PARALLEL CALIBRATIONS AND MINIMAL SUBMANIFOLDS

COLLEEN ROBLES

ABSTRACT. Given a parallel calibration $\varphi \in \Omega^p(M)$ on a Riemannian manifold M, I prove that the φ -critical submanifolds with nonzero critical value are minimal submanifolds. I also show that the φ -critical submanifolds are precisely the integral manifolds of a $\mathscr{C}^{\infty}(M)$ -linear subspace $\mathscr{P} \subset \Omega^p(M)$. In particular, the calibrated submanifolds are necessarily integral submanifolds of the system. (Examples of parallel calibrations include the special Lagrangian calibration on Calabi–Yau manifolds, (co)associative calibrations on G_2 -manifolds, and the Cayley calibration on Spin(7)-manifolds.)

1. Introduction

1.1. Calibrated geometry. Let's begin by setting notation and reviewing (briefly) calibrated geometry. See [11] for a through introduction.

Let V be a real, n-dimensional vector space equipped with an inner product. Throughout $\{e_1, \ldots, e_n\} \subset V$ will denote a set of orthonormal vectors. Let

$$\operatorname{Gr}_o(p,V) := \{e_1 \wedge \cdots \wedge e_p\} \subset \bigwedge^p V$$

denote the unit decomposable (or simple) *p*-vectors. Notice that $\operatorname{Gr}_o(p, V)$ is a double cover of the Grassmannian $\operatorname{Gr}(p, V)$ of *p*-planes in *V*. Given $\xi \in \operatorname{Gr}_o(p, V)$, let $[\xi] \in \operatorname{Gr}(p, V)$ denote the corresponding *p*-plane. I will abuse terminology by referring to elements of both $\operatorname{Gr}_o(p, V)$ and $\operatorname{Gr}(p, V)$ as *p*-planes. (Properly, elements of $\operatorname{Gr}_o(p, V)$ are oriented *p*-planes.)

Let M be an *n*-dimensional Riemannian manifold. Let Gr(p, TM) denote the Grassmann bundle of tangent *p*-planes on M, and $Gr_o(p, TM)$ the double

©2013 University of Illinois

Received October 26, 2010; received in final form November 10, 2010.

Author is partially supported by NSF DMS-0805782.

²⁰¹⁰ Mathematics Subject Classification. 53C38.

cover of $\operatorname{Gr}(p, TM)$ of decomposable unit *p*-vectors. Let $\Omega^p(M)$ denote the space of smooth *p*-forms on *M*.

Note that, given a *p*-form $\varphi \in \Omega^p(M)$ and $\xi = e_1 \wedge \cdots \wedge e_p \in \operatorname{Gr}_o(p, TM)$, $\varphi(\xi) := \varphi(e_1, \ldots, e_p)$ is well defined. If φ is closed and $\varphi \leq 1$ on $\operatorname{Gr}_o(p, TM)$, then φ is a *calibration*. The condition that $\varphi \leq 1$ on $\operatorname{Gr}_o(p, TM)$ is often expressed as $\varphi_{|\xi} \leq \operatorname{vol}_{|\xi}$. Assume φ is a calibration. Let

$$\operatorname{Gr}(\varphi) := \left\{ \xi \in \operatorname{Gr}_o(p, TM) \mid \varphi(\xi) = 1 \right\}$$

denote the set of *(oriented)* calibrated planes, and $\operatorname{Gr}(\varphi)_x$ the fibre over $x \in M$. An oriented *p*-dimensional submanifold $N \subset M$ is calibrated if $T_x N \in \operatorname{Gr}(\varphi)_x$, for all $x \in N$. That is, $\varphi_{|N} = \operatorname{vol}_N$. Compact calibrated submanifolds have the property that they are globally volume minimizing in their homology classes [11]. The first step in the identification or construction of calibrated submanifolds is the determination of $\operatorname{Gr}(\varphi)$. However, this is often a difficult problem, even in the case that $\phi \in \bigwedge^P V$ is a constant coefficient calibration on a vector space. See, for example, [3], [5], [12], [16].

Notice that elements of $\operatorname{Gr}(\varphi)_x$ are critical points of $\varphi_x : \operatorname{Gr}_o(p, T_x M) \to \mathbb{R}$. However, it is not the case that every critical point is an element of $\operatorname{Gr}(\varphi)_x$. (See Section 3.7 below.) Let $C(\varphi)_x \subset \operatorname{Gr}_o(p, T_x M)$ denote the set of critical points of φ_x , and $C(\varphi) \subset \operatorname{Gr}_o(p, TM)$ the associated sub-bundle. An oriented *p*-dimensional submanifold $N \subset M$ is φ -critical if $T_x N \subset C(\varphi)_x$, for all $x \in N$. While the calibrated submanifolds are prized as volume minimizers in their homology classes, the φ -critical submanifolds are also interesting. Unal showed that if the corresponding critical value is a local maximum, then the φ -critical submanifold is minimal [19, Theorem 2.1.2]. See also the work on Hong Van Le on the stability of minimal surfaces [14]. I will prove (Theorem 1.2): if φ is parallel, then the φ -critical submanifolds with nonzero critical value are minimal. I will also show that the φ -critical submanifolds are characterized by an exterior differential system \mathscr{P} (Theorem 1.1).

1.2. Contents. We begin in Section 2.1 with the simple case of a constant coefficient calibration $\phi \in \bigwedge^p V^*$. In Proposition 2.2, I identify the critical points $C(\phi) \supset \operatorname{Gr}(\phi)$ as the annihilator of a linear subspace $\Phi \subset \bigwedge^p V^*$. In the case that ϕ is invariant under a Lie subgroup $H \subset O(V)$, Φ is a *H*-submodule of $\bigwedge^p V^*$ (Lemma 3.1). (Of course, every ϕ is invariant under the trivial group {Id} $\subset O(V)$.) Several examples are discussed in Section 3, and a vector-product variation of Proposition 2.2 is given in Proposition 3.4.

In Section 4, Proposition 2.2 is generalized to a parallel calibrations on a connected, *n*-dimensional, Riemannian manifold M^n . Given an *n*-dimensional *H*-manifold *M*, a *H*-invariant $\phi \in \bigwedge^p V^*$ naturally defines a parallel *p*-form φ on *M*. Conversely, every parallel *p*-form φ on a Riemannian manifold arises in this fashion. (See Section 4.3 for a description of the construction.) As a parallel form, φ is a priori closed and thus a calibration on *M*. Similarly, Φ

defines a sub-bundle $\Phi_M \subset \bigwedge^p T^*M$. Let $\mathscr{P} \subset \Omega^p(M)$ denote smooth sections of Φ_M . A *p*-dimensional submanifold $N^p \subset M$ is an *integral submanifold of* \mathscr{P} if $\mathscr{P}_{|N} = \{0\}$.

THEOREM 1.1. Assume that M^n is a connected Riemannian manifold, and φ a parallel calibration. A submanifold N^p is φ -critical if and only if N is an integral manifold of \mathscr{P} . In particular, every calibrated submanifold of M is an integral manifold of \mathscr{P} .

Proposition 3.4 (the vector-product variant) easily generalizes to give an alternative formulation of the φ -critical submanifolds as those submanifolds N with the property that $T_x N$ is closed under an alternating (p-1)-fold vector product $\rho : \bigwedge^{p-1}TM \to TM$.

If $N \subset M$ is φ -critical, then $\varphi_{|N} = \varphi_o \operatorname{vol}_N$, where φ_o is a constant. Refer to this constant as the *critical value of* φ *on* N.

THEOREM 1.2. Assume that M is a Riemannian manifold, $\varphi \in \Omega^p(M)$ a parallel calibration, and $N \subset M$ a φ -critical submanifold. If the critical value of φ on N is nonzero, then N is a minimal submanifold of M.

Theorems 1.1 and 1.2 are proven in Sections 4.3 and 4.4, respectively.

Finally in Section 5 it is shown that the ideal $\mathscr{I} \subset \Omega(M)$ algebraically generated by \mathscr{P} is differentially closed and that, in general, the system fails to be involutive.

Notation. Fix index ranges

 $i, j \in \{1, \dots, n\},$ $a, b \in \{1, \dots, p\},$ $s, t \in \{p+1, \dots, n\}.$

The summation convention holds: when an index appears as both a subscript and superscript in an expression, it is summed over.

2. The infinitesimal picture

2.1. The basics. Let $\phi \in \bigwedge^{p} V^*$ and $\xi = e_1 \land \cdots \land e_p \in \operatorname{Gr}_o(p, V)$. Then $\phi(\xi) = \phi(e_1, \ldots, e_p)$ is a well-defined function on $\operatorname{Gr}_o(p, V)$. Fix a nonzero $\phi \in \bigwedge^{p} V^*$, with the property that $\max_{\operatorname{Gr}_o(p,V)} \phi = 1$. The set of (oriented) calibrated *p*-planes is

$$\operatorname{Gr}(\phi) := \left\{ \xi \in \operatorname{Gr}_o(p, V) \mid \phi(\xi) = 1 \right\}.$$

Let $C(\phi) \subset \operatorname{Gr}_o(p, V)$ denote the critical points of ϕ . Then

$$\operatorname{Gr}(\phi) \subset C(\phi).$$

Let \mathcal{F}_V denote the set of orthonormal bases (or frames) of V. Given $e = (e_1, \ldots, e_n) \in \mathcal{F}_V$, let $e^* = (e^1, \ldots, e^n)$ denote the dual coframe. Then

$$\phi = \phi_{i_1 \cdots i_p} e^{i_1} \wedge \cdots \wedge e^{i_p},$$

uniquely determines functions $\phi_{i_1\cdots i_p}$, skew-symmetric in the indices, on \mathcal{F}_V . Note that $|\phi_{i_1\cdots i_p}| \leq 1$, and $\xi = e_{i_1} \wedge \cdots \wedge e_{i_p} \in \operatorname{Gr}(\phi)$ if and only if equality holds.

Next we compute $d\phi_{|\xi}$. Let O(V) denote the Lie group of linear transformations $V \to V$ preserving the inner product, and let $\mathfrak{o}(V)$ denote its Lie algebra. Let θ denote the $\mathfrak{o}(V)$ -valued Maurer–Cartan form on \mathcal{F}_V : at $e \in \mathcal{F}_V$, $\theta_e = \theta_k^i e_j \otimes e^k$, where the coefficient 1-forms $\theta_k^j = -\theta_j^k$ are defined by $de_j = \theta_j^k e_k$. Then $\{\theta_j^i \mid i < j\}$ is a basis for the 1-forms on \mathcal{F}_V .

If $\xi = e_{i_1} \wedge \cdots \wedge e_{i_p}$ is viewed as a map $\mathcal{F}_V \to \operatorname{Gr}_o(p, V)$, then

$$d\xi = \sum_{1 \le a \le p} e_{i_1} \wedge \dots \wedge e_{i_{a-1}} \wedge \theta_{i_a}^k e_k \wedge e_{i_{a+1}} \wedge \dots \wedge e_{i_p}$$

Thus

$$d\phi_{\xi} = d\phi(e_{i_1}, \dots, e_{i_p})$$

$$= \sum_{1 \le a \le p} \phi(e_{i_1}, \dots, e_{i_{a-1}}, \theta_{i_a}^k e_k, e_{i_{a+1}}, \dots, e_{i_p})$$

$$= \sum_{1 \le a \le p} \theta_{i_a}^k \phi(e_{i_1}, \dots, e_{i_{a-1}}, e_k, e_{i_{a+1}}, \dots, e_{i_p})$$

$$= \sum_{1 \le a \le p} \phi_{i_1 \cdots i_{a-1} k i_{a+1} \cdots i_p} \theta_{i_a}^k.$$

The skew-symmetry of ϕ and θ imply that $\phi_{i_1\cdots i_{a-1}ki_{a+1}\cdots i_p}\theta_{i_a}^k$ vanishes if $k \in \{i_1,\ldots,i_p\}$. The $\{\theta_{i_a}^k \mid 1 \le a \le p, k \notin \{i_1,\ldots,i_p\}\}$ are linearly independent on \mathcal{F}_V , and may be naturally identified with linearly independent 1-forms on $\operatorname{Gr}_o(p,V)$ at ξ . Consequently, $d\phi_{\xi} = 0$, and

(2.1) $\xi = e_{i_1} \wedge \dots \wedge e_{i_p} \text{ is a critical point}$ if and only if $\phi_{i_1 \dots i_{a-1} k i_{a+1} \dots i_p} \theta_{i_a}^k = 0.$

An equivalent, index-free formulation of this observation is given by the lemma below.

LEMMA 2.1. A p-plane ξ is a critical point of ϕ if and only if $(v \lrcorner \phi)_{|\xi} = 0$ for all $v \in \xi^{\bot}$.

REMARK. The lemma was first observed by Harvey and Lawson (cf. Remark on page 78 of [11]), and is often referred to as the First Cousin Principle.

The lemma allows us to characterize the critical points $\xi \in \operatorname{Gr}_o(p, V)$ of ϕ as the *p*-planes on which a linear subspace $\Phi \subset \bigwedge^p V^*$ vanishes. Forget, for a moment, that θ is a 1-form on \mathcal{F}_V and regard it simply as an element of $\mathfrak{o}(V)$. Let $\theta.\phi$ denote the action of θ on ϕ . The action yields a map $\mathsf{P} : \mathfrak{o}(V) \to \bigwedge^p V^*$ sending $\theta \mapsto \theta.\phi$. Define

$$\Phi := \mathsf{P}(\mathfrak{o}(V)) \subset \bigwedge^p V^*.$$

Notice that the $e^{i_1} \wedge \cdots \wedge e^{i_p}$ -coefficient of $\theta . \phi$ is $\phi_{i_1 \cdots i_{a-1} k i_{a+1} \cdots i_p} \theta^k_{i_a}$. From this observation, (2.1), and the fact that the Maurer–Cartan form $\theta_e : T_e \mathcal{F}_V \to \mathfrak{o}(V)$ is a linear isomorphism, we deduce the following.

PROPOSITION 2.2. The set of ϕ -critical planes is $C(\phi) = \operatorname{Gr}_o(p, V) \cap \operatorname{Ann}(\Phi)$.

REMARK. The map P is the restriction of the map λ_{ϕ} : End $(V) \to \bigwedge^{p} V^*$ in [10] to $\mathfrak{o}(V)$. Corollary 2.6 of [10] is precisely the observation that elements of Φ vanish on $\operatorname{Gr}(\phi) \subset C(\phi)$. Indeed, Proposition 2.2 above follows from Proposition A.4 of that paper. This is seen by observing that if $A \in \mathfrak{o}(V) \subset$ End(V), then $\operatorname{tr}_{\xi} A = 0$. Then their (A.2) reads $\lambda_{\phi}(A)(\xi) = \phi(D_{\widetilde{A}}\xi)$. It now suffices to note that their $\{\lambda_{\phi}(A) \mid A \in \mathfrak{o}(V)\}$ is our Φ , and that $\{D_{\widetilde{A}}\xi \mid A \in \mathfrak{o}(V)\} = \mathfrak{r}_{\xi} \operatorname{Gr}_{o}(p, V)$.

REMARK. Each $\phi \in \bigwedge^{p} V^*$ naturally determines an alternating (p-1)-fold vector product ρ on V. An equivalent formulation of Proposition 2.2 is given by Proposition 3.4 which asserts that $\xi \in C(\phi)$ and only if $[\xi] \in \operatorname{Gr}(p, V)$ is ρ -closed.

3. Examples and the product characterization

3.1. Invariant forms. Let G denote the stabilizer of ϕ in O(V). Many of the calibrations that we are interested in have a nontrivial stabilizer; but, of course, all statements hold for trivial G. Observe that Φ is a g-module. This is seen as follows. Let g denote the Lie algebra of G. As a g-module $\mathfrak{o}(V)$ admits a decomposition of the form $\mathfrak{o}(V) = \mathfrak{g} \oplus \mathfrak{g}^{\perp}$. By definition, the kernel of P is g. In particular, $\Phi = \mathsf{P}(\mathfrak{g}^{\perp})$. It is straightforward to check that P is G-equivariant, and we have the following lemma.

LEMMA 3.1. The subspace $\Phi = \mathsf{P}(\mathfrak{g}^{\perp}) \subset \bigwedge^{p} V^{*}$ is isomorphic to \mathfrak{g}^{\perp} as a *G*-module.

Below I identify Φ for some well-known examples. The calibrations ϕ and characterizations of Gr(ϕ) in Sections 3.2–3.5 were introduced in [11].

3.2. Associative calibration. Consider the standard action of the exceptional $G = G_2$ on the imaginary octonions $V = \text{Im } \mathbb{O} = \mathbb{R}^7$. As a G_2 -module the third exterior power decomposes as $\bigwedge^3 V^* = \mathbb{R} \oplus V_{1,0}^3 \oplus V_{2,0}^3$. (Cf. [6, Lemma 3.2] or [1, p. 542].) Here $V_{1,0}^3 = V$ as G_2 -modules. The trivial subrepresentation $\mathbb{R} \subset \bigwedge^3 V^*$ is spanned by an invariant 3-form ϕ , the associative calibration. It is known that $\xi \in \text{Gr}(\phi)$ if and only if the forms $V_{1,0}^3 = \{*(\phi \land \alpha) \mid \alpha \in V^*\}$ vanish on ξ [11, Corollary 1.7]. Here $*(\phi \land \alpha)$ denotes the Hodge star operation on the 4-form $\phi \land \alpha$. As $\Phi = V_{1,0}^3$, we have $C(\phi) = \text{Gr}(\phi)$.

3.3. Coassociative calibration. Again we consider the standard action of G_2 on $V = \text{Im } \mathbb{O} = V_{1,0}$. The Hodge star commutes with the G_2 action. So the fourth exterior power decomposes as $\bigwedge^4 V^* = V_{0,0}^4 \oplus V_{1,0}^4 \oplus V_{2,0}^4$, with $V_{a,b}^4 = *V_{a,b}^3$. The trivial subrepresentation is spanned by the invariant coassociative calibration $*\phi$. A 4-plane ξ is calibrated by $*\phi$ if and only if $\phi_{|\xi} \equiv 0$ [11, Corollary 1.19]. Equivalently, the 4-forms of $V_{1,0}^4 = \{\phi \land \alpha \mid \alpha \in V^*\}$ vanish on ξ . As $\Phi = V_{1,0}^4$, we again have $C(\phi) = \text{Gr}(\phi)$.

3.4. Cayley calibration. Consider the standard action of $G = B_3 =$ Spin(7) \subset SO(8) on the octonions $V = \mathbb{O} = \mathbb{R}^8$. The fourth exterior power decomposes as $\bigwedge^4 V^* = V_{0,0,0}^4 \oplus V_{1,0,0}^4 \oplus V_{2,0,0}^4 \oplus V_{0,0,2}^4$. (Cf. [1, p. 548] or [7, Lemma 3.3].) The trivial subrepresentation $V_{0,0,0}^4$ is spanned by the invariant, self-dual Cayley 4-form $\phi = *\phi$. It is known that $\xi \in \text{Gr}(\phi)$ if and only if the forms $V_{1,0,0}^4 = \{\alpha.\phi \mid \alpha \in V_{1,0,0}^2\}$ vanish on ξ [11, Proposition 1.25]; here $V_{1,0,0}^2 = \{\alpha \in \bigwedge^2 V^* \mid *(\alpha \land \phi) = 3\alpha\} \simeq \mathfrak{g}^{\perp}$. As $\Phi = V_{1,0,0}^4$, we have $C(\phi) = \text{Gr}(\phi)$.

3.5. Special Lagrangian calibration. Regard $V := \mathbb{C}^m$ as a real vector space. Given the standard coordinates z = x + iy,

$$V^* = \operatorname{span}_{\mathbb{R}} \left\{ \frac{1}{2} (\mathrm{d}z + \mathrm{d}\bar{z}), -\frac{\mathrm{i}}{2} (\mathrm{d}z - \mathrm{d}\bar{z}) \right\}.$$

 Set

$$\sigma = -\frac{\mathrm{i}}{2} \big(\mathrm{d} z^1 \wedge \mathrm{d} \bar{z}^1 + \dots + \mathrm{d} z^m \wedge \mathrm{d} \bar{z}^m \big),$$

$$\Upsilon = \mathrm{d} z^1 \wedge \dots \wedge \mathrm{d} z^m.$$

The special Lagrangian calibration is Re Υ . An *m*-dimensional submanifold $i: M \to V$ is calibrated if and only if $i^*\sigma = 0 = i^* \operatorname{Im} \Upsilon$. (Recall that $i^*\sigma = 0$ characterizes the *m*-dimensional Lagrangian submanifolds.)

The special Lagrangian example is distinct from those above in that

$$\mathfrak{su}(m)^{\perp} = \mathbb{R} \oplus W \subset \bigwedge^2 V$$

is reducible as an $\mathfrak{su}(m)$ -module. The trivial subrepresentation is spanned by σ .

The $\mathfrak{su}(m)$ module Φ decomposes as $\Phi_0 \oplus \Phi_W$, where $\Phi_0 = \operatorname{span}_{\mathbb{R}} \{\operatorname{Im} \Upsilon\}$ and $\Phi_W = W.(\operatorname{Re} \Upsilon)$. The elements of the sub-module Φ_W may be described as follows. Let $J \subset \{1, \ldots, m\}$ be a multi-index of length $|J| = \ell$, and $\mathrm{d}z^J :=$ $dz^{j_1} \wedge \cdots \wedge dz^{j_\ell}$. The reader may confirm that $\Phi_W = \operatorname{span}_{\mathbb{R}} \{\operatorname{Re} \mathrm{d}z^J \wedge \sigma, \operatorname{Im} \mathrm{d}z^J \wedge \sigma : |J| = m - 2\}.$

In the remark of [11, p. 90] Harvey and Lawson showed that an *m*-plane ζ is Lagrangian if and only if the forms $\Psi := \{ dz^J \land \sigma^p : 2p + |J| = m, p > 0 \} \supset \Phi_W$ vanish on ζ . So $\pm \xi \in \operatorname{Gr}(\operatorname{Re} \Upsilon)$ if and only if $\operatorname{Im} \Upsilon_{|\xi} = 0 = \Psi_{|\xi}$, while $\xi \in C(\operatorname{Re} \Upsilon)$ if and only if $\operatorname{Im} \Upsilon_{|\xi} = 0 = \Phi_{W|\xi}$. So it seems a priori that a

critical ξ need not be calibrated. Nonetheless, Zhou [20, Theorem 3.1] has shown that $\pm \operatorname{Gr}(\operatorname{Re} \Upsilon) = C(\operatorname{Re} \Upsilon)$.

3.6. Squared spinors. In [4], Dadok and Harvey construct calibrations $\phi \in \bigwedge^{4p} V^*$ on vector spaces of dimension n = 8m by squaring spinors. Let me assume the notation of that paper: in particular, $\mathbb{P} = \mathbb{S}^+ \oplus \mathbb{S}^-$ is the decomposition of the space of pinors into positive and negative spinors, ε an inner product on \mathbb{P} , and $\operatorname{Cl}(V) \simeq \operatorname{End}_{\mathbb{R}}(\mathbb{P})$ the Clifford algebra of V. Given $x, y, z \in \mathbb{P}, x \circ y \in \operatorname{End}_{\mathbb{R}}(\mathbb{P})$ is the linear map $z \mapsto \varepsilon(y, z)x$.

Given a unit $x \in \mathbb{S}^+$, $\phi = 16^m x \circ x \in \operatorname{End}_{\mathbb{R}}(\mathbb{S}^+) \subset \operatorname{End}_{\mathbb{R}}(\mathbb{P})$ may be viewed as an element of $\bigwedge V^* \simeq \operatorname{Cl}(V)$. Let $\phi_k \in \bigwedge^k V^*$ be the degree k component of ϕ . Each ϕ_k is a calibration, and ϕ_k vanishes unless k = 4p. (Also, $\phi_0 = 1$ and $\phi_n = \operatorname{vol}_V$.) The Cayley calibration of Section 3.4 is an example of such a calibration; see [4, Proposition 3.2].

Given such a calibration $\phi = \phi_{4p}$, Dadok and Harvey construct 4*p*-forms $\Psi_1, \ldots, \Psi_N, N = \frac{1}{2}(16)^m - 1$, that characterize $\operatorname{Gr}(\phi)$; that is, $\xi \in \operatorname{Gr}(\phi)$ if and only if $\Psi_j(\xi) = 0$ [4, Theorem 1.1].

LEMMA 3.2. The span of the Ψ_j is our Φ . In particular, $C(\phi) = \operatorname{Gr}(\phi)$.

Proof. Continuing to borrow the notation of [4], the proof may be sketched as follows. Complete $x = x_0$ to an orthogonal basis $\{x_0, x_1, \ldots, x_N\}$ of \mathbb{S}^+ . Then Ψ_j is the degree 4p component of $16^m x_j \circ x_0 \in \operatorname{End}_{\mathbb{R}}(\mathbb{S}^+) \subset \bigwedge V^*$. Our Φ is spanned by γ_j , the degree 4p component of $16^m (x_j \circ x_0 + x_0 \circ x_j)$. Let $\langle x \circ y, \xi \rangle$ denote the extension of the inner product on V to $\operatorname{End}_{\mathbb{R}}(\mathbb{P}) \simeq$ $\operatorname{Cl}(V) \simeq \bigwedge V^*$. (See [4].) Given $\xi \in \operatorname{Gr}_o(4p, V)$,

$$\Psi_j(\xi) = 16^m \langle x_j \circ x_0, \xi \rangle,$$

$$\gamma_j(\xi) = 16^m \langle x_j \circ x_0 + x_0 \circ x_j, \xi \rangle.$$

To see that $\Phi = \operatorname{span}{\{\Psi_1, \ldots, \Psi_N\}}$ it suffices to note that

$$16^m \langle x_0 \circ x_j, \xi \rangle = \varepsilon(x_0, \xi x_j) = \varepsilon(x_j, \xi x_0) = 16^m \langle x_j \circ x_0, \xi \rangle,$$

when $\xi \in \bigwedge^{4p} V^*$. Hence $\gamma_j = 2\Psi_j$.

REMARK. Zhou showed that $C(\phi) = \text{Gr}(\phi)$ for many well-known calibrations [20]. As the following example illustrates, this need not be the case.

3.7. Cartan 3-form on \mathfrak{g} . Let G be a compact simple Lie group with Lie algebra \mathfrak{g} . Set $V = \mathfrak{g}$ and consider the adjoint action. Every simple Lie algebra admits an (nonzero) invariant 3-form, the Cartan form ϕ , defined as follows. Given $u, v \in \mathfrak{g}$, let $[u, v] \in \mathfrak{g}$ and $\langle u, v \rangle \in \mathbb{R}$ denote the Lie bracket and invariant inner product, respectively. Then $\phi(u, v, w) = c \langle u, [v, w] \rangle$, with $\frac{1}{c}$ the length of a highest root δ . It is immediate from Lemma 2.1 that ξ is a critical point if and only if ξ is a subalgebra of \mathfrak{g} .

PROPOSITION 3.3. A 3-plane ξ is ϕ -critical if and only if it is a subalgebra of \mathfrak{g} .

REMARK. The proposition generalizes to arbitrary ϕ . See Proposition 3.4.

The $\mathfrak{su}(2)'s$ in $G(3,\mathfrak{g})$ corresponding to a highest root all lie in the same $\operatorname{Ad}(G)$ -orbit and Tasaki [17] showed that this orbit is $\operatorname{Gr}(\phi)$. (Thi [18] had observed that the corresponding $\operatorname{SU}(2)$ are volume minimizing in their homology class in the case that $G = \operatorname{SU}(n)$.) If the rank of \mathfrak{g} is greater than 1, then \mathfrak{g} contains 3-dimensional subalgebras that are not associated to a highest root. Thus, $\operatorname{Gr}(\phi) \subsetneq C(\phi)$. More generally, Hông Vân Lê [15] has introduced the notion of a manifold admitting a Cartan 3-form, and investigated the algebraic types of these structures.

REMARK. The quaternionic calibration on \mathbb{H}^n also satisfies $\operatorname{Gr}(\phi) \subsetneq C(\phi)$; see [19] for details.

3.8. Product version of Proposition 2.2. Proposition 3.3 asserts that a 3-plane ξ is ϕ -critical, ϕ the Cartan 3-form, if and only if ξ is closed under the Lie bracket. This is merely a rephrasing of Proposition 2.2, and an analogous statement holds for any calibration.

Given a p-form $\phi \in \bigwedge^p V^*$, define a (p-1)-fold alternating vector product ρ on V by

(3.1)
$$\phi(u, v_2, \dots, v_p) =: \langle u, \rho(v_2, \dots, v_p) \rangle.$$

EXAMPLE. In the case that $V = \mathfrak{g}$ and ϕ is the Cartan 3-form, ρ is a multiple of the Lie bracket.

The following proposition is a reformulation of Lemma 2.1.

PROPOSITION 3.4. Let $\phi \in \bigwedge^p V^*$, and let ρ denote the associated (p-1)-fold alternating product defined in (3.1). Then a p-plane $\xi \in \operatorname{Gr}_o(p, V)$ is ϕ -critical if and only if ξ is ρ -closed.

EXAMPLE. When $V = \mathbb{O}$ and ϕ is the Cayley calibration, then ρ is a multiple of the triple cross product. See [11, Section IV.1.C] where it is shown that a 4-plane is Cayley if and only if it is closed under the triple cross product.

Note that

(3.2)
$$\rho(v_2, \ldots, v_p)$$
 is orthogonal to v_2, \ldots, v_p

In particular, ρ may be viewed as a generalization of Gray's vector cross product, satisfying [8, (2.1)] but not necessarily [8, (2.2)].

Assume that $\xi = e_1 \wedge \cdots \wedge e_p \in C(\phi)$. Then (3.2) and Proposition 3.4 imply $\rho(e_2, \ldots, e_p) = \phi(\xi)e_1$. This yields the following.

COROLLARY 3.5. Let $\xi \in \operatorname{Gr}_o(p, V)$. The product ρ vanishes on $[\xi] \in \operatorname{Gr}(p, V)$ if and only if $\xi \in C(\phi)$ and $\phi(\xi) = 0$.

4. Parallel calibrations

4.1. Orthonormal coframes on M**.** Let V be an n-dimensional Euclidean vector space. Let M be an n-dimensional connected Riemannian manifold, and let $\pi : \mathcal{F} \to M$ denote the bundle of orthogonal coframes. Given $x \in M$, the elements of the fibre $\pi^{-1}(x)$ are the linear isometries $u : T_x M \to V$. Given $g \in O(V)$, the right-action $u \cdot g := g^{-1} \circ u$ makes \mathcal{F} a principle right O(V)-bundle.

The canonical V-valued 1-form ω on \mathcal{F} is defined by

$$\omega_u(v) := u(\pi_* v),$$

 $v \in T_u \mathcal{F}$. Let ϑ denote the unique torsion-free, $\mathfrak{o}(V)$ -valued connection 1-form on \mathcal{F} (the Levi–Civita connection form). Fix an orthonormal basis $\{\mathsf{v}_1, \ldots, \mathsf{v}_n\}$ of V. Then we may define 1-forms ω^i on \mathcal{F} by

$$\omega_u =: \omega_u^i \mathsf{v}_i.$$

Let v^1, \ldots, v^n denote the dual basis of V^* , and define ϑ^i_j by $\vartheta = \vartheta^i_j v_i \otimes v^j$. Then

$$\vartheta_i^i + \vartheta_i^j = 0 \quad \text{and} \quad \mathrm{d}\omega^i = -\vartheta_i^i \wedge \omega^j.$$

Given $u \in \mathcal{F}$, let $\{e_1, \ldots, e_n\}$, $e_i = e_i(u) := u^{-1}(v_i)$, denote the corresponding orthonormal basis of $T_x M$.

4.2. *H*-manifolds. Suppose $H \subset O(V)$ is a Lie subgroup. If the bundle of orthogonal coframes over $\mathcal{F} \to M$ admits a sub-bundle $\mathcal{E} \to M$ with fibre group H, then we say M carries a *H*-structure. The *H*-structure is torsion-free if \mathcal{E} is preserved under parallel transport by the Levi–Civita connection in \mathcal{F} . In this case, we say M is a *H*-manifold.

When pulled-back to \mathcal{E} , the forms ω^i remain linearly independent, but ϑ takes values in the Lie algebra $\mathfrak{h} \subset \mathfrak{o}(V)$ of H.

4.3. The construction of φ and Φ_M . I now prove Theorem 1.1. Assume that M is a H-manifold. Let $\pi_*: T_u \mathcal{E} \to T_x M$ denote the differential of $\pi: \mathcal{E} \to M$. Any $\phi \in \bigwedge^p V^*$ induces a p-form φ on \mathcal{E} by $\varphi_u(v_1, \ldots, v_p) = \phi(\omega_u(v_1), \ldots, \omega_u(v_p))$. Assume ϕ is H-invariant. Then φ descends to a well-defined p-form on M. Since $\mathcal{E} \subset \mathcal{F}$ is preserved under parallel transport, φ is parallel and therefore closed. Conversely, every parallel p-form φ arises in such a fashion: fix $x_o \in M$, and take $V = T_{x_o} M$ and $\phi = \varphi_{x_o}$.

Assume that $\max_{\operatorname{Gr}_{q}(p,V)} \phi = 1$. Then φ is a calibration on M.

Since *H* is a subgroup of the stabilizer *G* of ϕ , Lemma 3.1 implies $\Phi \subset \bigwedge^p V^*$ is a *H*-module. It follows that Φ defines a sub-bundle $\Phi_M \subset \bigwedge^p T^*M$. Explicitly, given $u \in \mathcal{E}_x$, $\Phi_{M,x} := (u^{-1})^*(\Phi) \subset \bigwedge^p T^*_x M$. The fact that Φ is an *H*-module implies that the definition of $\Phi_{M,x}$ is independent of our choice of $u \in \mathcal{E}_x$.

Let $\mathscr{P} \subset \Omega^p(M)$ denote space of smooth sections of Φ_M . Theorem 1.1 now follows from Proposition 2.2.

REMARK. Note that Proposition 3.4 also extends to parallel calibrations in a straightforward manner.

4.4. Proof of Theorem 1.2. Recall the notation of Section 4.1; in particular the framing e = e(u) associated to $u \in \mathcal{F}$. Given a *p*-form $\psi \in \Omega^p(M)$, define functions $\psi_{i_1 \dots i_p} : \mathcal{F} \to \mathbb{R}$ by $\psi_{i_1 \dots i_p}(u) := \psi(e_{i_1}, \dots, e_{i_p})$. The fact that φ is parallel implies

(4.1)
$$\mathrm{d}\varphi_{i_1\cdots i_p} = (\vartheta.\varphi)_{i_1\cdots i_p},$$

where $\vartheta . \varphi$ denotes the $\mathfrak{o}(n)$ -action of ϑ on φ .

The following notation will be convenient. Let $\{i_1, \ldots, i_m\} \subset \{1, \ldots, n\}$ and $\{a_1, \ldots, a_m\} \subset \{1, \ldots, p\}$. If the $\{a_1, \ldots, a_m\}$ are pairwise distinct, then let $\psi_{i_1 \cdots i_m}^{a_1 \cdots a_m}$ denote the function obtained from $\psi_{12 \cdots p}$ by replacing the indices a_ℓ with i_ℓ , $1 \leq \ell \leq m$. Otherwise, $\psi_{i_1 \cdots i_m}^{a_1 \cdots a_m} = 0$. For example, $\psi_s^2 = \psi_{1s3 \cdots p}$ and $\psi_{st}^{13} = \psi_{s2t4 \cdots p}$. Note that $\psi_{i_1 \cdots i_m}^{a_1 \cdots a_m}$ is skew-symmetric in both the upper indices and the lower indices; for example, $\psi_{rst}^{abc} = -\psi_{rst}^{bac} = -\psi_{tsr}^{bac}$.

Define

$$\mathcal{C} := \left\{ u \in \mathcal{F} \mid e_1 \land \dots \land e_p \in C(\varphi_x), x = \pi(u), e = e(u) \right\}$$

It is a consequence of Lemma 2.1 that

$$\mathcal{C} = \left\{ u \in \mathcal{F} \mid \varphi_s^a(u) = 0 \ \forall 1 \le a \le p < s \le n \right\}.$$

Given a p-dimensional submanifold $N \subset M$, a local adapted framing of Mon N is a section $\sigma: U \to \mathcal{F}$, defined on an open subset $U \subset N$ with the property that $\operatorname{span}\{e_1(x), \ldots, e_p(x)\} = T_x N \subset T_x M$, $e_a(x) := e_a \circ \sigma(x)$, for all $x \in U$. When pulled-back to $\sigma(U)$,

(4.2)
$$\omega^s = 0 \quad \forall p < s \le n \quad \text{and} \quad \omega^1 \land \dots \land \omega^p \ne 0.$$

Conversely every p-dimensional integral submanifold $\tilde{U} \subset \mathcal{F}$ of (4.2) is locally the image $\sigma(U)$ of an adapted framing over a p-dimensional submanifold $U \subset M$.

Given N, let $\mathcal{F}_N \subset \mathcal{F}$ denote the bundle of adapted frames of M over N. As noted above $\omega^s|_{\mathcal{F}_N} = 0$. Differentiating this equation and an application of Cartan's lemma yields

$$\theta^s_a = h^s_{ab} \omega^a$$

for functions $h_{ab}^s = h_{ba}^s : \mathcal{F}_N \to \mathbb{R}$. The h_{ab}^s are the coefficients of the second fundamental form of $N \subset M$.

Observe that N is φ -critical if and only if $\mathcal{F}_N \subset \mathcal{C}$. Assume that N is φ -critical. Then $\varphi_s^a = 0$ on \mathcal{F}_N . Differentiating this equation yields $0 = d\varphi_s^a = (\vartheta \cdot \varphi)_s^a = \varphi_o \vartheta_s^a + \varphi_{st}^{ab} \vartheta_b^t$, where

$$\varphi_o := \varphi_{12\cdots p} = \varphi(e_1, \dots, e_p)$$

is the (constant) critical value of φ on N. Equivalently, $\varphi_o h_{ac}^s = \varphi_{st}^{ab} h_{bc}^t$. Recalling that φ_{st}^{ab} is skew-symmetric and h_{ab}^s is symmetric in the indices a, b yields $\sum_{a} \varphi_o h_{aa}^s = \varphi_{st}^{ab} h_{ab}^t = 0$. If $\varphi_o \neq 0$, then $\sum_{a} h_{aa}^s = 0$ and N is a minimal submanifold of M. This establishes Theorem 1.2.

REMARK. Note that a φ -critical submanifold with $\varphi_o = 0$ need not be minimal. As an example, consider $M = \mathbb{R}^n$ with the standard Euclidean metric and coordinates $x = (x^1, \ldots, x^n)$, $n \ge 4$. The form $\varphi = dx^1 \wedge dx^2$ is a parallel calibration on M. Any 2-dimensional $N \subset \{x^1 = x^2 = 0\}$ is φ -critical with critical value $\varphi_o = 0$, but in general will not be a minimal submanifold of \mathbb{R}^n .

5. The system \mathscr{P}

5.1. The ideal $\mathscr{I} = \langle \mathscr{P} \rangle$. Let $\mathscr{I} \subset \Omega(M)$ be the ideal (algebraically) generated by \mathscr{P} .

LEMMA. The ideal \mathscr{I} is differentially closed. That is, $d\mathscr{I} \subset \mathscr{I}$.

Proof. Let ϑ be the \mathfrak{h} -valued, torsion-free connection on M. Let $\{u^1, \ldots, u^n\}$ be a local H-coframe. Note that the coefficients $\varphi_{i_1i_2\cdots i_p}$ of φ with respect to the coframe are constant. The space Φ_M is spanned by forms of the form $\{\gamma = \theta. \varphi \mid \theta \in \mathfrak{g}^{\perp} \subset \mathfrak{h}^{\perp}\}$. In particular, the coefficients of these spanning γ are also constant. Consequently the covariant derivative is $\nabla \gamma = \vartheta. \gamma$. Since ϑ is \mathfrak{h} -valued and Φ is \mathfrak{h} -invariant, $\nabla \gamma$ may be viewed as a 1-form taking values in Φ_M . As the exterior derivative $d\gamma$ is the skew-symmetrization of the covariant derivative $\nabla \gamma$, it follows that $d\gamma \in \mathscr{I}$.

5.2. Involutivity. This section assumes that reader is familiar with exterior differential systems. Excellent references are [2] and [13].

In general, the exterior differential system defined by \mathscr{I} will fail to be involutive. In fact, involutivity always fails when $p > \frac{1}{2}n$. This is seen as follows. Let $\mathscr{I}^k = \mathscr{I} \cap \Omega^k(M)$. Note that $\mathscr{I}^a = \{0\}$, for a < p. Let $\mathscr{V}_k(\mathscr{I}) \subset$ $\operatorname{Gr}(k, TM)$ denote the k-dimensional integral elements E of \mathscr{I} . Then,

 $\mathscr{V}_a(\mathscr{I}) = \mathrm{Gr}(a, TM), \quad \forall a < p, \quad \mathrm{and} \quad \mathscr{V}_p(\mathscr{I}) = \big\{ [\xi] \, | \, \xi \in C(\varphi) \big\}.$

Let $\mathscr{V}_k(\mathscr{I})_x \subset \operatorname{Gr}(k, T_x M)$ denote the fibre over $x \in M$. Given an integral element $E \in \mathscr{V}_k(\mathscr{I})_x$ spanned by $\{e_1, \ldots, e_k\} \subset T_x M$, the *polar space* of E is

$$H(E) := \left\{ v \in T_x M \mid \psi(e_1, \dots, e_k, v) = 0, \forall \psi \in \mathscr{I}^{k+1} \right\} \supset E.$$

Suppose that $E_p = [\xi] \in \mathscr{V}_p(\mathscr{I})_x$. Let $\{e_1, \ldots, e_p\}$ be an orthonormal basis of E and set $E_a = \operatorname{span}\{e_1, \ldots, e_a\}, 1 \le a \le p$. Since $\mathscr{I}^a = \{0\}, a < p$, we have $H(E_a) = T_x M$ and $c_a := \operatorname{codim} H(E_a) = 0$ for $1 \le a \le p - 2$.

Note that $0 \neq v \in H(E_{p-1}) \setminus E_{p-1}$ if and only if $\{v, e_1, \ldots, e_{p-1}\}$ spans a φ -critical plane. Proposition 3.4 implies that the span of $\{v, e_1, \ldots, e_{p-1}\}$ is closed under the product ρ . Suppose that $\varphi_o = \varphi(\xi) = \varphi(e_1, \ldots, e_p) \neq 0$. Then (3.2) implies $\rho(e_1, \ldots, e_{p-1}) = \phi(E)e_p \neq 0$, and this forces $H(E_{p-1}) = E$. So

 $c_{p-1} := \operatorname{codim} H(E_{p-1}) = n - p$. Cartan's test (cf. [13, Theorem 7.4.1] or [2, Theorem III.1.11]) implies that

(5.1)
$$\operatorname{codim}_E \mathscr{V}_p(\mathscr{I}) \ge n - p.$$

Note that the Hodge dual $*\varphi \in \Omega^{n-p}$ is also a parallel calibration on M; the associated ideal is $*\mathscr{I}$, the Hodge dual of \mathscr{I} . In particular $\mathscr{V}_{n-p}(*\mathscr{I}) = \{E^{\perp} \mid E \in \mathscr{V}_p(\mathscr{I})\}$, so that $\operatorname{codim}_{E^{\perp}} \mathscr{V}_{n-p}(*\mathscr{I}) = \operatorname{codim}_E \mathscr{V}_p(\mathscr{I})$. It follows that equality fails in (5.1) when $p > \frac{1}{2}n$: the system \mathscr{I} is not involutive.

REMARK. For example, \mathscr{I} fails to be involutive in the case that M is a G_2 -manifold and φ is the coassociative calibration of Section 3.3. Here, n = 7 and p = 4, so that n - p = 3, while $\operatorname{codim}_E \mathscr{V}_4(\mathscr{I}) = 4$. It fact, $\mathscr{P} = \{\alpha \wedge (*\varphi) \mid \alpha \in \Omega^1(M)\}$, where $*\varphi \in \Omega^3(M)$ is the associative calibration. As is well-known, coassociative submanifolds are integral manifolds of $\{*\varphi = 0\}$, and this system is involutive.

REMARK. If the critical value $\varphi_o = \varphi(\xi)$ equals zero, then Corollary 3.5 implies that the ρ vanishes on E. In this case, $H(E_{p-1}) = \{v \in T_x M \mid \rho(v, a_1, \ldots, a_{p-2}) = 0 \forall \{a_1, \ldots, a_{p-2}\} \subset \{1, \ldots, p\}\}.$

Acknowledgments. I am indebted to R. Harvey for valuable feedback, and bringing connections with [10] to my attention. I especially appreciate a pointed observation that led me to Lemma 3.2.

References

- R. L. Bryant, Metrics with exceptional holonomy, Ann. of Math. (2) **126** (1987), no. 3, 525–576. MR 0916718
- [2] R. L. Bryant, S. S. Chern, R. B. Gardner, H. L. Goldschmidt and P. A. Griffiths, *Exterior differential systems*, Mathematical Sciences Research Institute Publications, vol. 18, Springer, New York, 1991. MR 1083148
- [3] J. Dadok, R. Harvey and F. Morgan, *Calibrations on* R⁸, Trans. Amer. Math. Soc. 307 (1988), no. 1, 1–40. MR 0936802
- [4] J. Dadok and F. R. Harvey, *Calibrations and spinors*, Acta Math. **170** (1993), no. 1, 83–120. MR 1208563
- [5] J. Dadok and R. Harvey, *Calibrations on* R⁶, Duke Math. J. 50 (1983), no. 4, 1231– 1243. MR 0726326
- [6] M. Fernández and A. Gray, *Riemannian manifolds with structure group G₂*, Ann. Mat. Pura Appl. (4) **132** (1982), 19–45 (1983). MR 0696037
- M. Fernández, A classification of Riemannian manifolds with structure group Spin(7), Ann. Mat. Pura Appl. (4) 143 (1986), 101–122. MR 0859598
- [8] A. Gray, Vector cross products on manifolds, Trans. Amer. Math. Soc. 141 (1969), 465–504, see errata [9]. MR 0243469
- [9] A. Gray, Errata to: "Vector cross products on manifolds," Trans. Amer. Math. Soc. 148 (1970), 625. MR 0259823
- [10] F. R. Harvey and H. B. Lawson, Jr., An introduction to potential theory in calibrated geometry, Amer. J. Math. 131 (2009), no. 4, 893–944. MR 2543918
- [11] R. Harvey and H. B. Lawson, Jr., Calibrated geometries, Acta Math. 148 (1982), 47–157. MR 0666108

- [12] R. Harvey and F. Morgan, The faces of the Grassmannian of three-planes in R⁷ (calibrated geometries on R⁷), Invent. Math. 83 (1986), no. 2, 191–228. MR 0818350
- [13] T. A. Ivey and J. M. Landsberg, Cartan for beginners: Differential geometry via moving frames and exterior differential systems, Graduate Studies in Mathematics, vol. 61, Amer. Math. Soc., Providence, RI, 2003. MR 2003610
- [14] H. V. Lê, Relative calibrations and the problem of stability of minimal surfaces, Global analysis—studies and applications. IV, Lecture Notes in Mathematics, vol. 1453, Springer, Berlin, 1990, pp. 245–262. MR 1047674
- [15] H. V. Lê, Geometric structures associated with a simple Cartan 3-form, J. Geom. Phys. 70 (2013), 205–223. MR 3054295
- [16] F. Morgan, The exterior algebra Λ^kRⁿ and area minimization, Linear Algebra Appl. 66 (1985), 1–28. MR 0781292
- [17] H. Tasaki, Certain minimal or homologically volume minimizing submanifolds in compact symmetric spaces, Tsukuba J. Math. 9 (1985), no. 1, 117–131. MR 0794664
- [18] D. C. Thi, Real minimal flows in compact Lie groups, Trudy Sem. Vektor Tenzor Anal. 19 (1979), 112–129, Russian; english translation in Selecta Math. Sov., vol. 2, no. 1 (1982), 85–100. MR 0549010
- [19] I. Unal, Phi-critical submanifolds and convexity in calibrated geometries, Ph.D. thesis, SUNY Stony Brook, 2006. MR 2712547
- [20] J. Zhou, Morse functions on Grassmann manifolds, Proc. Roy. Soc. Edinburgh Sect. A 135 (2005), no. 1, 209–221. MR 2119849

Colleen Robles, Department of Mathematics, Mail-stop 3368, Texas A&M University, College Station, TX 77843-3368, USA

E-mail address: robles@math.tamu.edu