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HARTOGS FIGURE AND SYMPLECTIC NON-SQUEEZING

ALEXANDRE SUKHOV AND ALEXANDER TUMANOV

To John D’Angelo

Abstract. We solve a problem on filling by Levi-flat hypersur-
faces for a class of totally real 2-tori in a real 4-manifold with

an almost complex structure tamed by an exact symplectic form.

As an application, we obtain a simple proof of Gromov’s non-
squeezing theorem in dimension 4 and new results on rigidity of
symplectic structures.

1. Introduction

Since Gromov’s work [7] it is known that J -complex curves can be used
in order to describe obstructions for symplectic embeddings. Following this
theme, in this paper we apply classical complex analysis to symplectic rigidity.
We obtain new results on non-existence of certain symplectic embeddings,
in particular, we give a simple proof of Gromov’s non-squeezing theorem in
complex dimension 2. Our approach is based on a general result on Levi-
flat fillings of totally real tori in an almost complex manifold with an exact
symplectic form. This result is new even for manifolds with integrable almost
complex structure.

Definition 1.1. Let G be a domain in C2 containing the origin. Denote
by O1

0(G) the set of closed complex purely one-dimensional analytic subsets
in G passing through the origin. Denote by E(X) the Euclidean area of
X ∈O1

0(G). The holomorphic radius rh(G) of G is defined as

rh(G) = inf
{
λ > 0 : ∃X ∈O1

0(G),E(X) = πλ2
}
.

If the set in the right-hand part is empty, then we set rh(G) = +∞.
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Example. Let B be the Euclidean ball of C2 and r > 0. Then rh(rB) = r.
Indeed, the area E(X) of X ∈O1

0(rB) is bounded from below by the area πr2

of a section of the ball by a complex line through the origin (Lelong, 1950;
see [2]).

Let (z1, z2), zj = xj + iyj , be complex coordinates in C
2. Let

ωst =
i

2

2∑
j=1

dzj ∧ dzj

be the standard symplectic form on C
2. A diffeomorphism φ : G1 →G2 be-

tween two domains Gj ⊂C
2 is called a symplectomorphism if φ∗ωst = ωst. Let

D denote the unit disc in C. Our main result concerning symplectic rigidity
is the following corollary.

Theorem 1.2. Let G1 be a domain in C
2 containing the origin and let

G2 be a domain in RD × C for some R > 0. Assume that there exists a
symplectomorphism φ : G1 →G2. Then rh(G1)≤R.

In view of the example above, we obtain Gromov’s [7] non-squeezing theo-
rem in C

2.

Corollary 1.3. Suppose that there exists a symplectomorphism between
the ball rB and a domain contained in RD×C. Then r ≤R.

As an alternative to the usual complex bidisc

D
2 =

{
(z1, z2) : |zj |< 1, j = 1,2

}
we introduce the real bidisc of the form

D
2
R
=

{
(z1, z2) : x

2
1 + x2

2 < 1, y21 + y22 < 1
}
.

The two bidiscs have the same volume. Are they symplectomorphic? We
learned about this question from Sergey Ivashkovich [8]. We will prove that
the answer is negative. Note that if a symplectomorphism D

2 →D
2
R
is smooth

up to the boundary, then it maps the torus T2 = {(z1, z2) : |zj |= 1, j = 1,2} to
the torus T2

R
= {(z1, z2) : x2

1+x2
2 = 1, y21 + y22 = 1}. However, it is not possible

because T
2 is Lagrangian, that is, ωst|T2 = 0, while T

2
R
is not. This may lead

one to a thought that the question is about exotic non-smooth maps. We
show it is not the case. In fact, D2

R
does not admit a symplectic embedding

into a slightly larger complex bidisc. Furthermore, we obtain the following
non-squeezing result.

Corollary 1.4. There exists R > 1 such that there is no symplectomor-
phism between D

2
R
and a subdomain of RD×C.

We will show in the last section that rh(D2
R
) > 1, then Corollary 1.4 will

immediately follow from Theorem 1.2. In particular, we obtain the following
corollary.
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Corollary 1.5. There is no symplectomorphism between the real bidisc
D

2
R
and the complex bidisc D

2.

The proof of Theorem 1.2 relies on filling by complex discs an analog of
the Hartogs figure for an almost complex manifold. Let (M,J,ω) be a C∞-
smooth real 4-dimensional manifold with a symplectic form ω and an almost
complex structure J . We suppose that J is tamed by ω (see [7]), that is,
ω(V,JV ) > 0 for every nonzero tangent vector V ; we call such M a tame
almost complex manifold. Consider a relatively compact subdomain Ω in
M with smooth strictly pseudoconvex boundary. This means that for every
point p ∈ bΩ there exists an open neighborhood U and a smooth strictly J -
plurisubharmonic function ρ : U → R with non-vanishing gradient such that
Ω∩U = {q ∈ U : ρ(q)< 0}. We do not require the existence of a global defining
strictly plurisubharmonic function on Ω.

We now use the notation Z = (z,w) for complex coordinates in C
2.

Definition 1.6. A C∞-smooth embedding H : D×D→Ω is called a Har-
togs embedding if the following conditions hold:

(i) the map f0 : D 
 z �→H(z,0) is J -complex and f0(D)⊂Ω;
(ii) for every z ∈ D, the map hz : D 
 w �→H(z,w) ∈ Ω is J -complex; more-

over, there exists δ > 0 such that for every z with 1− δ ≤ |z| ≤ 1, we have
hz(bD)⊂ bΩ;

Denote Λt =H(bD× tbD), 0≤ t≤ 1. Then Λt is a totally real torus in M .
We will also denote by Π the Levi-flat hypersurface Π =H(bD× D). Thus,
the family of tori Λt and the hypersurface Π are canonically associated with
a Hartogs embedding.

Our main technical tool is the following theorem.

Theorem 1.7. Let Ω be a relatively compact domain with smooth strictly
pseudoconvex boundary in a tame almost complex manifold (M,J,ω) of com-
plex dimension 2 and let H : D × D → Ω be a Hartogs embedding. Assume
that the symplectic form ω is exact in a neighborhood of the closure Ω. Then
for every 0 < t ≤ 1 there exists a unique one-parameter family of embedded
J-complex discs f : D→Ω of class C∞(D) such that f(bD)⊂ Λt. They fill a
smooth Levi-flat hypersurface Γt ⊂Ω with boundary Λt. The family (Γt) foli-
ates a subdomain in Ω whose boundary consists of the Levi-flat hypersurfaces
Γ1 and Π and the disc f0(D).

For simplicity, we assume that (M,J,ω) is C∞, however the proof needs a
finite smoothness. We construct the desired discs by a continuous deformation
starting from the initial disc f0. In particular, they are homotopic to f0 in
the space of J -complex discs in Ω attached to Π. A similar approach was
used by Bedford and Gaveau [1], Forstnerič [5], Gromov [7], and others in
various situations. The statement of Theorem 1.7 can be slightly improved
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by introducing the map H with the given properties only on bD×D. We keep
the stated version for simplicity and convenience of presentation.

In his celebrated paper, Gromov [7] proved that for every compact La-
grangian submanifold Λ in C

n, there exists a non-constant complex disc with
boundary in Λ. In comparison, our Theorem 1.7 applies to non-Lagrangian
tori and it gives information about the set swept out by the discs. In the case
M =C

2 with the standard complex structure, there are related results due to
Duval and Gayet [4] and Forstnerič [5]. We stress that Theorem 1.7 is new
even in the case M is a complex manifold, i.e., the structure J is integrable.

Recall that the classical Hartogs figure U is a neighborhood of (D×{0})∪
(bD×D) in C

2. One can choose U as a union of complex discs {z}×r(z)D, z ∈
D, where 0< r(z)≤ 1 is smooth in z; then the embedding H : D

2 → U defined
by H(z,w) = (z, r(z)w) satisfies Definition 1.6 and smoothly parametrizes the
Hartogs figure by the bidisc. Therefore, one can view Theorem 1.7 as a result
on filling a Hartogs figure by complex discs. In the case J is integrable it
can be used in the study of holomorphic extension problems and polynomial,
holomorphic, and plurisubharmonic hulls. We also point out that the Hartogs
embedding in Definition 1.6 is not necessarily biholomorphic, which brings
additional flexibility to the method. In this paper, we focus on symplectic
applications of the theorem.

This paper was written for a special volume in honor of our dear colleague
Professor John D’Angelo on the occasion of his 60th birthday. The authors
wish John good health, happiness, and new research accomplishments for
years to come.

2. Almost complex manifolds

Let (M,J) be an almost complex manifold. We denote by Jst the standard
complex structure of Cn; the value of n will be clear from the context. A C1-
map f : D→M is called a J-complex (or J -holomorphic) disc if df ◦ Jst =
J ◦ df .

In local coordinates Z = (z,w) ∈C
2, an almost complex structure J can be

represented by a complex 2× 2 matrix function A, so that a map Z : D→C
2

is J -complex if and only if it satisfies the following partial differential equation

Zζ −A(Z)Zζ = 0.(1)

The matrix A(Z) is defined by

A(Z)V =
(
Jst + J(Z)

)−1(
Jst − J(Z)

)
V .(2)

Indeed, one can see that the right-hand side of (2) is C-linear in V ∈Cn with
respect to the standard structure Jst, hence A(Z) is well defined (see, e.g.,
[13]). We call A the complex matrix of J . The ellipticity of (1) is equivalent
to det(I −AA) �= 0. In a fixed coordinate chart, the correspondence between
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almost complex structures J with det(Jst+J) �= 0 and complex matrices with
det(I −AA) �= 0 is one-to-one [13].

Often we identify J -complex discs f and their images calling them just the
discs. By the boundary of such a disc we mean the restriction f |bD, which we
also identify with its image.

Let ρ be a function of class C2 on M , let p ∈ M and V ∈ TpM . The
Levi form of ρ at p evaluated on V is defined by the equality LJ(ρ)(p)(V ) :=
−d(J∗dρ)(V,JV )(p). A real function ρ of class C2 on M is called J-plurisub-
harmonic (resp. strictly J -plurisubharmonic) if LJ(ρ)(p)(V ) ≥ 0 (resp. > 0)
for every p ∈M , V ∈ TpM \ {0}.

A smooth real hypersurface Γ in an almost complex manifold (M,J) is
called Levi-flat if in a neighborhood U of every point p ∈ Γ there exists a
defining function with non-zero gradient whose Levi form vanishes for every
tangent vector V ∈ TqΓ ∩ JTqΓ and every point q ∈ U ∩ Γ. If the complex
dimension of M is equal to 2, then by the Frobenius theorem, a hypersurface
Γ is Levi-flat if and only if Γ is locally foliated by a real one-parameter family
of J -complex discs.

3. Deformation

Returning to Theorem 1.7, we fix δ > 0 that figures in Definition 1.6. Con-
sider the annulus

Aδ =
{
z ∈C : 1− δ ≤ |z| ≤ 1

}
.

Introduce also the discs and the circles

Gt =
{
w ∈D : |w|< t

}
, γt = bGt =

{
w ∈D : |w|= t

}
.

We recall the notations Λ =H(bD× bD), Π =H(bD×D) and

Λt =
⋃
z∈bD

H
(
{z} × γt

)
, 0≤ t≤ 1.

Then for 0 < t ≤ 1, Λt is a totally real torus, Λ1 = Λ, and Λ0 = f0(bD) is a
circle.

We will consider J -complex discs with boundaries in Λt. By reflection
principle [9], such discs are smooth up to the boundary.

Let t0 > 0. Let I(t0) denote one of the intervals: [0, t0] or [0, t0). Let{
f t,τ : D→M : t ∈ I(t0), τ ∈R/2πZ

}
be a continuous family of embedded J -complex discs, smooth in all the vari-
ables for t > 0.

Definition 3.1. We call the family (f t,τ ) an admissible deformation (of
the initial disc f0) on I(t0) if it has the following properties.

(i) f0,τ = f0.
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(ii) f t,τ (bD) ⊂ Λt; f t,τ1(bD) ∩ f t,τ2(bD) = ∅ if τ1 �= τ2;
⋃

τ∈R/2πZ f
t,τ (bD) =

Λt; Γt =
⋃

τ∈R/2πZ f
t,τ (D) is a smooth hypersurface with boundary Λt.

(iii) The set H−1(f t,τ (D))∩ (Aδ ×D) is the graph of a non-vanishing smooth
function wt,τ : Aδ → D \ {0} so that the map wt,τ |bD : bD→ γt has zero
winding number. Furthermore, f t,τ (D)∩ f0(D) = ∅ for t > 0.

(iv) (Normalization condition) For a fixed ζ0 in the interior of Aδ , say ζ0 =
1− δ/2, we have wt,τ (1) = teiτ , f t,τ (1) =H(1,wt,τ (1)), and f t,τ (ζ0) =
H(ζ0,w

t,τ (ζ0)).
(v) Every J -complex disc f such that f(bD)⊂ Λt and close to f t,τ in C1,α(D),

coincides with f t,τ ′
for some τ ′ ∈R/2πZ close to τ after a reparametriza-

tion close to the identity; here 0<α< 1 is fixed, say α= 1/2. (Note that
f ∈C∞(D) by reflection principle [9].)

Since bΩ is strictly pseudoconvex, for every t and τ the discs f t,τ are
contained in Ω.

Consider the pull-back H∗(J) of J to D
2. It follows from Definition 1.6

(see, e.g., [14]) that the complex matrix A of H∗(J) over Aδ × D has the
following special form:

A=

(
a 0
b 0

)
(3)

with |a|< 1. Then (see, e.g., [14]) the functions wt,τ satisfy the equation

wz + awz = b.(4)

Conversely, the graph of every solution of (4) becomes a J -complex curve after
a suitable reparametrization z = z(ζ).

We prove Theorem 1.7 by showing that there exists an admissible defor-
mation on [0,1]. Sometimes we will write f t instead of f t,τ if the value of τ
is unimportant.

In [14], we obtain a result similar to Theorem 1.7 for M = C
2 equipped

with an almost complex structure whose matrix has a form even more general
than (3). We can use that result in a neighborhood of the disc f0. Then we
obtain the following proposition.

Proposition 3.2. For small t0 > 0, there exists a unique admissible de-
formation on I(t0).

Proposition 3.3.

(i) If an admissible deformation f t,τ on I(t0) exists, then it is unique.
(ii) f t1,τ1(D)∩ f t2,τ2(D) = ∅ unless t1 = t2 and τ1 = τ2.

Proof. (i) By Proposition 3.2, two admissible deformations must coincide
for small t. Then by the properties (iii)–(v) they have to be the same for all
t ∈ I(t0).
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(ii) Since f t1,τ1(bD) ∩ f t,τ2(bD) = ∅ for 0 ≤ t ≤ t2, then the intersection
index of f t1,τ1(D) and f t,τ2(D) is independent of t (see [11], [12]). Since
f t1,τ1(D)∩ f0,τ2(D) = ∅, then f t1,τ1(D)∩ f t2,τ2(D) = ∅, also. �

An admissible deformation defined on a closed interval [0, t0] can be ex-
tended to a larger interval. We include a slightly stronger version of that
result.

Proposition 3.4. Let (f t,τ ) be an admissible deformation defined on
I(t0) = [0, t0). Suppose that for every τ ∈ R/2πZ there exists an increas-

ing sequence (tk), k = 1,2, . . . , with tk → t0 such that f tk,τ converges in the
Cm(D)-norm for every m to a J-complex disc f∞,τ . Then the deformation
can be extended to I(t1) for some t1 > t0.

Proof. It follows from Definition 3.1(iii) that f∞,τ |bD is an embedding.
Since all f t,τ are embeddings, then by the positivity of intersection indices
[11], [12], the limiting disc f∞,τ remains an embedding. We obtain the discs
f t,τ for t > t0 as small deformations of the discs f∞,τ by applying the results
[6], [10] about small deformations of J -complex discs attached to totally real
manifolds. In the case of complex dimension 2, such deformations are governed
by the normal Maslov index (see, e.g., [6], [10]). The latter is equal to zero for
the disc f∞,τ because of the winding number condition in Definition 3.1(iii).
Hence, the family extends to an interval I(t1) for some t1 > t0.

It remains to show that the extended family on I(t1) still satisfies Def-
inition 3.1, especially part (iii). For simplicity of notation, we temporar-
ily omit τ in f t,τ and write just f t. The domain Ω naturally splits into
two parts: Ω = Ω1 ∪ Ω2, where Ω2 = H(Aδ × D) and Ω1 = Ω \ Ω2. Like-
wise, every disc Dt = f t(D) also splits into two parts: Dt =Dt

1 ∪Dt
2. Here

Dt
2 is the subset of Ω2 represented as the graph of the function wt := wt,τ

over Aδ , and Dt
1 = Dt \Dt

2. By Definition 3.1(iii), for every 0 < t < t0, we
have Dt

j = Dt ∩ Ωj , j = 1,2. We claim that the latter still holds for every

0< t < t1, in particular, Dt
1 ⊂ Ω1. Denote by t′ the supremum of the set of

all t < t1 for which Dt
j =Dt ∩ Ωj , j = 1,2. Consider the Levi-flat hypersur-

face Πδ :=H({|z|= δ} ×D). Note that by the Hopf lemma Dt is transverse

to Πδ for t < t′ (see, e.g., [6]). If t′ < t1, then Dt′

1 touches Πδ at an inte-
rior point which is impossible (see, e.g., [3]). Hence, t′ = t1, D

t
1 ⊂ Ω1 for all

0< t < t1, and (iii) follows. The other conditions in Definition 3.1 are fulfilled
automatically. �

4. Proof of the main result

We establish a priori estimates for any admissible deformation on an open
interval.
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Lemma 4.1.

(i) Let q and Q be bounded functions in the annulus Aδ (0 < δ < 1), |q| ≤
q0 < 1, |Q| ≤Q0, here q0 and Q0 are constants. Let ε > 0 and 0< δ′ < δ.
Let w be a solution of

(5) wz = qwz +Q

in Aδ , such that ε ≤ |w| ≤ 1/ε and |w(z)| = 1 for z ∈ bD. Then
‖w‖Cα(Aδ′ ) ≤C; here 0<α< 1 and C > 0 depend on ε, δ, δ′, q0, and Q0

only.
(ii) Suppose in addition that ‖q‖Ck,β(Aδ) + ‖Q‖Ck,β(Aδ) ≤ Q0, for some 0 <

β < 1 and k ≥ 0. Then ‖w‖Ck+1,β(Aδ′ ) ≤ C; here C > 0 depends on β, k,
ε, δ, δ′, q0, and Q0 only.

Proof. (i) We apply the reflection principle. Let A∗
δ = {z∗ : z ∈ Aδ}, here

z∗ := 1/z. Extend w and the coefficients q and Q to A∗
δ by putting

w(z) =
(
w

(
z∗

))∗
, q(z) = q

(
z∗

)
z2

(
z∗

)2
, Q(z) =Q

(
z∗

)(
z∗

)2
w(z)2

for z ∈A∗
δ . Then w is continuous in G=Aδ ∪A∗

δ and satisfies (5) there. The
coefficients satisfy |q| ≤ q0 and |Q| ≤Q0/ε

2 in G.
We claim that w is uniformly bounded in Cα for some 0 < α < 1 after

shrinking G. It suffices to prove this fact for G = D. There exists a par-
ticular solution w0 ∈ Cα(D) of the non-homogeneous equation (5), say by
Proposition 2.1(i) in [14]. Then w = w0 + v, where v is a solution of the
homogeneous equation vz = qvz . Then v(z) = φ(ξ(z)), where ξ : D→ D is a
fixed Beltrami homeomorphism of class Cα(D), and φ is holomorphic in D.
Since φ is bounded, then the derivative φ′ is also bounded in any smaller disc.
Then v(z) = φ(ξ(z)), whence w =w0 + v is bounded in Cα in a smaller disc.

(ii) For simplicity, we first assume that w has a continuous logarithm in
Aδ , which will be the case in our applications. Then w = eu, Reu|bD = 0, and
u satisfies in Aδ the equation

uz = quz +Qw−1.

Let χ be a smooth cut-off function on D vanishing in a neighborhood of
(1− δ)D and such that χ≡ 1 in Aδ′ . Put v = χu. We can assume that q and
Q are extended over all of D. Then

vz = qvz + χQw−1 + u(χz − qχz).(6)

By part (i), after shrinking δ, we can assume w−1, u ∈ Cα(Aδ). Then v sat-
isfies (6) in D with boundary condition Rev|bD = 0. Without loss of general-
ity, v(1) = 0. The conclusion now follows by successively applying Proposi-
tion 2.1(ii) from [14].

In the general case, we can use the above argument with appropriate cut-off
function to prove the result for every proper sector of the annulus Aδ . Since
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the whole annulus is a union of two such sectors, then the conclusion will hold
for Aδ . �

For an admissible deformation (f t,τ ), we obtain a priori estimates of the
derivatives of the functions wt,τ from Definition 3.1(iii).

Lemma 4.2. Let 0 < t0 < 1. Let (f t,τ ) be an admissible deformation on
0≤ t < t0. Then for every 0< δ′ < δ and m≥ 1 there exists C > 0 such that
for every 0≤ t < t0 and τ ∈R/2πZ we have ‖wt,τ‖Cm(A(δ′)) ≤C.

In fact, the constant C is independent of t0 but we do not need it in our
application.

Proof of Lemma 4.2. Fix t1 < t0, say, t1 = t0/2. For 0< t < t1 the desired
estimate holds. We need to show that it also holds for t1 ≤ t < t0. From the
properties of the admissible deformation it follows that the union of the discs
f t,τ , 0≤ t < t1, τ ∈R/2πZ, cover an open neighborhood of f0(D) in H(Aδ ×
D). Since the discs f t,τ do not intersect, then for t1 ≤ t < t0 the functions
wt,τ are uniformly separated from zero. Hence, the desired conclusion follows
by Lemma 4.1. �

The given symplectic form ω and almost complex structure J tamed by ω
define a Riemannian metric

μ(V,W ) =
1

2

(
ω(V,JW ) + ω(W,JV )

)
.

Let f be a J -complex disc in Ω. Let E(f) denote the area of f with respect
to μ. Then (see, e.g., [11])

(7) E(f) =

∫
D

f∗ω.

We denote by L(f) the length of the boundary of f , that is,

L(f) =

∫ 2π

0

∣∣∣∣df(e
iθ)

dθ

∣∣∣∣
μ

dθ,

here |•|μ is the norm defined by μ. Since the form ω is exact in a neighborhood

of Ω, that is, ω = dλ, then by Stokes’ formula

(8) E(f) =

∫
f(D)

ω =

∫
f(bD)

λ≤CL(f),

where C > 0 depends only on Ω, λ, and μ. This inequality is a special case of
the isoperimetric inequality for J -complex curves, see [7], [11].

By Lemma 4.2, the lengths of boundaries of f t,τ are uniformly bounded.
Hence we obtain an upper bound on areas of the discs from an admissible
deformation.
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Corollary 4.3. Let 0< t0 < 1. Let (f t,τ ) be an admissible deformation
on 0≤ t < t0. Then there exists a constant C > 0 such that E(f t,τ )≤ C for
all t and τ .

Proof of Theorem 1.7. Let (f t,τ ) be an admissible deformation on [0, t0).

Consider a sequence tk → t0 as k →∞. Consider the sequence (f tk,τ ) for a
fixed value of τ . For simplicity of notation we again omit τ in f t,τ and write
just f t.

Since the areas of all discs f t are bounded, then by Gromov’s [7] compact-
ness theorem (see also [9], [11]), after passing to a subsequence if necessary,

the sequence f tk converges to a J -complex disc f∞ uniformly on every com-
pact subset of D \Σ. Here Σ is a finite set, where bubbles arise. The map f∞

is smooth on D and f∞(bD) ⊂ Λt0 . A bubble is a non-constant J -complex
sphere (a non-constant J -complex map from the Riemann sphere to M ) or
a non-constant J -complex disc with boundary in Λt0 ; disc-bubbles arise only
at the boundary points of D. We will prove that Σ = ∅, that is, there are no
bubbles. Then Gromov’s compactness theorem will imply the convergence in
every Cm(D)-norm.

Since the form ω is exact, then by Stokes’ formula every J -complex sphere
in Ω has zero area. Hence, there are no spherical bubbles, and Σ can contain

only points of bD, where disc-bubbles arise. The sequence f tk(D) converges
to a finite union of f∞(D) and disc-bubbles in the Hausdorf metric. It follows
from the normalization condition of Definition 3.1(iv) that the disc f∞(D)
does not degenerate to a single point.

Let F be the limit of the sequence Dtk in the Hausdorf metric. Recall the
decomposition Ω =Ω1∪Ω2 that we used in the proof of Proposition 3.4. Since
Dt

1 ⊂ Ω1 for all 0< t < t0, then F ∩Ω2 coincides with the Hausdorf limit of

the sequence Dtk

2 . By Lemma 4.2 and Ascoli’s theorem (after passing to a

subsequence if necessary), the sequence wtk converges in Cm(Aδ), m≥ 0, to
some function w∞ ∈Cm(Aδ). But then the graph of w∞ necessarily coincides
with an open piece of f∞(D). Hence boundary bubbles do not arise either.

Thus, for every τ there is a subsequence of f tk,τ converging in every Cm-
norm. Then by Proposition 3.4 the admissible deformation (f t,τ ) extends
past t0. Hence, there is an admissible deformation on the whole interval [0,1],
and the proof of Theorem 1.7 is complete. �

5. Non-squeezing

We first establish the following proposition.

Proposition 5.1. Let G be a bounded domain in C
2 and let R> 0. Sup-

pose G ⊂ RD × C and G ∩ (RD × {0}) = ∅. Let J be an almost complex
structure on C

2 tamed by ωst and let J = Jst on C
2 \G. Then the domain
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RD× (C \ {0}) is foliated by a real one-parameter family of Levi-flat hyper-
surfaces Γt, t > 0, with boundary bΓt = Λt = RbD× tbD. Every hypersurface
Γt in turn is foliated by embedded J-complex discs attached to Λt, and every
such disc has Euclidean area πR2.

Proof. Without loss of generality, assume R = 1. Consider the Euclidean
ball sB in C

2 for s > 0 big enough so that G⊂ sB. The boundary of sB is a
strictly pseudoconvex hypersurface with respect to J . We apply Theorem 1.7
to the family of tori Λt = bD× tbD in Ω = sB. As a result, we obtain a foliation
by hypersurfaces Γt. Every hypersurface Γt in turn is foliated by embedded
J -complex discs f t,τ = (zt,τ ,wt,τ ).

Since J = Jst on C
2 \G, then for big t, we have f t,τ (ζ) = (ζ, teiτ ). Hence

the hypersurfaces Γt cover the set D×(C\rD), where r is large. By continuity,
they cover the whole set D× (C \ {0}) as stated.

We now claim that the discs f t,τ have area π. Indeed, let λ= (i/2)(z dz+
wdw). Then ωst = dλ. Consider the parametrization of Λt given by z = eiφ,
w = teiψ . Then the restriction θ = λ|Λt has the form

θ =
1

2

(
dφ+ t2 dψ

)
.

By Stokes’ formula (8)

E
(
f t,τ

)
=

∫
bD

f∗θ =
1

2

∫
bD

(
zt,τ

)∗
(dφ) +

t2

2

∫
bD

(
wt,τ

)∗
(dψ) = π

since the winding numbers of zt,τ and wt,τ are equal to 1 and 0, respectively
for all t and τ . �

In particular, we immediately obtain the following corollary.

Corollary 5.2. Let J be a smooth almost complex structure in RD×C

tamed by ωst and such that J − Jst has compact support in RD × C. Then
for every p ∈RD×C there exists a J-complex disc f : D→RD×C such that
f(0) = p, f(bD)⊂RbD×C, and E(f) = πR2.

Proof of Theorem 1.2. Pushing forward the standard complex structure Jst
by φ yields an almost complex structure J = φ∗(Jst) on G2 tamed by ωst.
Consider an exhaustion sequence of subdomains Kn ⊂G1 such that every Kn

is relatively compact in Kn+1. Note that an almost complex structure J is
tamed by ωst if and only if its complex matrix A at every point has Euclidean
norm ‖A‖ < 1; the set of such matrices is convex. Therefore, for every n,

there exists an almost complex structure J̃ on RD × C, which is tamed by
ωst, coincides with J on φ(Kn), and coincides with Jst outside φ(Kn+1).

Let p= φ(0). By Corollary 5.2, there exists a proper J̃ -complex disc D :=
f(D) in RD×C passing through p with E(D) = πR2. Therefore, E(φ(Kn)∩
D)≤ πR2. Let Xn = φ−1(D)∩Kn. Since the map φ is a symplectomorphism,
then E(Xn)≤ πR2. Since φ : Kn → φ(Kn) is biholomorphic with respect to
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Jst and J̃ , then Xn ∈O1
0(Kn). Since (Kn) is an exhaustion sequence for G1,

then by Bishop’s convergence theorem (see, e.g., [2]), there is a subsequence of
(Xn) converging to a set X ∈O1

0(G1) with E(X)≤ πR2. Hence, rh(G1)≤R.
�

Proof of Corollary 1.4. By Theorem 1.2, it suffices to prove that
rh(D2

R
)> 1. By Bishop’s convergence theorem, there exists X ∈O1

0(D
2
R
) such

that E(X) = π(rh(D2
R
))2. The Euclidean unit ball B is contained in D

2
R
and

their boundaries bB and bD2
R
meet along two circles:

S1 =
{
(z1, z2) : x

2
1 + x2

2 = 1, y1 = y2 = 0
}
,

S2 =
{
(z1, z2) : x1 = x2 = 0, y21 + y22 = 1

}
.

Suppose that the boundary bX =X \X of X is contained in S1 ∪ S2. Then
X is a complex one-dimensional analytic subset in C

2 \ (S1 ∪ S2). By the
reflection principle for analytic sets [2], X extends as a complex 1-dimensional
analytic set to a neighborhood of S1 ∪ S2. Then by the uniqueness theorem
X is contained in the complex algebraic curve (z21 + z22)

2 = 1. But the latter
does not pass through the origin, a contradiction. Therefore, the closure X
intersects the sphere bB at a point p which is not in S1 ∪ S2. Since X is
closed in D

2
R, the point p is an interior point for X . The unit sphere bB is a

strictly pseudoconvex hypersurface. By the maximum principle [2] applied to
the plurisubharmonic function |z1|2 + |z2|2 on the analytic set X , the latter
can not be contained in B. Hence X contains an open piece outside the closed
ball B. Hence, E(X)>E(X ∩B)≥ π, and rh(D2

R
)> 1 as desired. �
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