
Illinois Journal of Mathematics
Volume 55, Number 4, Winter 2011, Pages 1603–1620
S 0019-2082

STABLE SYMMETRIC POLYNOMIALS AND THE
SCHUR–AGLER CLASS

GREG KNESE

Abstract. We call a multivariable polynomial an Agler denom-
inator if it is the denominator of a rational inner function in the
Schur–Agler class, an important subclass of the bounded analytic

functions on the polydisk. We give a necessary and sufficient con-
dition for a multi-affine, symmetric, and stable polynomial to be

an Agler denominator and prove several consequences. We also

sharpen a result due to Kummert related to three variable, multi-
affine, stable polynomials.

1. Introduction

We say a multivariable polynomial p ∈ C[z1, . . . , zn] is stable if p has no zeros
on the closed polydisk D

n
= D × · · · × D. “Stable” can refer to many varia-

tions on this idea, but we will stick with this definition throughout. Stable
polynomials in their various related incarnations appear in complex analysis,
orthogonal polynomials (see [12]), combinatorics, and statistical mechanics
(see [11] or see [13] for a survey related to these last two). In particular, the
paper [11] focuses on the class of “Lee–Yang polynomials” which satisfy a
“nonstrict” form of stability, but are nonetheless closely related to the poly-
nomials we study here.

This article has two goals: (1) further develop properties and examples of
the Schur–Agler class on the polydisk, and (2) unify and explore connections
between the following two classical theorems related to one variable polyno-
mials. (We postpone discussion of the Schur–Agler class until Definition 1.3.)
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Theorem 1.1 (The Christoffel–Darboux formula). Let p ∈ C[z] be a stable
one variable polynomial of degree d and write

p̃(z) = zdp(1/z̄).

Then, there exist linearly independent polynomials A1, . . . ,Ad ∈ C[z] such that

|p(z)|2 − |p̃(z)|2
1 − |z|2 =

d∑
j=1

∣∣Aj(z)
∣∣2.

See [12] for more information.

Theorem 1.2 (Grace–Walsh–Szegő). Let p ∈ C[z] be a stable one variable
polynomial of degree d. Then, the multi-affine symmetrization (defined below)
pS ∈ C[z1, . . . , zd] of p is stable.

See [13] for more information and references.
Let us define the multi-affine symmetrization. Set [d] = {1,2, . . . , d}. By

multi-affine we mean a polynomial which has degree at most one in each
variable separately. For such polynomials, it is convenient to replace multi-
index notation with a set theory notation. Namely, if α ⊂ [d], then

zα =
∏
j∈α

zj , z∅ = 1.

Now, if p(z) =
∑d

j=0 pjz
j , then the multi-affine symmetrization is given by

pS(z1, . . . , zd) =
∑

α⊂[d]

(
d

|α|

)−1

p|α|z
α

with |α| denoting cardinality of α ⊂ [d]. The multi-affine symmetrization
of p is the unique multi-affine symmetric polynomial pS ∈ C[z1, . . . , zd] with
pS(z, z, . . . , z) = p(z). Notice symmetrization is performed at a specific degree.

The Grace–Walsh–Szegő theorem can be useful in reducing questions about
multivariable stable polynomials to questions about multi-affine stable polyno-
mials by symmetrizing a given multivariable stable polynomial in each variable
separately. See [13], which is a survey related to the works [3] and [4].

It is not clear how to generalize the Christoffel–Darboux formula to multi-
variable polynomials. Two variable stable polynomials satisfy a Christoffel–
Darboux-like formula. If p ∈ C[z1, z2] is stable and of multidegree (d1, d2)
(meaning degree d1 in z1 and d2 in z2), then writing

p̃(z1, z2) = zd1
1 zd2

2 p(1/z̄1,1/z̄2)

we have for z = (z1, z2)∣∣p(z)
∣∣2 −

∣∣p̃(z)
∣∣2 =

(
1 − |z1|2

)
SOS1(z) +

(
1 − |z2|2

)
SOS2(z),

where the terms SOS1(z),SOS2(z) are each a sum of squared moduli of poly-
nomials. Explicitly, there exist polynomials A1, . . . ,AN ∈ C[z], such that
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SOS1(z) =
∑N

j=1 |Aj(z)|2 and SOS2(z) can be written in a similar way. See
[5], [6], or [7] for a proof of this formula.

This formula does not generalize straightforwardly to three or more vari-
ables. We give a special name to those polynomials for which it does.

Definition 1.3. We say a stable polynomial p ∈ C[z1, . . . , zn] of multide-
gree (d1, . . . , dn) is an Agler denominator if the following Christoffel–Darboux
type of formula holds:

(1.1)
∣∣p(z)

∣∣2 −
∣∣p̃(z)

∣∣2 =
n∑

j=1

(
1 − |zi|2

)
SOSj(z),

where each SOSj is a sum of squared moduli of polynomials in C[z1, . . . , zn]
and as usual p̃(z1, . . . , zn) = zd1

1 · · · zdn
n p(1/z̄1, . . . ,1/z̄n).

Let us explain the terminology. Given a stable polynomial p ∈ C[z1, . . . , zn],

φ(z) =
p̃(z)
p(z)

is a rational inner function on the polydisk. Inner just means φ has modulus
1 almost everywhere on the n-torus Tn := (∂D)n, and this holds in our case
because |p(z)| = |p̃(z)| for all z ∈ Tn. By the maximum principle, φ is in
the Schur class, the set of bounded analytic functions on the polydisk with
supremum norm at most one.

If p is an Agler denominator, then equation (1.1) is equivalent to φ being
a member of a subclass of the Schur class called the Schur–Agler class, which
we abbreviate to Agler class. Such analytic functions f satisfy the following
more universal bound:

(1.2)
∥∥f(T1, . . . , Tn)

∥∥ ≤ 1

for all n-tuples (T1, . . . , Tn) of commuting strict contractions on a separable
Hilbert space. For n = 1,2 the Schur class and the Agler class coincide, but
they differ for larger n. See [8] for more background, including a discussion
of the relationship between (1.1) and (1.2). Due to (1.2), the Agler class is
natural from an operator theory perspective, yet it remains poorly understood.
Agler class functions admit a nice matricial representation (called a transfer
function realization; see [8]) which also allows one to produce examples of
Agler class functions, but it still remains a difficult problem to determine
whether a given function is indeed in the Agler class. In light of all of this
background, we state our motivating question.

Question 1.4. Are multi-affine symmetric stable polynomials always Agler
denominators?

A positive answer would mean a strengthened Grace–Walsh–Szegő theorem
holds, while any conclusive answer would at least enrich the study of the Agler
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class. This paper represents partial progress on this question, which we now
summarize.

Theorem 3.3 gives a necessary and sufficient condition for a multi-affine
symmetric polynomial to be an Agler denominator in terms of a certain 2d−1 ×
2d−1 matrix being positive semi-definite (where d is the number of variables).

Our condition yields the following corollary.

Theorem 1.5. Let p ∈ C[z1, . . . , zn] be a multi-affine symmetric polynomial
with p(0, . . . ,0) �= 0. Then, there exists an r > 0 such that pr(z) := p(rz) is an
Agler denominator.

Every polynomial with p(0) �= 0 has a radius of stability (the supremum
of r such that pr is stable). (Note this concept is called the inner radius in
[11].) The above theorem says that if we add the hypotheses multi-affine and
symmetric, such polynomials possess an “Agler radius” (the supremum of r
such that pr is an Agler denominator) which is necessarily less than or equal
to its radius of stability.

While this theorem appears to be a modest contribution, we know of no
other nontrivial, naturally defined families of Schur class functions which hap-
pen to be Agler class functions. (“Trivial” examples can be obtained by
taking convex combinations of Schur functions which depend on only two
variables. One can also construct examples by using the earlier alluded to
matricial representation of Agler class functions.) Furthermore, our approach
gives a method for constructing sums of squares decompositions explicitly—
something also not generally well understood.

What can be said for low numbers of variables?
It turns out that all 3 variable multi-affine stable polynomials are Agler de-

nominators whether symmetric or not. This was proved in [9]. (Two decades
ago the Agler class was of interest in electrical engineering in the construction
of “wave digital filters” in the papers [10] and [9]. See also [1].) We shall
give a proof of this fact in the appendix, since while it does not follow the
main thrust of this paper, it is nonetheless closely related and we are able to
sharpen Kummert’s result slightly in the following theorem.

Theorem 1.6. If p ∈ C[z1, z2, z3] is multi-affine and stable, then there exist
sums of squares terms such that

|p|2 − |p̃|2 =
3∑

j=1

(
1 − |zj |2

)
SOSj(z),

where SOS3 is a sum of two squares, while SOS1, SOS2 are sums of four
squares.

This is related to Theorem 2.1 below and the main theme of [8]. Theo-
rem 2.1 suggests we might have to use a sum of four squares in each SOS term
above, but we can reduce one term to only contain two squares.
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In the case of four variables, our necessary and sufficient condition from
Theorem 3.3 can be significantly simplified.

Theorem 1.7. If p ∈ C[z1, z2, z3, z4] is stable, multi-affine, and symmetric,
then p is an Agler denominator if and only if

8
(

|p0|2 − |p4|2
)

−
(

|p1|2 − |p3|2
)

≥ 2
∣∣p2p̄1 − p̄2p3 − 2(p1p̄0 − p̄3p4)

∣∣,
where p(z) =

∑
α⊂[4]

(
4

|α|
)−1

p|α|z
α.

We do not know if this condition holds automatically under the assumption
of stability. One difficulty is that both sides of the inequality are zero for
symmetrizations of degree four polynomials with all zeros on the circle. These
would be the typical extremal examples on which to test the inequality, for if
it failed for one of them, it would fail for a nearby stable polynomial.

We have so far been unable to find a symmetric, stable, multi-affine poly-
nomial that is not an Agler denominator. In Section 5, we present a few
additional examples to illustrate.

2. Preliminaries

Let us reproduce the formula Agler denominators must satisfy:

(2.1)
∣∣p(z)

∣∣2 −
∣∣p̃(z)

∣∣2 =
n∑

j=1

(
1 − |zj |2

)
SOSj(z).

To begin our study, we use the following result.

Theorem 2.1 ([8]). If p ∈ C[z1, . . . , zn] is an Agler class denominator of
multi-degree d = (d1, . . . , dn), then the SOSj(z) term in (2.1) is a sum of
squares of polynomials of degree at most{

dj − 1 in zj ,

dk in zk for k �= j.

In particular, SOSj can be written as a sum of at most dj

∏
k �=j(dk + 1) poly-

nomials (by dimensionality).

The sums of squares terms may not be unique in (2.1), so we emphasize
that the above theorem holds for all possible choices of a sums of squares
decomposition.

Remark 2.2. It is worth explaining the last sentence, using notation we
find convenient for the rest of the paper. We will typically write sums of
squares terms using vector polynomials. So,

SOS(z) =
N∑

j=1

∣∣Aj(z)
∣∣2,
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where the Aj ∈ C[z1, . . . , zn] will be written as

SOS(z) = |A(z)|2,
where A(z) ∈ CN [z1, . . . , zn] is the vector polynomial A = [A1, . . . ,AN ]t. Now,
if V = span{Aj : j = 1, . . . ,N } has dimension m, we can always rewrite SOS(z)
using the square of a Cm valued vector polynomial. Indeed, if B1, . . . ,Bm is
a basis of V then there is an N × m matrix X such that

XB(z) = A(z),

where B = [B1, . . . ,Bm]t. Then,

SOS(z) =
∣∣XB(z)

∣∣2 = B(z)∗X∗XB(z)

but X∗X is a m × m positive semi-definite matrix and so can be factored as
X∗X = Y ∗Y with Y a m × m matrix. Hence,

SOS(z) =
∣∣Y B(z)

∣∣2,
a sum of m squares.

Using the above conventions, we can rewrite the Christoffel–Darboux for-
mula (Theorem 1.1) as

(2.2)
∣∣p(z)

∣∣2 −
∣∣p̃(z)

∣∣2 =
(
1 − |z|2

)∣∣A(z)
∣∣2,

where now A(z) =
∑

j Ajz
j is a vector polynomial. If p(z) =

∑
j pjz

j , then
by matching coefficients of both sides we get

(2.3) pj p̄k − p̄d−jpd−k = 〈Aj ,Ak 〉 − 〈Aj−1,Ak−1〉.
Here 〈v,w〉 = w∗v is the standard inner product of complex euclidean space
(of dimension taken from context).

It is also useful (later) to point out that |A(z)|2 = |Ã(z)|2 := |zd−1|2|A(1/
z̄)|2 and therefore

(2.4) 〈Aj ,Ak 〉 = 〈Ad−1−k,Ad−1−j 〉.

3. Symmetric multi-affine Agler denominators

Again refer to equation (2.1).

Proposition 3.1. If p ∈ C[z1, . . . , zd] is a symmetric multi-affine Agler
denominator, then:

• For any choice of the sums of squares terms, SOSj(z) does not depend on
zj , and hence is a function of ẑj , the d − 1-tuple of all variables except zj .

• The sums of squares terms can be chosen in a canonical way. Namely, there
is a d − 1-variable vector polynomial B ∈ C2d−1

[t1, . . . , td−1], such that

SOSj(z) =
∣∣B(ẑj)

∣∣2.
• Furthermore, |B(t1, . . . , td−1)|2 is symmetric in t1, . . . , td−1, and
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• |B(t1, . . . , td−1)|2 is “Td−1-symmetric”, meaning∣∣B(t1, . . . , td−1)
∣∣2 = |t1 · · · td−1|2

∣∣B(1/t̄1, . . . ,1/t̄d−1)
∣∣2.

We emphasize that there are two types of symmetry here: symmetry in
terms of permuting the variables and symmetry in terms of reflection across
the torus, which we refer to as Td-symmetry. Also, note that B(t) itself is not
typically symmetric.

Proof of Proposition 3.1. The first item follows from Theorem 2.1 since p
has multidegree (1,1, . . . ,1). For example, the theorem says SOS1(z) is a sum
of squares of polynomials with multidegrees bounded by (0,1,1, . . . ,1).

The second item follows from taking a given sum of squares decomposition
and averaging over all permutations of the variables.

Indeed, if Sd denotes the set of permutations of [d], define for each σ ∈ Sd,
z ∈ Cd

σ(z) = (zσ−1(1), zσ−1(2), . . . , zσ−1(n))

(this puts zj into zσ(j)’s slot).
By symmetry of p and p̃,

∣∣p(z)
∣∣2 −

∣∣p̃(z)
∣∣2 = d!−1

∑
σ∈Sd

d∑
j=1

(
1 − |zσ−1(j)|2

)
SOSj

(
σ(z)

)
(3.1)

= d!−1
∑

σ∈Sd

d∑
j=1

(
1 − |zj |2

)
SOSσ(j)

(
σ(z)

)

=
d∑

j=1

(
1 − |zj |2

)
d!−1

∑
σ∈Sd

SOSσ(j)

(
σ(z)

)
.

Then, by Remark 2.2 we may write∣∣B(ẑ1)
∣∣2 = d!−1

∑
σ∈Sd

SOSσ(1)

(
σ(z)

)
,

where B ∈ C2d−1
[ẑ1]. This is legitimate because each term SOSσ(1)(σ(z))

does not depend on z1 and because the polynomials in the sums of squares
decomposition span a space of dimension at most 2d−1 (the space in question
being the polynomials of degree at most (0,1,1, . . . ,1)).

Let τ ∈ Sd. Observe that upon writing τ̂(z)1 = (zτ −1(2), . . . , zτ −1(d)) (i.e.
τ(z) with the first entry deleted) we have∣∣B(

τ̂(z)1
)∣∣2 = d!−1

∑
σ∈Sd

SOSσ(1)(σ
(
τ(z)

)
= d!−1

∑
σ∈Sd

SOSστ −1(1)

(
σ(z)

)
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which is the sums of squares term in front of (1 − |zj |2) for j = τ −1(1) as
in (3.1). This also proves |B(ẑ1)|2 is symmetric by considering all τ with
τ(1) = 1.

If necessary we can modify |B|2 to be Td−1-symmetric, by “reflecting” our
sums of squares formula; i.e. given

∣∣p(z)
∣∣2 −

∣∣p̃(z)
∣∣2 =

d∑
j=1

(
1 − |zj |2

)∣∣B(ẑj)
∣∣2

we will replace (z1, . . . , zd) with (1/z̄1, . . . ,1/z̄d) and then multiply through
by |z1z2 · · · zd|2 to get

∣∣p̃(z)
∣∣2 −

∣∣p(z)
∣∣2 =

d∑
j=1

(
|zj |2 − 1

)∣∣B̃(ẑj)
∣∣2,

where
B̃(t1, . . . , td−1) = t1t2 · · · td−1B(1/t̄1, . . . ,1/t̄d−1).

Converting this to

∣∣p(z)
∣∣2 −

∣∣p̃(z)
∣∣2 =

d∑
j=1

(
1 − |zj |2

)∣∣B̃(ẑj)
∣∣2

and then averaging with our original sums of squares formula yields

∣∣p(z)
∣∣2 −

∣∣p̃(z)
∣∣2 =

d∑
j=1

(
1 − |zj |2

)1
2
(∣∣B(ẑj)

∣∣2 +
∣∣B̃(ẑj)

∣∣2).
We can then refactor 1

2 (|B|2 + |B̃|2) as a sum of at most 2d−1 squares to get
sums of squares terms that are Td−1-symmetric. We show below that |B|2 is
truly canonical by showing that it can be solved for explicitly. �

Therefore, p is an Agler class denominator if and only if we can write

(3.2)
∣∣p(z)

∣∣2 −
∣∣p̃(z)

∣∣2 =
d∑

j=1

(
1 − |zj |2

)∣∣B(ẑj)
∣∣2,

where |B(t)|2 is symmetric and Td−1-symmetric in t = (t1, . . . , td−1).
Let us examine what this implies in terms of coefficients. Write

B(t) =
∑

α⊂[d−1]

Bαtα, Bα ∈ C2d−1

then ∣∣B(t)
∣∣2 =

∑
α,β

〈Bα,Bβ 〉tαt̄β .
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Also, write

p(z1, . . . , zd) =
∑

α⊂[d]

(
d

|α|

)−1

p|α|z
α.

Proposition 3.2.
(1) Symmetry of |B(t)|2 means each 〈Bα,Bβ 〉 only depends on |α|, |β|, |α ∩ β|.

So, we may write
Bi

j,k := 〈Bα,Bβ 〉,
where j = |α|, k = |β|, i = |α ∩ β|. Notice that i has the following restric-
tion:

0 ≤ i ≤ j, k, d − 1.

It is convenient to declare that for other configurations, including negative
values of i, j, k, Bi

j,k := 0.
(2) Td−1-symmetry means

(3.3) Bi
j,k = Bd−1−j−k+i

d−1−k,d−1−j .

(3) Writing |α| = j, |β| = k, |α ∩ β| = i, the term zαz̄β appears with coefficient

(d − j − k + i)Bi
j,k − iBi−1

j−1,k−1

in the right-hand side of (3.2).

Proof. (1) This is straightforward.
(2) This follows from∣∣B(t)

∣∣2 =
∣∣B̃(t)

∣∣2
=

∑
α,β

〈Bβ ,Bα〉t[d−1]−αt̄[d−1]−β

=
∑
α,β

〈B[d−1]−β ,B[d−1]−α〉tαt̄β .

(3) Looking at the right hand side of (3.2), we pick up a copy of Bi
j,k for

every r ∈ αc ∩ βc, where we use αc to denote the complement of α ⊂ [d] and
note that |αc ∩ βc| = d − j − k + i. Finally, we pick up a copy of −Bi−1

j−1,k−1

for every r ∈ α ∩ β. �

Equating coefficients on both sides of (3.2), we get

(3.4)
(

d

j

)−1(
d

k

)−1

(pjpk − pd−jpd−k) = (d − j − k + i)Bi
j,k − iBi−1

j−1,k−1

which holds independently of i.
The point now is that all values of Bi

j,k can be solved for explicitly in
terms of the coefficients of p. This is clear since the restrictions on i (in
the above proposition) force d − j − k + i to be nonzero, in which case Bi

j,k
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is expressed in terms of Bi−1
j−1,k−1 and coefficients of p. One can even write

down a complicated formula. This gives a concrete necessary and sufficient
condition for p to be an Agler class denominator.

Theorem 3.3. A stable multi-affine symmetric polynomial p ∈ C[z1, . . . , zd]

p(z) =
∑

α⊂[d]

(
d

|α|

)−1

p|α|z
α

is an Agler class denominator if and only if the numbers Bi
j,k which can be

solved from (3.4) have the property that the 2d−1 × 2d−1 matrix (indexed by
subsets of [d − 1])

B :=
(
B

|α∩β|
|α|,|β|

)
α,β⊂[d−1]

is positive semi-definite.

Proof. The “only if” direction follows from the preceding discussion. The
“if” direction essentially follows from reversing all of the arguments and ob-
serving that if the given matrix is positive semi-definite then∑

α,β⊂[d−1]

B
|α∩β|

|α|,|β|z
αz̄β

can be factored as |B(z)|2. �

Theorem 1.5 follows from this.

Proof of Theorem 1.5. We are assuming p is a symmetric, multi-affine poly-
nomial, and we may assume p(0) = 1. For each r, set pr(z) := p(rz) construct
the matrix B(r) as above. This matrix depends continuously on r and is pos-
itive definite when r = 0. Therefore, the matrix stays positive definite for r
in some interval containing 0. By the previous theorem, for such r, pr is an
Agler class denominator. �

Remark 3.4. Let us explicitly give the matrix B(0) from the proof because
even in this trivial case it is useful to see the sums of squares decomposition.

Our “polynomial” is p(z) = 1 which we view as a multi-affine polynomial
of d variables. So, p̃(z) = z1 · · · zd. Solving the recurrence we get

Bi
j,k = 0 if j, k, i are not all equal,

Bj
j,j =

1
d
(
d−1

j

) .

Then, B(0) is diagonal and clearly positive definite, and we get

∣∣B(z)
∣∣2 =

∑
α⊂[d−1]

|zα|2

d
(
d−1

|α|
)
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and hence

1 − |z1 · · · zd|2 =
d∑

j=1

(
1 − |zj |2

) ∑
α⊂[d]\ {j}

|zα|2

d
(
d−1

|α|
) .

It turns out to be useful to apply the Christoffel–Darboux formula to

p(z, z, . . . , z) =
d∑

j=0

pjz
j

(recall that we have weighted our multi-affine polynomial’s coefficients to make
this formula hold) and combine this with Theorem 3.3. Combining formula
(2.3) with (3.4), we get(

d

j

)−1(
d

k

)−1(
〈Aj ,Ak 〉 − 〈Aj−1,Ak−1〉

)
(3.5)

= (d − j − k + i)Bi
j,k − iBi−1

j−1,k−1.

The nice thing about this is that B is now expressed in terms of the matrix
〈Aj ,Ak 〉, which we know to be positive semi-definite (in fact, positive when p
is stable).

4. Degree 4 case

We investigate the degree 4 situation and prove Theorem 1.7. Let

p(z1, z2, z3, z4) =
∑

α⊂ {1,2,3,4}

(
4

|α|

)−1

p|α|z
α

which we assume to be stable. Solving for B from Theorem 3.3 in terms of
the matrix Aj,k = 〈Aj ,Ak 〉 as in (3.5), we get

B0
0,0 =

1
4
A0,0, B1

1,1 =
1
42

A0,0 +
1

3 · 42
A1,1,

B0
1,0 =

1
12

A1,0, B0
2,0 =

1
12

A2,0,

B0
3,0 =

1
4
A3,0, B0

1,1 =
1

2 · 42
(A1,1 − A0,0),

B0
2,1 =

1
6 · 4

(A2,1 − A1,0), B1
2,1 =

1
2 · 6 · 4

(A2,1 + A1,0),

B1
3,1 =

1
12

A2,0.

The remaining values follow from the relation

Bi
j,k = B3−j−k+i

3−k,3−j .

(It is also useful to recall equation (2.4).)
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Recall the 24−1 × 24−1 matrix B is indexed by subsets of [3] = {1,2,3}. We
will index according to the ordering:{

∅, {1}, {2}, {3}, {1,2}, {2,3}, {1,3}, {1,2,3}
}
.

It is convenient to break up B into blocks according to the size of subset and
factor out a 1

4 :

B =
1
4

⎡
⎢⎢⎣

S0,0 S0,1 S0,2 S0,3

S1,0 S1,1 S1,2 S1,3

S2,0 S2,1 S2,2 S2,3

S3,0 S3,1 S3,2 S3,3.

⎤
⎥⎥⎦ .

So, for example S2,1 is a 3 × 3 matrix with rows indexed by {{1,2}, {2,3},
{1,3}} and columns indexed by { {1}, {2}, {3} }.

Each block is now explicitly described.

S0,0 = S3,3 = A0,0,

S0,1 = S∗
1,0 = St

2,3 = S3,2 = 1
3A0,1

[
1 1 1

]
,

S0,2 = S∗
2,0 = St

1,3 = S3,1 = 1
3A0,2

[
1 1 1

]
,

S0,3 = S∗
3,0 = A0,3,

S1,1 =

⎡
⎢⎣

1
4A0,0 + 1

12A1,1
1
8 (A1,1 − A0,0) 1

8 (A1,1 − A0,0)
1
8 (A1,1 − A0,0) 1

4A0,0 + 1
12A1,1

1
8 (A1,1 − A0,0)

1
8 (A1,1 − A0,0) 1

8 (A1,1 − A0,0) 1
4A0,0 + 1

12A1,1

⎤
⎥⎦ ,

S1,2 = S∗
2,1 =

⎡
⎢⎣

1
12 (A1,2 + A0,1) 1

6 (A1,2 − A0,1) 1
12 (A1,2 + A0,1)

1
12 (A1,2 + A0,1) 1

12 (A1,2 + A0,1) 1
6 (A1,2 − A0,1)

1
6 (A1,2 − A0,1) 1

12 (A1,2 + A0,1) 1
12 (A1,2 + A0,1)

⎤
⎥⎦ ,

S2,2 = S1,1.

(one must be careful in the last equality because the entries are indexed
differently—S1,1 is indexed by { {1}, {2}, {3} } and S2,2 is indexed by {{1,2},
{2,3}, {1,3}}).

This matrix, while complicated, has lots of symmetry, which we exploit by
conjugating by the following circulant type matrix

R = 2

⎡
⎢⎢⎣
1 0 0 0
0 C 0 0
0 0 C 0
0 0 0 1

⎤
⎥⎥⎦ ,

where

C =

⎡
⎣1 1 1
1 μ μ2

1 μ2 μ

⎤
⎦

and μ = ei2π/3.
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To compute RBR∗ we observe that

CS1,0 =

⎡
⎣A1,0

0
0

⎤
⎦ ,

CS1,1C
∗ =

⎡
⎣A1,1 0 0

0 1
8 (9A0,0 − A1,1) 0

0 0 1
8 (9A0,0 − A1,1)

⎤
⎦ ,

CS1,2C
∗ =

⎡
⎣A1,2 0 0

0 1
4μ2(A1,2 − 3A0,1) 0

0 0 1
4μ(A1,2 − 3A0,1)

⎤
⎦ .

The matrix B is positive semi-definite if and only if RBR∗ is, and after per-
muting index sets around RBR∗ is positive semi-definite if and only if the
following block matrix is ⎡

⎣A 0 0
0 X 0
0 0 Xt

⎤
⎦ ,

where

X =
1
4

[ 1
2 (9A0,0 − A1,1) μ(A2,1 − 3A1,0)
μ2(A1,2 − 3A0,1) 1

2 (9A0,0 − A1,1)

]
.

Since A is positive, we only need X positive semi-definite and this amounts
to the following inequality

9A0,0 − A1,1 ≥ 2|A2,1 − 3A1,0|.
If we translate this into coefficients of p via (2.3) we get the inequality

8
(

|p0|2 − |p4|2
)

−
(

|p1|2 − |p3|2
)

≥ 2
∣∣p2p̄1 − p̄2p3 − 2(p1p̄0 − p̄3p4)

∣∣.
This proves Theorem 1.7.

5. Examples

We have been unable to locate a stable multi-affine symmetric polynomial
which is not an Agler denominator. Let us present some of the simplest
possible examples. Consider q(z) = 1 − z which we can symmetrize at any
degree we like:

p3(z1, z2, z3) = 1 − 1
3

3∑
j=1

zj ,

p4(z1, . . . , z4) = 1 − 1
4

4∑
j=1

zj ,

. . . etc.



1616 G. KNESE

Note q is not “strictly” stable, but this is unimportant for what we are talking
about—we really care about the existence of sums of squares decompositions
as in the definition of Agler denominators and are not so worried about zeros
on the boundary of the polydisk.

Theorem A.1 implies p3 is an Agler denominator, Theorem 1.7 implies
p4 is an Agler denominator, and Theorem 3.3 implies p5, . . . , p11 are Agler
denominators after lengthy computations (which we necessarily performed
with a computer since the computation for p11 involves checking whether a
210 × 210 matrix is positive semi-definite).

So, for d = 3, . . . ,11, all of the following rational inner functions

d
∏d

j=1 zj −
∑d

k=1

∏
j �=k zj

d −
∑d

j=1 zj

satisfy the von Neumann inequality (1.2).

Appendix: Three variable multi-affine stable polynomials

Here we give a proof of the following result due to Kummert and our
sharpening (Theorem 1.6).

Theorem A.1 ([9]). If p ∈ C[z1, z2, z3] is multi-affine and stable, then p is
an Agler denominator.

The proof we give is essentially Kummert’s, although we have made it less
computational and have removed the use of a classical theorem of Hilbert (viz.
positive two variable degree 2 real polynomials are sums of three squares) to
prove our sharpening.

Lemma A.2. Let t(z1, z2) be a positive trig polynomial of degree one in each
variable. Then, t is the sum of squared moduli of two polynomials.

Proof. Write t(z1, z2) = t0(z1) + t1(z1)z2 + t1(z1)z2. Positivity implies
t0(z1) > 2|t1(z1)| for all z1 ∈ T after minimizing over z2. Then, the matrix

T (z1) =

[
1
2 t0(z1) t1(z1)
t1(z1) 1

2 t0(z1)

]

is a positive matrix trig polynomial of degree one in z1. By the matrix Fejér–
Riesz theorem, it can be factored as A(z1)∗A(z1) where A(z1) is a degree one
2 × 2 matrix polynomial. Then,

t(z1, z2) =
[
1 z̄2

]
T (z1)

[
1
z2

]
=

∣∣∣∣A(z1)
[

1
z2

]∣∣∣∣
2

which is a sum of two squares. �
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Proof of Theorems A.1 and 1.6. Write p(z) = a(z1, z2) + b(z1, z2)z3. For
z1, z2 ∈ T, by direct computation

(A.1) |p|2 − |p̃|2 =
(
1 − |z3|2

)(∣∣a(z1, z2)
∣∣2 −

∣∣b(z1, z2)
∣∣2).

Then, |a(z1, z2)|2 − |b(z1, z2)|2 is a nonnegative two variable trig polynomial
of degree one in each variable. As p is stable, |a|2 − |b|2 is in fact strictly
positive on T2, since a zero would imply |p(z1, z2, ·)| = |p̃(z1, z2, ·)| and this
would mean z3 
→ p(z1, z2, z3) has a zero on T.

By the lemma, we may write∣∣a(z1, z2)
∣∣2 −

∣∣b(z1, z2)
∣∣2 =

∣∣E(z1, z2)
∣∣2 on T2,

where E is a vector polynomial with values in C2.
We also remark that since p is stable, a is stable. By the maximum prin-

ciple, we can then conclude that

b̃(z1, z2)
a(z1, z2)

is analytic and has modulus strictly less than one (since |b| = |b̃| on T2 and
since |a| > |b| on T2). In particular, a + b̃ is stable.

We may polarize formula (A.1) and get for z1, z2 ∈ T

p(z1, z2, z3)p(z1, z2, ζ3) − p̃(z1, z2, z3)p̃(z1, z2, ζ3)(A.2)

= (1 − z3ζ̄3)
∣∣E(z1, z2)

∣∣2,
which we rearrange into

p(z1, z2, z3)p(z1, z2, ζ3) + z3ζ̄3

∣∣E(z1, z2)
∣∣2

= p̃(z1, z2, z3)p̃(z1, z2, ζ3) +
∣∣E(z1, z2)

∣∣2.
Then, for fixed z1, z2 ∈ T and for varying z3, the map

(A.3)
[
p(z1, z2, z3)
z3E(z1, z2)

]

→

[
p̃(z1, z2, z3)
E(z1, z2)

]

gives a well-defined isometry V (z1, z2) (which depends on z1, z2) from the span
of the elements on the left to the span of the elements on the right (the span
taken over the above vectors as z3 varies). More concretely, by examining
coefficients of z3, we map

(A.4)

⎡
⎣a(z1, z2)

0
0

⎤
⎦ 
→

[
b̃(z1, z2)
E(z1, z2)

]
,

[
b(z1, z2)
E(z1, z2)

]

→

⎡
⎣ã(z1, z2)

0
0

⎤
⎦ .

This is how the “lurking isometry argument” traditionally works, however
V (z1, z2) does not extend uniquely to define a unitary on C3 and we would
like to extend V (z1, z2) so that V is rational in z1, z2.
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Write E = [E1,E2]t. Define F = [−Ẽ2, Ẽ1]t. Then, 〈F (z1, z2),E(z1, z2)〉 =
0 which means the vector

X(z1, z2) =
[

0
F (z1, z2)

]

is orthogonal to both the left and right sides of (A.3). So, to extend V to a
rational unitary, it is only a matter of assigning

(A.5) V (z1, z2)X(z1, z2) = φ(z1, z2)X(z1, z2),

where φ is a unimodular function, in such a way that V is rational.
Kummert cleverly gives the matrix V explicitly.

Claim 1. Define

V =
1
a

[
b̃ Ẽt

E EẼt −a(ã+b)I

a+b̃

]
.

Then, V is holomorphic in D2 and unitary valued on T2, and V satisfies (A.3)
for (z1, z2) ∈ T2 and hence for all (z1, z2) ∈ D

2
by analyticity.

First, V is holomorphic since a and a + b̃ are stable. Using this definition
of V , the fact that V is unitary valued on T2 will follow from checking that
(A.3) and (A.5) hold (i.e., V (z1, z2) performs the mapping as indicated in
(A.3) and (A.5)).

Indeed, it can be directly checked that the equivalent condition in (A.4)
holds because of the relation

Ẽ(z1, z2)tE(z1, z2) = z1z2

∣∣E(z1, z2)
∣∣2

= z1z2

(∣∣a(z1, z2)
∣∣2 −

∣∣b(z1, z2)
∣∣2) = aã − bb̃.

In addition, (A.5) holds because

V (z1, z2)X(z1, z2) = − ã + b

a + b̃
X(z1, z2)

since ẼtF = 0, which is indeed a unimodular multiple of X . This proves the
claim.

This means V is a two variable rational matrix valued inner function. It
was proved in [10] (see also [2]) that such functions have transfer function
representations. Namely, there exists a (2 + n1 + n2) × (2 + n1 + n2) block
unitary

U =
[
A B
C D

]
=

⎡
⎣ A B1 B2

C1 D11 D12

C2 D21 D22

⎤
⎦ ,

where B is a 2 × (n1 + n2) matrix, C is a (n1 + n2) × 2, D is a (n1 + n2) ×
(n1+n2) (all subdivided as indicated) such that V (z1, z2) = A+Bd(z1, z2)(I −
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Dd(z1, z2))−1C where

d(z1, z2) =
[
z1I1 0
0 z2I2

]
.

Here I1, I2 are the n1, n2-dimensional identity matrices, respectively.
Such a representation is equivalent to the formula

(A.6) U

⎡
⎣ I

z1G1(z1, z2)
z2G2(z1, z2)

⎤
⎦ =

⎡
⎣ V (z1, z2)

G1(z1, z2)
G2(z1, z2)

⎤
⎦ ,

where G1,G2 are some Cn1 , Cn2 valued functions (which can in fact be ex-
plicitly solved for).

Define

Y =
[

p
z3E

]
and Hj = GjY for j = 1,2.

Then,

U

⎡
⎣ I

z1G1

z2G2

⎤
⎦Y = U

⎡
⎣ Y

z1G1Y
z2G2Y

⎤
⎦ = U

⎡
⎢⎢⎣

p
z3E
z1H1

z2H2

⎤
⎥⎥⎦ =

⎡
⎣V Y

H1

H2

⎤
⎦ =

⎡
⎢⎢⎣

p̃
E
H1

H2

⎤
⎥⎥⎦ ,

where the equations follow in order by: algebra, definitions of Y,Hj , (A.6),
and (A.3).

Since U is a unitary and since

U

⎡
⎢⎢⎣

p
z3E
z1H1

z2H2

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

p̃
E
H1

H2

⎤
⎥⎥⎦

we have

|p|2 + |z3|2|E|2 + |z1|2|H1|2 + |z2|2|H2|2

= |p̃|2 + |E|2 + |H1|2 + |H2|2

which can be rearranged to give

|p|2 − |p̃|2 =
∑

j=1,2

(
1 − |zj |2

)
|Hj |2 +

(
1 − |z3|2

)
|E|2.

Even though we have not verified that H1 and H2 are polynomials, this is
enough to prove p is an Agler denominator by [8]. In fact, Theorem 2.1
forces H1, H2 to be polynomials of multi-degree (0,1,1), (1,0,1) and the
sums of squares |H1|2, |H2|2 can be rewritten as sums of four squares each (by
dimensionality; see Remark 2.2). �
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