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FORMAL THEORY OF SEGRE VARIETIES

GIUSEPPE DELLA SALA, ROBERT JUHLIN AND BERNHARD LAMEL

Abstract. We define a category of formal CR manifolds in a
purely algebraic way, study their basic properties, and prove the

Baouendi–Ebenfelt–Rothschild minimality criterion in this set-
ting. The objects of our category include deformations of classical
CR manifolds (real-analytic or formal).

1. Introduction and statement of results

In this paper, we develop the basic theory of Segre maps from a purely
formal point of view. Segre maps and Segre sets appear naturally when one
studies the orbit structure of the CR equations on a real-analytic CR manifold
and have turned out to be a basic tool in the field; they were introduced in
Baouendi, Ebenfelt and Rothschild’s study of algebraicity [1] and subsequently
used in many results in the theory of mapping problems. There have been
several studies of the Segre maps undertaken in the past, see, for example,
[3], [4] as well as the book [2], so why a new one? While the cited papers are
actually applicable to the formal situation, it is not quite clear how one can
use these approaches in a situation where the orbit structure is not locally
uniform, that is, the dimension of the orbits changes. It is not even clear
how to properly state this in the formal context, as one can really speak only
about the formal orbit of one point in the known framework!

This situation is unsatisfactory, since in many instances, one wants to “de-
form” a given geometric object, for example, by choosing a new basepoint for
a construction. This point of view has turned up repeatedly in newer studies
of mapping problems, and we think it is thus necessary and interesting to
present a general framework which can be used to treat these deformations in
a unified manner.
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Our approach is to consider instead of formal CR manifolds, that is, objects
defined by real ideals in a power series ring C[[Z, ζ]], formal CR manifolds
which are defined by ideals in a power series ring A[[Z, ζ]], where now A is
some ring (commutative with unit) which has an involution σ, and we consider
ideals which are invariant under the extension σ̃ of σ to A[[Z, ζ]] defined by
σ̃|A = σ and σ̃(Z) = ζ.

One can for example use the (complex) coordinate ring C[[M]] =C[[p, q]]/I
of a formal (or real-analytic) submanifold defined by the ideal I for A, and tau-

tologically induce from I , considered as I ⊂C[[Z, ζ]] an ideal Ĩ ⊂C[[M]][[Z, ζ]]
generated by ϕ(p+Z, q+ ζ)−ϕ(p, q) for ϕ ∈ I ; one can also use the (smooth
complex) coordinate ring of a smooth CR submanifold M ⊂ CN in a similar
manner. We will call these objects formal CR structures.

Each of these uses encapsulates some nonlocal behaviour of a manifold in
a localised way. We will thus have to be careful with “straightforward” gen-
eralizations of well-known notions: In our framework, there is a big difference
between some independence relation being satisfied with respect to A or with
respect to its quotient field K. In the case of induced CR structures, the for-
mer corresponds to a locally satisfied condition, while the latter corresponds
to a condition which is only satisfied generically.

Our main result in this paper is that the minimality criterion of Baouendi,
Ebenfelt and Rothschild holds in the setting of these formal CR structures.
Minimality is defined here by a Lie-algebra condition on the family of (1,0)-
and (0,1)-vector fields of a formal CR structure (to be defined in detail below),
and the formal analogues of the Segre maps are also defined below; we refer
the reader to Section 2 or our basic definitions of a formal CR structure, and
to Section 6 for the definition of the associated Segre maps.

Theorem 1. Assume that M is a formal CR structure over a ring A
with involution σ. Then there exists an integer k such that the Segre map of
order k is generically of full rank if and only M is generic and of finite type.
Furthermore, if M is generic, of finite type, and of CR codimension d, then
the Segre map of order d+ 1 is already of full rank. In that case, there exists
a formal manifold Σ such that the Segre map of order 2d− 1 maps Σ onto 0
and is generically of full rank on Σ.

More generally, we find that the image of the Segre maps of high order
coincides in a certain sense with the CR orbit of a formal CR structure. We
also build some of the basic theory of formal CR structures as defined here
(as we need to use it).

Let us discuss a bit the technique we use in this paper. Our framework
never allows us to evaluate our power series sensibly at any point besides of 0.
We shall overcome this technical obstacle by building algebraically on formal
flows of vector fields. The main technical ingredient is that any formal family
of vector fields fulfills a finite type condition if and only if their iterated flows
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are of full rank (over a field of fractions). This result requires us to restrict
ourselves to rings which contain the rational numbers as a subfield (in all
applications we have in mind, this is the case). Although doubtlessy this fact
is known, we deduce it for sake of completeness (and because we haven’t been
able to find a suitable reference in the literature) in Section 3.

Finally, let us note that the “formal CR structures” introduced here allow
for an elegant way to state (and prove) some results known from the literature,
for example, how complexifications vary with the basepoint, as one can deduce
these results by applying generalizations of the local arguments to these more
general structures.

The paper is organized as follows. In Section 2, we define the objects and
maps we are going to study, and state some basic properties. We present the
material on flows and their composition, as already mentioned, in Section 3.
In the special case of multiple smooth foliations we present another way of
looking at the composition in Section 4; in the setting of CR manifolds, this
ties together iterated complexifications of CR manifolds with the images of
iterated Segre maps. That compositions of flows increase their rank is proved
in Section 5. Finally, in Section 6, we define the iterated Segre maps of the
formal CR structures and prove Theorem 1.

2. Formal manifolds and CR structures

2.1. Formal manifold ideals. Let A be a ring (commutative, with unit);
we shall assume that A has no zero divisors and that it contains the field of
rational numbers as a subring (i.e., all multiples of 1 are units in A). We say
that an ideal I ⊂A[[x]] in the formal power series ring in the unknowns x=
(x1, . . . , xn) with coefficients in A is a manifold ideal if there exist generators
ρ= (ρ1, . . . , ρd) of I whose differentials have the property that the matrix

dρ(0) =

⎛
⎜⎝
ρ1,x1(0) · · · ρ1,xn(0)

...
...

ρd,x1(0) · · · ρd,xn(0)

⎞
⎟⎠

has a d × d-minor which is a unit in A. By the implicit function theo-
rem, this is equivalent to the fact that after renumbering the xj if neces-
sary, there exist formal power series ϕj(x1, . . . , xn−d) ∈A[[x1, . . . , xn−d]], j =
1, . . . , d, such that I is generated by xn−d+j − ϕj(x1, . . . , xn−d), j = 1, . . . , d;
in other words, if we write x= (x′, x′′) where x′ = (x1, . . . , xn−d), and ϕ(x′) =
(ϕ1(x

′), . . . ϕd(x
′)), then A[[x]]/I is isomorphic to A[[x′]] by the substitution

homomorphism Φ : A[[x]]→A[[x′]], Φ(a(x)) = a(x′, ϕ(x′)).
The A-linear derivations D of A[[x]] are identified with the formal vector

fields

X =
n∑

j=1

aj(x)
∂

∂xj
, aj ∈A[[x]];
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the condition that I is a manifold ideal can be restated once more by saying
that the A-linear derivations of A[[x]] which map I into itself, the space of
which we denote by DI = DerA(A[[x]], I), form a free module of rank n− d
over A[[x]] with the additional property that the vector space DI(0) over the
quotient field K of A is of dimension n− d. Restating this once more, I is a
manifold ideal if and only if for every a ∈An with df(0)a= 0 for all f ∈ I there
exists a formal vector field X ∈Der with XI ⊂ I which satisfies X(0) = a.

We shall find it convenient to think about the formal manifold M⊂An

associated to I when speaking about geometric concepts associated to I , even
though we will not give a precise meaning to this object. In particular, we
refer to DI(0) as the tangent space T0M of M.

2.2. Rank of maps and homomorphisms. Given a power series map
H(x) = (f1(x), . . . , fm(x)) with fj(x) ∈ A[[x1, . . . , xn]], we define the generic
rank rkH of H as the maximum integer r such that there exists an r × r-
minor of the matrix ∂H

∂x which is a nonvanishing formal power series with
coefficients in A. In other words, rkH is the dimension of the vector space
spanned by the columns (or rows) of ∂H

∂x over the field of fractions K of A.
Given a homomorphism of power series rings Ψ : A[[y1, . . . , ym]]→A[[x]], we
define the rank rkΨ of Ψ as rk(Ψ(y1), . . . ,Ψ(ym)). H is generically of full rank
if rkH = min(m,n). In what follows, we will abuse notation by identifying
power series maps with their induced homomorphisms; this will cause no
difficulty, since it will be clear from the context what is meant, and we shall
be careful to distinguish in places where confusion might arise.

2.3. Formal CR structures. Now let us assume that A has an involution,
which we denote by a �→ σa. We extend σ to an involution σ̃ of the formal
power series ring A[[Z, ζ]], where Z = (Z1, . . . ,ZN ) and ζ = (ζ1, . . . , ζN ) are
independent variables, by setting σ̃Zj = ζj . Explicitly, this involution is given
by

σ̃
(
ρ(Z, ζ)

)
= (σρ)(ζ,Z),

where for ρ(Z, ζ) =
∑

α,β aα,βZ
αζβ , we define σρ(Z, ζ) =

∑
α,β(σaα,β)Z

αζβ .

The space of A-linear derivations of A[[Z, ζ]] splits into a direct sum,

D =D(1,0) ⊕D(0,1),

where D(1,0) = ann(A[[ζ]]) and D(0,1) = ann(A[[Z]]); here annS = {X : Xm=
0 for all m ∈ S}.

We are mainly interested in the properties of σ̃-invariant ideals I , that
is, ideals which satisfy σ̃I = I ; in the case A = C with σ denoting complex
conjugation, the standard terminology is to refer to I ⊂ A[[Z, ζ]] as real if
Ī = I .

A formal σ̃-invariant manifold M of codimension d is given by a σ̃-invariant
manifold ideal I = I(M)⊂A[[Z, ζ]]. We note that given a σ̃-invariant ideal, it
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can always be generated by elements ρ which either satisfy σ̃ρ= ρ or σ̃ρ=−ρ.
By definition,

dρ(0) :=

⎛
⎜⎝
ρ1,Z1(0) · · · ρ1,ZN

(0) ρ1,ζ1(0) · · · ρ1,ζN (0)
...

...
...

...
ρd,Z1(0) · · · ρd,ZN

(0) ρd,ζ1(0) · · · ρd,ζN (0)

⎞
⎟⎠

has a d× d minor which is a unit in A and the tangent space of M at 0 is a
free submodule of A2N of rank 2N − d; it is given by the (A,B) ∈A2N which
satisfy ∑

j

ρ�,Zj (0)Aj +
∑
k

ρ�,ζj (0)Bj = 0, �= 1, . . . , d.

We define the space of (1,0)-tangent vectors T
(1,0)
0 M ⊂ AN to consist of

all A = (A1, . . . ,An) which satisfy that
∑

j fZj (0)Aj = 0 for all f ∈ I , and

similarly T
(0,1)
0 M to consist of all B = (B1, . . . ,Bn) with

∑
j fζj (0)Aj = 0 for

all f ∈ I . We note that σ defines an isomorphism T
(1,0)
0 M→ T

(0,1)
0 M.

We define the spaces D(1,0)
I =DI ∩D(1,0) and D(0,1)

I =DI ∩D(0,1). We shall

say that M is CR or Cauchy–Riemann if D(1,0)
I (0) = T

(1,0)
0 M; if we want to

emphasize the ring A and the involution σ, we will refer to M as a formal
CR structure, defined by I , over (A, σ). If the matrix

ρZ(0) :=

⎛
⎜⎝
ρ1,Z1(0) · · · ρ1,ZN

(0)
...

...
ρd,Z1(0) · · · ρd,ZN

(0)

⎞
⎟⎠

has a d× d minor which is a unit in A, then M is said to be generic.
Our first lemma analyzes the structure of general formal CR manifolds; the

corresponding statement for the case A= C is well-known (see, e.g., [2]). It
allows us to restrict ourselves most of the time to generic manifolds.

Lemma 1. Let M be a formal CR manifold of codimension d, with as-
sociated manifold ideal I . Then there exists integers d1, d2, and d3 with
N = d1 + d2 + d3, d= 2d1 + d3 such that after renumbering Z and ζ if neces-
sary, we can write Z = (Z1,Z2,Z3), ζ = (ζ1, ζ2, ζ3), where Zj = (Zj

1 , . . . ,Z
j
dj ),

ζj = (ζj1 , . . . , ζ
j
dj ), and we can choose a set of generators of I given by Z1 −

ϕ(Z2,Z3), ζ1 − σϕ(ζ2, ζ3), and ζ2 −R(Z2,Z3, ζ3) for some ϕ ∈A[[Z2,Z3]]d1

and R ∈A[[Z2,Z3, ζ3]]d2 .

Proof. Assume that M is of codimension d, and let ρ = (ρ1, . . . , ρd) be
generators of I . Let d′ > 0 be the biggest number such that ρ′ = (ρ1, . . . , ρd′)
satisfies that the matrix ρ′ζ has a d′ × d′ minor which is a unit in A. By
the implicit function theorem, after renumbering the ζ if necessary, we can
write ζ = (ζ ′, ζ ′′) such that with an invertible d′ × d′-matrix A we can write
ρ′(Z, ζ) =A(Z, ζ)(ζ ′−R(ζ ′′,Z)); we can thus assume that ρj = ζj −Rj(ζ

′′,Z)
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for j = 1, . . . , d′. We write η = (ρd′+1(Z,R(ζ ′′,Z), ζ ′′), . . . , ρd(Z,R(ζ ′′,Z),
ζ ′′)) = (η1, . . . , ηe); note that (ρ′, η) are again generators for I . Since I is
a manifold ideal, the matrix ηZ(0) necessarily has an e × e-minor which
is a unit in A. Thus, using the implicit function theorem, we can choose
k1, . . . , ke and that ηj = Ẑkj − ϕj(Z̃, ζ ′′) (where the Z̃ contains all the Zk for
k �= kj).

By assumption (since M is CR), each ηj,ζ can be written as

(1) ηj,ζ =

d′∑
k=1

akj ρk,ζ

modulo I . Since ηj does not depend on ζ ′, this implies that akj ∈ I . (1) im-
plies that we can actually write ηj,ζ =

∑
k bkρk +

∑
� c�η�. But ρk contains a

ζk which does not appear anywhere else. Hence, bk = 0; also, η� does contain
a Z� which does not appear anywhere else, and so c� = 0. We conclude that
actually η� = Z�−ϕ�(Z̃). Since σ̃η� ∈ I , we can arrange by renumbering again
that kj = j and replace ρj by η̄j for j = 1, . . . , e. We set d1 = e, d2 = d′ − e,
and arrive at the conclusion of the lemma. �

In particular, A[[Z, ζ]]/I is isomorphic to A[[Z2,Z3, ζ2, ζ3]]/Ĩ where Ĩ is
generated by ζ2 −R(Z2,Z3, ζ3). In this sense, we can reduce to the study of
generic submanifolds.

Example 1. We start by considering a formal manifold M over C, given
by ρ(p, q) = 0. To it, we attach a formal manifold M̃ over the coordinate ring
of M (which we denote by C[[M ]]), its ideal being generated by ρ̃(Z, ζ) =

ρ(Z + p, ζ + q)− ρ(p, q). Clearly ρ̃Z(0) = ρp(p, q), so M̃ is generic if M is.

2.4. Generic and A-submanifolds. Given a manifold ideal J ⊂ A[[Z]],
there exists a unique minimal σ̃-invariant ideal I ⊂ A[[Z, ζ]] such that I ∩
A[[Z]] = J . We shall say that such a manifold ideal is associated to an A-
submanifold or say that I is an A[[Z]]-ideal. The following lemma summarizes
ways to define A-submanifolds; we leave its proof to the reader.

Lemma 2. If I ⊂A[[Z, ζ]] is a σ̃-invariant manifold ideal, the following are
equivalent:

(i) I is an A[[Z]]-ideal;
(ii) I = (I ∩A[[Z]]) + (I ∩A[[ζ]]);

(iii) DI =D(1,0)
I ⊕D(0,1)

I ;

(iv) There exists a splitting Z = (Z1,Z2), Zj = (Zj
1 , . . . ,Z

j
Nj ) and a map

ϕ(Z1) ∈ A[[Z1]]N
2

such that the ring homomorphism induced by Z2 =
ϕ(Z1), ζ2 = σϕ(ζ1) is an isomorphism A[[Z1, ζ1]]∼=A[[Z, ζ]]/I .
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A generic submanifold has characterizations which starkly contrast these.

Lemma 3. If I ⊂A[[Z, ζ]] is a σ̃-invariant manifold ideal, the following are
equivalent:

(i) I is generic;
(ii) I ∩A[[Z]] = {0};
(iii) DI + σ̃DI =D, or more specifically, with T =DI/(D(1,0)

I ⊕D(0,1)
I ), D =

DI ⊕T ;
(iv) There exists a splitting Z = (Z1,Z2), Zj = (Zj

1 , . . . ,Z
j
Nj ) and a map

R(Z1,Z2, ζ2) ∈ A[[Z1,Z2, ζ2]]N
1

such that the ring homomorphism in-
duced by ζ2 = ϕ(Z1,Z2, ζ1) is an isomorphism of A[[Z1,Z2, ζ1]] ∼=
A[[Z, ζ]]/I .

We can now restate Lemma 1 by saying that for a formal CR structure in
A[[Z, ζ]], there exists a unique A-submanifold in which it is generic.

2.5. CR mappings. We now consider two rings A and B, with involutions
σ and ω, respectively. We say that a ring homomorphism Φ : A[[Z ′, ζ ′]] →
B[[Z, ζ]] is compatible with (σ,ω) if ω ◦ Φ = Φ ◦ σ. As usual, a ring homo-
morphism is identified with a power series map defined by Z ′

j = Fj(Z, ζ),
ζ ′j =Gj(Z, ζ), where Fj =Φ(Z ′

j), Gj =Φ(ζ ′j), so Φ is compatible if it is given
by a map which satisfies Gj = ωFj . We say that a ring homomorphism is
holomorphic if Φ∗ maps (1,0)-vector fields to (1,0)-vector fields; equivalently,
for a B-linear derivation X which annihilates B[[ζ]], X ′ =X ◦Φ is an A-linear
derivation X ′ of A[[Z ′, ζ ′]] which annihilates A[[ζ ′]].

Lemma 4. In the setting above, a holomorphic homomorphism Φ is given
by a power series map of the form Z ′

j = Fj(Z), ζ ′j = ωFj(ζ); furthermore, Φ
maps constants to constants, so if we denote Φ|A = ϕ, then

Φ

(∑
α,β

aα,βZ
′αζ ′β

)
=
∑
α,β

ϕ(aα,β)F (Z)α
(
ωF (ζ)

)β
.

Proof. We only need to check that Φ maps constants to constants, the rest
of the lemma is then an easy consequence. We note that a ∈A if and only if
X ′a= 0 for all A-linear derivation X ′ of A[[Z ′, ζ ′]], similarly for b ∈ B. But
by assumption, X ′ ◦Φ is a B-linear derivation, and thus X ′ ◦Φ(a) = 0 for all
X ′ and a, and thus Φ(a) is a constant. �

A CR mapping of a formal CR structure over (A, σ) defined by an ideal
I ′ and a formal CR structure over (B, ω) defined by an ideal I is a holomor-
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phic ring homomorphism Φ, compatible with (σ,ω) (or, equivalently, a formal
power series mapping), which in addition satisfies Φ(I ′)⊂ I . Two formal CR
structures are equivalent if there exists a CR mapping between them which
is invertible and whose inverse is also CR. Thus, an equivalence between two
formal CR structures is given by an equivalence of the CR structure defined
by the trivial ideal which also respects the ideals.

Lemma 5. A CR mapping Φ between A[[Z ′, ζ ′]] and B[[Z, ζ]] is an equiv-
alence if and only if the induced mapping on the constants ϕ : A→ B is an
isomorphism and it is given by a power series map Z ′ =H(Z) with the prop-
erty that detH ′(0) is a unit in B.

Proof. We only need to show sufficiency of the conditions. Since detH ′(0)
is a unit in B, we can find a power series map G(Z) ∈ B[[Z]] with G(H(Z)) =
H(G(Z)) = Z. We define the map Ψ : B[[Z, ζ]] → A[[Z ′, ζ ′]] by Ψ|B = ϕ−1

and by the power series map (ϕ−1G)(Z ′) (where ϕ−1 acts on the coefficients
of G). �

In particular, we shall refer to a CR equivalence of A[[Z, ζ]] with itself as
a choice of coordinates.

2.6. Coordinate choices—normal coordinates. Our aim in this section
is to show that given a generic σ̃-invariant manifold ideal I ⊂ A[[Z, ζ]] of
codimension d, we can choose normal coordinates Z =H(z,w), ζ = σH(χ, τ),
z = (z1, . . . , zn), χ= (χ1, . . . χn), w = (w1, . . . ,wd), τ = (τ1, . . . , τd), N = n+ d.
H ∈A[[Z]]N satisfies that detH ′(0) is a unit in A and there are generators of
I of the form wj −Qj(z,χ, τ), j = 1, . . . , d, satisfying

(2) Qj(z,0, τ) =Qj(0, χ, τ) = τ, Qj

(
z,χ,σQ(χ, z,w)

)
=w.

In particular, the induced homomorphism of this coordinate change on the
constants is the identity. As before, it is convenient to write the generators in
vector notation, i.e. as w−Q(z,χ, τ).

Our first step is to choose linear coordinates Z̃ = (z̃, w̃) (that is, we choose

an invertible N ×N matrix A with entries in A and set Z = AZ̃) such that

the set of generators ρ̃(Z̃, ζ̃) = ρ(AZ̃,σAζ̃) satisfy ρ̃z̃(0) = 0 and ρ̃w̃(0) = I .
For this, we just need to find A such that ρZ(0)A = (0I), which is possible
since by assumption ρZ(0) has a d× d-minor which is a unit in A.

We can now apply the implicit function theorem to write generators of I in
the form w̃−R(z̃, χ̃, τ̃), with Rτ̃ (0,0,0) = I , and R(z̃, χ̃, R̄(χ̃, z̃, w̃)) = w̃. We
claim that after another change of coordinates of the form w + g(z,w) = w̃,
where we choose g with the property that σg(0,w) =−g(0,w), we arrive at the
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form we wanted. The transformed generators are then w+g(z,w)−R(z,χ, τ−
g(χ, τ)) = ρ(z,w,χ, τ). We need to choose g such that ρ(z,w,0,w) = 0. Now
consider the equation w + Y − R(0,0,w − Y ) = 0. By the implicit function
theorem, this equation has a unique solution Y = g(0,w). We have already
noted that R(z̃, χ̃, R̄(χ̃, z̃,w)) = w, R(z,χ,σR(χ, z,w)) = w, so that we have
w+σg(0,w) = σR(0,0,R(0,0,w+σg(0,w))); from the uniqueness of g, it fol-
lows that R(0,0,w+σg(0,w)) =w−σg(0,w), and hence (again by uniqueness)
g(0,w) =−σg(0,w) as required. The change of coordinates is now defined by
g(z,w) =R(z,0,w− g(0,w))−w.

2.7. Finite type. We say that a formal CR structure defined by an ideal I

is of finite type if the Lie algebra generated by D(1,0)
I ⊕D(0,1)

I has the property
that its evaluation at 0 spans DI(0) over K. Note that we do not require that
it spans over A.

3. Homomorphisms, flows and their iterations

In this section, we consider a formal power series ring A[[x]], where x =
(x1, . . . , xn). A homomorphism Ψ : A[[x]] → A[[x, t]], where t = (t1, . . . , td)
is given by substitution with a formal map ψ(x, t) = (ψ1(x, t), . . . , ψn(x, t)),
where Ψ(xj) = ψj(x, t). Using the notation t[k] = (t1, . . . , tk), where tj =

(tj1, . . . , t
j
d), we define the kth iteration Ψ[k] : A[[x]]→A[[x, t[k]]] inductively

by

(3) Ψ[1] =Ψ, Ψ[k]f(x) = f
(
ψk

(
x, t[k]

))
= f

(
ψ
(
ψk−1

(
x, t[k−1]

)
, tk

))
.

We also define the kth restricted iteration Ψ
[k]
0 : A[[x, t[k]]]→A[[t[k]]] by the

composition of Ψ[k] with the projection of A[[x, t[k]]] onto A[[t[k]]].

Definition 6. We say that Ψ is of finite type if there exists an integer k
such that the map t[k] �→ ψ(0, t[k]) is generically of full rank.

The meaning of the preceding definition is that the matrix ∂ψ
∂t[k] (0, t

[k]) has
an n×n minor which is not identically vanishing; this condition is sometimes

referred to as the geometric rank of Ψ
[k]
0 is full or that Ψ

[k]
0 is strongly injective.

More generally, recall that we define the generic rank rkh of a power series
map h(y) ∈ A[[y]] as the largest integer r for which the matrix ∂h

∂y has a

nonvanishing r × r minor, and the generic rank of a homomorphism as the
generic rank of its associated formal map.

Next, observe that rkΨ
[1]
0 ≤ rkΨ

[2]
0 ≤ · · · ≤ rkΨ

[k]
0 ≤ n; thus there exist

numbers k and s such that rkΨ
[�]
0 = s for all � ≥ k. (We will observe in

Section 5 that the increase of the rank is strict; that is, if rkΨ
[j]
0 = rkΨ

[j+1]
0 ,

then rkΨ
[j]
0 = rkΨ

[j+s]
0 for all s ∈N.)
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Definition 7. The substitution rank skΨ is maxk rkΨ
[k]
0 .

Given a family of vector fields X = (X1, . . . ,Xd), Xj ∈ DerA(A[[x]]), we
define their formal flow by the power series map ψX(x, t) = et1X1 · · ·etdXdx,
and the associated homomorphism by ΨX .

Definition 8. We say that the family X = (X1, . . . ,Xd) is of finite type if
the Lie algebra Lie(X) = Lie(X1, . . . ,Xd)⊂A[[x]]n generated by the Xj has
the property that its evaluation Lie(X)(0) at 0 spans K

n. The rank rkX of
X is the dimension of the K-vector space Lie(X)(0).

Remark 1. The meaning of the preceding definition of finite type is that if
we identify formal vector fields Y = (a1(x), . . . , an(x)) with their coefficients,

then we can collect Y 1, . . . , Y n ∈ Lie(X), Y j = (aj1(x), . . . , a
j
n(x)) such that

the matrix (ajk(0)) has nonzero determinant (it need not be a unit). More
generally, rkX is the maximum number r such that we can choose Y1, . . . , Yr ∈
Lie(X) such that the matrix (ajk(0)) has a nonzero r× r minor.

The main result of this section is that finite type of a family of vector fields
and finite type of their flows are equivalent.

Theorem 2. Let X be a finite family of vector fields on A[[x]]. Then
skΨX = rkX . In particular, the homomorphism ΨX is of finite type if and
only if X is of finite type.

The proof of Theorem 2 is based on the following well-known lemma (we
include a proof valid in our setting).

Lemma 9. Let X =
∑

j aj(x)
∂

∂xj
and Y =

∑
j bj(x)

∂
∂xj

be formal vector

fields on A[[x]], and let ϕ(x, t) denote the (formal) flow of X . Define a formal
power series map W (x, t) = (w1(x, t), . . . ,wn(x, t)) by

(4) W (x, t) = ϕx

(
ϕ(x, t),−t

)
Y
(
ϕ(x, t)

)
.

Then W (x, t) solves the differential equation dW
dt = ϕx(ϕ(x, t),−t)[X,Y ](ϕ(x,

t)) with W (x,0) = Y (x); in particular,

(5)
d

dt
W (x,0) = [X,Y ](x).

Proof. By the flow property, ϕ(ϕ(x, t),−t) = x, so ϕx(x, t) = (ϕx(ϕ(x, t),
−t))−1. We differentiate the equation

ϕx(x, t)W (x, t) = Y
(
ϕ(x, t)

)
with respect to t. On the right-hand side, we obtain the vector (Xb1, . . . ,Xbn);
on the left-hand side, we need to compute ϕx,t(x, t)W (x, t). Since ϕt(x, t) =
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X(ϕ(x, t)), we have that ϕx,t =Xx(ϕ(x, t))ϕx(x, t) (where we consider X as a
map given by (a1, . . . , an)), so ϕx,t(x, t)W (x, t) =Xx(ϕ(x, t))Y (ϕ(x, t)), which

is exactly the vector (Y a1, . . . , Y an). Recalling that [X,Y ] =
∑

j cj
∂

∂xj
with

cj = (Xbj − Y aj) gives the claimed result. �

We need the following consequence of Lemma 9.

Lemma 10. Let X1, . . . ,Xk and Y be formal vector fields on A[[x]]; denote
the flow of Xj by ϕj(x, tj), and let ϕ[j](x, t[j]) be defined inductively by ϕ[1] =

ϕ1, ϕ[j](x, t[j]) = ϕj(ϕ[j−1](x, t[j−1]), tj). Define W (t[k]) by

W (x, t1, . . . , tk)(6)

= ϕ1
x

(
ϕ1(x, t1),−t1

)
· · ·ϕk

x

(
ϕ[k]

(
x, t[k]

)
,−tk

)
Y
(
ϕ[k]

(
x, t[k]

))
.

Then

(7)
∂kW

∂t1 . . . ∂tk
(x,0) =

[
X1,

[
. . .

[
Xk−1, [Xk, Y ]

]
. . .

]]
(x).

Proof. The case k = 1 is just Lemma 9. In order to finish the inductive
step, use the inductive hypothesis for the family of vector fields X2, . . . ,Xk

and replace x by ϕ1(x, t1) in the resulting equation. �

Proof of Theorem 2: rkX ≤ skΨX . Assume that X = (X1, . . . ,Xd) is a
family of vector fields of finite type, and let ϕj(x, t) = ϕj,t(x) be the flow of Xj .
For any sequence of integers J = (j1, . . . , j|J|), we write tJ = (t1, . . . , t|J|), and

define ϕtJ
J = ϕJ(x, t1, . . . , t|J|) = ϕj1,−t1 ◦ϕj2,−t2 ◦· · ·◦ϕj|J|−1,−t|J|−1 ◦ϕj|J|,t|J| ◦

ϕj|J|−1,t|J|−1 ◦ · · · ◦ϕj1,t1 .
Now choose r sequences of integers J1, . . . , Jr with the property that

Z� =
[
Xj�1

,
[
Xj�2

,
[
. . . , [Xj�

|J�|−1
,Xj�

|J�|
] . . .

]]]
(0)

are linearly independent over K; without loss of generality, assume that if we
write Z� =

∑
j a

j
�(x)

∂
∂xj

, then the r×r matrix (aj�(0))1≤j,�≤r has nonvanishing

determinant. We claim that the map ψ(t�j) = ϕ
tJ1

J1 ◦ · · · ◦ϕtJn

Jn (0) is of generic
rank at least r. To show this, we compute the r×r minor D(t) of ψt comprised
of the columns corresponding to t�|J�| and the first r rows, and claim that we

have

∂|J1|+···+|Jn|−nD

∂t11 · · · ∂tn|Jn|−1

(0) �= 0,

where the derivative is with respect to all t�j with j �= j|J�|. Indeed, when we

compute the derivative of ψ with respect to t�|J�| and set all t�|J�| = 0, 1≤ �≤ n,
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it is given by the derivative of ϕtJ
J� with respect to t�|J�|, which turns out to

depend only on t�j , 1≤ j ≤ |J�| and is given by

ϕj1
x

(
ϕj1

(
0, t�1

)
,−t�1

)
· · ·ϕjk

x

(
ϕ[k]

(
0, t[k]

)
,−t�k

)
Xjk+1

(
ϕ[k]

(
0, t[k]

))
,

where we set k = |J�| − 1 and define ϕ[j] in the obvious inductive manner.
Thus, we can apply Lemma 10 to compute the derivative of this vector with
respect to t�1, . . . , t

�
k, which evaluated at 0 is just Z�. Thus,

∂|J1|+···+|Jn|−nD

∂t11 · · · ∂tn|Jn|−1

(0) = det
[(
aj�(0)

)
1≤j,�≤r

]
�= 0,

as claimed. �

In order to prove the opposite inequality, we need to employ a version of the
Baker–Campbell–Hausdorff formula. We recall that for vector fields X,Y , the
adjoint map ad is defined by (adX)(Y ) = [X,Y ]. We now record the following
extension of Lemma 9, which is obtained by induction:

Lemma 11. Let X,Y be formal vector fields on A[[x]], and denote the flow
of X by ϕ(x, t). Then we have

ϕx

(
ϕ(x, t),−t

)
Y
(
ϕ(x, t)

)
=

∞∑
j=0

tj

j!

(
(adX)jY

)
(x),

(8)

ϕx(x, t)Y (x) =

∞∑
j=0

(−1)jtj

j!

(
(adX)jY

)(
ϕ(x, t)

)
.

To study iterated flows along a family of vector fields, we also need a result
analogous to Lemma 10:

Lemma 12. Let X1, . . . ,Xk and Y be formal vector fields on A[[x]], and
denote the flow of Xj by ϕj(x, tj) = ϕj,tj (x). Let Φ(x, t) = ϕk,tk ◦ · · · ◦ ϕ1,t1

and Φ−1(x, t) = ϕ1,−t1 ◦ · · · ◦ϕk,−tk . Then

Φx(x, t)Y (x)

=
∑
α∈Nk

(−1)|α|tα

α!

(
adXk

)αk ◦ · · · ◦
(
adX1

)α1
(Y )

(
Φ(x, t)

)
,

(9)
Φ−1

x

(
Φ(x, t), t

)
Y
(
Φ(x, t)

)
=

∑
α∈Nk

tα

α!

(
adX1

)α1 ◦ · · · ◦
(
adXk

)αk(Y )(x).

Proof. Note that the second formula follows from the first one, the proof
of which we now turn to. If k = 1, this is the second formula in Lemma 11.
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For k > 1 we use induction, and write Φ = ϕk,tk ◦ Φ̃, t = (tk, t̃). We then
have

Φx(x, t)Y (x) = ϕk
x

(
Φ̃(x, t̃), tk

)
Φ̃x(x, t̃)Y (x) = ϕk

x

(
Φ̃(x, t̃), tk

)
Z
(
Φ̃(x, t̃), t̃

)
.

Now note that y = Φ̃(x, t̃) is a well-defined change of variable in the ring
A′[[x]], where A′ =A[[t̃]]. We can thus use Lemma 11 to compute

ϕk
x(y, tk)Z(y, t̃) =

∞∑
j=0

(−1)jtk
j

j!

(
(adXk)

jZ
)(
ϕk(y, tk)

)
.

The result follows by applying the induction hypothesis and replacing y by
Φ̃(x, t̃). �

Our next observation is that the rank of a Lie algebra of vector fields is
constant along its flows; stated formally, we mean the following.

Proposition 13. Let L⊂A[[x]]n be a Lie algebra of formal vector fields on
A[[x]]. For any collection X1, . . . ,Xk ∈ L, denote the flow of Xj by ϕj(x, tj) =
ϕj,tj (x). Let Φ(x, t) = ϕk,tk ◦ · · · ◦ ϕ1,t1 , and consider the set L(Φ(0, t)) ⊂
A[[t]]n; let K((t)) be the quotient field of A[[t]]. Then dimK((t))L(Φ(0, t)) =
dimKL(0).

Proof. The inequality dimKt L(Φ(0, t))≥ dimKL(0) is immediate. In order
to prove the opposite inequality, choose any vector fields V1, . . . , Vn ∈ L, and
consider the matrix V = (V1, . . . Vn) with columns Vj . Since Φ−1

x (Φ(x, t),
t)|x=t=0 = I , the rank of V ′ = (V ′

1 , . . . V
′
n), where V ′

j = Φ−1
x (Φ(0, t),

t)Vj(Φ(0, t)), over K((t)) coincides with the rank of V (Φ(0, t)) over K((t)).
But Lemma 12 implies that V ′

j (t) =
∑

αC
j
αt

α, where Cj
α ∈ L(0). Thus, if all

minors of size r of n× n matrices with columns in L(0) vanish identically, so
do all minors of size r of V (Φ(0, t)). We conclude that dimK((t))L(Φ(0, t)) =
dimKL(0). �

Proof of Theorem 2: skΨX ≤ rkX. Consider an iterated flow of the vector
fields X1, . . .Xd; i.e. we have a sequence of integers (j1, . . . , j�) with 1≤ jk ≤ d,
and we consider the map Φ : (x, t1, . . . , t�) = (x, t) �→ ϕj�,t� ◦ · · · ◦ϕj1,t1(x). We
first claim that for any k, the vector ∂Φ

∂tk
can be written as a series of Lie

brackets of the Xj evaluated along Φ(x, t). This is obvious for �= 1, and we
proceed by induction on �. Note that it is enough to consider the case k = 1,
as all other cases are automatically covered by the induction assumption. We
thus compute

∂

∂t1
Φ(x, t) =

∂

∂t1
ϕjk,tk ◦ Φ̃(x, t̃) = ϕjk,tk

x

(
tk, Φ̃(x, t)

) ∂

∂t1
Φ̃(x, t̃).

Assuming that ∂
∂t1

Φ̃(x, t̃) =
∑

α t̃
αZα(Φ̃(x, t̃)) with Zα ∈ Lie(X) we see that

we can proceed as in the proof of Lemma 12 and finish the induction by
applying Lemma 11.
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It follows that the columns of the matrix ∂Φ
∂t (0, t) can be written as for-

mal series of elements of Lie(X), evaluated at Φ(0, t). Thus, by Propo-
sition 13, we conclude that skΨX ≤ dimLie(X)(Φ(0, t)) = dimLie(X)(0) =
rkX . �

4. Strongly independent vector fields and strictly regular maps

Now assume that X = (X1, . . . ,Xd) is a family of formal vector fields on
A[[x1, . . . , xn]]; as before, we shall identify each Xj with its coefficients. We
shall furthermore assume that (X1, . . . ,Xd) have the property that there exists
a d× d minor of the r× d matrix (X1(0), . . . ,Xd(0)) which is a unit in A. We
say that X is strongly independent if it satisfies this property. In particular,
note that in this case d = dimK〈{X1, . . .Xd}〉. Now if X is strictly regular,
the composition of their flows ϕ(t, x) = ϕd,td ◦ · · · ◦ ϕ1,t1(x) has the property
that ϕt(0, x) = X(x) has a d × d minor which is a unit in A[[x]]. We shall
be interested in substitution maps with this particular property; we thus give
the following definition.

Definition 14. A homomorphism Ψ : A[[x]]→A[[x, t]], or equivalently a
power series map ψ(x, t) ∈A[[x, t]]n, is strictly regular if ψt(x,0) has a minor
which is invertible in A[[x]].

Our goal is to understand the iterations Ψ[k] in a bit of a different way.
The crucial observation is the following lemma.

Lemma 15. Let ψ(x, t) = (ψ1(x, t), . . . , ψn(x, t)) be a strictly regular map,
t = (t1, . . . , td). Then there exists a formal power series map f(x, y) ∈ A[[x,
y]]n−d such that fy(0,0) has an (n− d)× (n− d) minor which is a unit in A
and which satisfies

f
(
x,ψ(x, t)

)
= 0.

Proof. Without loss of generality, we assume that the d×d matrix M(x) =

(ψj
tk
(x))1≤j,k≤d has the property that detM(x) is a unit in A[[x]]. To con-

struct f = (f1, . . . , fn−d) (which is highly nonunique), take the derivative of
f(x,ψ(x, t)) with respect to t and set t= 0 to obtain

fy(x,0)ψt(x,0) = 0.

Since we would like that fy(0,0) has a minor of size n − d which is a unit
in A, we make the the choice f j

yd+k
(x,0) = δkj for j, k = 1, . . . , n − d. Now

write y = (z,w) where z denotes the first d entries of y, and write ψt(x) =
(M(x) N(x))t. We thus have fz(x,0)M(x) =−fw(x,0)N(x) =−N(x); mul-
tiplying by the classical adjoint MT (x) from the right gives (detM(x))fz(x,
0) =−N(x)MT (x), which determines fz(x,0).
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The construction of higher order derivatives proceeds by induction on the
order: If we have determined all derivatives of f up to order k − 1, we take
the derivatives of f(x,ϕ(t, x)) with respect to t of order k, substitute for all
derivatives fyα(x,0) for |α|< k, decide to leave all fzαwβ (x,0) where |α|+ |β|=
k and β �= 0 undetermined (or set them equal to 0), and find that we can solve
the equations for the remaining fzα(x,0) where |α|= k. �

We thus give the following definition.

Definition 16. An ideal I ⊂ A[[x, y]] is strictly regular of order e (with
respect to y) if there exist e generators f1(x, y), . . . , fe(x, y) with the property
that fy(x,0) has a minor of size e which is a unit in A[[x]].

Consider, now, a sequence I1, . . . , I� of strictly regular ideals, with Ij of
order ej . From the sequence Ij , we define an operation of iterated substitution
as follows:

I [k] ⊂ A[[x, y1, . . . , yk]] =A[[x, y[k]]], I [1] =
(
g
(
x, y1

))
g∈I1

,

I [k] = I [k−1] +
(
g
(
yk−1, yk

))
g∈Ik

, k = 2, . . . , �,

I
[k]
0 ⊂ A[[y1, . . . , yk]] =A[[y[k]]], I

[k]
0 = I [k]|x=0.

We refer to the sequence I
[k]
0 as the iterated substitution “starting from the

origin.”

Definition 17. A regular parametrization of a strictly regular ideal I ⊂
A[[x, y]] is any strictly regular map ψ(x, t) which satisfies f(x,ψ(x, t)) = 0 for
all f ∈ I .

The following lemma summarizes some easily proved facts.

Lemma 18. Let I1, . . . , I� ⊂ A[[x, y]] be strictly regular ideals as above,
and let ψj(x, tj) be a strictly regular parametrization for Ij ; we write Ψ =

(ψ1, . . . , ψ�). Then for any 1 ≤ k ≤ �, I [k] is a manifold ideal of dimension

(k+1)n−
∑k

j=1 ej , and a parametrization of I [k] is given by (ψ[1](x, t[1]), . . . ,

ψ[k](x, t[k])), where

ψ[1]
(
x, t[1]

)
= ψ1

(
x, t1

)
,

ψ[k]
(
x, t[k]

)
= ψk

(
ψ[k−1]

(
x, t[k−1]

)
, tk

)
, k = 2, . . . , �,

and for any 1≤ k ≤ �, I
[k]
0 is a manifold ideal of dimension kn−

∑k
j=1 ej , and

a parametrization of I
[k]
0 is given by (ψ[1](0, t[1]), . . . , ψ[k](0, t[k])). In particu-

lar, for any two regular parametrizations Ψ1 and Ψ2 for (I1 . . . , I�), we have

rkψ
[k]
1 (0, t[k]) = rkψ

[k]
2 (0, t[k]).
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Proof. Let f j
1 , . . . , f

j
ej be generators for Ij as in Definition 16; then the

differential of the (f j
i ) with respect to y[l] is a block triangular matrix:

dy[�]

(
f j
i

)(
y[�])

=

⎛
⎜⎜⎜⎜⎜⎜⎝

dy1(f1
i )(0, y

1) 0 · · · 0 0
dy1(f2

i )(y
1, y2) dy2(f2

i )(y
1, y2) · · · 0 0

...
...

. . .
...

...

0 0 · · · dy�−1(f �−1
i )(y�−2, y�−1) 0

0 0 · · · dy�−1(f �
i )(y

�−1, y�) dy�(f �
i )(y

�−1, y�)

⎞
⎟⎟⎟⎟⎟⎟⎠

from which it follows immediately that I [k] is a manifold ideal of dimension

kn−
∑k

j=1 ej . Next, we observe that since f j
i (x,ψ

j(x, t)) ≡ 0 by definition,
also

f j
i

(
ψ[j−1]

(
0, t[j−1]

)
, ψ[j]

(
0, t[j]

))
= f j

i

(
ψ[j−1]

(
0, t[j−1]

)
, ψj

(
ψ[j−1]

(
0, t[j−1]

)
, tj

))
≡ 0.

Finally, we notice that the differential of the map (ψ[1](0, t[1]), . . . , ψ[k](0, t[k]))
with respect to t[k] is a triangular matrix; analogously as before, this im-
plies that its rank is

∑
j ej , and thus that it represents a parametrization

for I [k]. �

5. The rank increase property

In this section, we study compositions of maps of the kind ϕ(x, t), cor-
responding to homomorphisms A[[x]]→A[[x, t]], satisfying the property ϕ(x,
0)≡ x. We fix a set of such formal maps {ϕ1(x, t), . . . , ϕd(x, t)}. For all k ∈N,
we denote by Ik the set of all the maps i : {1, . . . , k}→ {1, . . . , d}; moreover,
for any such i we consider the (ordered) list ϕi(1), . . . , ϕi(k), and we define the
substitution maps Φi,[l](x, t[l]), where l ≤ k and t[l] = (t1, . . . , tl), inductively
as follows:

Φi,[1](x, t1) = ϕi(1)(x, t1), Φi,[j+1]
(
x, t[j+1]

)
= ϕi(j+1)

(
Φi,[j]

(
x, t[j]

)
, tj+1

)
(cf. equation (3)); we refer to l as the length of Φi,[l]. We define rkj Φ, the
generic rank at step j of the set Φ = {ϕ1, . . . , ϕd}, to be

rkj Φ=max
i∈Ij

{
rkΦ

i,[j]
0

}
with Φ

i,[j]
0 as in Section 3. In analogy with Section 3, we define the substitution

rank of Φ as skΦ =maxj rkj Φ. We want to show that rkj increases strictly
before stabilizing.

Lemma 19. Let Φ = {ϕ1, . . . , ϕd} be a set of homomorphisms A[[x]] →
A[[x, t]] as before, and let skΦ be the substitution rank of Φ. Then rkj Φ =
min{j, skΦ}.
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Proof. It is clear by definition that rklΦ≤ rkl+1Φ≤ rklΦ+1 for all l ∈N.
Now, fix j ∈ N and i ∈ Ij , and consider the maps Φi,[l], l ≤ j, as above. Let

J ⊂ {1, . . . , j} be defined as J = {l ≤ j : rkΦ
i,[l]
0 = rkΦ

i,[l+1]
0 }, and let j0 =

minJ . An inspection of the proof of Proposition 3.1 in [3] shows that it also
works in our context, i.e. with C replaced by A; we employ that proposition

with A(t[j0], tj0+1) = Φ
i,[j0+1]
0 (t[j0+1]), B(t[j0]) = A(t[j0],0) = Φ

i,[j0]
0 (t[j0]) (the

last equality holds because ϕj0(x,0)≡ x) and F (x, t[k≥j0+2]) = Φ(x, t[k≥j0+2])
being the substitution map associated to the list ϕi(j0+2), . . . , ϕi(j), obtaining

that rkΦ
i,[j−{j0}]
0 = rkΦ

i,[j]
0 . Iterating this elimination argument, we find a

substitution map of length precisely r = rkΦ
i,[j]
0 whose generic rank is also r.

Choosing i ∈ Ij such that rkΦ
i,[j]
0 = rkj Φ, we then have that rkrkj ΦΦ =

rkj Φ for all j ∈ N; in particular rkmΦ = rkm+1Φ implies that rkm+1Φ =
rkm+2Φ (in fact, otherwise we would have rkrkm+2 ΦΦ = rkm+2Φ > rkmΦ,
while rkm+2Φ ≤ rkm+1Φ + 1 = rkmΦ + 1 ≤ m + 1 and hence rkrkm+2 ΦΦ ≤
rkm+1Φ= rkmΦ, a contradiction). This, together with the definition of skΦ,
immediately implies the claim. �

Now we turn back to the composition of formal maps ϕ obtained by the
integration of a formal vector field X . As in Section 3, we consider a set
X1, . . . ,Xh of formal vector fields and we denote by ϕj(x, tj) = ϕj,tj (x) the
flow of Xj . We also consider Φ(x, t) = ϕh,th ◦ · · · ◦ ϕ1,t1 .

We remark that, if x = (x1, . . . xn), the components Φ1(0, t), . . . ,Φn(0, t)
of Φ(0, t) define an ideal I(Φ) of A[[t]]. If J is any other ideal of A[[t]] for
which I(Φ)⊂ J , we say that J consists of formal closed paths at x= 0 for Φ.
If, furthermore, J is the ideal of a formal manifold Σ which is parametrized
by a ring homomorphism Ψ : A[[t]] → A[[s]] (where s = (s1, . . . , sk)) associ-
ated to a mapping of the form ψ(s) = (ψ1(s), . . . , ψh(s)), the condition is
equivalent to Φ(0, ψ(s)) ≡ 0. Geometrically, this means that “for any fixed
s”the flow Φ at the time ψ(s) maps the origin (in the x-space) back to it-
self.

We say that the image of Φ(0, t) has rank (at least) r at x = 0 if there
exists an ideal consisting of closed paths, paramaterized by ψ(s) as above, for
Φ such that the rank over the quotient field of A[[s]] of the matrix Φt(0, ψ(s))
is r. The following lemma can be seen as a refinement of the construction
carried out in the proof of Theorem 2.

Lemma 20. Let X = {X1, . . . ,Xk} be a family of formal vector fields of
rank r. Then there exists a composition of 2r− 1 of their flows whose image
has rank r at x= 0.

Proof. Let ΨX be the set of the flows of the fieldsXj ; by Theorem 2 we have
that skΨX = r, and by Lemma 19 we can choose j1, . . . , jr ∈ {1, . . . , k} such
that Φ(0, t) = ϕjr,tr ◦ · · · ◦ ϕj1,t1(0) has generic rank r. Let t= (t1, . . . , tr) =
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(t′, tr) and Φ′(0, t′) = Φ(0, (t′,0)): we remark that the matrix representing
Φt(0, t) has rank r over A[[t]] if and only if r is also the rank of Φt(0, (t

′,0))
over A[[t′]]. In fact, the columns of Φt(0, (t

′,0)) are given by the vectors
Wl(Φ(0, t

′)) = ∂Φ
∂tl

(Φ′(0, t′)) together with the vectorXjr(Φ
′(0, t′)), while those

of Φt(0, t) are given by the ϕjr
x (Φ′(0, t′), tr)Wl(Φ(0, t)) and Xjr(Φ(0, t)):

the claim then follows from the fact that ϕjr
x (Φ(0, t),−tr)Xjr (Φ(0, t)) =

Xjr(Φ
′(0, t′)).

Let, now, s = (s1, . . . , s2r−1) and Φ′′(x, s) = ϕj1,s2r−1 ◦ · · · ◦ ϕjr−1,sr+1 ◦
ϕjr,sr ◦ ϕjr−1,sr−1 ◦ · · · ◦ ϕj1,s1(x); then ψ(t′) = (t1, . . . , tr−1,0,−tr−1, . . . ,−t1)
is a closed path for Φ′′ and the matrix of Φ′′

s (0, ψ(t
′)) is given by the compo-

sition of Φt(0, t
′) and ϕ

jr−1,tr−1
x ◦ · · · ◦ϕj1,t1

x , hence it has rank r. �

6. Formal Segre maps

Given a σ̃-invariant manifold ideal in A[[Z, ζ]], we define its kth iteration
ideal by

I [k] =
({

f
(
Z1,0

)
, f

(
Zj , ζj

)
, f

(
Zj , ζj−1

)
: 1≤ j ≤ �, f ∈ I

})
⊂ A[[Z1, ζ1, . . . ,Z�, ζ�]], k = 2�,

I [k] =
({

f
(
Z1,0

)
, f

(
Zj , ζj

)
, f

(
Zj+1, ζj

)
: 1≤ j ≤ �− 1, f ∈ I

})
⊂ A[[Z1, ζ1, . . . , ζ�−1,Z�]], k = 2�− 1.

Each ideal I [k] is a manifold ideal; indeed, a parametrization Ψ2� : A[[Z1,
ζ1, . . . ,Z�, ζ�]]→A[[z1, χ1, . . . , z�, χ�]] of I [2�] is given by

Z1 =
(
z1,0

)
,

ζ1 =
(
χ1, σQ

(
χ1,Z1

))
=
(
χ1, σQ

(
χ1, z1,0

))
,

...
(10)

Z� =
(
z�,Q

(
z�, ζ�−1

))
=
(
z�,Q

(
z�, χ�−1, σQ

(
χ�−1, z�−1, . . .

)))
,

ζ� =
(
χ�, σQ

(
χ�,Z�

))
=

(
χ�, σQ

(
χ�, z�,Q

(
z�, χ�−1, σQ

(
χ�−1, z�−1, . . .

))))
,

where we have chosen normal coordinates Z = (z,w), ζ = (χ, τ), and assume
that I is generated by w−Q(z,χ, τ) as in Section 2.6.

Similarly, I [2�+1] is parametrized by Ψ2�+1 : A[[Z1, ζ1, . . . , ζ�,Z�+1]] →
A[[z1, χ1, . . . , z�, χ�, z�+1]] by combining ψ2� from (10) with

Z�+1 =
(
z�+1,Q

(
z�+1, ζ�

))
=

(
z�+1, χ�,Q

(
χ�, σQ

(
χ�, z�,Q

(
z�, χ�−1, σQ

(
χ�−1, z�−1, . . .

)))))
.

The Segre maps are obtained by composing the parametrizations above with
suitable projections: more precisely, for k = 2� the Segre map Sk = S2� is
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defined as πζ� ◦ ψ2�, and for k = 2�+ 1 it is defined by πZ�+1 ◦ ψ2�+1, where
πζ� and πZ�+1 are the projections on the last coordinate; we denote the cor-

responding homomorphism as usual by Πζ� : A[[ζ�]] → A[[Z1, ζ1, . . . ,Z�, ζ�]]

and ΠZ�+1 : A[[Z�+1]]→A[[Z1, ζ1, . . . , ζ�,Z�+1]] respectively. With these def-
initions, one can verify that the Segre maps satisfy the following recurrence
relation:

S2�+1
(
z1, χ1, . . . , z�, χ�, z�+1

)
=
(
z�+1,Q

(
z�+1, σS2�

(
z1, χ1, . . . , z�, χ�

)))
and a similar one for k = 2�. We note that this relation uniquely deter-
mines Sk, and may in fact taken as an alternative definition of the Segre
maps.

We are now going to show how the Segre maps defined above fall into
the framework described in Section 4. We start by considering the flows
the formal vector fields associated to the generators wj − Qj(z,χ, τ), that
is,

Vj =
∂

∂zj
+

d∑
k=1

Qk
zj

∂

∂wk
∈DerA

(
A[[z,w,χ, τ ]], I

)
, j = 1, . . . , n

which form a basis of D(1,0)
I . Since σ̃ induces an isomorphism between D(1,0)

I

and D(0,1)
I ,

σ̃Vj =
∂

∂χj
+

d∑
k=1

σ̃Qk
χj

∂

∂τk
, j = 1, . . . , n

form a basis of D(0,1)
I . Moreover, [Vj1 , Vj2 ] = [σ̃Vj1 , σ̃Vj2 ] = 0 for all 1 ≤

j1, j2 ≤ n. We define the combined flow of the vector fields Vj at the time
z = (z1, . . . , zn) as follows:

ϕz
V = ϕz1

V1
◦ · · · ◦ ϕzn

Vn

and analogously for the σ̃Vj ,

ϕχ
σ̃V = ϕχ1

σ̃V1
◦ · · · ◦ ϕχn

σ̃Vn
;

note that because the Vj are pairwise commuting, the previous definitions do
not depend on the order in which the flows are composed.

Remark 2. Let Ψ : A[[Z, ζ]]→A[[x]] be a homomorphism, induced by a
power series map x→ ψ(x) = (ψZ(x), ψζ(x)). Then one has

rk
(
ϕV

(
ψ(x), t

))
> rkψ(x) ⇔ rk

(
πZ

(
ϕV

(
ψ(x), t

)))
> rk

(
πZ

(
ψ(x)

))
.

This is a consequence of the fact that πζ(ϕ
t
V (Z, ζ)) = πζ(Z, ζ) = ζ (which

follows immediately from the fact that Vj is a combination of ∂/∂zj and the
fields ∂/∂wk), so that ϕV (ψ(x), t) has a bigger (generic) rank than ψ(x) if and
only if their projections to the Z-coordinates have this property. A similar
statement holds of course for ϕs

σV and the projection πζ .
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In the ring A[[Z, ζ,Z0, ζ0]], we define two ideals J1, J2 as follows:

J1 =
(
wj −Qj(z,χ, τ)− (w0)j +Qj(z0, χ0, τ0),

χk − (χ0)k, τj − (τ0)j
)
1≤j≤d,1≤k≤n

,

J2 =
(
τj − σQj(χ, z,w)− (τ0)j + σQj(χ0, z0,w0),

zk − (z0)k,wj − (w0)j
)
1≤j≤d,1≤k≤n

.

Lemma 21. J1 (resp. J2) is a strictly regular ideal of order n+ 2d with
respect to the variables (Z, ζ) (resp. (Z0, ζ0)), for which ϕt

V (Z0, ζ0) (resp.
ϕs
σV (Z, ζ)) constitutes a regular parametrization.

Proof. It suffices to prove the claim for J1 (the case of J2 is similar).
One computes that the differential d(Z,ζ) of the generators wj −Qj(z,χ, τ)−
(w0)j + Qj(z0, χ0, τ0), χk − (χ0)k, τj − (τ0)j at (Z, ζ,Z0, ζ0) = (0,0,0,0) has
rank n+ 2d. One also sees that the flow ϕt

V (Z0, ζ0) is a strictly regular map
(as explained in the beginning of Section 4) so what we need to verify is that
if f(Z, ζ,Z0, ζ0) is one of those generators we have f(ϕt

V (Z0, ζ0),Z0, ζ0)≡ 0.
We use the explicit computation of the flow:

ϕt
V (z0,w0, χ0, τ0) =

(
z0 + t,w0 −Q(z0, χ0, τ0) +Q(z0 + t,χ0, τ0), χ0, τ0

)
to obtain, if f = χk − (χ0)k or τj − (τ0)j ,

f
(
ϕt
V (Z0, ζ0),Z0, ζ0

)
= (χ0)k − (χ0)k ≡ 0 or (τ0)j − (τ0)j ≡ 0,

and in the case when f =wj −Qj(z,χ, τ)− (w0)j +Qj(z0, χ0, τ0)

f
(
ϕt
V (Z0, ζ0),Z0, ζ0

)
=

(
(w0)j −Qj(z0, χ0, τ0) +Qj(z0 + t,χ0, τ0)

)
−Qj(z0 + t,χ0, τ0)− (w0)j +Qj(z0, χ0, τ0)≡ 0. �

Remark 3. An alternative proof of the previous lemma can be obtained by
observing that the vector fields Vj are not only elements of DI , but actually
annihilate the defining functions: Vj(w − Q(z,χ, τ)) ≡ 0. The claim above,
then, corresponds to the fact that the orbit of the flow ϕt

V (Z0, ζ0) is contained
in the level set of w−Q(z,χ, τ) through (Z0, ζ0).

Now we define, for k = 2�

J [k] = J [2�] ⊂A[[Z ′
1, ζ

′
1,Z

′′
1 , ζ

′′
1 , . . . ,Z

′
�, ζ

′
�,Z

′′
� , ζ

′′
� ]]

and for k = 2�− 1

J [k] = J [2�−1] ⊂A[[Z ′
1, ζ

′
1,Z

′′
1 , ζ

′′
1 , . . . ,Z

′
�−1, ζ

′
�−1,Z

′′
�−1, ζ

′′
�−1,Z

′
�, ζ

′
�]]

as the iteration from the origin, according to the scheme of Section 4, of a se-
quence of 2� (resp. 2�−1) ideals of A[[Z, ζ,Z0, ζ0]] alternating between J1 and
J2, starting with J1; notice that, varying slightly from the formalism employed
in that section, the role of the variables y is alternately assumed by (Z, ζ) and
(Z0, ζ0), starting with (Z, ζ). Define, for k = 2�, the ring homomorphism
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corresponding to the immersion (Z1, ζ1, . . . ,Z�, ζ�) �→ (Z1,0,Z1, ζ1,Z2, ζ1,Z2,
ζ2, . . . , ζ�)

ik = i2� : A[[Z ′
1, ζ

′
1,Z

′′
1 , ζ

′′
1 , . . . ,Z

′
�, ζ

′
�,Z

′′
� , ζ

′′
� ]]→A[[Z1, ζ1, . . . ,Z�, ζ�]]

as

ik
(
Z ′
1

)
= Z1, ik

(
ζ ′1
)
= 0, ik

(
ζ ′′1

)
= ζ1, ik

(
Z ′′
1

)
= Z1, . . . ,

ik
(
Z ′
�

)
= Z�, ik

(
ζ ′�
)
= ζ�−1, ik

(
ζ ′′�

)
= ζ�, ik

(
Z ′′
�

)
= Z�;

we give an analogous definition for k = 2�− 1. Moreover, we define the ring
homomorphism corresponding to the submersion (Z ′

1, ζ
′
1,Z

′′
1 , ζ

′′
1 . . . ,Z ′′

� , ζ
′′
� ) �→

(Z ′
1, ζ

′′
1 ,Z

′
2, ζ

′′
2 , . . . )

pk = p2� : A[[Z1, ζ1, . . . ,Z�, ζ�]]→A[[Z ′
1, ζ

′
1,Z

′′
1 , ζ

′′
1 , . . . ,Z

′
�, ζ

′
�,Z

′′
� , ζ

′′
� ]]

by

pk
(
Z1

)
= Z ′

1, pk
(
ζ1
)
= ζ ′′1 , . . . , pk

(
Z�

)
= Z ′

�, pk
(
ζ�
)
= ζ ′′�

and similarly for k = 2�− 1.

Remark 4. From now on, we will abuse notation in the following way:
Even for k = 2�− 1 odd, we write down the variables (Z1, ζ1, . . . ,Z�, ζ�) with
the understanding that for k = 2�− 1, one has to disregard the last ζ� in the
corresponding equations or replace it by Z� where appropriate.

Lemma 22. We have ik(J
[k]) = I [k] and pk(I

[k])⊂ J [k]; moreover, the in-
duced homomorphisms

ĩk : A[[Z ′
1, ζ

′
1,Z

′′
1 , ζ

′′
1 , . . . ,Z

′
�, ζ

′
�,Z

′′
� , ζ

′′
� ]]/J

[k] →A[[Z1, ζ1, . . . ,Z�, ζ�]]/I [k]

and

p̃k : A[[Z1, ζ1, . . . ,Z�, ζ�]]/I [k] →A[[Z ′
1, ζ

′
1,Z

′′
1 , ζ

′′
1 , . . . ,Z

′
�, ζ

′
�,Z

′′
� , ζ

′′
� ]]/J

[k]

are ring isomorphisms and ĩk = p̃
−1
k . In other words, the restriction of ik

to the formal manifold M[k] defined by I [k] induces an isomorphism between
M[k] and the formal manifold N [k] defined by J [k], whose inverse is given by
the restriction of pk to N [k].

Proof. We verify the first claim inductively. For k = 1, we have

J [1] =
((
w′

1

)
j
−Qj

(
z′1, χ

′
1, τ

′
1

)
,
(
χ′
1

)
k
,
(
τ ′1
)
j

)
1≤j≤d,1≤k≤n

,

so that
i1
(
J [1]

)
=
(
w1

j −Qj

(
z1,0,0

))
1≤j≤d

= I [1].

For the inductive step, we restrict to the case k = 2�+1 (the other is similar).
We have

J [2�+1] = J [2�] +
((
w′

�+1

)
j
−Qj

(
z′�+1, χ

′
�+1, τ

′
�+1

)
−
(
w′′

�

)
j
+Qj

(
z′′� , χ

′′
� , τ

′′
�

)
,(

χ′
�+1

)
k
−
(
χ′′
�

)
k
,
(
τ ′�+1

)
j
−
(
τ ′′�

)
j

)
1≤j≤d,1≤k≤n
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so that

i2�+1

(
J [2�+1]

)
= i2�+1

(
J [2�]

)
+
((
w�+1

)
j
−Qj

(
z�+1, χ�, τ �

)
−
(
w�

)
j

+Qj

(
z�, χ�, τ �

)
,
(
χ�

)
k
−
(
χ�

)
k
,
(
τ �
)
j
−
(
τ �
)
j

)
1≤j≤d,1≤k≤n

= I [2�] +
((
w�+1

)
j
−Qj

(
z�+1, χ�, τ �

))
1≤j≤d

= I [2�+1],

where we used the facts that i2�+1(J
[2�]) = i2�(J

[2�]) = I [2�] and that −(w�)j +

Qj(z
�, χ�, τ �) ∈ I [2�]. The verification that pk(I

[k])⊂ J (k) is very similar and
we shall omit it.

To prove the second claim, we will show that ĩk and p̃k invert each other.
Since ik ◦ pk is the identity in A[[Z1, ζ1, . . . ,Z�, ζ�]], it follows immediately

that ĩk ◦ p̃k = id . For pk ◦ ik, we have

pk ◦ ik
(
Z ′
1

)
= Z ′

1, pk ◦ ik
(
ζ ′1
)
= 0, pk ◦ ik

(
Z ′′
1

)
= Z ′

1,

pk ◦ ik
(
ζ ′′1

)
= ζ ′′1 , . . . , pk ◦ ik

(
Z ′
�

)
= Z ′

�,

pk ◦ ik
(
ζ ′�
)
= ζ ′′�−1, pk ◦ ik

(
Z ′′
�

)
= Z ′

�, pk ◦ ik
(
ζ ′′�

)
= ζ ′′� ;

this homomorphism induces the identity on A[[Z ′
1, ζ

′
1,Z

′′
1 , ζ

′′
1 , . . . ,Z

′
�, ζ

′
�,Z

′′
� ,

ζ ′′� ]]/J
[k], since

J [k] ⊃
(
ζ ′1,Z

′′
1 −Z ′

1, . . . ,Z
′′
� −Z ′

�, ζ
′
� − ζ ′′�−1

)
. �

Remark 5. The homomorphism pk = p2� is also commuting with the rel-
evant projections, in the sense that the diagram

A[[Z1, ζ1, . . . ,Z�, ζ�]]
pk−−−−→ A[[Z ′

1, ζ
′
1,Z

′′
1 , ζ

′′
1 , . . . ,Z

′
�, ζ

′
�,Z

′′
� , ζ

′′
� ]]�⏐⏐Π

ζ�

�⏐⏐Π(Z′′
�

,ζ′′
�

)

A[[ζ�]]
Π′′

ζ�−−−−→ A[[Z ′′
� , ζ

′′
� ]]

is commutative, where Π′′
ζ� is defined by Π′′

ζ�(ζ
�) = ζ ′′� .

Proof of Theorem 1: We consider the combined flow

ϕ[2�]
(
Z, ζ, t1, s1, . . . , t�, s�

)
= ϕs�

σ̃V ◦ϕt�

V ◦ · · · ◦ϕs1

σ̃V ◦ϕt1

V (Z, ζ),

and the homomorphism Φk : A[[Z ′
1, ζ

′
1,Z

′′
1 , ζ

′′
1 , . . . ,Z

′
�, ζ

′
�,Z

′′
� , ζ

′′
� ]] → A[[t1,

s1, . . . , t�, s�]] induced by the map⎧⎪⎪⎨
⎪⎪⎩

(t1, s1, . . . , t�, s�)−→ϕ2�
(ϕ[1](0,0, t1), . . . , ϕ[2�](0,0, t1, . . . , s�)),

k = 2�,
(t1, s1, . . . , t�, s�, t�+1)−→ϕ2�+1

(ϕ[1](0,0, t1), . . . , ϕ[2�+1](0,0, t1, . . . , s�, t�+1)),
k = 2�+ 1.

According to Lemmata 21 and 18, Φk gives a parametrization of the ideal J [k].
By Lemma 22 we have that Φk ◦ pk is a parametrization of I [k]. Since, then,
Φk ◦ pk and Ψk are both parametrizations of I [k], we have that Φk ◦ pk ◦Πζ�
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has the same rank as πζ� ◦ ψk = Sk, the Segre map of order k = 2�. The case
of odd k is treated analogously.

Denote by X the family of vector fields (V1, . . . , Vn, σ̃V1, . . . , σ̃Vn). By The-
orem 2 (applied to the pull-back of X by any parametrization of M) we have
that skΨX = 2n+ d if and only if rkX = 2n+ d, i.e. if M is of finite type.
Next, we observe that an arbitrary composition of flows of the Vj and σ̃Vj can

be reduced to one of the form ϕ[k]; indeed, if for some i0 the flows ϕt
Vi0

and

ϕs
Vi0

are listed without any ϕσ̃Vj in between them, then they can be brought

by commutation to a single flow ϕt+s
Vi0

(which contributes to the rank in the

same way as ϕt
Vi0

). It follows that the generic rank of ϕ[k] is equal to 2n+ d

for big enough k if and only if M is of finite type.
Notice now, that Φ[k] =Φk ◦Π(Z′′

� ,ζ′′
� ), hence

Φ[k] ◦Π′′
ζ� =Φk ◦Π(Z′′

� ,ζ′′
� ) ◦Π′′

ζ� =Φk ◦ pk ◦Πζ�

(where we have used Remark 5), which as observed above has the same
(generic) rank as Sk. The proof is finished by observing that the restric-
tions of π′′

ζ� to M is a submersion. The fact about the order of the Segre map

now follows immediately from Lemma 19 (taking in account Remark 2 after
the definition of the flows ϕz

V and ϕχ
σ̃V ). The last claim of the theorem is

obtained as a straightforward application of Lemma 20.
The previous construction shows that the flows of the vector fields Vj , σ̃Vj ,

after suitable projections, give rise to maps with the same rank as the Segre
maps. We conclude the section by showing that it is possible to use the
mentioned flows to obtain precisely the Segre maps. In order to achieve this,
one has to correctly reparametrize the “time” variables, as in the following
lemma.

Lemma 23. Define a flow Υk in the following way: for k = 2�

Υ2�
(
z1, χ1, . . . , z�, χ�

)
(Z, ζ) = ϕχ�−χ�−1

σ̃V ◦ϕz�−z�−1

V ◦ · · · ◦ ϕχ1

σ̃V ◦ϕz1

V (Z, ζ)

and for k = 2�+ 1

Υ2�+1
(
z1, χ1, . . . , z�, χ�, z�+1

)
(Z, ζ)

= ϕz�+1−z�

V ◦ϕχ�−χ�−1

σ̃V ◦ · · · ◦ ϕχ1

σ̃V ◦ϕz1

V (Z, ζ).

Then

S2�
(
z1, χ1, . . . , z�, χ�

)
= πζ ◦ σΥ2�

(
z1, χ1, . . . , z�, χ�

)
(0,0)

and

S2�+1
(
z1, χ1, . . . , z�, χ�, z�+1

)
= πZ ◦Υ2�+1

(
z1, χ1, . . . , z�, χ�, z�+1

)
(0,0).

Proof. The (composed) flow Υt
V is computed explicitly as follows:

Υt
V (z,w,χ, τ) =

(
z + t,w−Q(z,χ, τ) +Q(z + t,χ, τ), χ, τ

)
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and the flow Υt
σ̃V is given by

Υt
σ̃V (z,w,χ, τ) =

(
z,w,χ+ t, τ − σQ(χ, z,w) + σQ(χ+ t, z,w)

)
.

It follows that Υ1(z1)(0,0) = Υz1
V (0,0) = (z1,0,0,0); projecting on the Z =

(z,w)-space we see that the conclusion holds for k = 1. Arguing by induction,
for odd k we have

Υ2�+1
(
z1, χ1, . . . , z�, χ�, z�+1

)
(0,0)

= ϕz�+1−z�

V ◦Υ2�
(
z1, χ1, . . . , z�, χ�

)
(0,0)

=
(
z� +

(
z�+1 − z�

)
, πw

(
Υ2�

)
−Q

(
z�, πζ

(
Υ2�

))
+Q

(
z� +

(
z�+1 − z�

)
, πζ

(
Υ2�

))
, πζ

(
Υ2�

))
=
(
z�+1,Q

(
z�+1, πζ

(
Υ2�

))
, πζ

(
Υ2�

))
,

where we used the fact that πw(Υ
2�)−Q(z�, πζ(Υ

2�))≡ 0 since the vector fields
involved in the flow all belong to DI . Now, from the previous computation
we have

πZ

(
Υ2�+1

)
=
(
z�+1,Q

(
z�+1, πζ

(
Υ2�

)))
=
(
z�+1,Q

(
z�+1, σπζ

(
σΥ2�

)))
which means that the maps πZ(Υ

2�+1) and πζ(σΥ
2�) satisfy the same recur-

rence relation defining the Segre maps (the verification for k even is completely
analogous); the claim is then obtained by induction. �

Remark 6. The combined flow which we had previously considered,

ϕ[2�]
(
z1, χ1, . . . , z�, χ�

)
(Z, ζ) = ϕχ�

σ̃V ◦ϕz�

V ◦ · · · ◦ ϕχ1

σ̃V ◦ϕz1

V (Z, ζ);

has the same generic rank as Υ2�; the two flows are obtained one from the other
by an invertible (and in fact linear) transformation of the formal parameters
(z1, χ1, . . . , z�, χ�). The same holds for k = 2�+ 1.
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