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FUNDAMENTAL SOLUTIONS AND COMPLEX COTANGENT
LINE FIELDS

SIDNEY M. WEBSTER

Abstract. We consider a fundamental solution for the ∂-opera-
tor on a complex n-manifold, which is given by an (n,n−1)-form

of the Cauchy–Leray type Θ= θ ∧ (∂θ)n−1, where θ is a suitable

(1,0)-form. On the open submanifold Mn where θ is smooth

and nonzero, its multiples generate a complex line sub-bundle

E ⊂ T ∗
(1,0)M , which we assume to satisfy a certain integrability

condition. To such an E we attach a global holomorphic invari-
ant, in the form of a complex Godbillon–Vey ∂-cohomology class,

provided a certain primary obstruction class vanishes. If θ is also

Levi nondegenerate, in that Θ �= 0, then it determines an invari-
ant connection on the hyperplane bundle given by θ = 0. This

provides θ formally with a complete system of local holomorphic
invariants.

0. Introduction

The fundamental solution for the Cauchy–Riemann operator ∂ in one com-
plex variable z is provided by the Cauchy kernel, θ = dz/(2πiz), which is
a (1,0)-form on C − {0}. Via Green’s theorem (or the Goursat lemma) it
gives the Cauchy integral formula for holomorphic functions. On the Rie-
mann sphere θ has poles at 0 and ∞, with residues +1 and −1, respectively.
For an arbitrary Riemann surface, one may consider an elementary Abelian
differential of the third kind with poles at points p±, with residues ±1, and
suitably normalized periods. It turns out that we should regard p+ as a point,
but p− as a hypersurface, as we seek to generalize this to higher dimensions.

On a complex n-dimensional manifold M , n > 1, the situation is more
complicated, and the possibilities more varied. A general theory of funda-
mental solutions on Cn has been formulated in [4] by Harvey and Polking.
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In the present work, we take a more limited view and consider a fundamental
solution with a fixed pole. It may be defined by a suitable (n,n − 1)-form
Θ on M , with singularities. Stokes’ theorem will then lead to a formula of
Bochner–Martinelli type.

In the first section, we consider such a form Θ of the Cauchy–Fantappiè–
Leray type. Thus, it can be constructed from a (1,0)-form θ, which is ∂-
integrable and Levi nondegenerate, that is,

(0.1) θ ∧ ∂θ = 0, Θ≡ θ ∧ (∂θ)n−1 �= 0,

respectively, away from its zeros and singularities. These conditions, as well
as the basic nature of a singularity, are preserved if θ is multiplied by a smooth
nonzero factor. It follows that they are really properties of the complex line
bundle E spanned by θ. The integrability condition holds if locally θ = f ∂g,
for smooth functions f, g. The nondegeneracy condition will be used mainly
in the last section.

More generally, we consider a complex vector sub-bundle E ⊆ T ∗
(1,0)M , of

rank r ≥ 1, and the exterior ideal I(E) that it generates. We say that E is
∂-integrable if ∂I(E)⊆ I(E). We let Ik(E) denote the kth power of the ideal
I(E), and Ik(E)(p,q) the (p, q)-forms in it. Then we have differential com-

plexes (Ik(E), ∂), and the associated cohomology groups, H
(∗,0)
∂ (M,Ik(E)).

For k = 0, we get the usual (anti-)Dolbeault cohomology of M , whereas
Ik(E) = 0 for k > r.

We let F ⊂ T(1,0)M denote the sub-bundle annihilated by E. It is closed
under Lie brackets, [F,F ]⊆ F , and so is a complex analogue of the tangent
bundle to a real foliation. Classical foliation theory, [1], [5], [7] which we refer
to as “real theory,” provides us with a useful guide, although there are some
significant departures.

For example in Section 3, we derive a complex analogue of the Godbillon–
Vey (G–V) invariant [3], [7], in the case when the complex line bundle ΛrE is
trivial. This is a “secondary” ∂-cohomology class on M , which may be given
by a ∂-closed (2r+ 1,0)-form Γ. Γ lies in Ir(E), and its ∂-cohomology class
[Γ] satisfies the following.

Proposition 0.1. Let E ⊂ T ∗
(1,0)M be a ∂-integrable sub-bundle of rank r,

1≤ r < n, for which ΛrE is a trivial line bundle. Then we have a well defined

complex G–V cohomology class [Γ] ∈H
(2r+1,0)
∂ (M,Ir−1(E)). If M is simply

connected, we have [Γ] ∈H
(2r+1,0)
∂ (M,Ir(E)).

In case the line bundle ΛrE is nontrivial, so its (first) Chern class is nonzero,
we derive, in Section 4, a “primary obstruction” sheaf cohomology class [ξ] ∈
H2

δ (M, Îr(E)(2r,0)), with coefficients in the sheaf of germs of ∂-closed sections
of Ir(E) (δ is the Cech coboundary operator, and “hat” will generally mean
∂-closed). In Section 4 we prove the following.
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Theorem 0.2. Suppose that the sheaf cohomology class [ξ] ∈ H2
δ (M,

Îr(E)(2r,0)) vanishes. Then there exists a global ∂-closed complex G–V (2r+
1,0)-form Γ, which belongs to the ideal Ir(E).

The class [ξ] may be considered with the less refined (Î0(E) ≡ Â(M))-
coefficients (A generally denotes C∞ coefficients). Then we may apply the
(anti-)Dolbeault isomorphism to it in two directions, to get (1) a ∂-closed (2r+

2,0)-form representing a class in H
(2r+2,0)
∂ (M,A); or (2) a sheaf coholomology

class in the group H2r+2
δ (M,O), the coefficients being anti-holomorphic. The

vanishing of this class [ξ] guarantees the existence of a global smooth G–V
(2r+1,0)-form Γ, which, however, may not lie in any Ik(E), k > 0. The class
[Γ] is then an obstruction to a never vanishing global section of E of the form
θ = f ∂g.

One major difference from the real theory is the probable failure of the
∂-Frobenius theorem, in any particular case. This is related to the proba-
ble failure of the corresponding Poincaré lemma in the differential complex
{I(E), ∂}, as discussed in Section 2. For this reason we proceed without mak-
ing use of local integrals, which are safely assumed in the real case. We note
that Kamber and Tondeur considered holomorphic sub-bundles in Section 8
of [5].

Yet another major difference from the real theory is the existence of local
differential invariants. This is developed in Section 5.

Theorem 0.3. Let θ �= 0 be a fixed Levi nondegenerate, ∂-integrable (1,0)-
form on a complex n-manifold M , n ≥ 2. Then there exist two intrinsic
connections on the hyperplane sub-bundle F annihilated by θ.

The result is motivated by the corresponding invariant theory of a strictly
pseudo-convex real hypersurface, and we follow the formalism of [2], [10]. As
compared to [10], the derivation is complicated somewhat by the appearance
of additional terms, roughly speaking. However, these terms seem to be the
more important ones. The theorem is a little out of the ordinary, in that the
two normalizing procedures producing the two connections seem to be equally
natural. The curvature, torsion, and covariant differentiation of either con-
nection lead to a complete system of differential invariants, at least formally.
The more comprehensive and difficult pseudoconformal theory is developed
in [11].

1. Fundamental solutions

Let p be a point in the complex n-manifold M , n≥ 2, and Θ a differential
form of type (n,n− 1) which is smooth away from p. Then Θ is a parametrix
for the Cauchy–Riemann operator ∂ on functions f , if

(1.1) dΘ≡ ∂Θ= (δp +K)dV,
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where δp is the delta function, and K is a smooth, or at least absolutely
integrable, function on M . If M has smooth boundary ∂M , Stokes’ theorem
gives a generalized Cauchy formula,

(1.2)

∫
∂M

fΘ− f(p) =

∫
M

(∂f ∧Θ+ fK dV ).

We have a fundamental solution, if K = 0.
We shall consider such Θ of the Cauchy–Fantappie–Leray type,

(1.3) Θ = θ ∧ (∂θ)n−1, ∂Θ= (∂θ)n.

Here θ �= 0 is a (1,0)-form smooth away from p. We say it is Levi nondegen-
erate if the (1,1)-form ∂θ is nondegenerate on the hyperplane field θ = 0, or
equivalently if Θ �= 0.

For the special form θ = ∂ log r, where r(z) = r(z), z ∈Cn, we have ∂Θ=
(∂∂ log r)n, and (subscripts denoting z−, z− derivatives)

(1.4) K = det
[
(log r)ij

]
= r−n−1 det

[
r rj
ri rij

]
.

Thus, we have a fundamental solution, if r satisfies a familiar complex Monge–
Amperè equation, and yields the correct singularity. For r = |z|2 = z · z, we
have K = 0,

(1.5) θ = z · dz/(z · z),
and Θ is the original Bochner–Martinelli form. To consider it on complex
projective space PnC, we use new nonhomogeneous coordinates w,

w =
(
w1,w

′), z1 =w−1
1 , z′ =w−1

1 w′;(1.6)

Θ = −w−1
1 dw1 ∧ χn−1, χ= ∂∂ log

(
1 +

∣∣w′∣∣2).(1.7)

For f compactly supported in the w-coordinate system, we get

(1.8) −2πi

∫
H∞

fχn−1 = cnf(0) +

∫
Pn

∂f ∧Θ,

where cn �= 0, and H∞ is the hyperplane at infinity. Note that H∞ ∼=Pn−1,
and χ is its Fubini–Study form. Formulae (1.8) is the type of result that we
would hope for, on a more general compact complex manifold.

Somewhat more general than (1.5) is the following construction. Let θ0
be a smooth and suitably nondegenerate (1,0)-form, and V be a holomor-
phic, or meromorphic, (1,0)-vectorfield, with θ0(V ) not identically zero. Put
θ(·) = θ0(·)/θ0(V ), so that ιV θ = 1. Since ιV (∂θ) = ∂(ιV θ) = 0, it follows that
(∂θ)n = 0. The zeros (and poles) of V contribute to the singularities of Θ.

The foregoing serves mainly as motivation. For the most part of this work,
we leave aside the equation ∂Θ= 0, and the singularities, and consider smooth
(1,0)-forms θ �= 0, which satisfy the ∂-integrability condition in (0.1),

(1.9) θ ∧ ∂θ = 0 ⇐⇒ ∂θ = θ ∧ ω,
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where ω is a (1,0)-form. The implication ⇒ is clear locally using a coframe,
then globally using a partion of unity. It is the formal integrability condition
for achieving θ = f ∂g. This is not a priori called for, but in retrospect, it
restricts us to an interesting class of forms θ. In the last section, they are
required to be Levi nondegenerate.

As mentioned above, Levi nondegeneracy and ∂-integrability are preserved
under changes θ �→ vθ, v �= 0, so they are really properties of the complex line
bundle E ⊂ T ∗

(1,0)M of multiples of θ. Such nondegenerate, integrable line

bundles E are a main subject of this work. One may envision first finding
such an E, then constructing a suitable section θ.

For the dual point-of-view, let F ⊂ T(1,0)M be the complex hyperplane
field annihilated by E. Then the sections of F are closed under Lie brackets.
Symbolically,

(1.10) [F,F ]⊆ F.

The (global) Levi form λ of F is the vector-valued form

(1.11) λ : F × F −→ (TM ⊗C)/(F ⊕ F ),

where λx(Zx,Wx) = i[Z,W ]x, for Z,W sections of F extending Zx,Wx. It is
to be nondegenerate in the last section. It has no analogue in the real theory.

2. Complex Frobenius problems

To clarify the integrability condition (1.10) further, we momentarily con-
sider an almost complex manifold (M,J), J2 = −I on TM . For an almost
complex sub-bundle F0 = JF0 ⊂ TM , we have the decomposition

(2.1) F0 ⊗C= F ⊕ F , F = (F0 ⊗C)∩ T(1,0)M,

where F,F are the (±i)-eigenbundles of J acting on F0.
We say, temporarily, that F0 is “(1,0)-integrable,” if (1.10) holds. For

(real) vector fields X,Y in F0, let

(2.2) Z = [X − iJX,Y − iJY ] = [X,Y ]− [JX,JY ]− i
(
[JX,Y ] + [X,JY ]

)
.

Then [F,F ]⊆ F0 ⊗C is equivalent to

(2.3) X,Y in F0 =⇒ [X,Y ]− [JX,JY ] in F0.

We have (J − iI)Z = (J − iI)N(X,Y ), where

(2.4) N(X,Y ) = [X,Y ]− [JX,JY ] + J
(
[JX,Y ] + [X,JY ]

)
is the familiar (real) Nijenhuis vector field. So Z ∈ F implies N(X,Y ) = 0.
Thus [F,F ]⊆ F is equivalent to (2.3), and N(X,Y ) = 0.

For M a complex manifold, which we assume henceforth, we have
N(X,Y ) = 0, for all X,Y in TM (and conversely by the Newlander–Nirenberg
theorem [8]). Thus F0 is (1,0)-integrable, if and only if (2.3) holds. The much
stronger real Frobenius condition is that X,Y in F0 =⇒ [X,Y ] in F0, which
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we do not assume. It would imply that F0 is the tangent bundle to a smooth
real foliation of M . Since F0 = JF0, each leaf would be an almost complex
(hence complex since N = 0) submanifold.

Let E ⊆ T ∗
(1,0)M be the sub-bundle of (1,0)-forms annihilating F ⊆ T(1,0)M ;

and let I(E)⊆A(M) be the exterior ideal generated by E, as in the introduc-
tion. Then by Cartan’s formula for d, the integrability condition [F,F ]⊆ F
is equivalent to

(2.5) dI
(
E ⊕ T ∗

(0,1)M
)
⊆ I

(
E ⊕ T ∗

(0,1)M
)
,

which is easily equivalent to

(2.6) ∂I(E)⊆ I(E).

At this point we drop the expression “(1,0)-integrable” in favor of “∂-integra-
ble.”

For a complex function f on M , we clearly have

(2.7) df ∈ I
(
E ⊕ T ∗

(0,1)M
)

⇐⇒ ∂f ∈ I(E).

Thus, on a complex manifold, the ∂-Frobenius problem for the sub-bundle E
is equivalent to the (complex) d-Frobenius problem for E ⊕ T ∗

(0,1)M .

Unfortunately, complex d-Frobenius problems [8], [9], are usually much
more difficult than the real ones, and they may even be unsolvable, as the
CR-embedding problem shows [6], [8]. This (probable) failure of actual in-
tegrability is related to the (probable) failure of the Poincaré lemma in the
complex (I(E), ∂). This is, in turn, related to H. Lewy unsolvability on hy-
persurfaces in Cn (see [8], [9]). Therefore, as mentioned in the introduction,
we base most of our considerations on the (formal) integrability conditions
(1.9), (1.10), and make no assumption on the existence of integrals.

3. A complex Godbillon–Vey invariant

We essentially adapt the arguments of Godbillon and Vey [3], [7], but with
a few additional considerations. Let E ⊂ T ∗

(1,0)M
n be a ∂-integrable smooth

complex line sub-bundle. In this section, we assume that E is (topologically)
trivial, and spanned by a global smooth (1,0)-form θ �= 0, satisfying (1.9),
∂θ = θ ∧ ω. Applying the ∂-operator to this gives

(3.1) 0 = θ ∧ ∂ω =⇒ ∂ω = θ ∧ ξ,

where ξ is a global (1,0)-form. The complex G–V (3,0)-form is

(3.2) Γ = ω ∧ ∂ω = ω ∧ θ ∧ ξ, ∂Γ= (∂ω)2 = (θ ∧ ξ)2 = 0.

Thus, Γ ∈ Î1(E)(3,0) ⊆ Â(M)(3,0), where again “hat” means ∂-closed, and
I1(E)≡ I(E) is the first power of the ideal I(E). A change in the form ω,
ω′ = ω+ bθ, gives

(3.3) Γ′ = ω′ ∧ ∂ω′ =Γ+ ∂(θ ∧ ∂b),
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by (3.1). Note that Γ,Γ′ ∈ Î1(E)(3,0), while Γ′ − Γ ∈ ∂I1(E)(2,0).

Next, we change θ, θ̃ = vθ, v �= 0,

(3.4) ∂θ̃ = θ̃ ∧ ω̃, ω̃ = ω− v−1 ∂v,

so that Γ̃ = ω̃ ∧ ∂ω̃ = (ω− v−1 ∂v)∧ ∂ω. Hence,

(3.5) Γ̃− Γ= ∂
(
−ω ∧ v−1 ∂v

)
.

However, if we have a single-valued logarithm, for example, if M is simply
connected, then by (3.1) we have

(3.6) Γ̃− Γ= ∂
(
(− log v)θ ∧ ξ

)
.

Thus, Γ̃,Γ ∈ Î1(E)(3,0), and Γ̃ − Γ ∈ ∂A(M)(2,0), in general; while Γ̃ − Γ ∈
∂I1(E)(2,0), if M is simply connected. This proves Proposition 0.1 in the case
r = 1.

Next, we consider a ∂-integrable sub-bundle E ⊆ T ∗
(1,0)M of rank r,1≤ r ≤

n − 1. We assume that the rth exterior power ΛrE is trivial, with global
nonzero section Θ, not to be confused with the Θ of Section 1. Locally E
is spanned by (1,0)-forms θα, 1≤ α≤ r, satisfying ∂θα = θβ ∧ ωα

β , for (1,0)-

forms ωα
β ; and Θ= fθ1 ∧ · · · ∧ θr, f �= 0. It follows that Θ ∈ Ir(E)(r,0), and

(3.7) ∂Θ=Θ∧ ω,

for a global (1,0)-form ω. (At first this holds locally with ω = (−1)r(f−1 ∂f −
ωα
α), then globally via a partition of unity.)
Applying the operator ∂ to (3.7) gives

(3.8) 0 = Θ∧ ∂ω =⇒ ∂ω ∈ I1(E)(2,0).

The complex G–V (2r+ 1,0)-form is

(3.9) Γ = ω ∧ (∂ω)r ∈ Îr(E)(2r+1,0), ∂Γ= (∂ω)r+1 ∈ Îr+1(E) = 0.

If we change ω, ω′ = ω+σ, then 0 =Θ∧σ, so that σ ∈ I1(E)(1,0), and ∂σ ∈
I1(E)(2,0). Since ∂ω,∂ω′ ∈ I1(E)(2,0) as well, we have σ∧ (∂ω′)r ∈ Ir+1(E) =
0. Hence,

(3.10) Γ′ = ω′ ∧
(
∂ω′)r = ω ∧ (∂ω+ ∂σ)r = ω ∧

(
(∂ω)r + ζ ∧ ∂σ

)
,

where, by binomial expansion, ζ ∈ Îr−1(E)(2r−2,0). It follows that Γ′ − Γ =
∂(−ω ∧ ζ ∧ σ), since ∂ω ∧ ζ ∧ σ ∈ Ir+1(E) = 0. Thus we have

(3.11) Γ′ − Γ ∈ ∂Ir(E)(2r,0).

Next, we change Θ, Θ̃ = vΘ, v �= 0, giving ∂Θ̃ = Θ̃∧ω̃, ω̃ = ω+(−1)rv−1 ∂v.
Hence,

(3.12) Γ̃ = ω̃∧ (∂ω̃)r =
(
ω+(−1)rv−1 ∂v

)
∧ (∂ω)r =Γ+(−1)rv−1 ∂v∧ (∂ω)r;

so that

(3.13) Γ̃− Γ= ∂η,
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where η = (−1)rω ∧ (∂ω)r−1 ∧ v−1 ∂v ∈ Ir−1(E)(2r,0), in general. If we have a
single-valued log, then η = (−1)r log v(∂ω)r ∈ Ir(E)(2r,0).

This finishes the proof of Proposition 0.1.

4. The primary obstruction

In the last section, we assumed that ΛrE was a trivial complex line bundle.
Now we drop this condition and quantify the obstruction to defining a global
complex G–V form. This obstruction will be in the form of a sheaf cohomology
class with certain coefficients. In this section, E ⊆ T ∗

(1,0)M is an arbitrary ∂-

integrable sub-bundle of rank r ≥ 1.
We select a log-simple open covering U = {Uμ} of M (i.e., all nonempty

finite intersections of the Uμ are contractible), such that ΛrE is trivial on

each Uμ, and spanned by a nonzero (r,0)-form Θμ ∈ Ir(E)(r,0).
On Uμ we have, from the last section, ∂Θμ = Θμ ∧ ωμ, where ∂ωμ ∈

I1(E)(2,0). We have the indeterminacy ωμ �→ ω′
μ = ωμ + σμ, with σμ ∈

I1(E)(1,0). We define Γμ = ωμ ∧ (∂ωμ)
r ∈ Îr(E)(2r+1,0), with the indeter-

minacy Γ′
μ − Γμ ∈ ∂Ir(E)(2r,0).

On Uμ ∩Uν , we have Θν = vνμΘμ, where vνμ = v−1
μν , vμλvλν = vμν are the

transition functions defining ΛrE as an element of the Cech cohomology group
H1(U ,A∗). With δ the codifferential, δ2 = 0, we have (δΓ)μν ≡ Γν − Γμ =

∂ημν , where ημν =−ηνμ ∈ Ir(E)(2r,0). (Here ημν is (−1)r log vμν(∂ωμ)
r, skew-

symmetrized in μ, ν.) Thus,

Γ = {Γμ} ∈ C0
(
U , Îr(E)(2r+1,0)

)
, η = {ημν} ∈ C1

(
U ,Ir(E)(2r,0)

)
;(4.1)

δΓ= ∂η,(4.2)

as in the classical work of A. Weil [12].
We define ξ ≡ δη.
Then δξ = 0, and ∂ξ = ∂δη = δ ∂η = δ2Γ = 0. Thus, ξ ∈ Z2(U , Îr(E)(2r,0)).

Let S denote any of the sheaves of germs of smooth differential forms Ik(E),

0 ≤ k ≤ r, and Ŝ ⊂ S the subsheaf of ∂-closed forms. Then we define the
primary obstruction (to finding a global Godbillon–Vey (G–V) form Γ in

Ŝ(2r+1,0)) to be the sheaf cohomology class

(4.3) [ξ] ∈H2
δ

(
M, Ŝ(2r,0)

)
,

represented by the above ξ relative to U . We must show that it is well defined,
and plays the appropriate role.

For this, we consider the usual exact sequence of sheaves of differential
forms,

(4.4) 0−→ Ŝ(p,0) −→S(p,0) −→ Ŝ(p+1,0) −−−> 0.

Here the first two arrows are inclusion, the third one is by the operator ∂. For
S = I0(E) =A(M), the last arrow can be replaced with a solid one, by the
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Dolbeault lemma. For S = Ik(E), k > 0, it may be missing, as indicated in
Section 2. We have the corresponding commutave diagram of cochain groups,
where the notation U is omitted,

(4.5)

C0(Ŝ(2r,0)) −→ C0(S(2r,0)) −→ C0(Ŝ(2r+1,0))
↓ δ ↓ δ ↓ δ

C1(Ŝ(2r,0)) −→ C1(S(2r,0)) −→ C1(Ŝ(2r+1,0))
↓ δ ↓ δ ↓ δ

C2(Ŝ(2r,0)) −→ C2(S(2r,0)) −→ C2(Ŝ(2r+1,0)).

To show that the primary obstruction is well defined, we first change Γ
to Γ′, Γ′

μ = Γμ + ∂φμ in C0(U , Ŝ(2r+1,0)), φ = {φμ} ∈ C0(U ,S(2r,0)). Then,
δΓ′ = δ(Γ + ∂φ) = ∂η + ∂δφ = ∂η′, η′ = η + δφ. Hence, ξ′ = δη′ = δη = ξ, so
there is no change in ξ.

Next, we change η ∈ C1(U ,S(2r,0)). Γ = ∂η = ∂η′; ζ = η′−η ∈ C1(U , Ŝ(2r,0)).

Then ξ′ = δη′ = δ(η+ ζ) = ξ + δζ . Hence, [ξ′] = [ξ] in H2
δ (U , Ŝ(2r,0)).

It follows that the obstruction class is well defined.
Now suppose that [ξ] = 0 in the group H2

δ (U , Ŝ(2r,0)). Then ξ = δζ , ζ =

{ζμν} ∈ C1(U , Ŝ(2r,0)). Thus, 0 = ξ − δζ = δ(η − ζ), or η − ζ ∈ Z1(U ,S(2r,0)).
But S is a fine sheaf (admits smooth partitions of unity), so its sheaf coho-
mology vanishes in positive degree.

It follows that η − ζ = δκ, κ = {κμ} ∈ C0(U ,S(2r,0)). Hence, δΓ = ∂η =
∂(η − ζ) = ∂δκ = δ ∂κ, or (δ(Γ − ∂κ))μν = 0. In other words, Γμ − ∂κμ =
Γν −∂κν on Uμ ∩Uν . Thus, there exists a global (2r+1,0)-form on M , again
denoted by Γ, such that Γ = Γμ − ∂κμ on Uμ. Clearly ∂Γ = 0, and Γ is a

global GV-form. Notice that this Γ belongs to Ŝ(2r+1,0).
Taking S = Ir(E) gives Theorem 0.2.
In the special case S = I0(E) =A(M), we have a Poincaré lemma by the

anti-Dolbeault–Grothendieck theorem. Then we have anti-Dolbeault isomor-
phisms H2

δ (M, Â(2r,0))∼=H1
δ (M, Â(2r+1,0))∼=H

(2r+2)
∂ (M,A). Thus, [ξ] corre-

sponds to a ∂-closed (2r+ 2,0)-form, modulo exact such forms.

In the other direction, H2
δ (M, Â(2r,0)) ∼= · · · ∼= H2r+2

δ (M, Â(0,0)) =

H2r+2
δ (M,O). Here [ξ] corresponds to an anti-holomorphic (2r+2)-δ-cocycle.

5. Local differential invariants

We consider a fixed (1,0)-form θ �= 0, on a complex n-manifold, n ≥ 2,
satisfying the foregoing ∂-integrability and Levi nondegeneracy conditions.
We want to derive a complete system of local differential invariants for θ.

This invariant theory is analogous to that of [10]. The invariant theory of
the family of multiples of θ, that is, of the line bundle E, is analogous to the
Chern–Moser theory [3]. It is developed in [11].
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For this, we use local (1,0)-coframe fields of the form {θα, θn = θ}, 1≤ α≤
n− 1. Greek indices will run over this range, and the summation convention
will be used. Thus, we have

∂θ = θ ∧ φ′, φ′ = aαθ
α,(5.1)

∂θ = χ+ hαθ
α ∧ θ+ θ ∧ φ′′,(5.2)

φ′′ = aαθ
α + anθ,(5.3)

χ = hαβθ
α ∧ θβ ,(5.4)

where χ is the Levi form of θ, with det(hαβ) �= 0; but hαβ has no assumed

symmetry. We may use the matrix hαβ to lower, and its inverse hβα to raise
greek indices. Note that aα is not necessarily the complex conjugate of aα.

The admissible coframe changes, θ̃α = θβUα
β + θvα, define a G-structure

on M . With Uα
β = δαβ , we get new coefficients h̃αβ = hαβ , and h̃α = hα −

hαβv
β . Hence, we can choose the vα uniquely to get hα = 0. Then restricting

to such adapted coframes, we get

(5.5) ∂θ = χ+ θ ∧ φ′′,

in place of (5.2), and the reduced structure group (Uα
β ) ∈Gl(n−1,C), vα = 0.

In terms of the dual (1,0)-frame {Xα,Xn ≡ V }, the adapted condition is
equivalent to

(5.6) ιV (∂θ) ∈ I(θ).
Since θ(V ) = 1, this uniquely determines the transverse vector V . Note that
now an = 0 in (5.3) is equivalent to the condition ∂Θ= 0 of Section 1, which
is a reason for this particular normalization. For future purposes [11], we
note that if we replace θ by a multiple vθ, v �= 0, then, since θ(V ) = 0, the
transversal V retains its direction, and is only scaled.

Together with the integrability condition for the (almost) complex struc-
ture, these normalizations give the structure equations,

dθ = χ+ θ ∧ φ, φ= φ′ + φ′′,

dθα = θβ ∧ ωα
β + θ ∧ τα,(5.7)

τα = θβAα
β
+ θAα

n.

In this arrangement χ, φ, and the torsion forms τα are uniquely determined
by the coframe; whereas the 1-forms ωα

β are determined up to changes,

(5.8) ω̃α
β = ωα

β +Bα
βγθ

γ , Bα
βγ =Bα

γβ .

To begin the process of determining these latter forms precisely, we take
the d-derivative of the first equation in (5.7). This gives

(5.9) dχ+ χ∧ φ= θ ∧ dφ.
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To compute the left-hand side, we introduce the covariant derivative notation,

Dhαβ = dhαβ − ωγ
αhγβ − hαγω

γ

β
(5.10)

= hαβ,γθ
γ + hαβ,nθ+ hαβ,γθ

γ + hαβ,nθ.

Then (5.9) takes the form,

(Dhαβ + hαβφ)∧ θα ∧ θβ = θ ∧
(
dφ− τα ∧ θα

)
+ θ ∧

(
τα ∧ θα

)
;(5.11)

τα ∧ θα = Aβαθ
β ∧ θα +Anαθ ∧ θα.(5.12)

It follows that the terms on the left-hand side of (5.11), free of θ, θ, must
vanish. This gives the symmetries,

hαβ,γ + hαβaγ = hγβ,α + hγβaα,(5.13)
hαβ,γ + hαβaγ = hαγ,β + hαγaβ .

The other terms give

0 = θ ∧
(
dφ− τα ∧ θα − hαβ,nθ

α ∧ θβ
)

(5.14)

+ θ ∧
(
τα ∧ θα − (hαβ,n + hαβan)θ

α ∧ θβ
)
.

Substituting the complex conjugate of (5.12) into the second parentheses,
shows that we must have

(5.15) Aαβ =Aβα, hαβ,n + hαβan = 0.

Then (5.14) reduces to

(5.16) dφ≡ hαβ,nθ
α ∧ θβ , mod θ.

If we substitute the change (5.8) into (5.10), we get

(5.17) D̃hαβ =Dhαβ −Bγ
ασhγβθ

σ − hαγB
γ

βσ
θσ.

Hence, h̃αβ,n = hαβ,n, h̃αβ,n = hαβ,n, and

h̃αβ,γ = hαβ,γ −Bσ
αγhσβ ,(5.18)

h̃αβ,γ = hαβ,γ − hασB
σ
βγ

.

Noting the symmetry (5.8) required for the Bα
βγ , we rewrite these equations

as

(h̃αβ,γ + hαβaγ) = (hαβ,γ + hαβaγ)−Bσ
αγhσβ ,(5.19)

(h̃αβ,γ + hαβaγ) = (hαβ,γ + hαβaγ)− hασB
σ
βγ

.

It follows from (5.8), (5.13) and (5.19) that the coefficients Bσ
αγ can be

uniquely determined by making either h̃αβ,γ + hαβaγ = 0, or h̃αβ,γ +
hαβaγ = 0.

At this point, the forms ωα
β are completely determined, and the normaliza-

tion procedure is finished. We state the results as follows.
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Theorem 5.1. Let θ �= 0 be a fixed ∂-integrable (1,0)-form, with nonde-
generate Levi form χ, on a complex n-manifold, n≥ 2. Let {θα, θ}, {Xα, V }
be dual adapted coframe and frame fields for θ. Then there are unique forms,
φ, τα, ωα

β , satisfying (5.7), (5.4), (5.10) and either

(5.20) hαβ,γ + hαβaγ = 0 or hαβ,γ + hαβaγ = 0.

We want to interpret the one-forms ωα
β as the connection forms of a con-

nection ∇ on the sub-bundle F = {θ = 0} ⊂ T(1,0)M , via

(5.21) ∇Xα = ωβ
α ⊗Xβ ,

relative to an adapted frame {Xα, V } and dual coframe {θα, θ}. For this we

need to see how the forms ωβ
α change with a change of adapted frame; θ̂ = θ,

V̂ = V ,

(5.22) θ̂α = θβUα
β , Xα = Uβ

α X̂β , ĥρσU
ρ
αU

σ
β
= hαβ .

Taking the exterior d-derivative of the first equation in (5.22) gives

(5.23) dθ̂α = θ̂β ∧ ω̂α
β + θ ∧ τ̂α;

where ω̂α
β and τ̂α are determined by

(5.24) dUα
β = ωγ

βU
α
γ −Uγ

β ω̂
α
γ , τ̂α = τβUα

β .

Next, we take the exterior derivative of the third equation in (5.22) and use
(5.10) and (5.24). With obvious notation, this gives, after some cancellation,

(5.25) Dhαβ = D̂hρσU
ρ
αU

σ
β
.

It follows that the normalizations on ωβ
α carry to the corresponding normal-

izations of ω̂α
β . Hence, the ω̂α

β are the normalized (connection) forms relative

to the frame X̂α. It follows that (5.21) defines a linear connection on the sub-
bundle F . Actually we have two intrinsic connections ∇1, ∇2 on F , according
to the choice of normalization (5.20).

To bring in the curvature matrix Ω of either connection ∇, we take the
exterior d-derivative of the second equation in (5.7). This leads to the first
Bianchi identity,

0 = θβ ∧Ωα
β + θ ∧Dτα + χ∧ τα,(5.26)

Ωα
β = dωα

β − ωγ
β ∧ ωα

γ ,(5.27)

Dτα = dτα − τβ ∧
(
ωα
β − δαβφ

)
.(5.28)

We also take the exterior derivative of the equation defining Dhαβ . This gives

D2hαβ ≡ d(Dhαβ)− ωγ
α ∧Dhγβ +Dhαγ ∧ ωγ

β
,(5.29)

D2hαβ = −Ωγ
αhγβ − hαγΩ

γ

β
.(5.30)

The detailed consequences of these relations can be worked out as needed.
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[2] S. S. Chern and J. K. Moser, Real hypersurfaces in complex manifolds, Acta Math.
133 (1974), 219–271. MR 0425155

[3] C. Godbillon and J. Vey, Un invariant des feuilletages de codim 1, C. R. Acad. Sci.
Paris Sér. A 273 (1971), 92–95. MR 0283816

[4] R. Harvey and J. Polking, Fundamental solutions in complex analysis I, II, Duke
Math. J. 46 (1979), 253–340. MR 0534054

[5] F. Kamber and Ph. Tondeur, Foliated bundles and characteristic classes, Lect. Notes
in Math., vol. 493, Springer-Verlag, Berlin, 1975. MR 0402773

[6] M. Kuranishi, Strongly pseudoconvex CR structures over small balls III, Ann. of
Math. (2) 116 (1982), 249–330. MR 0672837

[7] H. B. Lawson, Jr., The quantitative theory of foliations, CBMS Regional Conference
Series, vol. 27, AMS, 1977.

[8] L. Nirenberg, Lectures on linear partial differential equations, CBMS Regional Conf.
No. 17, AMS, Providence, RI, 1973. MR 0450755

[9] F. Treves, Hypo-analytic structures, Princeton Univ. Press, Princeton, NJ, 1992.

MR 1200459
[10] S. M. Webster, Pseudo-Hermitian structures on a real hypersurface, J. Differential

Geom. 13 (1978), 25–41. MR 0520599
[11] S. M. Webster, Invariants of a complex cotangent line field, to appear in Bull. Inst.

Math. Acad. Sin.
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