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EXISTENCE OF DIVERGENT BIRKHOFF NORMAL FORMS
OF HAMILTONIAN FUNCTIONS

XIANGHONG GONG

ABSTRACT. By the work of Siegel it is well known that as a rule
the Birkhoff normal form of a real analytic Hamiltonian system
whose eigenvalues satisfies suitable non-resonance condition can-
not be realized by convergent symplectic transformations. We
show the existence of divergent Birkhoff normal forms for suit-
able Hamiltonian systems. Our calculation shows how the small
divisors appear in the normal forms, from which the divergence
is derived by using Siegel’s methods of small divisors.

1. Introduction

We consider the standard symplectic space R4, equipped with the symplec-
tic 2-form w = dx1 A dyy + dxa A dys. Let h(z,y) be a real analytic function,
defined near 0 € R*, that has the form

(1.1) h(z,y) = Mx1yr + Aaxays + E(z,y),

where F(z,y) = Zaﬁ E, %y? is a convergent power series in ,y satisfying
E.p =0 for |a| + |8] < 3. For brevity, we denote the latter condition by
E(z,y) = O(3). We say that A\; and A2 are non-resonant, if - a = A\aq +
A2aig # 0 for all multi-indices of integers a = (a1, a2) # 0. Under the non-
resonance condition on ), there is a formal symplectic real map ¢ of R*,
ie. ¢*w=w, such that ¢(0) =0 and ho ¢ !(z,y) is a real formal power
series in x1y1,Z2y2. The formal power series h=ho ¢~ 1 is called a Birkhoff
normal form of h (e.g., see [14], p. 209). Note that h(z,y) is not unique.
However, it depends on the choice of coordinates in a simple way; namely, the
only other Birkhoff normal forms are obtained from ﬁ(m, y) by a permutation
of x1,x2,y1,y2 that preserves the symplectic 2-form. Therefore, the normal
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forms of the h are either all convergent or all divergent. Throughout the
paper, we refer fz, whose quadratic part is the same as h, as the Birkhoff
normal form of h.

The following existence theorem is our main result.

THEOREM 1.1. There exist some non-resonant \1, Ay and a real analytic
function h(x,y) = AMx1y1 + A2xays + O(3) such that the Birkhoff normal form
of h is divergent.

In [12], Siegel showed that the Birkhoff normal form cannot be realized by
convergent symplectic transformations in general. In fact, Siegel [13] showed
that for some real analytic function h(z,y) = A1 (22 +4%) + A2(23 +y3) + O(3)
having any given non-resonant A1, Ay and generic higher order terms, there
exists no convergent symplectic mapping transforming h(z,y) into its normal
form. Note that for this type of quadratic part of h, the normal forms are
formal power series in 22 + 4?7 and 23 + y3.

Despite Siegel’s divergence results and many other results, the existence
of a divergent Birkhoff normal form arising from a real analytic function is
new (for instance, see [2]). The divergence of Birkhoff normal form implies, of
course, the divergence of all normalizing transformations of the given function.
The importance of the existence of a divergent Birkhoff normal form was
demonstrated by Pérez-Marco [9].

For the Birkhoff normal form theory, the reader is referred to the works of
Moser [7], Riissmann [10], [11], Brjuno [1], Vey [16], Ito [6], Stolovitch [15],
Giorgilli [3], and the author [4], [5] besides the above mentioned references.
Papers by Brjuno [1] and Pérez-Marco [9] contain extensive references also.

The proof of Theorem 1.1 is based on Siegel’s method of small divisors.
One would expect that the present approach will have applications for other
small-divisor problems. We will however focus on the Hamiltonian functions
to demonstrate how the small-divisors enter the normal forms. We will state
our result and its proof for the higher dimensions at the end of the paper.

2. Proof of the theorem

The proof consists of 3 steps. The first step is to recall how the Birkhoff
normal form is derived. Here we do not claim any originality, and we present
the details for the sake of the reader. These details are crucial in our construc-
tion of divergent normal forms. In this step, one sees how the small divisors
enter the formal map ¢ that normalizes the function h. The second step is
to show how the small divisors enter the normal form h. Here the computa-
tion is crucial for our proof. Once we find small divisors in the coefficients
of the normal form h, the proof of the divergence of h follows from Siegel’s
arguments [12].
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Consider a real analytic (real-valued) function
h(z,y) =My + dozaya + Y hapr®y’,
laf+|8]=3
where A1, A2 are non-resonant.

Let S(z,y) = O(3) be a real analytic function defined near 0 € R? x R?.
Here we denote S(z,y) = O(d) if Sap =0 for all |a| +|5] <d. Let (z,9) =
©(z,y) be the symplectic map defined implicitly by
(2.1) i‘j:J}j—S@j(.ﬁ,@), Z}j:yj‘FSwj(J?,@), Jj=12.

We want to show that there exists a unique formal power series

S(z,y) = Z Sapr®y?,  Saa=0
la]+|B]=3

such that ﬁ(i,gj) =hop 1(Z,7) is a formal power series in &171,2272. Write

90(557?4) = (:C +u(xvy)7y+v($7y))v U= (u17u2)7 V= (017U2)'
From (2.1), we see that u(z,y) = O(2), v(z,y) = O(2) and

ul(mvy) = _SZL: (x,y + v(x,y)), Ui(x7y) = sz (ac,y + ’U(Z‘,y)).

Let 6; = (1,0) and &2 = (0,1). By comparing coefficients of z%y® and using
u(z,y) =0(2) and v(x,y) = O(2) in the above two identities, we get

(2.2) wj.ap = =(Bj + 1Sapts; + Ujap(S),

Vjap = (@5 + D)Sats;6 + Viap(S),
where Uj o5(95),Vj,ap(S) are polynomials in Sy g with || +|8'| < |a| + |B].
We need to solve the equation h(z,y) = h(z + u(x,y),y + v(z,y)) under the
normalizing condition that hog =0 for a # 3. Comparing the coefficients we
obtain

h/aB = Ea,@ilaa + Z Aj (Uj,a—éjﬁ + U'j,a,@—éj) + Eaﬁ (Ba u, U)
= caphan + X (= B)Sap + Fap(h,S) (by (2.2)).
Here €43 =0 for o # 8 and €40 = 1. Also Ea,@(ﬁ,u,v) is a polynomial in
ila'ahua“ﬁ”,va“ﬁ” with max{2|c/|, |[&/'|+|5"|+1} < |a|+|8], and Faﬂ(ﬁ,S) is
a polynomial in hy, Serpr with max{2|a/|,|o/| + ||} < |&| + |B8]. Therefore,
we get
1 .
N /. 2\ ha _Fa h7S ) ’
/\(a—ﬂ){ B 8( )} a#p
haa = haa — Faa(h, S).

Sap =
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It will be convenient to denote

1

Hob = T =By a#p.

Recursively, we substitute Salﬁl,iza/a/ into Fyp (ﬁ, S) to obtain

1
Saﬁ:m{h()éﬁ—"_Daﬁ(h?N)}? Oé;éﬁ7

hoca = haa + Daa(h7 /’6)’

where Dog(p,h) is a polynomial in po g and havgr with [of| 48] < |a| +
|8l,0 # B" and |o”| +[8"| <|af + 5.

We remark that S,g is uniquely determined by hop and hep with |o] +
15| < |af+|B8]. Also Dag = Sap =0 if hqg =0 for all o’ # ' satisfying
2 < ||+ |B'| < |a|l + |8]- Therefore, if d> 2 is fixed and hyp =0 for all
|o/| + 8’| < d with o' # ', then

(2.3) Sap = fap

—m» a# B, |o|+[Bl=d.

To see small divisors in iL, we need to calculate D, (p, h) more explicitly.
To this end, we apply a preliminary change of coordinates by truncating the
above S(z,y). We fix d > 2. Let ¢ be the symplectic mapping defined by

where S*(2,y) = > 5<|aj4(81<d Sapr®y? with S,p being determined above.
Note that when d = 3, we have taken ¢ to be the identity. Then f=ho gafl
has the form

flay)= > fapr®y® =h(z.y)+0(d),

la|+]B]>2

where Qap(h, 1) is a polynomial in pos g and hyr g with ||+ || < d, o # 5
and [0 +B"] <o + 8.
Define the projection

NZ hagx“yﬁ = Z haax®y®.
af «

LEMMA 2.1. Let f(z,y) =ho oy (x,y) = h(z,y) + O(d) be as above. Let
o be the the unique mapping defined by (2.1), where S(x,y) is replaced by
K(z,y) = 0(d) and Koo =0 for all o, such that fogy* =h. Let T = [K]q
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denote the sum of all monomials in K of order d > 2. Then

(2'5) il(x7y) —Nf(x,y)

:N{ Z >\j (ijyjyk (x,y)Txk(:z:,y)

k=1

- ijl'jyk (33, y)T-'L'k (xv y)) + Z )‘jTIj (Z‘, y)Tyj (JJ, y)}

j=1

+0(2d—1).

Proof. Returning to (2.1) for (Z,9) = p2(x,y), we get

2
'i?j =Tj— Kyj (ZL’,ZJ) - ZTyyyk (x’y)Tfﬂk (x,y) + O(2d - 2)’
k=1
2

Y =y + Kq, (z,y) + ZTaijyk (@,9) T, (x,y) + O(2d - 2).

k=1
Now h(, ) is equal to
(2.6)  f(z,y)
2
= h($>y) + Z )‘j [ijwjyk ($>y)ka (x,y)
k=1
2
- ijyjyk- (‘T’ y)Taik (377 y)} - Z )\ijj (l‘, y)Tyj (CL’, y)
j=1
+ Y ahaar® iy 0 (258, (2,y) = y;Sy, (2,)) + O(2d - 1).

lee|>2
Here the term in the last summation is zero if a;; = 0. Note that, for each 7,
23 Sa, (2,y) — Y3 Sy, (1,9) =D (0 — B;)Sapr®y”
aff
does not contain terms of the form x%y®. Therefore,
NA{az® =0y =% (275, (x,y) — y;Sy, (z,y)) } = 0.
Applying the projection N to (2.6), we get (2.5). O
We now identify the small divisors that contribute to the divergence of a
Birkhoff normal form. The way that the small divisors appear will be crucial

in the proof of the theorem. We will carry out computations in two steps.
The first step is the following.
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LEMMA 2.2. Keep nations and assumptions in Lemma 2.1. Let N +m =d,
a=(N,m—1), a=(N,0) and b= (0,m). Assume that m > 1. Then
5 m* (AN = X2) fab foa
2.7 hoo =
(2.7) aa = faa + THCEDE

fabAn+m (f, 1) + foaBN+m (£ 1)
+ N (a—b) +Cnym(fo1),

where fop are of the form (2.4). Also Anim(f, 1), BNim(f,p) are linear
combinations of fio g forpr with || +18'| = N+m and (¢/, ') # (o, ), (5, ).
And Cnam(f, 1) is a linear combination of farg: far g with ||+ |6 = || +
8”|=N+m and (¢!, '), (", 8") # (o, B), (B, ).

Proof. Write

T(xvy) = Tabx{vyén + Tbaxgby{\[ + Z Ta/b’xa yb .
(a’,b")#(a,b),(b,a)

Then we obtain
> N Ta . Ty = TunToa (M Nm (191) N (202)™ !
ik

+ XomN? (1y) N (@ay2)™) 4
Z)\jijyjykka =0+,
ok

Z NiTe, Ty, = TapTya (M N> (z191) " (22y2)™
J

+ Xom? (wry1) N (way2)™ ) + -

In the above and the next formula, the omitted terms have coefficients that
are linear combinations with integer coefficients in TypTarpr, ThaT oy, and
Torey Torpr with (o’ b)), (a”,0") # (a,b), (b,a). Thus by (2.5)

h(z,y) — f(@,y) = TasTha{ (M — Aom) N2 (21y1)V " (@212)™
+ (A2 — )\1N)m2($1y1)N($2y2)m_1} +o
By (2.3) where h is replaced by f, we have

fa,@
Ty = —298
T X(a-p)
Combining the last two identities gives us (2.7). O

In the next step, we want to use (2.4) to further express hae in terms of
coefficients of h and the small divisors.

PROPOSITION 2.3. Let h(x,y) = Mx1y1 + Aaxays + O(3) be a real analytic
function. Assume that A1, Ao are non-resonant. Let ¢ be any formal sym-
plectic map so that h(x,y) =hoo Y (z,y) = M21y1 + Aaxoys + O(3) is in the
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Birkhoff normal form. Then for a« = (N,m —1), a=(N,0), b= (0,m) with
m>1, one has

(28) }Al —h + mZ(/\lN - A2)(hab + Qab(h7 A))(hba + Qba(h’a )‘))

(A-(a—0))?
habAab(ha )\) + hbaBab(hv >\) + Cab(ha )‘) A
A-(a—b) +Qab(h7>‘)'

Here Qqp is a polynomial in hqsar, W with
o #8%,  max{[e/| [, [a"] + 8"} <lal + bl
Qab is a polynomial in hq g, >\(a’+,@” with

o £B" (o, B") # (ab), (b,a),
/| + |8 <2lal,  |&|+]8"| < la] + |b];
with

and Aqp, Bay, Cap are polynomials in hargr, W

a”#ﬁ”, ( ”7ﬁ//) ?é( ) (b a)
max{|o/| + |8'], [a[ +[8"[} < |a| + [b].

Proof. We apply a symplectic map 7 of the form (2.1), in which

S(x,9) = > Sapry?,
a#B,3< al+[B|<N+m
so that h=ho @7! satisfies haps =0 for all a # 8 and |a| + |8] < N + m.
We know that hag = hag + Dag(h, ), where Dyg(h,A) depends on hqp
with [o/[+]5| <laf+[f] and on 1/(A- (a” = ")) with [a”]+[8"] <[a|+b],
o' £ B"”. Apply a formal symplectic map ¢y of the form (2.1) with
S(xa g) = Z Sozﬁxagﬁ7
aB,lal+1B]>N+m
so that hopy! is in the Birkhoff normal form. By (2.4) where h is actually
h and by (2.7), we can write (with abuse of notation for Quu(h,A))

}Nloza + C’N—Q—m (il; )\) - haa + Qab(h; )‘)7
hab + Qab (1, A) = hap + Qap (1, N),
Bap ANm (B A) + hoa BN m (hy N) = hap Aap (hy A) + hpa Bap (hy A) 4+ Cap (B, ).
Here Cyp(h,A) = Dap(h, \) AN 4m (R, A) + Dia(h, ) By (B, N), Aap(h,N) =
Anm(h,N) and Bay(h, ) = By (R, \).
We have obtained (2.8), via the above normalizing map ¢3 o 1. On the

other hand the Birkhoff normal form iL7 with the same quadratic form as h, is
independent of the normalizing map. In other words, the right-hand side of
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(2.8) is independent of . Since each hae is a polynomial with integer coef-

ficients in hog and W, we conclude that each term in (2.8) depends

only on h and is a polynomial in the sought form. O

We now restrict ourselves to |hqs| <2 for all o, 3. Then we have
(29) (|Qab| + |Qba| + |Aab‘ + ‘Bab| + |Cab| + |Qab|)(ha )\) < (;ab()\)i‘raby
where 74, > 1 is a constant independent of A and
(1
6ab()‘) :mln{§a )‘(a_ﬁ>‘ : OK#B,|OK|+‘B| < |a‘ +|b|,(0¢,6) # <a7b)7(b7a)}'

Put A2 = 1. Notice that for a = (N,0),b= (0,m), one has |a — b| = |a| + |b].
Thus, we can choose an irrational \; € (O 1) so that
)7

ab(A
2.10 —b) - A= |NX\ — <7
(210) (o =0)- Al =[N —ml < s
hold for a sequence (N,m) = (N;,m;) with N;,m; being positive integers.
We may assume that N;y1 +mjp1 > 2(N; +m;). Put a; = (N;,0) and b; =
(0,m;). Note that the existence of A\; can be obtained easily by modifying
Siegel’s argument [12] for
A=) 27k,
k=1

where L are suitable positive integers tending to oo rapidly to ensure )\ is
irrational and satisfies (2.10).

We now complete the proof of the theorem.

We shall find h whose coefficients hog are real. We also require that hog =
hga to show the divergence of normal forms of another type of quadratic parts
for h. Put hog =0 for all o, 8 with |o| +|5]| > 2 and (a, B) # (a;,b;), (b;,a;).
Inductively, we shall choose hq b, = hp;a; = 0,2, or —2 as follows. Notice that
if ug, v are real and |ugvg| < 1, then either (ug+2)(vo+2) > 2 or (ug —2)(vg —
2) > 2; otherwise, we would have both ug + vg < —1/2 and ug + vo > 1/2,
which is a contradiction. Therefore for two real numbers ug, vy, choosing
(u,v) among (0,0), (2,2) and (—2,—2) yields |(up + u)(vo + v)| > 1. This
shows that we can find hajo; = hpa; =0, 2 or =2, so that

(2.11) ’(hab+Qab(h)> (hba—l-Qba(h))’ >1, a=a;, b=0;.

Here, we already used N1 +mjt1 > 2(N; +m;), which implies that if (2.11)
holds for @ = a;,b =b; then it remains true no matter how a;y1,b;41 are
chosen. By (2.8) we have

a=(N,0), b=(0,m)

el = A~ (@ =) 72 {m2 (AN = A2) (hay + Qas(h)) (hba + Qua(h))]

~-@=n) (i (1))
- |>\ : (a - b)|(|habAab(h)| + ’hbaAba(h)| + |Cab(h)’)}
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Recall that A1 € (0,1), A2 =1 and |hapg| <2. When N is sufficiently large, we
have AN — A2 > 2. Recall that d44(A) < 1 < 74p. Thus by (2.9)—(2.11) and
for (N,m) = (N;,m;) with j sufficiently large, we obtain

7 -2 a7t (N) 2 s
‘h"‘a| = |)"(a_b)| {2m2_ (m) ~35ab bo\)
Tap" (V)

Y 2
~ 00Nty P } [A-(a=)

Finally, we conclude that for j sufficiently large
el > |A-(a =) > (N +m)!, a=(Nj,m;—1).

This shows the divergence of h.
We reformulate our theorem to cover another case.

PROPOSITION 2.4. There exist some non-resonant real numbers A1 and A\
with M2 > 0 and a real analytic function h(z,y) = A\ (x3 + y3) + Aa(23 +
y3) + O(3) such that the Birkhoff normal form of h is divergent.

Proof. Indeed, for the above analytic real function h(z,y) on R? x R?, its
complexification, denoted by h(z,w), is holomorphic near 0 € C? x C2. Let
¢ be a formal symplectic map of R*, which is tangent to the identity, so
that ho ¢~ (z,y) = g(x191,22y2) is in the normal form. Since ¢ preserves
w =dzxi Ady, + dxs A dys, its complexification, still denoted by ¢, preserves
wé=dz1 Ndwy + dza N dws.

Let L(&,n) = ({+in,§ —1in). Notice that L*w® = —2i(d& A dm +déa ANdna).
Thus ¢ = L™ ¢L preserves d&y A dm + déz A d’/]g Also hop= (&) = g(&2 +
n?,€2 +n2) for h=ho L. In other words, h ot~ is the (formal holomorphic)
Birkhoff normal form with respect to the holomorphic symplectic 2-form d§; A
dm + d€ A dnp. Notice that the quadratic form of h is now A\ (€2 +1?) +
A2 (€3413). Let e be the restriction of h on RZxR2 : € =&, 1 =7. Since hog =
Ega by construction, then e is real-valued. Thus e(£,n) is an analytic real
function of the form A; (&3 +n?) + X2(€2 + n3) + O(3), while L*w®, restricted
to R* x R?: { =¢,n=7, is a constant multiple of the standard symplectlc
real 2-form. Therefore h o 11, restricted to £ =&, =T, is a real Birkhoff
normal form of e; since h diverges, one readily sees the divergence of the
restriction. U

Our theorem is valid for higher dimension R?". Indeed such a real analytic
function which has a divergent normal form can be achieved by adding suitable
quadratic forms in the remaining variables in higher dimension. Furthermore,
one can see, from the proof of the theorem, that the set of real analytic
Hamiltonian functions with a divergent Birkhoff normal form is dense in a
suitable topology.
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We emphasize that our theorem does not deal with the case when the
Hamiltonian functions on R* have eigenvalues A1, — A, A2, Ao for which Ao /A1
is not real. This is an interesting case since by a theorem of Moser [8] the
real analytic Hamiltonian system can be solved real analytically. In fact, its
Birkhoff normal form can be realized by a convergent symplectic transforma-
tion (see Bruno [1], pp. 228-229, and Giorgilli [3]).
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