 we treat valuated pn-socles of length strictly greater
than ω1. On the other hand, it is a classical result that if G is a reduced
summable group (in particular, if it is n-summable), then pω1G = {0} (see
[5], Theorem 84.3). This means that, as in [2] and [12], we can restrict our
attention to the ω1-bounded case.

There are two ways to apply our results on valuated pn-socles to the cate-
gory of groups. The obvious one is to start with a group G and simply consider
the valuated pn-socle G[pn]; in particular, we say G is Cα n-summable iff the
same can be said of G[pn]. Elementary consequences of this type include
Corollaries 2.2, 2.3 and 2.4. In the opposite direction, if we start with a
valuated pn-socle V (or indeed, any valuated group), then using a standard
construction from [24], V can be embedded as a nice subgroup in a group
H(V ) such that the valuation on V agrees with the height function on H(V )
and H(V )/V is totally projective. We call such an embedding an n-cover
of V . (Actually, this construction can be viewed as a type of “left adjoint” to
the forgetful functor G 
→G[pn] from the category of groups to the category
of valuated pn-socles.)

In [2], the concept of an n-balanced exact sequence of valuated pn-socles
was defined and it was observed that an ω1-bounded valuated pn-socle V is
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n-summable iff V is n-balanced projective iff H(V ) is a dsc group iff H(V )
is balanced projective. We generalize this result in two ways. First, we verify
that if α ≤ ω1, then V is Cα n-summable iff H(V ) is a Cα group (Theo-
rem 2.11). We also show that the n-balanced projective dimension of V in
the category of ω1-bounded valuated pn-socles will always agree with the bal-
anced projective dimension of H(V ) in the category of groups (Theorem 2.14).

Kurepa’s Hypothesis (or KH) is the assertion that there is a family F of
subsets of ω1 such that |F| > ℵ1 whereas for every β < ω1, the collection
{X ∩β : X ∈ F} is countable. It is known that KH holds in the constructible
universe, but is independent of ZFC (see [11]). In [15], it was shown that KH
(or more specifically, ¬ KH) is equivalent to a number of interesting conditions
pertaining to the torsion product and to the balanced projective dimension of
Cω1 groups. We conclude this paper by extending this equivalence to both the
category of Cω1 n-summable valuated pn-socles and to the category of Cω1

n-summable groups (Theorem 2.19). In fact, [1] also relates KH to valuated
vector spaces. On the other hand, not only do our results hold for n > 1, but
the approach in [1] is at its core a way to rephrase and simplify the arguments
in [15], while this work is concerned with significantly different questions.

1. Valuated pn-socles

If V is a valuated pn-socle, a subgroup W of V is said to be n-isotype if,
under the valuation on W induced from V , W is also a valuated pn-socle. In
addition, W is said to be α-high if it is maximal with respect to the property
W ∩ V (α) = {0}. We review a few facts from [2].

1.1. If W is α-high in V , then it is n-isotype ([2], Corollary 1.4).

An ordinal α is said to be an n-limit if it is of the form λ+ k, where λ is
an infinite limit ordinal and 0≤ k < n− 1; otherwise α is n-isolated.

1.2. If V is a valuated pn-socle and α is n-isolated, then V has a subgroup
X such that for all α-high subgroups Y there is a valuated decomposition V =
Y ⊕X , called a standard α-decomposition of V ; in addition, if α= β + n− 1,
then X ⊆ V (β) ([2], Lemmas 1.8 and 1.9).

Again, a valuated pn-socle is said to be n-summable iff it is the valuated
direct sum of countable valuated groups.

1.3. If V is n-summable and W is a valuated summand of V , then W is
also n-summable ([2], Proposition 1.1).

A subgroup W of a valuated group V is nice if every coset of V/W contains
an element of maximal value, and n-balanced iff it is both n-isotype and nice.
The next statement is ([2], (1.A)).
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1.4. If W is n-balanced in V and |x+W |V/W
def
= max{|x+w|V : w ∈W},

then V/W is a valuated pn-socle.

The next result is critical; it states that the n-summable valuated pn-socles
are projective with respect to the class of n-balanced exact sequences.

1.5. IfW is n-balanced in V and V/W is n-summable, thenW is a valuated
summand of V ([2], Lemma 1.11).

1.6. Suppose V is a valuated pn-socle, W is n-isotype in V and V/W is
countable. If W is n-summable, then V is n-summable ([2], Theorem 2.4).

We now review some facts from [12].

1.7. If V is a valuated pn-socle, β = λ + k is an n-limit with λ a limit
ordinal, 0 ≤ k < n − 1, fV (β) �= 0 and δ < λ. Then there is an n-isolated
ordinal α with δ < α < λ and fV (α) �= 0 ([12], Lemma 1.1).

A countable valuated pn-socle V is called an n,ω-limit if there is an n-limit
ordinal β = λ+ k, where λ is a limit ordinal and 0≤ k < n− 1, and a strictly
increasing sequence of n-isolated ordinals {γi}i<ω , with limit λ, such that fV
is the characteristic function of {γi}i<ω ∪ {β}.

1.8. If V is an n-summable valuated pn-socle, then V is isometric to a
valuated direct sum

⊕
i∈I Vi, where each Vi is either cyclic or an n,ω-limit

([12], Corollary 1.6). In particular, if the length of V is a limit ordinal λ, then
it is a valuated direct sum of groups whose lengths are strictly less than λ.

1.9. Suppose α = λ + k is an ordinal, where λ is a limit and 0 ≤ k < ω.
Then α is the length of some n-summable valuated pn-socle V iff 0< k < n
implies that λ has countable finality ([12], Corollary 1.7).

We begin with a simple fact about valuated homomorphisms.

Lemma 1.10. Suppose V and W are valuated pn-socles and f : V →W is a
valuated homomorphism. Then f is an isometry iff it restricts to an isometry
V [p]→W [p].

Proof. Clearly, if f is an isometry on V , then it is an isometry on V [p].
Conversely, suppose f is an isometry on V [p]. It easily follows that f must be
injective. Next, by the definition of a valuated pn-socle, for j < n, (pjV )[p] =
V (j)[p], and clearly pnV = 0. Since similar statements hold for W , we can
conclude that f(V ) must be pure in W , so that it is, algebraically, a summand.
Since W [p]⊆ f(V ), it follows that f is, in fact, bijective.

We now show by induction on the orders of elements that for every x ∈ V ,
|f(x)|W = |x|V . Our hypothesis guarantees that this holds for elements of
order p. So suppose it holds for all elements of order less than pk, x has
order pk, β = |x|V and y = f(x). If |px|V = β +1, then by induction, β +1=
|px|V = |py|W ≥ |y|W +1≥ |x|V +1= β+1. Therefore, |y|W = β, as required.
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Suppose, then, that |px|V > β + 1. Find x′ ∈ V (β + 1) such that px= px′.
If y′ = f(x′), then it follows that |y′|W > β. Since x−x′ ∈ V [p], we know that
|y− y′|W = |x− x′|V = β. And it follows that |y|W = |(y− y′) + y′|W = β,
completing the proof. �

The next result, which parallels [5], Lemma 64.2, contains within it a defi-
nition that will be important.

Lemma 1.11. If V and W are valuated pn-socles, then V 
W is also a
valuated pn-socle, where for every ordinal α, we set (V 
W )(α) = V (α)

W (α)⊆ V 
W .

Proof. An element of (V (α)
W (α))[pn−1] is represented by the sum of
a collection of generators of the form (v, pj ,w), where j ≤ n − 1, v ∈ V (α),
w ∈W (α) and pjv = 0 = pjw. So if β < α, then there are elements v′ ∈ V (β)
and w′ ∈W (β) such that pv′ = v and pw′ =w. Consequently, (v′, pj+1,w′) is a
generator of V (β)
W (β) and p(v′, pj+1,w′) = (v, pj ,w), giving the result. �

If m is a positive integer, we will say a group is Zpm -projective if it is a
projective Zpm -module, that is, iff it is a direct sum of copies of Zpm . It
is a well-known fact that any Zpm -projective will also be an injective Zpm -
module, that is, it is algebraically a summand of any Zpm -module which
contains it. In particular, if V is any valuated pn-socle, W is n− 1-high in
V and V =W ⊕ V ′ is a standard n− 1-decomposition, then V ′ will be Zpn -
projective. This means that we will on occasion be able to simplify our proofs
by assuming that some valuated pn-socle is Zpn -projective as a group. The
next observation will provide us with a useful mechanism for constructing
n-balanced exact sequences.

Lemma 1.12. If α is an ordinal, V and W are valuated pn-socles, Y is an
α-high subgroup of W , κ is the rank of W/Y and V is α+ 1-bounded, then
there is an n-balanced exact sequence

0→ V 
 Y → V 
W →
⊕
κ

V → 0.

Proof. If α < n−1, then it is easy to check that this is actually a split exact
sequence of α+ 1-bounded groups with the height function as the valuation,
so the result is trivial. Assume, therefore, that α≥ n− 1. If X =W/Y , then
X is Zpn -projective, and it follows that V 
X is algebraically isomorphic to⊕

κ V .
If β is an ordinal, we need to show that

0→ (V 
 Y )(β)→ (V 
W )(β)→
⊕
κ

V (β)→ 0,

is exact. If β ≥ α+1, then all these groups are {0}, so we may assume β ≤ α.
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Suppose next that β + n− 1≤ α. If V = Y ′ ⊕X ′ is a standard β + n− 1-
decomposition of W with Y ′ ⊆ Y , then X ′ ⊆ W (β). It follows that V =
Y ′ +X ′ ⊆ Y +W (β) ⊆ V . Therefore, 0→ Y (β)→W (β)→X → 0 is exact;
and since X is a projective Zpn -module, algebraically, it splits. This gives
another exact sequence

0→ V (β)
 Y (β)→ V (β)
W (β)→ V (β)
X → 0,

where V (β)
X ∼=
⊕

κ V (β).

Suppose next that β+k = α, where k < n− 1. Note that Y (β) is a pk-high
subgroup of W (β), so there is a decomposition W (β) = Y (β)⊕ Z, where Z
maps to an essential subgroup of X . This determines a split exact sequence

0→ V (β)
 Y (β)→ V (β)
W (β)→ V (β)
Z → 0.

Note that Z will algebraically be a direct sum of κ terms of the form Zpj ,

where k + 1 ≤ j ≤ n. On the other hand, since pk+1V (β) ⊆ V (α+ 1) = {0},
it follows that V (β) will be isomorphic to a direct sum of terms of the form
Zp� , where 0≤ 	≤ k+1. It follows that V (β)
Z is isomorphic to

⊕
κ V (β),

completing the proof. �

Corollary 1.13. Suppose α is an ordinal, V and W are valuated pn-
socles, fV (β) = 0 for all β > α and fW (β) = 0 for all β < α. If W has rank
κ, then V 
W is isometric to the valuated direct sum

⊕
κ V .

Proof. In this case, in Lemma 1.12 we have Y = {0}, so that the sequence
reduces to the indicated isometry. �

We pause for a technical observation regarding nice subgroups of n,ω-limit
groups.

Lemma 1.14. If C is a valuated pn-socle that is an n,ω-limit of length
λ + k, where λ is a limit ordinal and 0 < k < n, then N = {x ∈ C : px ∈
C(λ)} ⊆C[pk+1] is a nice subgroup of C containing C[p].

Proof. It can be verified that if α< λ, then C/C(α) is finite, and that this
implies that λ is the only limit point of {|x|C : x ∈ C − {0}}. So if y ∈ C
and {y+ xm}m<ω is a collection of nonzero elements of the coset y+N with
|y+ xm|C < |y+ xm+1|C for all m<ω, then we can conclude that these values
converge to λ. However, since φ : C →C/C(λ) given by φ(x) = px+C(λ) is a
valuated homomorphism with kernel N , we must have φ(y) ∈ (C/C(λ))(λ) =
{0}, so that y ∈N . In this case, 0 ∈ y+N is obviously proper. �

This brings us to one of the main steps in our inquiry.

Theorem 1.15. Suppose V and W are valuated pn-socles, α is the length
of V and W (α) �= {0}. If V 
W is n-summable, then V is n-summable.
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Proof. We may clearly assume α is infinite. Suppose first that α is n-
isolated. There is an n-isolated ordinal β ≥ α such that fW (β) �= 0. [In fact,
if we choose β to be the smallest ordinal such that β ≥ α and fW (β) �= 0, then
1.7 implies that β is n-isolated.] If Y is β-high in W and W = Y ⊕ U is a
standard β-decomposition, then algebraically, U ∼=

⊕
κZpn , where κ �= 0. By

Corollary 1.13, V 
U is isometric to
⊕

κ V . It follows that V is isometric to
a summand of V 
W , so that it is n-summable by 1.3.

We may therefore assume that α is an n-limit; let α = λ+ k, where λ is
a limit ordinal and k < n− 1. Let Y be α-high in W , κ > 0 be the rank of

X
def
= W/Y and π : W →X be the canonical epimorphism. By Lemma 1.12,

there is an n-balanced exact sequence

0→ V 
 Y
μ→V 
W →

⊕
κ

V → 0,

where we interpret μ as an inclusion. We claim that the above sequence must
split (in the category of valuated pn-socles). Once we have established this, it
follows that V will be a valuated summand of V 
W , so that it is n-summable.
So we need to construct a valuated homomorphism η : V 
W → V 
Y such
that η ◦ μ= 1V�Y .

As valuated pk+1-socles, Y [pk+1] is α = λ+ (k + 1)− 1-high in W [pk+1].
It follows that there is a standard α-decomposition W [pk+1] = Y [pk+1]⊕ Z,
where Z ⊆W [pk+1](λ). Let f : W [pk+1]→ Y [pk+1] be the corresponding val-

uated projection and g
def
= 1V [pk+1]
 f : (V 
W )[pk+1]→ (V 
Y )[pk+1]; so g

is valuated, as well. In particular, g restricts to the identity on (V 
Y )[pk+1].
If β < λ, then the decomposition W [pk+1] = Y [pk+1] ⊕ Z extends to an

algebraic decomposition W = Y ⊕Zβ , where Z ⊆ Zβ ⊆W (β). If fβ : W → Y
is the corresponding algebraic projection, then fβ restricts to f onW [pk+1]. In
addition, if z ∈W , then z = fβ(z)+u, where u ∈W (β). This implies that for
all γ ≤ β, we have fβ(W (γ))⊆ Y ∩W (γ) = Y (γ). If β < λ, let gβ = 1V 
 fβ ;
so for all γ ≤ β,

gβ
(
(V 
W )(γ)

)
⊆ (V 
 Y )(γ). (∗)

Clearly, gβ restricts to g on (V 
W )[pk+1].
By 1.8, V 
W is the valuated direct sum

⊕
i∈I Ci, where each Ci is either

cyclic or an n,ω-limit. Since V has length α, so does V 
W , and hence each
Ci has length at most α. For each i ∈ I , we define a valuated homomorphism
τi : Ci → V 
 Y as follows:

Case 1. Ci has length β < λ: Let τi agree with gβ = 1V 
 fβ on Ci. Since
Ci(β) = {0}, by (∗) we can infer that τi is valuated on Ci (even though gβ is
not necessarily valuated on all of V 
W ).

Case 2. Ci has length β with λ≤ β ≤ λ+ k: Note that Ci will have to be
an n,ω-limit, so that, in fact, λ < β. Let N be defined as in Lemma 1.14; so
Ci[p]⊆Ni ⊆ C[pk+1]. Therefore, g is defined and valuated on Ni. And since
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Ni is nice in Ci and Ci/Ni is countable, it follows that g restricted to Ni can
be extended to a valuated homomorphism τi : Ci → V 
 Y (the justification
of this assertion mirrors the corresponding one for groups, for example, [5],
Corollary 81.4).

Let τ : V 
W → V 
Y be the valuated homomorphism which restricts to
τi on each summand Ci. We next verify that τ is the identity when restricted
to (V 
 Y )[p]⊆ V 
W : All of the homomorphisms gβ , for β < λ, agree with
g on (V 
W )[p], which is the identity on (V 
 Y )[p]. Therefore, on each
Ci[p], τ restricts to g; and it follows that on all of (V 
W )[p], τ agrees with
g, giving the statement.

So ν
def
= τ ◦ μ : V 
 Y → V 
 Y is a valuated homomorphism that is the

identity on (V 
Y )[p]. It follows from Lemma 1.10 that ν must be an isome-
try. If η = ν−1 ◦τ : V 
W → V 
Y , then η◦μ= ν−1 ◦τ ◦μ= ν−1 ◦ν = 1V�Y .
Therefore, V 
Y is a valuated summand of V 
W , establishing the result. �

If λ is a limit ordinal and V is a valuated pn-socle, then the λ-topology
on V uses {V (β)}β<λ as a neighborhood base of 0. If W is n-isotype in V ,
then the λ-topology on V induces the λ-topology on W ; furthermore, W will
be n-balanced in V iff for every limit ordinal λ, W/W (λ) embeds as a closed
subgroup of V/V (λ) in the λ-topology. It is a slight variation on a standard
result that if λ has uncountable cofinality and V is a valuated direct sum⊕

i∈I Vi, where each Vi has length strictly less than λ, then V is complete in
the λ-topology. (See, for example, the proof of [5], Theorem 84.3.)

The next result generalizes ([2], Corollary 1.10) to the case of n-limit ordi-
nals.

Theorem 1.16. Suppose V is a valuated pn-socle and α is an ordinal. If
one α-high subgroup of V is n-summable, then all α-high subgroups of V are
n-summable.

Proof. We may assume α is an n-limit, so α= λ+k, where λ is a limit and
k < n− 1. Let Y be α-high in V .

Suppose first that λ has uncountable cofinality and Y is n-summable. By
1.9, we can conclude that Y (λ) = {0}. Let Z be a λ+ n− 1-high subgroup
of V containing Y , so that Y is dense in Z in the λ-topology. Since Y is
complete in the λ-topology, we can conclude that Z = Y + Z(λ). However,
since Z/Y will be Zpn -projective and pn−1Z(λ) = {0}, it follows that Z = Y
is n-summable and fV (λ+ j) = 0 for 0≤ j < n− 1. Therefore, any subgroup
that is α-high will also be λ+ n− 1-high, and hence n-summable.

Suppose next that λ has countable cofinality. By 1.9 there is a countable
valuated pn-socle W of length α+1. If we apply Lemma 1.12 and 1.5, we can
infer that V 
W is isometric to (Y 
W )⊕ (

⊕
W ).

If Y is n-summable, then so is Y 
W , and hence, so is V 
W . On the other
hand, if V 
W is n-summable, then so is Y 
W . Utilizing Theorem 1.15, this
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implies that Y is n-summable. Since the summability of V 
W is independent
of which Y is chosen, the result follows. �

Corollary 1.17. If V is an n-summable valuated pn-socle and α is an
ordinal, then any α-high subgroup of V is n-summable.

Proof. Applying Theorem 1.16, we need only find one α-high subgroup
which is n-summable. Suppose V is isometric to

⊕
i∈I Ci, where each Ci is

countable. For each i ∈ I , let Yi be α-high in Ci. Then clearly Y =
⊕

i∈I Yi

will be n-summable and α-high in V . �

Recall that a valuated pn-socle V is Cα n-summable if for every β < α,
one, and hence every, β-high subgroup of V is n-summable. Clearly, if V is
Cα n-summable then it is Cβ n-summable for all β < α, and if α is a limit
ordinal, then this necessary condition is also sufficient. If α is isolated, then
by Corollary 1.17, V is Cα n-summable iff it has an α− 1-high subgroup that
is n-summable. We note in passing the following fact.

Proposition 1.18. Suppose V is a valuated pn-socle, α is an ordinal and
V (α) is countable. Then V is n-summable iff it is Cα+1 n-summable.

Proof. Certainly, if V is n-summable, then it is Cα+1 n-summable. Con-
versely, if V is Cα+1 n-summable and W is α-high in V , then W is n-
summable. Since V (α) maps to an essential subgroup of V/W , this quotient
is countable. By 1.6, we can conclude that V is n-summable, as required. �

This brings us to the main result of this section, which builds upon Theo-
rem 1.15. It parallels [16], Theorem 1, which is a reformulation and extension
of a result from [23].

Theorem 1.19. Suppose V and W are valuated pn-socles, V has length α
and W (α) �= {0}. Then V 
W is n-summable iff V is n-summable and W is
Cα n-summable.

Proof. Note that in either direction, by Theorem 1.15, we can infer that
V is n-summable. With that assumption, we induct on α to show V 
W is
n-summable iff W is Cα n-summable.

First, if α is a limit, then employing 1.8, V will be isometric to a direct
sum

⊕
β<α Vβ , where Vβ(β) = {0} for each β. So by induction, V 
W is

n-summable iff each Vβ 
W is n-summable iff W is Cβ n-summable for each
β iff W is Cα n-summable.

Assume, then, that α= γ+1 is isolated. By Lemma 1.12, if Y is γ-high in
W and κ is the rank of W/Y , then there is an n-balanced exact sequence

0→ V 
 Y → V 
W →
⊕
κ

V → 0.
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Since V is n-summable, this sequence splits. Therefore, V 
W is n-summable
iff V 
 Y is n-summable. And by Theorem 1.15, this is true iff Y is also n-
summable, that is, W is Cα n-summable. �

The next result parallels [16], Theorem 2.

Corollary 1.20. Suppose W is a valuated pn-socle and α is an ordinal
that is not of the form λ+k, where λ is a limit ordinal of uncountable cofinality
and 0< k < n. Then the following are equivalent:

(a) W is Cα n-summable;
(b) For every α-bounded n-summable valuated pn-socle V , V 
W is n-sum-

mable;
(c) For some n-summable valuated pn-socle V of length α, V 
 W is n-

summable.

Proof. Note that 1.9 says that there is, in fact, an n-summable valuated pn-
socle of length α. Clearly, (b) implies (c). Next, suppose C is some countable
valuated pn-socle with C(α) �= {0}. Then W will be Cα n-summable iff W ⊕C
has this property, and if V is n-summable, then V 
W is n-summable iff
V 
 (W ⊕C) is n-summable. Replacing W by W ⊕C, then, we may assume
that W (α) �= {0}. However, in this case, (a) implies (b) and (c) implies (a)
follow directly from Theorem 1.19. �

We now aim to provide a way to produce examples of Cα n-summable
valuated pn-socles of length α, at least for ordinals of countable cofinality,
that parallels the usual way of constructing separable groups by locating them
between a basic subgroup and its torsion completion. We first note that this
is trivial for some ordinals.

Proposition 1.21. Suppose α = λ+ k, where λ is a limit ordinal, k ≥ n
and V is an α-bounded valuated pn-socle. Then V is Cα n-summable iff it is
n-summable.

Proof. Certainly, if V is n-summable, then it is Cα n-summable. Con-
versely, if it is Cα n-summable, then let V = B ⊕X be a standard α − 1-
decomposition. Since V is Cα n-summable, B will be n-summable, and since
V (α) = {0}, X will also be n-summable, giving the result. �

If α is an ordinal and V is a valuated pn-socle, then a subgroup W of V
will be said to be α,n-dense if

(1.A) W is n-isotype in V , that is, it is a valuated pn-socle;
(1.B) For all β < α, V [p] =W [p] + V (β)[p].

It is easy to verify that the property of being α,n-dense is transitive, and
that an α-high subgroup will always be α,n-dense.

By an α,n-basic subgroup of V , we will mean an n-summable, α,n-dense
subgroup B of V . If B′ is α-high in B, then by Corollary 1.17, B′ will also
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be n-summable. Therefore, if we wish, me may assume that an α,n-basic
subgroup is α-bounded.

Proposition 1.22. Suppose α = λ+ k is an ordinal, λ is a limit ordinal
of countable cofinality, k < ω and V is a valuated pn-socle. Then V has an
α,n-basic subgroup iff it is Cα n-summable.

Proof. Suppose first that V has an α,n-basic subgroup B. If β < α and Y
is β-high in B, then by Corollary 1.17, Y is n-summable, and by (1.B), Y is
also β-high in V . Therefore, V is Cα n-summable.

Conversely, suppose V is Cα n-summable. First, if α is isolated, then let
B be any α− 1-high subgroup of V . Since V is Cα n-summable, B will be
n-summable. And since V [p] will be the valuated direct sum of B[p] and
V (α− 1)[p], (1.B) will follow, as well.

Consider next the case where α = λ is a limit. Let {αj}j<ω be a strictly
increasing sequence of n-isolated ordinals whose limit is α. Construct an
ascending sequence of αj -high subgroups Wj of V . It follows that each Wj

is a valuated summand of V , as well as being n-summable. Let B0 = W0,
and for 0 < j < ω, let Wj be the valuated direct sum Bj ⊕Wj−1. Clearly,

B
def
=

⊕
j<ω Bj will be n-summable and n-isotype in V . In addition, if β < α,

then for some j < ω, β < αj . Consequently, V [p] =Wαj [p]+V (αj)[p]⊆B[p]+
V (β)[p], showing that (1.B) holds, and completing the proof. �

Suppose α= λ+ k, where λ is a limit ordinal of countable cofinality, n=
k +m, 0 < m and V is an α-bounded valuated pn-socle. Let LλV be the
completion of V in the λ-topology, so that LλV is the inverse limit of V/V (β)
over all β < λ. There is clearly a homomorphism ν : V → LλV whose kernel
is V (λ). Let NαV = ν(V ) + (LλV )[pm] ⊆ LλV and MαV =NαV/ν(V ). We
pause for the following observation.

Lemma 1.23. With the above notation, MαV is Zpm -projective, and there
is a natural commutative diagram with algebraically splitting rows:

0 → ν(V )[pm] → (LλV )[pm] → MαV → 0
↓ ↓ ‖

0 → ν(V ) → NαV → MαV → 0

Proof. Splitting off a bounded summand, we may clearly assume that V
is Zpn -projective. Let {αj}j<ω , be a strictly ascending sequence of n-isolated
ordinals with limit λ and {Wj}j<ω , be an ascending chain of αj -high sub-
groups of V . If B0 =W0 and Wj+1 =Wj ⊕Bj , then it is easily checked that
LλV can be identified with

∏
j<ω Bj , so that it, too, is Zpn -projective.

Note that V (λ)∼=
⊕

0<j≤kXj , where Xj is Zpj -projective. It follows that

ν(V )∼= V/V (λ)∼=
⊕

m≤�≤n Y�, where again, Y� is Zp� -projective; so ν(V )[pm]
is Zpm -projective.
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The existence of the commutative diagram follows from (LλV )[pm] ∩
ν(V ) = ν(V )[pm]. Since the upper row consists of Zpm -modules and ν(V )[pm]
is Zpm -projectively, it must split. Therefore, MαV is also Zpm -projective and
the lower row splits. �

With the above notation, we will say that the α-bounded Cα n-summable
valuated pn-socle V is α,n-torsion complete if ν(V ) =NαV . Alternatively, we
could require that MαV = {0}, or that ν(V )[pm] is complete in the (induced)
λ-topology. The following shows that most of the techniques utilized in the
theory of separable groups can be translated in a natural way to the theory
of α-bounded Cα n-summable valuated pn-socles.

Theorem 1.24. Suppose λ is a limit ordinal of countable cofinality, k <
n< ω, m= n− k and α= λ+ k.

(a) If W is an arbitrary α-bounded Cα n-summable valuated pn-socle, and B
is α,n-basic in W , then LλB can be identified with LλW so that ν(W ) is
identified with a summand of NαB containing ν(B).

(b) Suppose W ′ is another α-bounded Cα n-summable valuated pn-socle with
B as an α,n-basic subgroup and corresponding homomorphism ν′ : W ′ →
LλB. If ν′(W ′) = ν(W ), then W and W ′ are isometric over B.

(c) If B is an α-bounded n-summable valuated pn-socle, and X is a summand
of NαB containing ν(B), then there is an α-bounded Cα n-summable
valuated pn-socle W containing B as an α,n-basic subgroup for which
ν(W ) =X .

(d) If W is an arbitrary α-bounded Cα n-summable valuated pn-socle, then
W is an α,n-dense subgroup of an α,n-torsion complete valuated pn-
socle V .

(e) If V0 and V1 are α,n-torsion-complete valuated pn-socles, then V0 and V1

are isometric iff they have the same Ulm function.

Proof. After discarding an n-bounded summand, there is clearly no loss of
generality in assuming that B, W and W ′ are Zpn -projective groups.

Starting with (a), since for every β < λ there is a natural isomorphism
B/B(β) ∼= W/W (β), it follows that LλB and LλW are naturally isomor-
phic. There is an algebraic decomposition W =B⊕U where W (λ) =B(λ)⊕
pmU . It follows that ν(W ) = ν(B) + ν(U) ⊆ ν(B) + (LλB)[pm] =NαB and
ν(W )/ν(B) ∼= U/pmU is Zpm -projective. By Lemma 1.23, MαB is Zpm -
projective, so that ν(W )/ν(B) is a summand of MαB. Since ν(B) is a sum-
mand of NαB, ν(W ) will be a summand of NαB, which establishes (a).

Turning to (b), there are algebraic decompositions W =B ⊕ U and W ′ =
B⊕U ′, where U and U ′ are Zpn -projective, W (λ) =B(λ)⊕pmU and W ′(λ) =
B(λ)⊕ pmU ′. If ν′ : W ′ → LλB is the natural homomorphism, then our hy-
potheses guarantee that ν(W ) = ν′(W ′). Since U is a projective Zpn -module,
there is an algebraic isomorphism φ : W = B ⊕ U ∼= B ⊕ U ′ = W ′ which is
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the identity on B such that ν = ν′ ◦ φ. This latter condition implies that φ
preserves all values strictly less than λ (as ν and ν′ have this property). Since
φ also induces a group isomorphism W (λ) = kerν ∼= kerν′ =W ′(λ), and the
valuations here are simply λ plus the height functions on these subgroups, it
follows that φ is actually an isometry, establishing (b).

As to (c), there is an algebraic decomposition X = ν(B) ⊕ X ′. Let U
be a Zpn -projective of the same rank as X ′, so there is a homomorphism
γ : U →X ′ ⊆NαW with kernel pmU . We then algebraically set W =B ⊕U ;
we still need to define a valuation on W . Mimicking the above, if b ∈B, u ∈ U ,
let

∣∣(b, u)∣∣
W

=

{
|ν(b) + γ(u)|LλB , if b+ u /∈B(λ)⊕ pmU,
λ+ |(b, u)|B(λ)⊕pmU , otherwise.

A straightforward (and somewhat tedious) verification shows that this makes
W into a valuated pn-socle with the required properties.

Next, for (d), suppose W corresponds to the summand X ⊆ NαB. It
follows that there is an algebraic decomposition NαB =X⊕X ′, and we again
let U be Zpn -projective of the same rank as X ′. It follows that there is a
homomorphism γ : U →X ′ with kernel pmU . If we set V =W ⊕U and define
a valuation on V as in (c), then it follows that V is α,n-torsion-complete and
that it contains W as an α,n-dense subgroup.

Finally, as to (e), the equality of their Ulm functions guarantees that V0

and V1 have isometric α,n-basic subgroups. If we identify these, then by (b)
they are isometric over this subgroup. �

As mentioned above, if α= λ+ k where k < ω and λ is a limit ordinal of
countable cofinality, this gives a technique for describing all α-bounded Cα

n-summable valuated pn-socles that generalizes the usual way of constructing
separable groups. If k ≥ n, then by Proposition 1.21 these will all be n-
summable. On the other hand, if k < n, then we may start with any function
f from α to the cardinals that is n-summable, in the sense of [12]. This
determines a unique n-summable valuated pn-socle B. The collection of α-
bounded Cα n-summable valuated pn-socles that contain B as an α,n-basic
subgroup are then in one-to-one correspondence with the algebraic summands
of NλB containing ν(B). The interested reader can verify that the rank of
MλB is given by κ= infβ<λ r(B(β))ℵ0 and the number of such summands is
given by 2κ.

We now consider the case of limit ordinals of uncountable cofinality.

Proposition 1.25. Let V be a valuated pn-socle and λ be a limit ordinal
of uncountable cofinality. Then the following are equivalent:

(a) V is Cλ+1 n-summable;
(b) V has a λ,n-basic subgroup;
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and in this case, V is the valuated direct sum, B ⊕ V (λ), where B is n-
summable and λ-high in V (so that fV (λ+ j) = 0 for 0≤ j < n− 1).

Proof. If V is Cλ+1 n-summable, and we let B be λ-high in V , then B is
clearly λ,n-basic in V ; therefore, (a) implies (b).

Suppose now that B is a λ,n-basic subgroup of V . We may assume B(λ) =
{0}, so that B is complete in the λ-topology. As was observed in the proof
of Theorem 1.16, this implies that B is λ+n− 1-high in V ; in particular, (a)
must hold as well. If V =B ⊕X is a standard λ+ n− 1-decomposition of V ,
then X ⊆ V (λ)⊆X , as required. �

Corollary 1.26. Suppose V is a valuated pn-socle and λ is a limit ordinal
of uncountable cofinality. Then V is Cλ+1 n-summable iff it is Cλ+ω n-
summable.

Proof. Suppose V is Cλ+1 n-summable and consider the valuated decom-
position V =B ⊕ V (λ), as above. If B′ is a λ+ ω,n-basic subgroup of V (λ),
then B ⊕B′ will be λ+ ω,n-basic in V . Therefore, by Proposition 1.22, V
will be Cλ+ω n-summable. The converse is trivial. �

Corollary 1.27. Suppose α= λ+k, where λ is a limit ordinal of uncount-
able cofinality and 0< k < ω. If V is a Cα n-summable valuated pn-socle of
length α, then V is n-summable.

Proof. By Corollary 1.26, we can conclude that V is Cα+1 n-summable,
and hence n-summable. �

Suppose λ is a limit ordinal of uncountable cofinality. For every ordinal
α< λ, let Cα = 〈xα〉 be a cyclic valuated pn-socle of order pn with |xα|Cα = α.
Let W =

⊕
α<λCα. If Y = 〈y〉 also has order pn and |y|Y = λ, then the

mapping xα 
→ y determines a valuated homomorphism f : W → Y . Let V
be the kernel of f ; it is easy to verify that V is n-isotype in W . In addition,
if α < λ, it is fairly easy to check that Vα =

⊕
β<α〈xβ − xα〉 will be an n-

summable and α+n−1-high subgroup of V . Therefore, V is Cλ n-summable.
However, if B was a λ,n-basic subgroup of V , then it would be n-summable,
and hence complete in the λ-topology. Since B would be dense in V in the
λ-topology, and V is clearly dense in W in the λ-topology, we could conclude
that B = V = W . Since this is not true, we can conclude that V is Cλ n-
summable, but that it does not have a λ,n-basic subgroup.

2. Abelian p-groups

We now translate the results from the last section to the category of Abelian
p-groups. We say a group G is n-summable or Cα n-summable if G[pn] has the
corresponding property. Since an n-summable valuated pn-socle is summable,
the following is a variation on a classical result (cf. [5], Theorem 84.3):



720 P. W. KEEF AND P. V. DANCHEV

2.1. If G is a reduced n-summable group, then pω1G= {0}. If α > ω1, then
a reduced group G is Cα n-summable iff it is n-summable (and so pω1G= {0}).

[For the second statement, by Corollary 1.26, we may assume G is Cω1+ω

n-summable. If k < ω with fG(ω1 + k) �= 0, then let H be ω1 + k + 1-high
in G. It follows that H is summable and pω1H �= {0}, which contradicts the
first sentence.] This implies that when applying these results to groups, there
is little loss of generality in restricting our attention to the ω1-bounded case.

Again, a subgroup K of G is pβ-high if it is maximal with respect to
K ∩ pβG= {0}. It is easy to check that if K is pβ-high in G, then K[pn] is
β-high in G[pn], and conversely, if W is β-high in G[pn], then W =K[pn] for
some pβ-high subgroup K of G. It follows that G is Cα n-summable iff for
every β < α, G has an n-summable pβ-high subgroup.

The following is a direct consequence of Theorem 1.16, Proposition 1.18
and Theorem 1.19.

Corollary 2.2. Suppose α is an ordinal and G, H are groups.

(a) If one pα-high subgroup of G is n-summable, then all pα-high subgroups
of G are n-summable.

(b) If pαG is countable, then G is n-summable iff it is Cα+1 n-summable.
(c) Suppose α is the length of G and pαH �= {0}. Then G
H is n-summable

iff G is n-summable and H is Cα n-summable.

If G is a group and α is an ordinal, then a subgroup H of G will be said
to be α,n-basic in G if

(2.A) H is isotype in G;
(2.B) H is n-summable;
(2.C) For every β < α we have G[p] =H[p] + (pβG)[p].

If α≤ ω, then any group has an α,n-basic subgroup, for example, a basic
subgroup in the usual meaning of the term. By [7], Theorem 93, an α,n-basic
subgroup H will be pα-pure in G, and if α is infinite, G/H will be divisible.

Corollary 2.3. Let G be a reduced group.

(a) If α < ω1 is an ordinal, then G has an α,n-basic subgroup iff it is Cα

n-summable.
(b) G has an ω1, n-basic subgroup iff it is n-summable.

Proof. Starting with (a), suppose H is an α,n-basic subgroup of G. It is
easily checked that H[pn] will be α,n-basic in G[pn]. Therefore, by Proposi-
tion 1.22, G[pn], and hence G, is Cα n-summable.

Conversely, suppose G is Cα n-summable, and let B be an α,n-basic sub-
group of G[pn]. We may clearly assume that B(α) = {0}. If we choose H to
be a subgroup of G containing B that is maximal with respect to H[p] =B[p],
then by [7], Theorem 93, H is pα-pure in G. In particular, H will be isotype
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in G, so that H[pn] = B, and hence H , will be n-summable. Clearly, (2.C)
follows immediately from (1.B).

As to (b), suppose G[pn] has an ω1, n-basic subgroup B. By Proposi-
tion 1.25, we can conclude that G[pn] is Cω1+1 n-summable. So by 2.1, G is
n-summable. The converse is trivial. �

Let Hα denote the “generalized Prüfer group of length α” (see, for instance,
[7], page 59). (In fact, all we need is that Hα is some totally projective group
of length α.) The following is an immediate consequence of Corollary 1.20(c).

Corollary 2.4. If α≤ ω1 is an ordinal, then a group G is Cα n-summable
iff G
Hα is n-summable.

The last result has the following interesting consequence, which generalizes
[16], Proposition 2.

Proposition 2.5. If α ≤ ω1 is an ordinal, then a pα-projective Cα n-
summable group is n-summable.

Proof. If α is finite, then since a pα-projective group must be pα-bounded,
the result easily follows. So we may assume α is infinite and G is pα-projective.
By [7], Theorem 84, there is a pα-pure exact sequence 0 → Mα → Hα →
Zp∞ → 0, which leads to another pα-pure exact sequence

0→G
Mα →G
Hα →G→ 0.

Since G is pα-projective, there is a splitting G
Hα
∼=G⊕ (G
Mα). Since

G is Cα n-summable, by Corollary 2.4, G
Hα is n-summable. Therefore, G
is also n-summable, proving the result. �

If V is a valuated pn-socle, then an n-simply presented cover (or an n-cover,
for short) of V is a group H containing V such that |x|V = |x|H for all x ∈ V ,
V is nice in H and H/V is totally projective. The next result shows that, for
our purposes, all n-covers are pretty much equivalent.

Lemma 2.6. Suppose Hi, for i= 1,2, are n-covers of the valuated pn-socle
V and Ti is the totally projective group Hi/V . Then H1 ⊕ T2

∼=H2 ⊕ T1.

Proof. Consider the commutative “push-out” diagram

0 0
↓ ↓

0 → V → H1 → T1 → 0
↓ ↓ ‖

0 → H2 → Z → T1 → 0
↓ ↓
T2 = T2

↓ ↓
0 0
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Since by [5], Corollary 81.4, the identity map V → V extends both to a ho-
momorphism H1 →H2 and a homomorphism H2 →H1, we have H1 ⊕ T2

∼=
Z ∼=H2 ⊕ T1. �

The standard construction from [24] of an n-cover of a valuated pn-socle V
is to define, for every x ∈ V ∗ = V − {0}, a totally projective group, Tx, such
that pαxTx = 〈gx〉, where ◦(gx) = ◦(x) and αx = |x|V . We then let

H(V ) =

(
V ⊕

( ⊕
x∈V ∗

Tx

))/〈
(x,−gx) : x ∈ V ∗〉.

Essentially, V is constructed by adjoining a “tree” of the appropriate length
to V for each non-zero x ∈ V . Let T ′

x = Tx/〈gx〉; it follows that if V has
length α, then H(V )/V ∼=

⊕
x∈V ∗ T ′

x will be a totally projective group of
length at most α. The following gives a slight variation on this construction.

Lemma 2.7. If V is a valuated pn-socle of length λ+ k, where k ≤ n− 1,
then

H =

(
V ⊕

( ⊕
x∈V−V (λ+1)

Tx

))/〈
(x,−gx) : x ∈ V − V (λ+ 1)

〉

is also an n-cover for G for which H/V has length at most λ.

Proof. There is an obvious embedding H ⊆H(V ) which we assume is an
inclusion, and we show that H is actually a summand of H(V ). We first verify
for every x ∈ V (λ), that |x|V = |x|H . Clearly, |x|V = |x|H(V ) ≥ |x|H . To show

the reverse inequality, suppose |x|V = λ+ j, where 0≤ j < k. Then x= pjx′,
where |x′|V = λ, so that |x|H ≥ |x′|H + j ≥ λ+ j = |x|V .

Note that if x ∈ V (λ+1)−{0}, then by the last paragraph, gx 
→ x extends
to a homomorphism Tx →H . If we combine these over all x ∈ V (λ+1)−{0},
we get a projection π : H(V ) → H , which shows that H is a summand of
H(V ). This clearly implies that V is also nice in H and that H/V , which will
be a summand of H(V )/V , is totally projective, completing the proof. �

The next two important observations are consequences of the proof of [2],
Theorem 2.1.

2.8. If H is an n-cover of a valuated pn-socle V and pω1H = {0}, then H
is a dsc group iff V is n-summable.

In the proof of this in [2], the implication ⇒ is established by verifying
the next statement, which is then applied to the left exact sequence 0→ V →
H(V )[pn]→ (H(V )/V )[pn]:

2.9. If W and Z are ω1-bounded n-summable valuated pn-socles, V is an
n-isotype subgroup of W and the kernel of a valuated homomorphism W → Z,
then V is n-summable.
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The next statement is [2], Corollary 2.3.

2.10. Suppose V is an n-summable valuated pn-socle and W is n-isotype
in V . If W has countable length, then W is also n-summable.

We have now come to one of our main results, which is another bridge
between the last section and the realm of groups. Recall that G is said to be
a Cα group if for every β < α, one (and hence every) pβ-high subgroup K of
G is a dsc group.

Theorem 2.11. If V is a valuated pn-socle and α≤ ω1 is an ordinal, then
the following are equivalent:

(a) V is Cα n-summable;
(b) Every n-cover H of V is a Cα group;
(c) Some n-cover H of V is a Cα group.

Proof. Note that (b) and (c) are equivalent by Lemma 2.6. We next show
that (c) implies (a), so suppose that H is an n-cover of V that is a Cα group.
If β < α and W is β-high in V , then in H , W ∩ pβH = {0}. Therefore, there
is a pβ-high subgroup K of H containing W . Since H is a Cα group, K
is a dsc group, so that K[pn] is n-summable. Consequently, by 2.10, W is
n-summable, so that (a) follows.

We now prove the converse by induction on α, so suppose (a) implies (b)
and (c) whenever α′ <α. If α is a limit ordinal, V is Cα n-summable and H
is some n-cover of V , then V is Cα′ n-summable for all α′ < α. This implies
that H is a Cα′ group for all α′ <α, and this gives that H is a Cα group.

Thus we may assume α is isolated and V is Cα n-summable; in particular,
we must have α < ω1. Let α = λ+ k, where λ is a limit and 0 < k < ω, so

there is a β
def
= λ+ k − 1 = α− 1-high subgroup W of V that is n-summable.

If k ≥ n, then let V =W ⊕X be a standard β-decomposition of V . It follows
that there is a valuated decomposition X =X1⊕X2 such that X1 is α+n−1-
high in X . Note that X1, and hence W ⊕X1, will also be n-summable (see,
for example, [2], Corollary 1.7) and X2 ⊆ V (α). Let H1 and H2 be n-covers
of W ⊕X1 and X2, respectively. Since W ⊕X1 is n-summable, 2.8 implies
that H1 is a dsc group. Since X2 ⊆ pαH2 and H2/X2 is a dsc group, it follows
that H2 is a Cα group. So H1 ⊕H2 is an n-cover of (W ⊕X1)⊕X2 = V and
a Cα group, establishing (c).

Suppose next that 0< k < n and again, let W be an n-summable β = α−1-
high subgroup of V . Find a standard λ+ n− 1-decomposition V = V1 ⊕X ,
where V1 is λ+n− 1-high in V containing W . Next, decompose X = V2⊕V3,
where V2 is n-summable and V3 = V3(α). Let H1, H2 and H3 be n-covers of
V1, V2 and V3, respectively. Since V2 is n-summable, 2.8 implies that H2 is a
dsc group. Since V3 ⊆ pαH3 and H3/V3 is a dsc group, it follows that H3 is a
Cα group. Therefore, there is no loss of generality in assuming that V = V1,
i.e., V (λ+ n− 1) = {0}.
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By Lemma 2.7, we can construct an n-cover H of V such that H/V has
length λ. Let K be a pβ-high subgroup of H containing W ; in particular, K
is isotype in H .

Claim. K is an n-cover of W .

We show that if x ∈K and |x+ V |H/V = γ < λ, then there is an element
x′ ∈ pγK such that x+W = x′ +W . This will not only verify that W is nice
in K, but it will show that K/W is isotype in the dsc group H/V , so that it
is also a dsc group (by a classical result of Hill from [8]).

Since V is nice in H , there is a y ∈ V such that |x+ y|H = γ. Since W
is dense in V in the λ-topology, y = z + y′, where z ∈W and |y′|H > γ. It

follows that x′ def= x+ z = x+ y − y′ ∈K ∩ pγH = pγK and x+K = x′ +K,
establishing the claim.

Finally, since W is n-summable, it follows from 2.8 that K must be a dsc
group. Thus H is a Cα group, as required. �

We pause for another relatively unsurprising construction.

Lemma 2.12. If V is an ω1-bounded valuated pn-socle, then there is an
ω1-bounded n-balanced projective resolution 0→Q→ P → V → 0 (so P and
Q are ω1-bounded valuated pn-socles, P is n-summable and Q is n-balanced
in P ).

Proof. If x ∈ V , it is easy to confirm that there is a countable n-isotype sub-
group Cx ⊆ V containing x. If P =

⊕
x∈V Cx, then clearly P is n-summable.

If π : P → V is the sum map, then we need to show that Q, the kernel
of π, is n-balanced in P . It is easy to see that Q is nice in P . To verify
that it is n-isotype, suppose α is an ordinal and y ∈ Q(α + 1)[pn−1]; so y
will be a vector (yi), where yi ∈ Cxi for i = 1, . . . , k, and y1 + · · · + yk = 0.
Each yi will be in Cxi(α+ 1)[pn−1] so that yi = pzi, where zi ∈ Cxi(α). Let
zk+1 =−(z1 + · · ·+ zk) ∈ V (α)[p]. If z′ ∈ P has zi in the Cxi coordinate for
i= 1, . . . , k and zeros elsewhere, and z′′ has zk+1 in the Czk+1

coordinate and

zeros elsewhere, then z
def
= z′ + z′′ ∈Q(α) and pz= y. �

The last result allows us to refer to the n-balanced projective dimension
of an ω1-bounded valuated pn-socle. We abbreviate the phrase “balanced
projective dimension” by bpd.

Corollary 2.13. If V is a valuated pn-socle of countable length α, then
V has n-bpd at most 1.

Proof. Let 0→Q→ P → V → 0 be an n-balanced exact sequence where P
is an n-summable valuated pn-socle of length α. It follows from 2.10 that Q
is also n-summable, which gives the result. �
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Observe that if V is a valuated pn-socle, then Lemma 2.6 implies that all
n-covers of V have the same bpd. The next result generalizes 2.8.

Theorem 2.14. If V is an ω1-bounded valuated pn-socle and H is an n-
cover of V , then the n-bpd of V agrees with the bpd of H in the category of
groups.

Proof. Suppose 0 → Q → P → V → 0 is an n-balanced projective resolu-
tion of V . Let H0 be a dsc group such that there is a surjection H0 →H(V )
whose kernel is balanced in H0. In addition, P → V extends to a group ho-
momorphism H(P )→H(V ); in this extension, we may assume that if x ∈ P
is proper with respect to Q and x 
→ y, then Tx ⊆H(P ) maps isomorphically
onto Ty ⊆H(V ). These two maps determine a surjective a group homomor-
phism H(P ) ⊕ H0 → H(V ), whose kernel we denote by K. Consider the
diagram

0 0 0
↓ ↓ ↓

0 → Q → P → V → 0
↓ ↓ ↓

0 → K → H(P )⊕H0 → H(V ) → 0
↓ ↓ ↓

0 → K/Q → H(P )/P ⊕H0 → H(V )/V → 0
↓ ↓ ↓
0 0 0

We assert that K is an n-cover of Q. Observe first that the middle row is
balanced; this follows easily from the fact that for all ordinals α, (pαH0)[p]
maps onto (pαH(V ))[p] (see, for example, [5], Proposition 80.2). We conclude
that the height valuation on K agrees with the valuation on K induced by
the height function on H(P )⊕H0. In addition, since Q is nice in P , P is nice
in H(P )⊕H0 and niceness is transitive in the category of valuated groups, it
follows that Q is nice in K.

We next show that the bottom row splits: If y ∈ V ∗, then there is an x ∈ P
which maps to y and is proper with respect to Q; so |y|V = |x|P . The tree
T ′
x ⊆H(P )/P maps isomorphically onto the tree T ′

y ⊆H(V )/V . The reverse
of these mappings over all y ∈ V ∗ gives the required splitting. Consequently,
we can infer that K/Q is a dsc group; so K is an n-cover of Q.

By 2.8, the n-bpd of V equals 0 iff the bpd of H(V ) equals 0. By induction,
it follows from our diagram that the n-bpd of V equals the n-bpd of Q plus
one, which equals the bpd of K plus one, which equals the bpd of H(V ). �

Corollary 2.15. If V is an ω1-bounded valuated pn-socle, then the n-bpd
of V is at most 2.
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Proof. Let H be an ω1-bounded n-cover of V . If 0→K → J →H → 0 is
a balanced exact sequence with J a dsc group, then K is an ω1-bounded IT
group. By [16], Theorem 21, the bpd of K is at most 1, so that the bpd of H
is at most 2. The result, therefore, follows from Theorem 2.14. �

There is another natural way to construct an n-balanced projective reso-
lution of an ω1-bounded Cω1 n-summable valuated pn-socle V . Starting with
the aforementioned pω1 -pure exact sequence 0→Mω1 →Hω1 → Zp∞ → 0, it
is easy to check that this determines an n-balanced exact sequence

0→Mω1

[
pn

]

 V →Hω1

[
pn

]

 V → V → 0.

By Corollary 1.20(b), Hω1 [p
n]
 V is n-summable, giving our resolution. In

addition, we have the following consequence.

Corollary 2.16. If V is an ω1-bounded Cω1 n-summable valuated pn-
socle, then V has n-bpd at most 1 iff Mω1 [p

n]
 V is n-summable.

We next turn to a useful result related to 2.8.

Lemma 2.17. Suppose V and W are Cω1 n-summable valuated pn-socles
with n-covers G and H , respectively, and pω1G = pω1H = {0}. If G
H is
n-summable, then V 
W is n-summable.

Proof. Let P =G/V and Q=H/W , so P and Q are dsc groups. There is
a left exact sequence

0→ V 
W →G
H → (P 
H)⊕ (G
Q).

Since the right two groups have the height valuation, the right map is trivially
valuated. It is easy to check that V 
W is n-isotype in (G
H)[pn] which is
n-summable. By Theorem 2.11(b), G and H will be Cω1 groups. So by [16],
Theorem 2, P 
H , and similarly G
Q, is a dsc group. Hence, ((P 
H)⊕
(G
Q))[pn] is n-summable. And by 2.9, V 
W is n-summable. �

The next observation parallels [10], Theorem 6, and [16], Theorem 23.

Corollary 2.18. Suppose V and W are ω1-bounded Cω1 n-summable
valuated pn-socles.

(a) If V and W have cardinality at most ℵ1, then V 
W is n-summable.
(b) If V and W have n-bpd at most 1, then V 
W is n-summable.

Proof. There are ω1-bounded n-covers G and H of V and W , respectively.
In (a), we may assume G and H have cardinality at most ℵ1, and [10], The-
orem 6, implies G
H is a dsc group. In (b), Theorem 2.14 implies G and
H have bpd at most 1 and [16], Theorem 23, again implies G
H is a dsc
group. In either case, by Lemma 2.17, V 
W is n-summable. �
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Lemma 2.17 is exactly what is needed to prove our final result, which can
be viewed as an extension of [15], Theorem 13, and is one of the main points
of this section.

Theorem 2.19. The following are equivalent:

(a) Kurepa’s Hypothesis fails;
(b) If V and W are any ω1-bounded Cω1 n-summable valuated pn-socles, then

V 
W is n-summable;
(c) If G and H are any pω1 -bounded Cω1 n-summable groups, then G
H is

n-summable;
(d) If W is any ω1-bounded Cω1 n-summable valuated pn-socle, then the n-bpd

of W is at most 1.
(e) If G is any pω1 -bounded Cω1 n-summable group, then the bpd of G is at

most 1.
(f) If G is any pω1 -bounded Cω1 group, then the bpd of G is at most 1.

Proof. Appealing to [15], Theorem 13, (a) and (f) are equivalent, so we
show that they are also equivalent to the other statements.

Suppose first that Kurepa’s Hypothesis fails and that V and W are ω1-
bounded Cω1 n-summable valuated pn-socles. Let G and H be pω1 -bounded
n-covers of V and W , respectively. By Theorem 2.11, G and H are Cω1

groups. Therefore, in view of [15], Theorem 13, G
H is a dsc group. So, by
Lemma 2.17, V 
W is n-summable, showing that (a) implies (b).

Next, assuming that (b) holds, then (c) follows immediately by considering
the valuated pn-socles G[pn] and H[pn].

Suppose (c) holds and W is as given in (d). If V =Mω1 [p
n], then let G and

H be n-covers for V and W , respectively. Again, by Theorem 2.11, G and H
are Cω1 groups. Consequently, by hypothesis, G
H is n-summable. So by
Lemma 2.17, V 
W is n-summable. And by 2.16, W has n-bpd at most 1.

Assuming that (d) holds, let G be as given in (e). If H is a dsc group
and 0 → Q → H → G → 0 is a balanced projective resolution of G, then
0 → Q[pn] → H[pn] → G[pn] → 0 is an n-balanced projective resolution of
G[pn]. So, by hypothesis, Q[pn] is n-summable, and hence summable (=
1-summable).

By the main result from [9], we can conclude that Q, as a summable and
isotype subgroup of the dsc group H , is also a dsc group. This, however,
implies that G has bpd at most 1, so that (d) implies (e).

Finally, since any Cω1 group is Cω1 n-summable, we can conclude that (e)
implies (f), concluding the proof. �
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