PARALLEL CALIBRATIONS AND MINIMAL SUBMANIFOLDS

COLLEEN ROBLES

Abstract

Given a parallel calibration $\varphi \in \Omega^{p}(M)$ on a Riemannian manifold M, I prove that the φ-critical submanifolds with nonzero critical value are minimal submanifolds. I also show that the φ-critical submanifolds are precisely the integral manifolds of a $\mathscr{C}^{\infty}(M)$-linear subspace $\mathscr{P} \subset \Omega^{p}(M)$. In particular, the calibrated submanifolds are necessarily integral submanifolds of the system. (Examples of parallel calibrations include the special Lagrangian calibration on Calabi-Yau manifolds, (co)associative calibrations on G_{2}-manifolds, and the Cayley calibration on $\operatorname{Spin}(7)$-manifolds.)

1. Introduction

1.1. Calibrated geometry. Let's begin by setting notation and reviewing (briefly) calibrated geometry. See [11] for a through introduction.

Let V be a real, n-dimensional vector space equipped with an inner product. Throughout $\left\{e_{1}, \ldots, e_{n}\right\} \subset V$ will denote a set of orthonormal vectors. Let

$$
\operatorname{Gr}_{o}(p, V):=\left\{e_{1} \wedge \cdots \wedge e_{p}\right\} \subset \wedge^{p} V
$$

denote the unit decomposable (or simple) p-vectors. Notice that $\operatorname{Gr}_{o}(p, V)$ is a double cover of the Grassmannian $\operatorname{Gr}(p, V)$ of p-planes in V. Given $\xi \in \operatorname{Gr}_{o}(p, V)$, let $[\xi] \in \operatorname{Gr}(p, V)$ denote the corresponding p-plane. I will abuse terminology by referring to elements of both $\operatorname{Gr}_{o}(p, V)$ and $\operatorname{Gr}(p, V)$ as p planes. (Properly, elements of $\operatorname{Gr}_{o}(p, V)$ are oriented p-planes.)

Let M be an n-dimensional Riemannian manifold. Let $\operatorname{Gr}(p, T M)$ denote the Grassmann bundle of tangent p-planes on M, and $\operatorname{Gr}_{o}(p, T M)$ the double
cover of $\operatorname{Gr}(p, T M)$ of decomposable unit p-vectors. Let $\Omega^{p}(M)$ denote the space of smooth p-forms on M.

Note that, given a p-form $\varphi \in \Omega^{p}(M)$ and $\xi=e_{1} \wedge \cdots \wedge e_{p} \in \operatorname{Gr}_{o}(p, T M)$, $\varphi(\xi):=\varphi\left(e_{1}, \ldots, e_{p}\right)$ is well defined. If φ is closed and $\varphi \leq 1$ on $\operatorname{Gr}_{o}(p, T M)$, then φ is a calibration. The condition that $\varphi \leq 1$ on $\operatorname{Gr}_{o}(p, T M)$ is often expressed as $\varphi_{\mid \xi} \leq \operatorname{vol}_{\mid \xi}$. Assume φ is a calibration. Let

$$
\operatorname{Gr}(\varphi):=\left\{\xi \in \operatorname{Gr}_{o}(p, T M) \mid \varphi(\xi)=1\right\}
$$

denote the set of (oriented) calibrated planes, and $\operatorname{Gr}(\varphi)_{x}$ the fibre over $x \in M$. An oriented p-dimensional submanifold $N \subset M$ is calibrated if $T_{x} N \in \operatorname{Gr}(\varphi)_{x}$, for all $x \in N$. That is, $\varphi_{\mid N}=\operatorname{vol}_{N}$. Compact calibrated submanifolds have the property that they are globally volume minimizing in their homology classes [11]. The first step in the identification or construction of calibrated submanifolds is the determination of $\operatorname{Gr}(\varphi)$. However, this is often a difficult problem, even in the case that $\phi \in \bigwedge^{p} V$ is a constant coefficient calibration on a vector space. See, for example, [3], [5], [12], [16].

Notice that elements of $\operatorname{Gr}(\varphi)_{x}$ are critical points of $\varphi_{x}: \operatorname{Gr}_{o}\left(p, T_{x} M\right) \rightarrow \mathbb{R}$. However, it is not the case that every critical point is an element of $\operatorname{Gr}(\varphi)_{x}$. (See Section 3.7 below.) Let $C(\varphi)_{x} \subset \operatorname{Gr}_{o}\left(p, T_{x} M\right)$ denote the set of critical points of φ_{x}, and $C(\varphi) \subset \operatorname{Gr}_{o}(p, T M)$ the associated sub-bundle. An oriented p-dimensional submanifold $N \subset M$ is φ-critical if $T_{x} N \subset C(\varphi)_{x}$, for all $x \in N$. While the calibrated submanifolds are prized as volume minimizers in their homology classes, the φ-critical submanifolds are also interesting. Unal showed that if the corresponding critical value is a local maximum, then the φ-critical submanifold is minimal [19, Theorem 2.1.2]. See also the work on Hong Van Le on the stability of minimal surfaces [14]. I will prove (Theorem 1.2): if φ is parallel, then the φ-critical submanifolds with nonzero critical value are minimal. I will also show that the φ-critical submanifolds are characterized by an exterior differential system \mathscr{P} (Theorem 1.1).
1.2. Contents. We begin in Section 2.1 with the simple case of a constant coefficient calibration $\phi \in \bigwedge^{p} V^{*}$. In Proposition 2.2, I identify the critical points $C(\phi) \supset \operatorname{Gr}(\phi)$ as the annihilator of a linear subspace $\Phi \subset \bigwedge^{p} V^{*}$. In the case that ϕ is invariant under a Lie subgroup $H \subset \mathrm{O}(V), \Phi$ is a H submodule of $\bigwedge^{p} V^{*}$ (Lemma 3.1). (Of course, every ϕ is invariant under the trivial group $\{\operatorname{Id}\} \subset \mathrm{O}(V)$.) Several examples are discussed in Section 3, and a vector-product variation of Proposition 2.2 is given in Proposition 3.4.

In Section 4, Proposition 2.2 is generalized to a parallel calibrations on a connected, n-dimensional, Riemannian manifold M^{n}. Given an n-dimensional H-manifold M, a H-invariant $\phi \in \bigwedge^{p} V^{*}$ naturally defines a parallel p-form φ on M. Conversely, every parallel p-form φ on a Riemannian manifold arises in this fashion. (See Section 4.3 for a description of the construction.) As a parallel form, φ is a priori closed and thus a calibration on M. Similarly, Φ
defines a sub-bundle $\Phi_{M} \subset \bigwedge^{p} T^{*} M$. Let $\mathscr{P} \subset \Omega^{p}(M)$ denote smooth sections of Φ_{M}. A p-dimensional submanifold $N^{p} \subset M$ is an integral submanifold of \mathscr{P} if $\mathscr{P}_{\mid N}=\{0\}$.

Theorem 1.1. Assume that M^{n} is a connected Riemannian manifold, and φ a parallel calibration. A submanifold N^{p} is φ-critical if and only if N is an integral manifold of \mathscr{P}. In particular, every calibrated submanifold of M is an integral manifold of \mathscr{P}.

Proposition 3.4 (the vector-product variant) easily generalizes to give an alternative formulation of the φ-critical submanifolds as those submanifolds N with the property that $T_{x} N$ is closed under an alternating $(p-1)$-fold vector product $\rho: \bigwedge^{p-1} T M \rightarrow T M$.

If $N \subset M$ is φ-critical, then $\varphi_{\mid N}=\varphi_{o} \operatorname{vol}_{N}$, where φ_{o} is a constant. Refer to this constant as the critical value of φ on N.

Theorem 1.2. Assume that M is a Riemannian manifold, $\varphi \in \Omega^{p}(M) a$ parallel calibration, and $N \subset M$ a φ-critical submanifold. If the critical value of φ on N is nonzero, then N is a minimal submanifold of M.

Theorems 1.1 and 1.2 are proven in Sections 4.3 and 4.4, respectively.
Finally in Section 5 it is shown that the ideal $\mathscr{I} \subset \Omega(M)$ algebraically generated by \mathscr{P} is differentially closed and that, in general, the system fails to be involutive.

Notation. Fix index ranges

$$
i, j \in\{1, \ldots, n\}, \quad a, b \in\{1, \ldots, p\}, \quad s, t \in\{p+1, \ldots, n\} .
$$

The summation convention holds: when an index appears as both a subscript and superscript in an expression, it is summed over.

2. The infinitesimal picture

2.1. The basics. Let $\phi \in \wedge^{p} V^{*}$ and $\xi=e_{1} \wedge \cdots \wedge e_{p} \in \operatorname{Gr}_{o}(p, V)$. Then $\phi(\xi)=\phi\left(e_{1}, \ldots, e_{p}\right)$ is a well-defined function on $\operatorname{Gr}_{o}(p, V)$. Fix a nonzero $\phi \in \Lambda^{p} V^{*}$, with the property that $\max _{\operatorname{Gr}_{o}(p, V)} \phi=1$. The set of (oriented) calibrated p-planes is

$$
\operatorname{Gr}(\phi):=\left\{\xi \in \operatorname{Gr}_{o}(p, V) \mid \phi(\xi)=1\right\}
$$

Let $C(\phi) \subset \operatorname{Gr}_{o}(p, V)$ denote the critical points of ϕ. Then

$$
\operatorname{Gr}(\phi) \subset C(\phi)
$$

Let \mathcal{F}_{V} denote the set of orthonormal bases (or frames) of V. Given $e=$ $\left(e_{1}, \ldots, e_{n}\right) \in \mathcal{F}_{V}$, let $e^{*}=\left(e^{1}, \ldots, e^{n}\right)$ denote the dual coframe. Then

$$
\phi=\phi_{i_{1} \cdots i_{p}} e^{i_{1}} \wedge \cdots \wedge e^{i_{p}}
$$

uniquely determines functions $\phi_{i_{1} \cdots i_{p}}$, skew-symmetric in the indices, on \mathcal{F}_{V}. Note that $\left|\phi_{i_{1} \cdots i_{p}}\right| \leq 1$, and $\xi=e_{i_{1}} \wedge \cdots \wedge e_{i_{p}} \in \operatorname{Gr}(\phi)$ if and only if equality holds.

Next we compute $\mathrm{d} \phi_{\mid \xi}$. Let $\mathrm{O}(V)$ denote the Lie group of linear transformations $V \rightarrow V$ preserving the inner product, and let $\mathfrak{o}(V)$ denote its Lie algebra. Let θ denote the $\mathfrak{o}(V)$-valued Maurer-Cartan form on \mathcal{F}_{V} : at $e \in \mathcal{F}_{V}, \theta_{e}=\theta_{k}^{j} e_{j} \otimes e^{k}$, where the coefficient 1-forms $\theta_{k}^{j}=-\theta_{j}^{k}$ are defined by $\mathrm{d} e_{j}=\theta_{j}^{k} e_{k}$. Then $\left\{\theta_{j}^{i} \mid i<j\right\}$ is a basis for the 1 -forms on \mathcal{F}_{V}.

If $\xi=e_{i_{1}} \wedge \cdots \wedge e_{i_{p}}$ is viewed as a map $\mathcal{F}_{V} \rightarrow \operatorname{Gr}_{o}(p, V)$, then

$$
\mathrm{d} \xi=\sum_{1 \leq a \leq p} e_{i_{1}} \wedge \cdots \wedge e_{i_{a-1}} \wedge \theta_{i_{a}}^{k} e_{k} \wedge e_{i_{a+1}} \wedge \cdots \wedge e_{i_{p}}
$$

Thus

$$
\begin{aligned}
\mathrm{d} \phi_{\xi} & =\mathrm{d} \phi\left(e_{i_{1}}, \ldots, e_{i_{p}}\right) \\
& =\sum_{1 \leq a \leq p} \phi\left(e_{i_{1}}, \ldots, e_{i_{a-1}}, \theta_{i_{a}}^{k} e_{k}, e_{i_{a+1}}, \ldots, e_{i_{p}}\right) \\
& =\sum_{1 \leq a \leq p} \theta_{i_{a}}^{k} \phi\left(e_{i_{1}}, \ldots, e_{i_{a-1}}, e_{k}, e_{i_{a+1}}, \ldots, e_{i_{p}}\right) \\
& =\sum_{1 \leq a \leq p} \phi_{i_{1} \cdots i_{a-1} k i_{a+1} \cdots i_{p}} \theta_{i_{a}}^{k} .
\end{aligned}
$$

The skew-symmetry of ϕ and θ imply that $\phi_{i_{1} \cdots i_{a-1} k i_{a+1} \cdots i_{p}} \theta_{i_{a}}^{k}$ vanishes if $k \in\left\{i_{1}, \ldots, i_{p}\right\}$. The $\left\{\theta_{i_{a}}^{k} \mid 1 \leq a \leq p, k \notin\left\{i_{1}, \ldots, i_{p}\right\}\right\}$ are linearly independent on \mathcal{F}_{V}, and may be naturally identified with linearly independent 1 -forms on $\mathrm{Gr}_{\mathrm{o}}(p, V)$ at ξ. Consequently, $\mathrm{d} \phi_{\xi}=0$, and
$\xi=e_{i_{1}} \wedge \cdots \wedge e_{i_{p}}$ is a critical point
if and only if $\phi_{i_{1} \cdots i_{a-1} k i_{a+1} \cdots i_{p}} \theta_{i_{a}}^{k}=0$.
An equivalent, index-free formulation of this observation is given by the lemma below.

Lemma 2.1. A p-plane ξ is a critical point of ϕ if and only if $(v\lrcorner \phi)_{\mid \xi}=0$ for all $v \in \xi^{\perp}$.

Remark. The lemma was first observed by Harvey and Lawson (cf. Remark on page 78 of [11]), and is often referred to as the First Cousin Principle.

The lemma allows us to characterize the critical points $\xi \in \operatorname{Gr}_{o}(p, V)$ of ϕ as the p-planes on which a linear subspace $\Phi \subset \bigwedge^{p} V^{*}$ vanishes. Forget, for a moment, that θ is a 1 -form on \mathcal{F}_{V} and regard it simply as an element of $\mathfrak{o}(V)$. Let $\theta . \phi$ denote the action of θ on ϕ. The action yields a map $\mathrm{P}: \mathfrak{o}(V) \rightarrow \bigwedge^{p} V^{*}$ sending $\theta \mapsto \theta . \phi$. Define

$$
\Phi:=\mathrm{P}(\mathfrak{o}(V)) \subset \bigwedge^{p} V^{*}
$$

 this observation, (2.1), and the fact that the Maurer-Cartan form $\theta_{e}: T_{e} \mathcal{F}_{V} \rightarrow$ $\mathfrak{o}(V)$ is a linear isomorphism, we deduce the following.

Proposition 2.2. The set of ϕ-critical planes is $C(\phi)=\operatorname{Gr}_{o}(p, V) \cap$ $\operatorname{Ann}(\Phi)$.

REmark. The map P is the restriction of the map $\lambda_{\phi}: \operatorname{End}(V) \rightarrow \bigwedge^{p} V^{*}$ in [10] to $\mathfrak{o}(V)$. Corollary 2.6 of [10] is precisely the observation that elements of Φ vanish on $\operatorname{Gr}(\phi) \subset C(\phi)$. Indeed, Proposition 2.2 above follows from Proposition A. 4 of that paper. This is seen by observing that if $A \in \mathfrak{o}(V) \subset$ $\operatorname{End}(V)$, then $\operatorname{tr}_{\xi} A=0$. Then their (A.2) reads $\lambda_{\phi}(A)(\xi)=\phi\left(D_{\widetilde{A}} \xi\right)$. It now suffices to note that their $\left\{\lambda_{\phi}(A) \mid A \in \mathfrak{o}(V)\right\}$ is our Φ, and that $\left\{D_{\widetilde{A}} \xi \mid A \in\right.$ $\mathfrak{o}(V)\}=T_{\xi} \operatorname{Gr}_{o}(p, V)$.

REmARK. Each $\phi \in \bigwedge^{p} V^{*}$ naturally determines an alternating ($p-1$)-fold vector product ρ on V. An equivalent formulation of Proposition 2.2 is given by Proposition 3.4 which asserts that $\xi \in C(\phi)$ and only if $[\xi] \in \operatorname{Gr}(p, V)$ is ρ-closed.

3. Examples and the product characterization

3.1. Invariant forms. Let G denote the stabilizer of ϕ in $\mathrm{O}(V)$. Many of the calibrations that we are interested in have a nontrivial stabilizer; but, of course, all statements hold for trivial G. Observe that Φ is a \mathfrak{g}-module. This is seen as follows. Let \mathfrak{g} denote the Lie algebra of G. As a \mathfrak{g}-module $\mathfrak{o}(V)$ admits a decomposition of the form $\mathfrak{o}(V)=\mathfrak{g} \oplus \mathfrak{g}^{\perp}$. By definition, the kernel of P is \mathfrak{g}. In particular, $\Phi=\mathrm{P}\left(\mathfrak{g}^{\perp}\right)$. It is straightforward to check that P is G-equivariant, and we have the following lemma.

Lemma 3.1. The subspace $\Phi=\mathrm{P}\left(\mathfrak{g}^{\perp}\right) \subset \bigwedge^{p} V^{*}$ is isomorphic to \mathfrak{g}^{\perp} as a G-module.

Below I identify Φ for some well-known examples. The calibrations ϕ and characterizations of $\operatorname{Gr}(\phi)$ in Sections 3.2-3.5 were introduced in [11].
3.2. Associative calibration. Consider the standard action of the exceptional $G=G_{2}$ on the imaginary octonions $V=\operatorname{Im} \mathbb{O}=\mathbb{R}^{7}$. As a G_{2}-module the third exterior power decomposes as $\bigwedge^{3} V^{*}=\mathbb{R} \oplus V_{1,0}^{3} \oplus V_{2,0}^{3}$. (Cf. [6, Lemma 3.2] or [1, p. 542].) Here $V_{1,0}^{3}=V$ as G_{2}-modules. The trivial subrepresentation $\mathbb{R} \subset \bigwedge^{3} V^{*}$ is spanned by an invariant 3-form ϕ, the associative calibration. It is known that $\xi \in \operatorname{Gr}(\phi)$ if and only if the forms $V_{1,0}^{3}=\left\{*(\phi \wedge \alpha) \mid \alpha \in V^{*}\right\}$ vanish on $\xi[11$, Corollary 1.7]. Here $*(\phi \wedge \alpha)$ denotes the Hodge star operation on the 4 -form $\phi \wedge \alpha$. As $\Phi=V_{1,0}^{3}$, we have $C(\phi)=\operatorname{Gr}(\phi)$.
3.3. Coassociative calibration. Again we consider the standard action of G_{2} on $V=\operatorname{Im} \mathbb{O}=V_{1,0}$. The Hodge star commutes with the G_{2} action. So the fourth exterior power decomposes as $\Lambda^{4} V^{*}=V_{0,0}^{4} \oplus V_{1,0}^{4} \oplus V_{2,0}^{4}$, with $V_{a, b}^{4}=$ $* V_{a, b}^{3}$. The trivial subrepresentation is spanned by the invariant coassociative calibration $* \phi$. A 4-plane ξ is calibrated by $* \phi$ if and only if $\phi_{\mid \xi} \equiv 0[11$, Corollary 1.19]. Equivalently, the 4-forms of $V_{1,0}^{4}=\left\{\phi \wedge \alpha \mid \alpha \in V^{*}\right\}$ vanish on ξ. As $\Phi=V_{1,0}^{4}$, we again have $C(\phi)=\operatorname{Gr}(\phi)$.
3.4. Cayley calibration. Consider the standard action of $G=B_{3}=$ $\operatorname{Spin}(7) \subset \mathrm{SO}(8)$ on the octonions $V=\mathbb{O}=\mathbb{R}^{8}$. The fourth exterior power decomposes as $\bigwedge^{4} V^{*}=V_{0,0,0}^{4} \oplus V_{1,0,0}^{4} \oplus V_{2,0,0}^{4} \oplus V_{0,0,2}^{4}$. (Cf. [1, p. 548] or [7, Lemma 3.3].) The trivial subrepresentation $V_{0,0,0}^{4}$ is spanned by the invariant, self-dual Cayley 4 -form $\phi=* \phi$. It is known that $\xi \in \operatorname{Gr}(\phi)$ if and only if the forms $V_{1,0,0}^{4}=\left\{\alpha . \phi \mid \alpha \in V_{1,0,0}^{2}\right\}$ vanish on ξ [11, Proposition 1.25]; here $V_{1,0,0}^{2}=\left\{\alpha \in \bigwedge^{2} V^{*} \mid *(\alpha \wedge \phi)=3 \alpha\right\} \simeq \mathfrak{g}^{\perp}$. As $\Phi=V_{1,0,0}^{4}$, we have $C(\phi)=\operatorname{Gr}(\phi)$.
3.5. Special Lagrangian calibration. Regard $V:=\mathbb{C}^{m}$ as a real vector space. Given the standard coordinates $z=x+\mathrm{i} y$,

$$
V^{*}=\operatorname{span}_{\mathbb{R}}\left\{\frac{1}{2}(\mathrm{~d} z+\mathrm{d} \bar{z}),-\frac{\mathrm{i}}{2}(\mathrm{~d} z-\mathrm{d} \bar{z})\right\} .
$$

Set

$$
\begin{aligned}
\sigma & =-\frac{\mathrm{i}}{2}\left(\mathrm{~d} z^{1} \wedge \mathrm{~d} \bar{z}^{1}+\cdots+\mathrm{d} z^{m} \wedge \mathrm{~d} \bar{z}^{m}\right) \\
\Upsilon & =\mathrm{d} z^{1} \wedge \cdots \wedge \mathrm{~d} z^{m}
\end{aligned}
$$

The special Lagrangian calibration is $\operatorname{Re} \Upsilon$. An m-dimensional submanifold $i: M \rightarrow V$ is calibrated if and only if $i^{*} \sigma=0=i^{*} \operatorname{Im} \Upsilon$. (Recall that $i^{*} \sigma=0$ characterizes the m-dimensional Lagrangian submanifolds.)

The special Lagrangian example is distinct from those above in that

$$
\mathfrak{s u}(m)^{\perp}=\mathbb{R} \oplus W \subset \wedge^{2} V
$$

is reducible as an $\mathfrak{s u}(m)$-module. The trivial subrepresentation is spanned by σ.

The $\mathfrak{s u}(m)$ module Φ decomposes as $\Phi_{0} \oplus \Phi_{W}$, where $\Phi_{0}=\operatorname{span}_{\mathbb{R}}\{\operatorname{Im} \Upsilon\}$ and $\Phi_{W}=W .(\operatorname{Re} \Upsilon)$. The elements of the sub-module Φ_{W} may be described as follows. Let $J \subset\{1, \ldots, m\}$ be a multi-index of length $|J|=\ell$, and $\mathrm{d} z^{J}:=$ $d z^{j_{1}} \wedge \cdots \wedge \mathrm{~d} z^{j_{\ell}}$. The reader may confirm that $\Phi_{W}=\operatorname{span}_{\mathbb{R}}\left\{\operatorname{Red} z^{J} \wedge \sigma\right.$, $\left.\operatorname{Im} \mathrm{d} z^{J} \wedge \sigma:|J|=m-2\right\}$.

In the remark of [11, p. 90] Harvey and Lawson showed that an m-plane ζ is Lagrangian if and only if the forms $\Psi:=\left\{\mathrm{d} z^{J} \wedge \sigma^{p}: 2 p+|J|=m, p>\right.$ $0\} \supset \Phi_{W}$ vanish on ζ. So $\pm \xi \in \operatorname{Gr}(\operatorname{Re} \Upsilon)$ if and only if $\operatorname{Im} \Upsilon_{\mid \xi}=0=\Psi_{\mid \xi}$, while $\xi \in C(\operatorname{Re} \Upsilon)$ if and only if $\operatorname{Im} \Upsilon_{\mid \xi}=0=\Phi_{W \mid \xi}$. So it seems a priori that a
critical ξ need not be calibrated. Nonetheless, Zhou [20, Theorem 3.1] has shown that $\pm \operatorname{Gr}(\operatorname{Re} \Upsilon)=C(\operatorname{Re} \Upsilon)$.
3.6. Squared spinors. In [4], Dadok and Harvey construct calibrations $\phi \in \Lambda^{4 p} V^{*}$ on vector spaces of dimension $n=8 m$ by squaring spinors. Let me assume the notation of that paper: in particular, $\mathbb{P}=\mathbb{S}^{+} \oplus \mathbb{S}^{-}$is the decomposition of the space of pinors into positive and negative spinors, ε an inner product on \mathbb{P}, and $\mathrm{Cl}(V) \simeq \operatorname{End}_{\mathbb{R}}(\mathbb{P})$ the Clifford algebra of V. Given $x, y, z \in \mathbb{P}, x \circ y \in \operatorname{End}_{\mathbb{R}}(\mathbb{P})$ is the linear map $z \mapsto \varepsilon(y, z) x$.

Given a unit $x \in \mathbb{S}^{+}, \underline{\phi}=16^{m} x \circ x \in \operatorname{End}_{\mathbb{R}}\left(\mathbb{S}^{+}\right) \subset \operatorname{End}_{\mathbb{R}}(\mathbb{P})$ may be viewed as an element of $\Lambda V^{*} \simeq \overline{\mathrm{Cl}}(V)$. Let $\phi_{k} \in \bigwedge^{k} V^{*}$ be the degree k component of $\underline{\phi}$. Each ϕ_{k} is a calibration, and ϕ_{k} vanishes unless $k=4 p$. (Also, $\phi_{0}=1$ and $\phi_{n}=\mathrm{vol}_{V}$.) The Cayley calibration of Section 3.4 is an example of such a calibration; see [4, Proposition 3.2].

Given such a calibration $\phi=\phi_{4 p}$, Dadok and Harvey construct $4 p$-forms $\Psi_{1}, \ldots, \Psi_{N}, N=\frac{1}{2}(16)^{m}-1$, that characterize $\operatorname{Gr}(\phi)$; that is, $\xi \in \operatorname{Gr}(\phi)$ if and only if $\Psi_{j}(\xi)=0$ [4, Theorem 1.1].

Lemma 3.2. The span of the Ψ_{j} is our Φ. In particular, $C(\phi)=\operatorname{Gr}(\phi)$.
Proof. Continuing to borrow the notation of [4], the proof may be sketched as follows. Complete $x=x_{0}$ to an orthogonal basis $\left\{x_{0}, x_{1}, \ldots, x_{N}\right\}$ of \mathbb{S}^{+}. Then Ψ_{j} is the degree $4 p$ component of $16^{m} x_{j} \circ x_{0} \in \operatorname{End}_{\mathbb{R}}\left(\mathbb{S}^{+}\right) \subset \wedge V^{*}$. Our Φ is spanned by γ_{j}, the degree $4 p$ component of $16^{m}\left(x_{j} \circ x_{0}+x_{0} \circ x_{j}\right)$. Let $\langle x \circ y, \xi\rangle$ denote the extension of the inner product on V to $\operatorname{End}_{\mathbb{R}}(\mathbb{P}) \simeq$ $\mathrm{Cl}(V) \simeq \wedge V^{*}$. (See [4].) Given $\xi \in \operatorname{Gr}_{o}(4 p, V)$,

$$
\begin{aligned}
\Psi_{j}(\xi) & =16^{m}\left\langle x_{j} \circ x_{0}, \xi\right\rangle \\
\gamma_{j}(\xi) & =16^{m}\left\langle x_{j} \circ x_{0}+x_{0} \circ x_{j}, \xi\right\rangle .
\end{aligned}
$$

To see that $\Phi=\operatorname{span}\left\{\Psi_{1}, \ldots, \Psi_{N}\right\}$ it suffices to note that

$$
16^{m}\left\langle x_{0} \circ x_{j}, \xi\right\rangle=\varepsilon\left(x_{0}, \xi x_{j}\right)=\varepsilon\left(x_{j}, \xi x_{0}\right)=16^{m}\left\langle x_{j} \circ x_{0}, \xi\right\rangle,
$$

when $\xi \in \Lambda^{4 p} V^{*}$. Hence $\gamma_{j}=2 \Psi_{j}$.
REmARK. Zhou showed that $C(\phi)=\operatorname{Gr}(\phi)$ for many well-known calibrations [20]. As the following example illustrates, this need not be the case.
3.7. Cartan 3 -form on \mathfrak{g}. Let G be a compact simple Lie group with Lie algebra \mathfrak{g}. Set $V=\mathfrak{g}$ and consider the adjoint action. Every simple Lie algebra admits an (nonzero) invariant 3 -form, the Cartan form ϕ, defined as follows. Given $u, v \in \mathfrak{g}$, let $[u, v] \in \mathfrak{g}$ and $\langle u, v\rangle \in \mathbb{R}$ denote the Lie bracket and invariant inner product, respectively. Then $\phi(u, v, w)=c\langle u,[v, w]\rangle$, with $\frac{1}{c}$ the length of a highest root δ. It is immediate from Lemma 2.1 that ξ is a critical point if and only if ξ is a subalgebra of \mathfrak{g}.

Proposition 3.3. A 3-plane ξ is ϕ-critical if and only if it is a subalgebra of \mathfrak{g}.

Remark. The proposition generalizes to arbitrary ϕ. See Proposition 3.4.
The $\mathfrak{s u}(2)^{\prime} s$ in $G(3, \mathfrak{g})$ corresponding to a highest root all lie in the same $\operatorname{Ad}(G)$-orbit and Tasaki [17] showed that this orbit is $\operatorname{Gr}(\phi)$. (Thi [18] had observed that the corresponding $\mathrm{SU}(2)$ are volume minimizing in their homology class in the case that $G=\operatorname{SU}(n)$.) If the rank of \mathfrak{g} is greater than 1 , then \mathfrak{g} contains 3-dimensional subalgebras that are not associated to a highest root. Thus, $\operatorname{Gr}(\phi) \varsubsetneqq C(\phi)$. More generally, Hông Vân Lê [15] has introduced the notion of a manifold admitting a Cartan 3 -form, and investigated the algebraic types of these structures.

Remark. The quaternionic calibration on \mathbb{H}^{n} also satisfies $\operatorname{Gr}(\phi) \varsubsetneqq C(\phi)$; see [19] for details.
3.8. Product version of Proposition 2.2. Proposition 3.3 asserts that a 3 -plane ξ is ϕ-critical, ϕ the Cartan 3-form, if and only if ξ is closed under the Lie bracket. This is merely a rephrasing of Proposition 2.2, and an analogous statement holds for any calibration.

Given a p-form $\phi \in \bigwedge^{p} V^{*}$, define a $(p-1)$-fold alternating vector product ρ on V by

$$
\begin{equation*}
\phi\left(u, v_{2}, \ldots, v_{p}\right)=:\left\langle u, \rho\left(v_{2}, \ldots, v_{p}\right)\right\rangle \tag{3.1}
\end{equation*}
$$

Example. In the case that $V=\mathfrak{g}$ and ϕ is the Cartan 3 -form, ρ is a multiple of the Lie bracket.

The following proposition is a reformulation of Lemma 2.1.
Proposition 3.4. Let $\phi \in \bigwedge^{p} V^{*}$, and let ρ denote the associated $(p-1)$ fold alternating product defined in (3.1). Then a p-plane $\xi \in \operatorname{Gr}_{o}(p, V)$ is ϕ-critical if and only if ξ is ρ-closed.

Example. When $V=\mathbb{O}$ and ϕ is the Cayley calibration, then ρ is a multiple of the triple cross product. See [11, Section IV.1.C] where it is shown that a 4-plane is Cayley if and only if it is closed under the triple cross product.

Note that

$$
\begin{equation*}
\rho\left(v_{2}, \ldots, v_{p}\right) \text { is orthogonal to } v_{2}, \ldots, v_{p} \tag{3.2}
\end{equation*}
$$

In particular, ρ may be viewed as a generalization of Gray's vector cross product, satisfying [8, (2.1)] but not necessarily [8, (2.2)].

Assume that $\xi=e_{1} \wedge \cdots \wedge e_{p} \in C(\phi)$. Then (3.2) and Proposition 3.4 imply $\rho\left(e_{2}, \ldots, e_{p}\right)=\phi(\xi) e_{1}$. This yields the following.

Corollary 3.5. Let $\xi \in \operatorname{Gr}_{o}(p, V)$. The product ρ vanishes on $[\xi] \in \operatorname{Gr}(p$, $V)$ if and only if $\xi \in C(\phi)$ and $\phi(\xi)=0$.

4. Parallel calibrations

4.1. Orthonormal coframes on \boldsymbol{M}. Let V be an n-dimensional Euclidean vector space. Let M be an n-dimensional connected Riemannian manifold, and let $\pi: \mathcal{F} \rightarrow M$ denote the bundle of orthogonal coframes. Given $x \in M$, the elements of the fibre $\pi^{-1}(x)$ are the linear isometries $u: T_{x} M \rightarrow V$. Given $g \in \mathrm{O}(V)$, the right-action $u \cdot g:=g^{-1} \circ u$ makes \mathcal{F} a principle right $\mathrm{O}(V)$ bundle.

The canonical V-valued 1-form ω on \mathcal{F} is defined by

$$
\omega_{u}(v):=u\left(\pi_{*} v\right)
$$

$v \in T_{u} \mathcal{F}$. Let ϑ denote the unique torsion-free, $\mathfrak{o}(V)$-valued connection 1-form on \mathcal{F} (the Levi-Civita connection form). Fix an orthonormal basis $\left\{\mathrm{v}_{1}, \ldots, \mathrm{v}_{n}\right\}$ of V. Then we may define 1 -forms ω^{i} on \mathcal{F} by

$$
\omega_{u}=: \omega_{u}^{i} v_{i}
$$

Let $\mathrm{v}^{1}, \ldots, \mathrm{v}^{n}$ denote the dual basis of V^{*}, and define ϑ_{j}^{i} by $\vartheta=\vartheta_{j}^{i} \mathrm{v}_{i} \otimes \mathrm{v}^{j}$. Then

$$
\vartheta_{j}^{i}+\vartheta_{i}^{j}=0 \quad \text { and } \quad \mathrm{d} \omega^{i}=-\vartheta_{j}^{i} \wedge \omega^{j} .
$$

Given $u \in \mathcal{F}$, let $\left\{e_{1}, \ldots, e_{n}\right\}, e_{i}=e_{i}(u):=u^{-1}\left(\mathrm{v}_{i}\right)$, denote the corresponding orthonormal basis of $T_{x} M$.
4.2. \boldsymbol{H}-manifolds. Suppose $H \subset \mathrm{O}(V)$ is a Lie subgroup. If the bundle of orthogonal coframes over $\mathcal{F} \rightarrow M$ admits a sub-bundle $\mathcal{E} \rightarrow M$ with fibre group H, then we say M carries a H-structure. The H-structure is torsionfree if \mathcal{E} is preserved under parallel transport by the Levi-Civita connection in \mathcal{F}. In this case, we say M is a H-manifold.

When pulled-back to \mathcal{E}, the forms ω^{i} remain linearly independent, but ϑ takes values in the Lie algebra $\mathfrak{h} \subset \mathfrak{o}(V)$ of H.
4.3. The construction of φ and Φ_{M}. I now prove Theorem 1.1. Assume that M is a H-manifold. Let $\pi_{*}: T_{u} \mathcal{E} \rightarrow T_{x} M$ denote the differential of $\pi: \mathcal{E} \rightarrow M$. Any $\phi \in \bigwedge^{p} V^{*}$ induces a p-form φ on \mathcal{E} by $\varphi_{u}\left(v_{1}, \ldots, v_{p}\right)=$ $\phi\left(\omega_{u}\left(v_{1}\right), \ldots, \omega_{u}\left(v_{p}\right)\right)$. Assume ϕ is H-invariant. Then φ descends to a welldefined p-form on M. Since $\mathcal{E} \subset \mathcal{F}$ is preserved under parallel transport, φ is parallel and therefore closed. Conversely, every parallel p-form φ arises in such a fashion: fix $x_{o} \in M$, and take $V=T_{x_{o}} M$ and $\phi=\varphi_{x_{o}}$.

Assume that $\max _{\operatorname{Gr}_{o}(p, V)} \phi=1$. Then φ is a calibration on M.
Since H is a subgroup of the stabilizer G of ϕ, Lemma 3.1 implies $\Phi \subset$ $\bigwedge^{p} V^{*}$ is a H-module. It follows that Φ defines a sub-bundle $\Phi_{M} \subset \bigwedge^{p} T^{*} M$. Explicitly, given $u \in \mathcal{E}_{x}, \Phi_{M, x}:=\left(u^{-1}\right)^{*}(\Phi) \subset \bigwedge^{p} T_{x}^{*} M$. The fact that Φ is an H-module implies that the definition of $\Phi_{M, x}$ is independent of our choice of $u \in \mathcal{E}_{x}$.

Let $\mathscr{P} \subset \Omega^{p}(M)$ denote space of smooth sections of Φ_{M}. Theorem 1.1 now follows from Proposition 2.2.

Remark. Note that Proposition 3.4 also extends to parallel calibrations in a straightforward manner.
4.4. Proof of Theorem 1.2. Recall the notation of Section 4.1; in particular the framing $e=e(u)$ associated to $u \in \mathcal{F}$. Given a p-form $\psi \in \Omega^{p}(M)$, define functions $\psi_{i_{1} \cdots i_{p}}: \mathcal{F} \rightarrow \mathbb{R}$ by $\psi_{i_{1} \cdots i_{p}}(u):=\psi\left(e_{i_{1}}, \ldots, e_{i_{p}}\right)$. The fact that φ is parallel implies

$$
\begin{equation*}
\mathrm{d} \varphi_{i_{1} \cdots i_{p}}=(\vartheta . \varphi)_{i_{1} \cdots i_{p}}, \tag{4.1}
\end{equation*}
$$

where $\vartheta . \varphi$ denotes the $\mathfrak{o}(n)$-action of ϑ on φ.
The following notation will be convenient. Let $\left\{i_{1}, \ldots, i_{m}\right\} \subset\{1, \ldots, n\}$ and $\left\{a_{1}, \ldots, a_{m}\right\} \subset\{1, \ldots, p\}$. If the $\left\{a_{1}, \ldots, a_{m}\right\}$ are pairwise distinct, then let $\psi_{i_{1} \cdots i_{m}}^{a_{1} \cdots a_{m}}$ denote the function obtained from $\psi_{12 \ldots p}$ by replacing the indices a_{ℓ} with $i_{\ell}, 1 \leq \ell \leq m$. Otherwise, $\psi_{i_{1} \cdots i_{m}}^{a_{1} \cdots a_{m}}=0$. For example, $\psi_{s}^{2}=\psi_{1 s 3 \cdots p}$ and $\psi_{s t}^{13}=\psi_{s 2 t 4 \cdots p}$. Note that $\psi_{i_{1} \cdots i_{m}}^{a_{1} \cdots a_{m}}$ is skew-symmetric in both the upper indices and the lower indices; for example, $\psi_{r s t}^{a b c}=-\psi_{r s t}^{b a c}=-\psi_{t s r}^{a b c}$.

Define

$$
\mathcal{C}:=\left\{u \in \mathcal{F} \mid e_{1} \wedge \cdots \wedge e_{p} \in C\left(\varphi_{x}\right), x=\pi(u), e=e(u)\right\} .
$$

It is a consequence of Lemma 2.1 that

$$
\mathcal{C}=\left\{u \in \mathcal{F} \mid \varphi_{s}^{a}(u)=0 \forall 1 \leq a \leq p<s \leq n\right\} .
$$

Given a p-dimensional submanifold $N \subset M$, a local adapted framing of M on N is a section $\sigma: U \rightarrow \mathcal{F}$, defined on an open subset $U \subset N$ with the property that $\operatorname{span}\left\{e_{1}(x), \ldots, e_{p}(x)\right\}=T_{x} N \subset T_{x} M, e_{a}(x):=e_{a} \circ \sigma(x)$, for all $x \in U$. When pulled-back to $\sigma(U)$,

$$
\begin{equation*}
\omega^{s}=0 \quad \forall p<s \leq n \quad \text { and } \quad \omega^{1} \wedge \cdots \wedge \omega^{p} \neq 0 \tag{4.2}
\end{equation*}
$$

Conversely every p-dimensional integral submanifold $\tilde{U} \subset \mathcal{F}$ of (4.2) is locally the image $\sigma(U)$ of an adapted framing over a p-dimensional submanifold $U \subset M$.

Given N, let $\mathcal{F}_{N} \subset \mathcal{F}$ denote the bundle of adapted frames of M over N. As noted above $\omega^{s}{ }_{\mid \mathcal{F}_{N}}=0$. Differentiating this equation and an application of Cartan's lemma yields

$$
\theta_{a}^{s}=h_{a b}^{s} \omega^{a}
$$

for functions $h_{a b}^{s}=h_{b a}^{s}: \mathcal{F}_{N} \rightarrow \mathbb{R}$. The $h_{a b}^{s}$ are the coefficients of the second fundamental form of $N \subset M$.

Observe that N is φ-critical if and only if $\mathcal{F}_{N} \subset \mathcal{C}$. Assume that N is φ critical. Then $\varphi_{s}^{a}=0$ on \mathcal{F}_{N}. Differentiating this equation yields $0=\mathrm{d} \varphi_{s}^{a}=$ $(\vartheta . \varphi)_{s}^{a}=\varphi_{o} \vartheta_{s}^{a}+\varphi_{s t}^{a b} \vartheta_{b}^{t}$, where

$$
\varphi_{o}:=\varphi_{12 \cdots p}=\varphi\left(e_{1}, \ldots, e_{p}\right)
$$

is the (constant) critical value of φ on N. Equivalently, $\varphi_{o} h_{a c}^{s}=\varphi_{s t}^{a b} h_{b c}^{t}$. Recalling that $\varphi_{s t}^{a b}$ is skew-symmetric and $h_{a b}^{s}$ is symmetric in the indices a, b
yields $\sum_{a} \varphi_{o} h_{a a}^{s}=\varphi_{s t}^{a b} h_{a b}^{t}=0$. If $\varphi_{o} \neq 0$, then $\sum_{a} h_{a a}^{s}=0$ and N is a minimal submanifold of M. This establishes Theorem 1.2.

Remark. Note that a φ-critical submanifold with $\varphi_{o}=0$ need not be minimal. As an example, consider $M=\mathbb{R}^{n}$ with the standard Euclidean metric and coordinates $x=\left(x^{1}, \ldots, x^{n}\right), n \geq 4$. The form $\varphi=\mathrm{d} x^{1} \wedge \mathrm{~d} x^{2}$ is a parallel calibration on M. Any 2-dimensional $N \subset\left\{x^{1}=x^{2}=0\right\}$ is φ-critical with critical value $\varphi_{o}=0$, but in general will not be a minimal submanifold of \mathbb{R}^{n}.

5. The system \mathscr{P}

5.1. The ideal $\mathscr{I}=\langle\mathscr{P}\rangle$. Let $\mathscr{I} \subset \Omega(M)$ be the ideal (algebraically) generated by \mathscr{P}.

Lemma. The ideal \mathscr{I} is differentially closed. That is, $\mathrm{d} \mathscr{I} \subset \mathscr{I}$.
Proof. Let ϑ be the \mathfrak{h}-valued, torsion-free connection on M. Let $\left\{u^{1}, \ldots\right.$, $\left.u^{n}\right\}$ be a local H-coframe. Note that the coefficients $\varphi_{i_{1} i_{2} \cdots i_{p}}$ of φ with respect to the coframe are constant. The space Φ_{M} is spanned by forms of the form $\left\{\gamma=\theta . \varphi \mid \theta \in \mathfrak{g}^{\perp} \subset \mathfrak{h}^{\perp}\right\}$. In particular, the coefficients of these spanning γ are also constant. Consequently the covariant derivative is $\nabla \gamma=\vartheta . \gamma$. Since ϑ is \mathfrak{h}-valued and Φ is \mathfrak{h}-invariant, $\nabla \gamma$ may be viewed as a 1 -form taking values in Φ_{M}. As the exterior derivative $\mathrm{d} \gamma$ is the skew-symmetrization of the covariant derivative $\nabla \gamma$, it follows that $\mathrm{d} \gamma \in \mathscr{I}$.
5.2. Involutivity. This section assumes that reader is familiar with exterior differential systems. Excellent references are [2] and [13].

In general, the exterior differential system defined by \mathscr{I} will fail to be involutive. In fact, involutivity always fails when $p>\frac{1}{2} n$. This is seen as follows. Let $\mathscr{I}^{k}=\mathscr{I} \cap \Omega^{k}(M)$. Note that $\mathscr{I}^{a}=\{0\}$, for $a<p$. Let $\mathscr{V}_{k}(\mathscr{I}) \subset$ $\operatorname{Gr}(k, T M)$ denote the k-dimensional integral elements E of \mathscr{I}. Then,

$$
\mathscr{V}_{a}(\mathscr{I})=\operatorname{Gr}(a, T M), \quad \forall a<p, \quad \text { and } \quad \mathscr{V}_{p}(\mathscr{I})=\{[\xi] \mid \xi \in C(\varphi)\} .
$$

Let $\mathscr{V}_{k}(\mathscr{I})_{x} \subset \operatorname{Gr}\left(k, T_{x} M\right)$ denote the fibre over $x \in M$. Given an integral element $E \in \mathscr{V}_{k}(\mathscr{I})_{x}$ spanned by $\left\{e_{1}, \ldots, e_{k}\right\} \subset T_{x} M$, the polar space of E is

$$
H(E):=\left\{v \in T_{x} M \mid \psi\left(e_{1}, \ldots, e_{k}, v\right)=0, \forall \psi \in \mathscr{I}^{k+1}\right\} \supset E .
$$

Suppose that $E_{p}=[\xi] \in \mathscr{V}_{p}(\mathscr{I})_{x}$. Let $\left\{e_{1}, \ldots, e_{p}\right\}$ be an orthonormal basis of E and set $E_{a}=\operatorname{span}\left\{e_{1}, \ldots, e_{a}\right\}, 1 \leq a \leq p$. Since $\mathscr{I}^{a}=\{0\}, a<p$, we have $H\left(E_{a}\right)=T_{x} M$ and $c_{a}:=\operatorname{codim} H\left(E_{a}\right)=0$ for $1 \leq a \leq p-2$.

Note that $0 \neq v \in H\left(E_{p-1}\right) \backslash E_{p-1}$ if and only if $\left\{v, e_{1}, \ldots, e_{p-1}\right\}$ spans a φ-critical plane. Proposition 3.4 implies that the span of $\left\{v, e_{1}, \ldots, e_{p-1}\right\}$ is closed under the product ρ. Suppose that $\varphi_{o}=\varphi(\xi)=\varphi\left(e_{1}, \ldots, e_{p}\right) \neq 0$. Then (3.2) implies $\rho\left(e_{1}, \ldots, e_{p-1}\right)=\phi(E) e_{p} \neq 0$, and this forces $H\left(E_{p-1}\right)=E$. So
$c_{p-1}:=\operatorname{codim} H\left(E_{p-1}\right)=n-p$. Cartan's test (cf. [13, Theorem 7.4.1] or [2, Theorem III.1.11]) implies that

$$
\begin{equation*}
\operatorname{codim}_{E} \mathscr{V}_{p}(\mathscr{I}) \geq n-p \tag{5.1}
\end{equation*}
$$

Note that the Hodge dual $* \varphi \in \Omega^{n-p}$ is also a parallel calibration on M; the associated ideal is $* \mathscr{I}$, the Hodge dual of \mathscr{I}. In particular $\mathscr{V}_{n-p}(* \mathscr{I})=$ $\left\{E^{\perp} \mid E \in \mathscr{V}_{p}(\mathscr{I})\right\}$, so that $\operatorname{codim}_{E^{\perp}} \mathscr{V}_{n-p}(* \mathscr{I})=\operatorname{codim}_{E} \mathscr{V}_{p}(\mathscr{I})$. It follows that equality fails in (5.1) when $p>\frac{1}{2} n$: the system \mathscr{I} is not involutive.

Remark. For example, \mathscr{I} fails to be involutive in the case that M is a G_{2}-manifold and φ is the coassociative calibration of Section 3.3. Here, $n=7$ and $p=4$, so that $n-p=3$, while $\operatorname{codim}_{E} \mathscr{V}_{4}(\mathscr{I})=4$. It fact, $\mathscr{P}=$ $\left\{\alpha \wedge(* \varphi) \mid \alpha \in \Omega^{1}(M)\right\}$, where $* \varphi \in \Omega^{3}(M)$ is the associative calibration. As is well-known, coassociative submanifolds are integral manifolds of $\{* \varphi=0\}$, and this system is involutive.

Remark. If the critical value $\varphi_{o}=\varphi(\xi)$ equals zero, then Corollary 3.5 implies that the ρ vanishes on E. In this case, $H\left(E_{p-1}\right)=\left\{v \in T_{x} M \mid \rho\left(v, a_{1}, \ldots\right.\right.$, $\left.\left.a_{p-2}\right)=0 \forall\left\{a_{1}, \ldots, a_{p-2}\right\} \subset\{1, \ldots, p\}\right\}$.

Acknowledgments. I am indebted to R. Harvey for valuable feedback, and bringing connections with [10] to my attention. I especially appreciate a pointed observation that led me to Lemma 3.2.

References

[1] R. L. Bryant, Metrics with exceptional holonomy, Ann. of Math. (2) 126 (1987), no. 3, 525-576. MR 0916718
[2] R. L. Bryant, S. S. Chern, R. B. Gardner, H. L. Goldschmidt and P. A. Griffiths, Exterior differential systems, Mathematical Sciences Research Institute Publications, vol. 18, Springer, New York, 1991. MR 1083148
[3] J. Dadok, R. Harvey and F. Morgan, Calibrations on \mathbf{R}^{8}, Trans. Amer. Math. Soc. 307 (1988), no. 1, 1-40. MR 0936802
[4] J. Dadok and F. R. Harvey, Calibrations and spinors, Acta Math. 170 (1993), no. 1, 83-120. MR 1208563
[5] J. Dadok and R. Harvey, Calibrations on \mathbf{R}^{6}, Duke Math. J. 50 (1983), no. 4, 12311243. MR 0726326
[6] M. Fernández and A. Gray, Riemannian manifolds with structure group G_{2}, Ann. Mat. Pura Appl. (4) 132 (1982), 19-45 (1983). MR 0696037
[7] M. Fernández, A classification of Riemannian manifolds with structure group $\operatorname{Spin}(7)$, Ann. Mat. Pura Appl. (4) 143 (1986), 101-122. MR 0859598
[8] A. Gray, Vector cross products on manifolds, Trans. Amer. Math. Soc. 141 (1969), 465-504, see errata [9]. MR 0243469
[9] A. Gray, Errata to: "Vector cross products on manifolds," Trans. Amer. Math. Soc. 148 (1970), 625. MR 0259823
[10] F. R. Harvey and H. B. Lawson, Jr., An introduction to potential theory in calibrated geometry, Amer. J. Math. 131 (2009), no. 4, 893-944. MR 2543918
[11] R. Harvey and H. B. Lawson, Jr., Calibrated geometries, Acta Math. 148 (1982), 47-157. MR 0666108
[12] R. Harvey and F. Morgan, The faces of the Grassmannian of three-planes in \mathbf{R}^{7} (calibrated geometries on \mathbf{R}^{7}), Invent. Math. 83 (1986), no. 2, 191-228. MR 0818350
[13] T. A. Ivey and J. M. Landsberg, Cartan for beginners: Differential geometry via moving frames and exterior differential systems, Graduate Studies in Mathematics, vol. 61, Amer. Math. Soc., Providence, RI, 2003. MR 2003610
[14] H. V. Lê, Relative calibrations and the problem of stability of minimal surfaces, Global analysis-studies and applications. IV, Lecture Notes in Mathematics, vol. 1453, Springer, Berlin, 1990, pp. 245-262. MR 1047674
[15] H. V. Lê, Geometric structures associated with a simple Cartan 3-form, J. Geom. Phys. 70 (2013), 205-223. MR 3054295
[16] F. Morgan, The exterior algebra $\Lambda^{k} \mathbf{R}^{n}$ and area minimization, Linear Algebra Appl. 66 (1985), 1-28. MR 0781292
[17] H. Tasaki, Certain minimal or homologically volume minimizing submanifolds in compact symmetric spaces, Tsukuba J. Math. 9 (1985), no. 1, 117-131. MR 0794664
[18] D. C. Thi, Real minimal flows in compact Lie groups, Trudy Sem. Vektor Tenzor Anal. 19 (1979), 112-129, Russian; english translation in Selecta Math. Sov., vol. 2, no. 1 (1982), 85-100. MR 0549010
[19] I. Unal, Phi-critical submanifolds and convexity in calibrated geometries, Ph.D. thesis, SUNY Stony Brook, 2006. MR 2712547
[20] J. Zhou, Morse functions on Grassmann manifolds, Proc. Roy. Soc. Edinburgh Sect. A 135 (2005), no. 1, 209-221. MR 2119849
Colleen Robles, Department of Mathematics, Mail-stop 3368, Texas A\&M University, College Station, TX 77843-3368, USA

E-mail address: robles@math.tamu.edu

