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FIBER-WISE CALDERÓN–ZYGMUND DECOMPOSITION
AND APPLICATION TO A BI-DIMENSIONAL

PARAPRODUCT

FRÉDÉRIC BERNICOT

Abstract. We are interested in a new kind of bi-dimensional bi-
linear paraproducts (appearing in (Amer. J. Math. 132 (2010)

201–256)), which do not fit into the setting of bilinear Calderón–
Zygmund operators. In this paper, we propose a fiber-wise

Calderón–Zygmund decomposition, which is specially adapted to
this kind of bi-dimensional paraproduct.

1. Introduction

Let us first recall what is a standard paraproduct.
A bilinear paraproduct Π on R

d is a bilinear operator of the following form:

Π(f, g)(x) :=

∫ ∞

0

ψt(f)(x)φt(g)(x)
dt

t
,

where ψ is a smooth function with a spectrum included in a corona around 0, φ
a smooth function, and for a function ζ, we write the L1-normalized functions

ζt(x) :=
1

td
ζ
(
t−1x

)
.

To a function ζt, we associate the convolution operator ζt(f) := ζt ∗ f . So
by this way, ψt(f) allows us to truncate f in the frequency space around the
scale t−1.

The paraproducts were the first studied singular bilinear operators. Their
study began by the works of Bony in [1] and of Coifman and Meyer in [3],
[4], [5], where in particular first continuities in Lebesgue spaces are shown.
Indeed, such paraproducts fit into the setting of bilinear Calderón–Zygmund
theory (see the work of Grafakos and Torres [9] and Kenig and Stein [11]) and
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so other boundedness can be obtained. Finally, we have boundedness in the
full and maximal range of exponents:

Theorem 1. For all exponents 1< p, q ≤∞ satisfying

0<
1

r
:=

1

p
+

1

q
< 2,

there exists a constant C, such that

∀f, g ∈ S
(
R

d
)
,

∥∥Π(f, g)∥∥
Lr(Rd)

≤C‖f‖Lp(Rd)‖g‖Lq(Rd).

When p, q, r ∈ (1,∞) the boundedness is an easy consequence of the Little-
wood–Paley theory, and if one of the exponents p, q is infinite then the proof
of the boundedness requires the notion of Carleson measure. Then, Calderón–
Zygmund theory allows us to get the boundedness for r ≤ 1.

For the last years, Lacey and Thiele have solved the famous Calderón’s
conjecture concerning boundedness of bilinear Hilbert transform [12], [13].
This new kind of bilinear operators (far more singular than the previous one)
have then given rise to numerous works. One of the main problems, concerning
these operators, which are still open is the generalization of these boundedness
for the two-dimensional bilinear Hilbert transforms.

Demeter and Thiele have begun to describe a partial result in [6] but bound-
edness for the following operator is still open: let f, g ∈ S(R2)

H(f, g)(x, y) := p.v.

∫
R

f(x− z, y)g(x, y + z)
dz

z
.

There are no results for this model operator. The main difficulty is that
the singular operation p.v.(1/z) is simultaneously acting on the two different
variables x and y. The time-frequency decomposition makes also appear a
new phenomenon, mixing the two coordinates.

In order to understand first this new problem, we aim to study the following
operator:

T (f, g)(x, y) :=

∫ ∞

0

ψt,x[f ](x, y)ψt,y[g](x, y)
dt

t
,

where ψt,x and φt,y are usual convolutions in the x (or y) variable. This
operator is to H what the classical paraproduct is to the one dimensional
bilinear Hilbert transform. So to study H , we have first to understand this
new bilinear operator T , involving the problem of mixing the two coordinates.
This operator is the prototype of the singular operators corresponding to the
sixth and remaining open case in [6]. Note that T can be viewed as a limiting
(degenerate) case of some of the other cases (cases 1, 4, 5) in [6].

We emphasize that here, we do not prove any boundedness for such op-
erators. It seems that standard arguments (Littlewood–Paley and Calderón–
Zygmund theories) cannot be employed to prove one boundedness of this new
kind of paraproducts and a new approach should be required. However, we
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propose here an extension result (similar to what is known for classical para-
products): starting from one supposed boundedness, we then deduce other
continuities by making lower the Lebesgue exponents. More precisely, we will
prove the following result:

Theorem 2. Assume that T is bounded from Lp0(R2) × Lq0(R2) to
Lr0,∞(R2) for some exponents p0, q0 ∈ (1,∞) satisfying

1

r0
=

1

p0
+

1

q0
.

Then for all exponents p, q, r satisfying p ∈ [1, p0], q ∈ [1, q0] and

1

r0
<

1

r
=

1

p
+

1

q
≤ 2,

• T admits a bounded extension from Lp(R2)×Lq(R2) to Lr(R2) if p, q > 1;
• T admits a bounded extension from Lp(R2)× Lq(R2) to Lr,∞(R2) if p= 1

or/and q = 1.

We postpone the proof to the next section. Moreover, we will give some
comments concerning the dual operators of T too.

The proof relies on a fiber-wise Calderón–Zygmund decomposition. We
move the reader to [14] for a multiple frequencies Calderón–Zgymund decom-
position, well-adapted to multi-frequency inequalities. The fiber-wise decom-
position, presented here, can be seen as the analogue for the bi-dimensional
analysis. Moreover, we point out that Fefferman has already used a more
complicated fiber-wise Calderón–Zygmund decomposition in [7] to study the
double Hilbert transform.

2. The extension of boundedness result

The section is devoted to the proof of Theorem 2. By bilinear Marcinkiewicz
interpolation between weak type inequalities (see [8] and [10]), Theorem 2 is
reduced to the following proposition:

Proposition 3. Let assume that T is bounded from Lp(R2)× Lq(R2) to
Lr,∞(R2) for some exponents p≥ 1, q ≥ 1 and

1

r
=

1

p
+

1

q
.

Then

• if p > 1, T admits a bounded extension from L1(R2)×Lq(R2) to Ls,∞(R2)
with

1

s
= 1+

1

q
;
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• if q > 1, T admits a bounded extension from Lp(R2)×L1(R2) to Ls,∞(R2)
with

1

s
=

1

p
+ 1.

Proof. The paraproduct T is almost symmetric in f and g. The proof,
presented below, does not distinguish between ψ and φ and therefore by sym-
metry, we only prove the first claim for p > 1.

So assume that p > 1 and let us fix a function g, which can be assumed
normalized without loss of generality: ‖g‖Lq(R2) = 1.

Let us introduce a well-adapted dense subspace D of L1(R2): D is the set
of functions f ∈ L1(R2) such that there exist a finite sequence (f1

j )j of L1(R)
and a finite sequence of pairwise disjoint measurable sets (Ej)j of R verifying

(1) f(x, y) =
∑
j

f1
j (x)1Ej (y).

In fact, D corresponds to the tensor product L1(R)⊗L1(R).
We aim to prove that there exists a constant c such that for all α > 0 and

every function f ∈D
(2)

∣∣{(x, y) ∈R
2,

∣∣T (f, g)(x, y)∣∣ >α
}∣∣ ≤ cα−s‖f‖sL1(R2).

Using that set D is dense into L1(R2) and into L1(R2) ∩ Lp(R2), we de-
duce that T admits an extension which is bounded from L1(R2)×Lq(R2) to
Ls,∞(R2).

Aiming to prove (2), we fix α > 0 and a function f ∈ D. For every fixed
y ∈ R, by definition of D, f(·, y) is a L1(R)-function and so we can choose a
Calderón–Zygmund decomposition at the scale γ := αs‖f‖1−s

L1(R2) (see [2]). So

there exist functions by and atoms (ai,y)i supported on cubes Qi,y such that

• f(·, y) = by +
∑

i ai,y ;
• for all y, we have ‖by‖L1(R) ≤ ‖f(·, y)‖L1(R) and ‖by‖L∞(R) � γ;
• for all i, the atom ai,y has a vanishing mean value on Qi,y and

‖ai,y‖L1(Qi,y) � γ|Qi,y|;
• for all y,

∑
i |Qi,y| � γ−1‖f(·, y)‖L1(R).

Then, let us define b(x, y) := by(x) and a(x, y) :=
∑

i ai,y(x). It is easy to see
that b is in fact measurable in R

2. Indeed using decomposition (1) of f , we
can write

b(x, y) =
∑
j

b1j (x)1Ej (y),

where b1j is the “good part” of f1
j coming from its Calderón–Zygmund decom-

position.
So b is measurable and we have ‖b‖L∞(R2) � γ and ‖b‖L1(R2) ≤ ‖f‖L1(R2).

Thus by interpolation,

(3) ‖b‖Lp(R2) � γ1/p′‖f‖1/pL1(R2).
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By splitting, T (f, g) = T (b, g) + T (a, g), it suffices to study the two terms.
The first one can be bounded using the previous inequality (3) and the

assumed boundedness of T as follows:∣∣{(x, y) ∈R
2,

∣∣T (b, g)(x, y)∣∣ >α
}∣∣

≤ α−r
∥∥T (b, g)∥∥r

Lr,∞(R2)
� α−r‖b‖rLp(R2)

� α−rγr/p′‖f‖r/pL1(R2) � α−r+sr/p′‖f‖r/p+(1−s)r/p′

L1(R2)

� α−s‖f‖sL1(R2),

where we used that

1

s
− 1

r
=

1

p′
and so

sr

p′
= r− s.

So this term is acceptable according to (2).
Then, as usual we expect to have pointwise bounds of T (ai,y, g) outside the

ball 2Qi,y . So we have first to remove this set. This is possible since∣∣∣∣
{
(x, y), x ∈

⋃
i

2Qi,y

}∣∣∣∣ �
∫
R

∣∣∣∣
⋃
i

2Qi,y

∣∣∣∣dy � γ−1

∫
R

∥∥f(·, y)∥∥
L1(R)

dy

� γ−1‖f‖L1(R2) � α−s‖f‖s−1+1
L1(R2)

� α−s‖f‖sL1(R2).

It remains us to study the following term:

I :=

∣∣∣∣
{
(x, y), x ∈

(⋃
i

2Qi,y

)c

,
∣∣T (a, g)(x, y)∣∣ >α

}∣∣∣∣.
First, we use the specific structure of T to deduce

T (a, g)(x, y) =

∫ ∞

0

ψt,x[a](x, y)φt,y[g](x, y)
dt

t
(4)

=

∫ ∞

0

∑
i

ψt[ai,y](x)φt,y[g](x, y)
dt

t
.

Then fix y ∈R and take x ∈ (
⋃

i 2Qi,y)
c, we have to bound the right-hand side

of (4). We denote rQi,y for the radius of the ball Qi,y and My the Hardy–
Littlewood maximal function acting on the y-variable. Using the vanishing
mean value of ai,y and that φt,y is bounded by My , it comes with ci,y the
center of the ball Qi,y∣∣T (a, g)(x, y)∣∣

≤
(∫ ∞

0

∑
i

∫
Qi,y

∣∣ai,y(z)∣∣∣∣ψt(x− z)−ψt(x− ci,y)
∣∣dz dt

t

)
Myg(x, y)
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≤
(∫ ∞

0

∑
i

∫
Qi,y

∣∣ai,y(z)∣∣rQi,y

t2

(
1 +

|x− ci,y|
t

)−M

dz
dt

t

)
Myg(x, y)

≤
∑
i

‖ai,y‖L1(Qi,y)

rQi,y

|x− ci,y|2
Myg(x, y)

≤ γ
∑
i

|Qi,y|
rQi,y

|x− ci,y|2
Myg(x, y).

Consequently, it comes for x ∈ (
⋃

i 2Qi,y)
c

∣∣T (a, g)(x, y)∣∣ � γH(x, y)Myg(x, y),

with

H(x, y) :=
∑
i

|Qi,y|
rQi,y

|x− ci,y|2
1(2Qi,y)c(x).

Since the function f ∈ D can be decomposed with tensor products (see (1)),
the function H can also be written with tensor products which implies that
H is measurable. Since s−1 = 1 + q−1, Hölder inequality for weak Lebesgue
spaces yields:

I ≤ α−sγs‖H‖sL1,∞(R2)

∥∥My[g]
∥∥s

Lq,∞(R2)
.

Since q ≥ 1, My is of weak type (q, q) and since g is normalized in Lq(R2) we
have

I ≤ α−sγs‖H‖sL1,∞(R2) ≤ α−sγs‖H‖sL1(R2).

Moreover, for all y ∈R, we get∫
R

H(x, y)dx ≤
∑
i

|Qi,y|
∫
(2Qi,y)c

rQi,y

|x− ci,y|2
dx �

∑
i

|Qi,y|

� γ−1
∥∥f(·, y)∥∥

L1(R)
,

which yields ‖H‖L1(R2) � γ−1‖f‖L1(R2). Hence, we finally obtain that

I � α−sγs
(
γ−1‖f‖L1(R2)

)s
= α−s‖f‖sL1(R2).

That exactly corresponds to the desired estimate (2) for this term, which ends
the proof. �

Remark 1. The previous proof is based on a fiber-wise Calderón–Zygmund
decomposition for f ∈ L1(R2). We have worked for functions belonging to a
dense subspace, in order to get around technical problems of measurability.
Indeed for f ∈ L1(R2), we know that for almost every y ∈R, we can consider
the function f(·, y) ∈ L1(R). Applying the standard Calderón–Zygmund de-
composition, we obtain f(·, y) = by +ay . Then we define a global “good part”
of the function f , by defining b(x, y) := by(x) for almost every y ∈ R. But
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to compute estimates on b, it is important to first check that b is measur-
able in R

2. In general, this seems to be not obvious, it is related to prob-
lems involving measurable selections (in the stopping time argument of the
Calderón–Zygmund decomposition).

That is why, here we have preferred to work with specific functions f which
can be split into tensor products and then the measurability is easily obtained.

Having concluded the proof of our main result Theorem 2, we are now
interested in the dual operators of T . Let us compute the two dual operators
T ∗1 and T ∗2 (with respect to f or g), it comes:

T ∗1(h, g)(x, y) =

∫ ∞

0

ψt,x

[
hφt,y(g)

]
(x, y)

dt

t

and

T ∗2(f,h)(x, y) =

∫ ∞

0

φt,y

[
ψt,x(f)h

]
(x, y)

dt

t
.

As we have remarked during the previous proof for (4), we have used a
specific property of the operator T . More precisely, we have employed the
fact that to compute T (f, g)(x, y) requires only information on f(·, y) and not
on the whole function f (and similarly for g), in order that for all (x, y) ∈R

2

T (f, g)(x, y) := T
(
f(·, y), g(x, ·)

)
(x, y).

This fact is very important in the proof and allowed us to use the standard
Calderón–Zygmund decomposition. It is interesting to emphasize that this
property is not satisfied for the two dual operators T ∗1 and T ∗2. Indeed to
compute T ∗1(h, g)(x, y), we require information on the whole function g (since
we have the first operator φt,y in the y variable and then the second one ψt,x

in the x variable) and on the function h (we have just an operator ψt,x on the
x variable but a vanishing mean value of h in one of the two variables does
not bring an extra decay in order to repeat the previous arguments). So we
cannot reproduce the previous reasoning for the dual operators and we do not
know if such an extension result is true for them.

The operator T is the prototype operator of those described by the last
and sixth case in [6]. Moreover, we note that the operators appearing in the
cases 1, 4 and 5 of [6] do not satisfy this specific structure of T (like the
dual operators T ∗1 and T ∗2) too and so cannot be studied by this fiber-wise
Calderón-Zygmund decomposition.
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57 (1978). MR 0518170

[6] C. Demeter and C. Thiele, On the two dimensional Bilinear Hilbert Transform, Amer.
J. Math. 132(1) (2010), 201–256. MR 2597511

[7] C. Fefferman, Estimates for double Hilbert transforms, Studia Math. 44 (1972), 1–15.
MR 0312166

[8] L. Grafakos and N. Kalton, Some remarks on multilinear maps and interpolation,

Math. Ann. 319 (2001), 151–180. MR 1812822
[9] L. Grafakos and R. H. Torres, Multilinear Calderón–Zygmund theory, Adv. in Math.

165 (2002), 124–164. MR 1880324
[10] S. Janson, On interpolation of multilinear operators, Function spaces and applications,

Lecture Notes in Math., vol. 1302, Springer, Berlin, 1998, pp. 290–302. MR 0942274
[11] C. Kenig and E. Stein, Multilinear estimates and fractional integration, Math. Res.

Lett. 6 (1999), 1–15. MR 1682725
[12] M. Lacey and C. Thiele, Lp bounds for the bilinear Hilbert transform, 2< p<∞, Ann.

of Math. 146 (1997), 693–724. MR 1491450
[13] M. Lacey and C. Thiele, On Calderón’s conjecture, Ann. of Math. 149 (1999), 475–496.

MR 1689336
[14] F. Nazarov, R. Oberlin and C. Thiele, A Calderón–Zygmund decomposition for mul-

tiple frequencies and an application to an extension of a lemma of Bourgain, Math.
Res. Lett. 17(3) (2010), 529–545. MR 2653686

Frédéric Bernicot, Laboratoire Paul Painlevé, CNRS—Université Lille 1,
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