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SEVERAL COMPLEX VARIABLES AND CR GEOMETRY

JOHN P. D’ANGELO

Abstract. This paper discusses developments in complex analy-
sis and CR geometry in the last forty years related to the Cauchy–
Riemann equations, proper holomorphic mappings between balls,

and positivity conditions in complex analysis. The paper includes
anecdotes about some of the contributors to these developments.

1. Introduction

I interweave some of the developments in Complex Analysis and CR Geom-
etry contributed by the authors and editors of this volume with some related
anecdotes.

Completeness is of course impossible; my primary aim is to express thanks
to all these people. I also wish to thank many other friends in complex anal-
ysis who are not explicitly mentioned here. Research mathematics is both
a team effort and an individual effort. Progress occurs when many mathe-
maticians contribute to the same area, extending and polishing each other’s
techniques. On occasion, individuals will introduce new ideas to a problem,
thereby providing the larger community with new tools and perspectives. The
editors and authors of this volume have contributed to complex analysis in
both ways. I cannot possibly describe all this progress, but perhaps my com-
ments will illuminate some of it and encourage younger researchers to continue
working in complex variable theory.

This paper discusses topics from complex analysis and CR geometry in an
informal fashion, interspersed with personal reminiscences. The first topic is
the Cauchy–Riemann equations. I continue by considering results related to
proper mappings between balls. I discuss positivity conditions and related
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matters. The long reference list is in fact too short. I omitted many relevant
papers and I do not include those papers from this volume I mention explicitly.

2. The Cauchy–Riemann equations

The Cauchy–Riemann equations in several complex variables define holo-
morphic functions: a continuously differentiable function f is holomorphic on
a domain if and only if ∂f = 0 there. One then considers the ∂ operator on
differential forms and studies the inhomogeneous equation ∂u= α. Here u is
a form of type (p, q) and α a form of type (p, q + 1); these forms are allowed
to have distributions as coefficients. For a solution to this system to exist,

one must have ∂α= 0, because ∂
2
= 0. One of the key approaches to the sub-

ject of complex analysis uses information about the inhomogeneous equation
to obtain results about holomorphic functions, solutions to the homogeneous
equation. The kind of information used arises from the point of view of partial
differential equations; results about existence and regularity of solutions dom-
inate the discussion. Decisive references to this approach include [B], [FK],
[H], [S].

Perhaps the most fundamental problem in complex analysis during the
twentieth century was the Levi problem. Early work showed that the bound-
ary bΩ of a domain of holomorphy Ω in complex Euclidean space Cn satisfied
a geometric property called pseudoconvexity; is the converse assertion true?
The problem was resolved by the late 1950s using sheaf theory. In particular,
three conditions on Ω are equivalent:

• Ω is a domain of holomorphy.
• Ω is pseudoconvex.
• For each q ≥ 1, the sheaf cohomology group Hq(Ω,O) vanishes.

By that time, an approach (pioneered by Spencer) using the methods of
partial differential equations was developing. Spencer’s idea was to extend the
techniques of Hodge theory to domains (or manifolds) with boundaries. He
introduced the ∂-Neumann problem, which was subsequently solved by Kohn
[K1], [K2], [FK].

For simplicity, I will discuss the ∂-Neumann problem on (0,1) forms. Given
a domain Ω in a complex manifold whose boundary bΩ is a smooth real
manifold, introduce the (unbounded) operator

�= ∂
∗
∂ + ∂∂

∗

on the space of square-integrable (0,1) forms. With the right choice of do-
main, which involves boundary conditions, � is self-adjoint. For example, for∑

aj dz
j to be in the domain of ∂, the complex vector field

∑
aj

∂
∂zj must be

tangent to bΩ. Thus, the very definition of � lies at the foundation of CR
Geometry.
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Let H denote the harmonic projector, that is, orthogonal projection onto
the null space of �. Let N denote the ∂-Neumann operator, the inverse of �
away from its null-space. The Hodge decomposition

(1) α=�Nα+Hα

then provides a method for finding the Kohn solution to the equation ∂u= α.
For a solution to exist, it is necessary that Hα= 0 and ∂α= 0. In this case,
it follows from (1) that

(2) α= ∂
(
∂
∗
Nα

)
.

The solution u= ∂
∗
Nα to the Cauchy–Riemann equation is the unique solu-

tion orthogonal (in L2) to the holomorphic functions. Formula (2) also leads
to the formula

P = I − ∂
∗
N∂

for the Bergman projection operator and thus links the ∂-Neumann problem
with questions of smooth extension of biholomorphic maps. See [Fe] and [Be].

For a long time it had been believed that the Kohn solution was the best
behaved solution in terms of regularity. Kohn proved that there always is

a globally regular solution, but the particular solution u = ∂
∗
Nα does not

always satisfy the global regularity property. The story is too complicated to
discuss here. See [BS], [S], and their references.

3. Finite-type

The Kohn solution yields local regularity when so-called subelliptic esti-
mates hold. Thus the particular solution α is smooth wherever u is smooth.
Subelliptic estimates in the ∂-Neumann problem go back to [K1] and [K2]
where the so-called 1

2 estimate holds in the strongly pseudoconvex case. Subel-

liptic estimates for a parameter ε with 0< ε≤ 1
2 were discussed in [KN], where

the connection with local regularity was established.
Kohn naturally asked for geometric conditions implying subelliptic esti-

mates. He [K3] established the first such estimate for ε < 1
2 , in two complex

dimensions, by introducing a finite-type condition using iterated commuta-
tors of complex vector fields. Later Kohn [K4] established such estimates
using subelliptic multipliers and Catlin did so ([C1], [C2], [C3]) by construct-
ing plurisubharmonic functions with large Hessians. In particular, for (0,1)
forms, Catlin proved that such estimates hold at a boundary point p if and
only if there is a bound on the orders of contact of complex analytic vari-
eties with the boundary hypersurface at p. Such a point is called a point of
finite-type.

Long before his papers, Catlin told me that if I could prove that the set
of points of finite-type is an open subset of the boundary, then he could
prove subelliptic estimates. It took years, but we both succeeded. See [D1],
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[D2], [D6] for information about points of finite-type. See [DK] for a survey
on subelliptic estimates and references. More recently, Kohn’s approach to
subelliptic estimates from [K4] has led to the study of multiplier ideals in
commutative algebra.

My own work followed the following ideas, illustrating my fondness for
squared norms. I considered Taylor polynomials of a defining function for the
boundary. I wrote such polynomials as differences ‖F‖2 − ‖G‖2 of squared
norms of holomorphic polynomial mappings. I determined when such alge-
braic boundaries contained complex analytic varieties of positive dimension,
reducing things to elementary commutative algebra. Then I made things
quantitative.

The influence of Joe Kohn on complex analysis has been extraordinary. See
[BCDS] both for its papers and for my feeble attempt to describe his work
and influence. For years my principal mathematical goal was to tell Kohn (my
advisor) something (anything at all) he didn’t know about ∂. I cannot resist
telling the following story. When I was a graduate student I told him that I
could prove some particular thing he cared about if I could show some other
thing. He sarcastically reminded me of the guy who thought he had built a
perpetual motion machine. The machine was all done except for getting the
guy’s thumb and forefinger to go back and forth forever. Five years later I
did the other thing.

4. More recent stories involving the Cauchy–Riemann equations

Joe Kohn, Dave Catlin, Yum-Tong Siu, Jeff McNeal and others realized
that hard analysis and commutative algebra were deeply linked by these ideas
revolving around subellipticity. McNeal acted on that thought by organizing
a great conference at Ohio State in 1999 and then by co-organizing with
Mircea Mustata a summer program at the Park City Math Institute in 2008.
This PCMI program intended to bring researchers in complex analysis and
complex algebraic geometry closer. Perhaps it did so, but I am not sure. After
a showing of the brilliant film “The π versus e debate,” I suggested to Robert
Bryant, then director of PCMI, that we hold an “Analysis versus Algebra
debate.” Bryant replied “it might lead to fisticuffs.”

Everyone in the complex analysis side of the subject subject knows the
books [FK] and [H] and the paper [Sh]. I wish to recommend two newer
references, Bo Berndtsson’s Park City lecture notes [B], and Emil Straube’s
book [S] written during his year at the Schrödinger Institute. Berndtsson’s
notes help bring complex analysis and geometry together. Straube’s book
synthesizes an unbelievable amount of hard analysis. These references give
clear explanations of both background information and recent developments.

I clearly remember hearing Bo’s first lecture at PCMI in 2008. I said
“jättebra” (a Swedish way to say very good) to him afterwards. He asked me
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whether Americans actually said “giant good.” I said something along the
lines “only when they hear a lecture as good as yours.”

I have known Emil Straube for many years and he has taught me many
things. I am especially appreciative of his work with Boas [BS] on global
regularity for ∂, in part because they use in a meaningful way a differential
form α I had discovered in my thesis (but I did little with it). Straube has
also contributed significantly to the question of when the ∂-Neumann problem
is compact. See [CF], [FuS], [S]. He has mentored many thesis students and
postdocs who have helped continue the subject.

Among Straube’s postdocs, I wish to mention especially Siqi Fu. I first met
Siqi when he was a graduate student at Washington University and I taught
a one semester course there. Later he told me that he regarded me as his
second advisor. I was touched. Among many other topics, Fu has studied
whether one can hear the type of a point; in other words, to what extent does
knowing the eigenvalues of the Kohn Laplacian � determine the boundary
geometry? He has also done considerable work on compactness estimates
in the ∂-Neumann problem and the Bergman kernel function, two topics of
great interest to me. I adore the paper [BFS] on explicit computation of the
Bergman kernel.

Xiaojun Huang was also a student in that class. In addition to discussing
subelliptic estimates in detail, I mentioned proper mappings between balls,
an area I had just begun studying and which is discussed in the next section.
Huang, especially in work with Ji, has carried out some deep and difficult
investigations about proper mappings. He is one of the top CR geometers of
his generation.

Jeff McNeal and his former student Anne Herbig have long been good
friends of mine. I will refrain from telling stories about Jeff, but not for
lack of material. Both are true hard-core ∂ people. As with Straube and Fu,
McNeal has proved many results about two of my favorite topics, the Bergman
kernel and compactness estimates. See, for example, [Mc1] and [Mc2].

Much of the work I have described presumes that the boundaries of do-
mains are smooth. In some contexts one wishes to prove results with minimal
boundary smoothness. For example, at a CR Geometry meeting in Serra
Negra, Brazil in 2011, Loredana Lanzani delivered a series of nice lectures
on the Bergman projection in Lp for strongly pseudoconvex domains whose
boundaries are not smooth. See her article with Stein in this volume.

5. Proper mappings between balls and related developments

The work of Tanaka and Chern–Moser excited much of the mathematical
community in the 1970s. Sid Webster became an expert in the Chern–Moser
invariants and wrote a paper which lay the groundwork for much of my re-
search. I vividly recall taking a long walk in Heidelberg with Webster after
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a meeting in Oberwolfach. I had always thought he was a Californian, but I
discovered he was from Danville, Illinois (near Champaign-Urbana). Webster
gave me a few glimpses of his tremendous differential-geometric insight. I still
hope to follow up on some of my work by incorporating some of his ideas.

Using the Chern–Moser invariants, Webster [W] considered CR mappings
from the unit sphere S2n−1 to S2n+1. For n≥ 3 he showed that the only such
smooth map, after composition with automorphisms in the source and target,
was z → (z,0). The proof failed when n= 2. Faran [Fa1], [Fa2] then solved
this case; he showed that there are precisely four (equivalence classes of) CR
mappings from S3 to S5:

(z1, z2)→ (z1, z2,0),

(z1, z2)→
(
z1, z1z2, z

2
2

)
,

(z1, z2)→
(
z21 ,

√
2z1z2, z

2
2

)
,

(z1, z2)→
(
z31 ,

√
3z1z2, z

3
2

)
.

Faran also showed that the analogue of Webster’s result holds if N < 2n−1
and f : S2n−1 → S2N−1. These results got me going into my study of proper
mappings between balls. One of my results described all polynomial examples
in all cases. That result also led to a nice monotonicity result for the volumes
of the images of these mappings.

The connection between proper mappings and CR mappings is simple to
make. A holomorphic mapping f : Ω1 → Ω2 between bounded domains is
proper if the inverse image of each compact set in Ω2 is compact in Ω1.
Assuming that the boundaries are smooth and that f has a continuous or
smooth extension to the boundary, then the induced map of the boundaries is
a CR mapping. Conversely, in many situations (including the ball of course)
a CR mapping of the boundaries determines a holomorphic mapping of the
domains. To find all rational CR mappings p

q between spheres we must solve

the equation ‖p(z)‖2 = |q(z)|2 when ‖z‖2 = 1. My fascination with squared
norms makes this problem irresistible.

I owe a great debt to Franc Forstneric, both for several of his results and for
various discussions, at Oberwolfach, the Mittag-Leffler Institute, Wisconsin,
and perhaps elsewhere. Forstneric [F] proved that proper maps (assumed
sufficiently smooth at the boundary) between balls (with domain dimension at
least 2) are rational. How much differentiability is required for the conclusion
remains an open problem. He also noted that the last two of Faran’s maps are
group-invariant and he found some restrictions on the possible unitary groups
for which invariant rational CR maps between spheres exist (spherical space
form problem).

These results of Forsternic led me in many directions. For example, I asked
what are all the proper rational mappings between balls, I formulated a con-
jecture about their degree bounds, Lichtblau and I solved the spherical space
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form problem in [DLi], and I discovered connections between CR Geometry
and things such as the Szegö limit theorem, algebraic combinatorics, and rep-
resentation theory. I initiated Dusty Grundmeier into aspects of algebraic
combinatorics resulting from allowing the target to be a hyperquadric rather
than a sphere. See [D7] and [G] for a glimpse of these research directions.

Peter Ebenfelt and I have organized two meetings at AIM on CR Complex-
ity Theory, which is a natural outgrowth of these ideas. His work has helped
bring back the differential geometry (connections, the Gauss map, etc.) that
mine has missed. See in particular his paper with his student Son in this
volume and its references. Some of his work with Baouendi, Rothschild, and
Huang also informs these kinds of questions. See [BEH] and [BH]. Of course
[BER] is the standard reference for CR mappings. Here I note also that
my colleague Alex Tumanov [Tum] introduced minimality, giving a necessary
and sufficient condition for holomorphic extendability of CR functions from a
wedge. Alex has always been fond of complex analytic disks. His ideas and
technique are on display in his volume in his paper with Sukhov and in the
paper of his student Wong.

CR complexity theory includes rigidity results. In particular, Huang and
Shanyu Ji (see the recent survey [HJ] among many papers) have proved many
such results about proper mapping between balls. Their results and some of
mine are at opposite ends of the spectrum and use different techniques. Their
methods use the Chern–Moser ideas, with the unit sphere replaced by the
Heisenberg group. My methods use simpler ideas, taking advantage of the
symmetries provided by ‖z‖2 and my love of Hermitian squared norms.

Both points of view illuminate the subject of CR complexity. Recall the
four examples of Faran and the earlier work of Webster. When the target
dimension is small compared with the domain dimension, rational CR maps
between spheres are quite restricted. Such results illustrate rigidity. When the
target dimension rises enough, one can find rational CR maps doing almost
anything one wants, illustrating irrigidity. Consider rational CR mappings
from S2n−1 to S2N−1 and suppose n≥ 2. When N < 2n−1, the only examples
are spherically equivalent to the map z → (z,0). When N = 2n− 1, the first
nontrivial maps appear. When n= 2, we obtain the four Faran maps. When
n≥ 3 and N = 2n− 1, the only examples are equivalent to the Whitney map
(the generalization of the second Faran map). The Whitney map is a kind
of tensor product; a kind of tensor division also arises. When N ≥ 2n, there
are one-parameter families of inequivalent maps. These considerations led
me to conjecturing sharp degree estimates for rational CR mappings between
spheres. The conjecture states for n≥ 3 that a rational function from S2n−1

to S2N−1 is of degree at most N−1
n−1 and for n= 2 that it is of degree at most

2N − 3. The bounds are best possible, as monomial examples exist for which
equality occurs.
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I want to mention the work of Lebl and Peters on degree estimates. Their
paper in this volume finishes the story for (the nontrivial case of) monomial
mappings. It is an inspired combination of real algebraic geometry and CR
Geometry. I posed the degree-estimate problem (finding sharp bounds for the
degree of a proper rational map between balls in terms of the domain and
target dimensions) to them at a program for graduate students at MSRI in
2005. Jiri was just beginning his graduate work with Ebenfelt, and Han had
just finished his thesis with Fornaess. They quickly became engaged by the
problem, and several years later the three of us wrote a nice paper. In this
volume, they have proved the conjecture (in all dimensions) in the monomial
case. Han presented the paper to me earlier, wrapped up as a birthday present.
Thanks!

Jiri and I wrote several papers on CR geometry during his three years
as a Doob Postdoc here at Illinois. One of these shows that the Hermitian
analogue of a famous result of Pfister about sums of squares fails [DL]. Lebl
and my former student Lichtblau have also contributed to the study of proper
mappings between balls by way of their code-writing skills. See [LL]. Bernhard
Lamel was also my postdoc for one year; his work since has far transcended
the ideas he and I discussed then. I have been spoiled by Bernhard and Jiri,
who both came from Univ. California at San Diego. The Urbana-Champaign
Sanitary District, to which I write monthly checks, is also abbreviated UCSD.

6. Positivity conditions

My study of proper mappings between balls has led to work on positivity
conditions and to diverse questions of interest to other authors in this volume.
Consider the following naive question. Let f = p

q : Cn →CN be a rational

mapping, reduced to lowest terms. Suppose that the image of the closed
unit ball under f is contained in the open unit ball. Is it possible to add
components, keeping the same denominator, and make the new map take
the sphere to the sphere? The answer is yes, and the proof passes through
my work (some joint with Catlin) on Hermitian analogues of Hilbert’s 17-
th problem. See [CD1], [CD2], [CD3], [D3], and [D4]. The following step
is crucial. If a polynomial r(z, z) is positive on the sphere, then it agrees
with the squared norm ‖f(z)‖2 of a holomorphic polynomial there. This
result extends as far as possible the famous Riesz–Fejer theorem from 1916 on
nonnegative trig polynomials. The proof passed through compact operators
and the Bergman projection. These results have interpretations as isometric
embedding theorems for holomorphic bundles. See [D4] and [D5] for more
information on these topics.

I mention here the various conversations I have had with Dror Varolin
and Steve Bradlow. Both get (perhaps justifiably) frustrated with me for
expressing my ideas in terms of polynomials rather than in terms of sections
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of bundles. One of the results I proved with Catlin amounts to an analytic
version of the Kodaira embedding theorem. Steve persisted in asking me how
the required number of tensor powers depended on the degree of the bundle.
I kept on saying that it depended instead on the coefficients of the metric.
I even gave examples where the manifold is complex projective space CP1,
the degree of the bundle is 2, and the number of tensor powers needed could
be arbitrarily large. Dror saved the day by giving a beautiful talk on these
things in the right language.

Along the way I asked a related question about polynomials. Suppose a
polynomial r(z, z) is positive on the boundary of an algebraic strongly pseu-
doconvex domain. Must it agree with a squared norm of a polynomial map
there? As noted above, Catlin and I proved this fact for the sphere. Also,
by a result of Løw ([Lw]), a positive continuous function on the boundary of
a strongly pseudoconvex domain does agree with a squared norm ‖f‖2 of a
holomorphic map f . In this setting, f is defined on the pseudoconvex side
and continuous on the boundary. If in addition the boundary is algebraic,
and the given positive function is a polynomial, it seems natural to seek a
polynomial solution.

The answer, provided by Mihai Putinar and Claus Scheiderer in [PS], is no.
Their wonderful idea uses polarization (Segre sets) in a crucial way and thus
connects this problem with the CR geometry of the boundary. Putinar and I
have followed up by introducing and computing the Hermitian complexity of
an ideal. We saw each other at an AIM meeting soon after his breakthrough
with Scheiderer. We went into a side room of the Fry electronics warehouse
and made faster progress than I ever remember making with anyone. The
stunning thing is that Hermitian complexity became connected with my ear-
liest work on the geometry of finite-type conditions. See [DP]. The paper in
this volume by Putinar and Scheiderer studies these matters for an ellipse.
See [Q] for a first result about Hermitian squares and see [TY] for an effective
result when additional information is known.

I have always been interested in positivity conditions and Hermitian forms.
Polarization enables one to treat z and z as independent variables. The
simplest examples that informed my early thinking were the following two
things. First is the very definition of a unitary map on Cn. One could say
either U preserves distances (‖Uz‖ = ‖z‖ for all z), or U preserves inner
products (〈Uz,Uw〉= 〈z,w〉 for all z,w), and one gets the same set of maps.
Second was the diagonalization of a Hermitian matrix. These two simple
pieces of complex linear algebra combine in one of my first results. Let r(z, z)
be a real-valued polynomial. Write

r(z, z) =
∥
∥f(z)

∥
∥2 −

∥
∥g(z)

∥
∥2(3)

for holomorphic polynomial (vector-valued) mappings f and g. Then an ir-
reducible complex analytic variety V lies in the zero set of r if and only if
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there is a unitary map U such that V is a subvariety of the variety defined by
f −Ug.

When Dror Varolin came to Illinois, I described some of my results with
Catlin mentioned above. I told him that, when a nonnegative bihomogeneous
polynomial had zeroes on the sphere, it might not agree with a squared norm
there. The simplest example is (|z1|2 − |z2|2)2. Could he give necessary and
sufficient conditions? Several years later, he gave the precise answer. See [V].
I believe that this kind of Hermitian geometry is worth considerable research
effort. It ties together topics such as metric on bundles, the resolution of
singularities, positivity conditions, and one of my favorite topics, the non-
linear Cauchy–Schwarz inequality

∣
∣R(z,w)

∣
∣2 ≤R(z, z)R(w,w).(4)

Inequality (4) can be interpreted as a curvature condition on bundles. Tak-
ing logarithms of both sides leads to Calabi’s notion (from [Cal]) of a diastatic
function. It is also closely related to the following problem. Given a polyno-
mial r in one or more real variables, is there an integer N such that rN has all
positive coefficients? In a fairly general situation, inequality (4) is equivalent
to an anisotropic inequality comparing the length of the short diagonal of a
parallelogram with its area. See [D3] and [DV].

7. Connections with sub-Riemannian geometry

The work on estimates for ∂ seems at first glance a bit removed from
some of the ideas of CR Geometry we have discussed. In fact, the ideas are
closely related. My colleague Jeremy Tyson and I have noted in the survey
paper [DT] that Riemann’s name arises both in sub-Riemannian Geometry
and CR Geometry, but for different reasons. We believe that excellent research
opportunities exist in attempting to bring these subjects back together.

The unit sphere is biholomorphically equivalent to the Heisenberg group
via a Cayley transformation. Stein and his school have used methods from
harmonic analysis to prove ∂ estimates. These methods are not limited to the
sphere or even to strongly pseudoconvex domains. See for example [CNS]. The
paper [RS] uses the theory of nilpotent Lie groups to give sharp subelliptic
estimates in two dimensions. These papers and their references illustrate to
some extent the possibilities for bringing the subjects of CR geometry and
sub-Riemannian geometry back together. Iterated commutators of complex
vector fields play a major role in these areas, yet the full story of finite-type
brings in additional algebraic ideas. One can imagine that these algebraic
ideas will someday bear on sub-Riemannian geometry.

Acknowledgments. I wish to thank AIM for the workshops on CR Com-
plexity Theory in 2007 and 2010. Those workshops helped develop and unify
some of the mathematics in this volume. I thank all the authors of the articles
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