ON THE SPECTRUM OF BANACH ALGEBRA-VALUED ENTIRE FUNCTIONS

J. P. BANNON, P. CADE AND R. YANG

Abstract

In this paper, we investigate a notion of spectrum $\sigma(f)$ for Banach algebra-valued holomorphic functions on \mathbb{C}^{n}. We prove that the resolvent $\sigma^{c}(f)$ is a disjoint union of domains of holomorphy when \mathcal{B} is a C^{*}-algebra or is reflexive as a Banach space. Further, we study the topology of the resolvent via consideration of the \mathcal{B}-valued Maurer-Cartan type 1 -form $f(z)^{-1} d f(z)$. As an example, we explicitly compute the spectrum of a linear function associated with the tuple of standard unitary generators in a free group factor von Neumann algebra.

0. Introduction

In this paper, \mathcal{B} stands for a Banach algebra with a unit I. For a holomorphic function f from a domain $\Omega \subset \mathbb{C}^{n}$ to \mathcal{B}, we define

$$
\sigma(f):=\{z \in \Omega: f(z) \text { is not invertible in } \mathcal{B}\} .
$$

$\sigma(f)$ will be called the spectrum of f in this paper. The term is justified by the special case $f=A-z I$ for which $\sigma(f)=\sigma(A)$. Since the set of invertible elements in \mathcal{B} is open, $\sigma^{c}(f):=\Omega \backslash \sigma(f)$ is open, hence $\sigma(f)$ is relatively closed in Ω. To avoid complications caused by Ω, we will confine ourselves to the case $\Omega=\mathbb{C}^{n}$. This work is motivated by interest in certain connections between geometric and topological properties of $\sigma(f)$ and the structure of \mathcal{B}. A classical form of this work is the so-called analytic Fredholm theorem which states that if g is a holomorphic map from a domain $\Omega \subset \mathbb{C}$ to the set of compact operators on a Banach space, then $\sigma(I+g)$ is an analytic subset of Ω, meaning it is either the whole Ω or a discrete subset of Ω. A residue theory concerning the integral of the \mathcal{B}-valued 1 -form $f^{-1}(z) d f(z)$ was carried out by Gohberg and Sigal ([GS]), and by Bart, Ehrhardt and Silbermann in

[^0]a series of papers, see [BES] and the references therein. Multivariable studies along this line seem scarce. In the case $f(z)=z_{1} A_{1}+z_{2} A_{2}+\cdots+z_{n} A_{n}$, where $A_{j} \in \mathcal{B}$ for each $j, \sigma(f)$ is called the projective spectrum of the tuple $A=\left(A_{1}, A_{2}, \ldots, A_{n}\right)$ and is studied by the first author in [Ya]. This paper generalizes the work in [Ya]. Indeed, it is a bit surprising to see that the results that hold for linear functions still hold for general holomorphic functions. Moreover, we will manage to compute the projective spectrum for a tuple of free Haar unitary elements, that is, a tuple of unitary elements in a finite von Neumann algebra M with trace τ that is free with respect to τ in the sense of Voiculescu [Vo], and such that each unitary U in the tuple satisfies $\tau\left(U^{m}\right)=0$ if $m \neq 0$.

1. Geometric properties of $\sigma^{c}(f)$

We first look at two examples.
Example 1.1. If \mathcal{B} is the $k \times k$ matrix algebra $M_{k}(\mathbb{C})$, then $f(z)$ is not invertible if and only if $\operatorname{det} f(z)=0$. Hence, $\sigma(f)$ is the hypersurface $\{z \in$ $\left.\mathbb{C}^{n}: \operatorname{det} f(z)=0\right\}$.

Example 1.2. Suppose \mathcal{B} is Abelian, we let \mathcal{M} be the maximal ideal space of \mathcal{B}. Then $f(z)$ is not invertible if and only if there exists a $\phi \in \mathcal{M}$ such that $\phi(f(z))=0$. Denoting the hypersurface $\left\{z \in \mathbb{C}^{n}: \phi(f(z))=0\right\}$ by $S(\phi, f)$, we have

$$
\sigma(f)=\bigcup_{\phi \in \mathcal{M}} S(\phi, f)
$$

If \mathcal{B} is a commutative sub-algebra of square matrices, then $\sigma(f)$ is a finite union of hypersurfaces. For general commutative Banach algebra, $\sigma(f)$ may be an uncountable union of hypersurfaces.

Let \mathcal{B} be a subalgebra of a Banach algebra \mathcal{A}. If for every element $b \in \mathcal{B}$ that is invertible in \mathcal{A} then $b^{-1} \in \mathcal{B}$ we say \mathcal{B} is inversion-closed.

Theorem 1.3. Let \mathcal{H} be a reflexive Banach space, and \mathcal{B} be an inversionclosed Banach sub-algebra of $B(\mathcal{H})$. If f is a \mathcal{B}-valued entire function, then every path connected component of $\sigma^{c}(f)$ is a domain of holomorphy.

Proof. We let U be a path connected component of $\sigma^{c}(f)$, and λ be a point in ∂U. We will show by contradiction that there exists a $\phi \in \mathcal{B}^{*}$ such that $\phi\left(f(z)^{-1}\right)$ does not extend holomorphically to any neighborhood of λ.

Suppose on the contrary for every $\phi \in \mathcal{B}^{*}, \phi\left(f(z)^{-1}\right)$ extends holomorphically to a neighborhood of λ. Then for every $x \in \mathcal{H}$ and $s \in \mathcal{H}^{*}$,

$$
\phi_{x, s}(C)=s(C x), \quad C \in \mathcal{B}
$$

defines a bounded linear functional on \mathcal{B}. Set $F_{m}(x, s):=\phi_{x, s}\left(f\left(z^{m}\right)^{-1}\right)$. Since $\phi_{x, s}\left(f(z)^{-1}\right)$ extends holomorphically to a neighborhood of λ, $\lim _{m \rightarrow \infty} F_{m}(x, s)$ exists for every x and s. Define

$$
F_{\infty}(x, s)=\lim _{m \rightarrow \infty} F_{m}(x, s)
$$

and it follows from the Uniform Boundedness Principle that $\left\|F_{m}\right\| \leq M, \forall m$, for some positive constant M. In particular F_{∞} is a bounded bilinear form on $\mathcal{H} \times \mathcal{H}^{*}$. Hence, if we fix x then $F_{\infty}(x, \cdot)$ is in $\mathcal{H}^{* *}$. Now since \mathcal{H} is reflexive, there is a unique $B(x) \in \mathcal{H}$ such that

$$
F_{\infty}(x, s)=s(B(x)) \quad \forall x \in \mathcal{H}, s \in \mathcal{H}^{*}
$$

One checks easily that B is a bounded linear operator on \mathcal{B}. Further,

$$
\begin{aligned}
s(B f(\lambda) x) & =F_{\infty}(f(\lambda) x, s) \\
& =\lim _{m \rightarrow \infty} F_{m}(f(\lambda) x, s) \\
& =\lim _{m \rightarrow \infty} s\left(f\left(z^{m}\right)^{-1} f(\lambda) x\right) \\
& =\lim _{m \rightarrow \infty} s\left(f\left(z^{m}\right)^{-1}\left(f\left(z^{(m)}\right)+f(\lambda)-f\left(z^{(m)}\right)\right) x\right) \\
& =s(x)+\lim _{m \rightarrow \infty} s\left(f\left(z^{m}\right)^{-1}\left(f(\lambda)-f\left(z^{(m)}\right)\right) x\right) \\
& =s(x)+\lim _{m \rightarrow \infty} F_{m}\left(\left(f(\lambda)-f\left(z^{(m)}\right)\right) x, s\right) .
\end{aligned}
$$

Since

$$
\left|F_{m}\left(\left(f(\lambda)-f\left(z^{(m)}\right)\right) x, s\right)\right| \leq M\left\|\left(f(\lambda)-f\left(z^{(m)}\right)\right) x\right\|\|s\|
$$

and f is continuous, $s(B f(\lambda) x)=s(x), \forall x \in \mathcal{H}, s \in \mathcal{H}^{*}$, which implies that $B f(\lambda)=I$.

On the other hand, for a $C \in B(\mathcal{H})$, its transpose B^{*} is an operator on \mathcal{H}^{*} defined by $B^{*}(s)(x)=s(B x)$. Then, applying similar arguments as above we have

$$
s(f(\lambda) B x)=F_{\infty}\left(x, f^{*}(\lambda) s\right)=s(x)
$$

and hence $f(\lambda) B=I$. This contradicts with the fact $f(\lambda)$ is not invertible.

In the case where \mathcal{B} is a C^{*}-algebra, it can be identified (via $*$-isomorphism) with a C^{*}-subalgebra of the set of bounded linear operators on a Hilbert space (cf. Davidson [Da], Kadison and Ringrose [KR]), and it is inversion-closed (cf. Douglas [Do]). We therefore have the following corollary.

Corollary 1.4. If \mathcal{B} is a C^{*}-algebra, then every path connected component of $\sigma^{c}(f)$ is a domain of holomorphy.

The proof of Theorem 1.3 can be modified to work for other Banach algebras. For example, when \mathcal{B} is reflexive as a Banach space. In this case, we define

$$
F_{m}(s)=s\left(f\left(z^{m}\right)^{-1}\right) \quad \forall s \in \mathcal{B}^{*}
$$

By the Uniform Boundedness Principle and an argument similar to that in the proof of Theorem 1.3, $\left\{F_{m}\right\}$ is bounded and the functional $F_{\infty}(s):=$ $\lim _{m \rightarrow \infty} F_{m}(s)$ is in $\mathcal{B}^{* *}$. If $\mathcal{B}=\mathcal{B}^{* *}$, then there exists a $B \in \mathcal{B}$ such that

$$
F_{\infty}(s)=\phi(B) \quad \forall s \in \mathcal{B}^{*}
$$

Now for a fixed $C \in \mathcal{B}$ and any $\phi \in \mathcal{B}^{*}$ we consider the bounded linear functional ϕ_{C} on \mathcal{B} defined by

$$
\phi_{C}(X):=\phi(X C), \quad X \in \mathcal{B}
$$

Then

$$
\begin{aligned}
\phi(B f(\lambda)) & =F_{\infty}\left(\phi_{f(\lambda)}\right) \\
& =\lim _{m \rightarrow \infty} F_{m}\left(\phi_{f(\lambda)}\right) \\
& =\lim _{m \rightarrow \infty} \phi\left(f\left(z^{m}\right)^{-1} f(\lambda)\right) \\
& =\phi(I)+\lim _{m \rightarrow \infty} \phi\left(f\left(z^{m}\right)^{-1}\left(f(\lambda)-f\left(z^{(m)}\right)\right)\right) \\
& =\phi(I)+\lim _{m \rightarrow \infty} F_{m}\left(\phi_{\left(f(\lambda)-f\left(z^{(m)}\right)\right)}\right) \\
& =\phi(I)
\end{aligned}
$$

which implies $B f(\lambda)=I$. Defining

$$
\phi_{C}^{\prime}(X):=\phi(C X), \quad X \in \mathcal{B}
$$

and using the same argument we have $f(\lambda) B=I$. We summarize this observation in the next corollary.

Corollary 1.5. If \mathcal{B} is reflexive (as a Banach space), then $\sigma^{c}(f)$ is a disjoint union of domains of holomorphy.

2. On the topology of $\sigma^{c}(f)$

Define $\omega_{f}(z)=f(z)^{-1} d f(z)$. It appears that $\omega_{f}(z)$ contains much topological information about $\sigma^{c}(f)$. First of all, differentiating both sides of

$$
f(z)^{-1} f(z)=I
$$

one obtains

$$
d\left(f(z)^{-1}\right)=-f(z)^{-1} d f(z) f(z)^{-1}
$$

and it follows that

$$
\begin{equation*}
d \omega_{f}(z)=d\left(f(z)^{-1}\right) \wedge d f(z)=-\omega_{f}(z) \wedge \omega_{f}(z) \tag{2.1}
\end{equation*}
$$

Bounded linear functionals on \mathcal{B} are good tools to decode it. First, one observes that for a $\phi \in \mathcal{S}_{1}^{*}$,

$$
\phi\left(\omega_{f}(z)\right)=\sum_{j=1}^{n} \phi\left(f(z)^{-1} \frac{\partial f}{\partial z_{j}}\right) d z_{j}
$$

is a holomorphic 1-form on $\sigma^{c}(f)$. Likewise, for a k-linear functional F, $F\left(\omega_{f}(z), \omega_{f}(z), \ldots, \omega_{f}(z)\right)$ is a holomorphic k-form on $\sigma^{c}(f)$.

A k-linear functional F on \mathcal{B} is said to be invariant if

$$
\begin{equation*}
F\left(a_{1}, a_{2}, \ldots, a_{k}\right)=F\left(g a_{1} g^{-1}, g a_{2} g^{-1}, \ldots, g a_{k} g^{-1}\right) \tag{2.2}
\end{equation*}
$$

for all $a_{1}, a_{2}, \ldots, a_{k}$ in \mathcal{B} and every invertible operator g. One sees that the trace is an invariant 1-linear functional on \mathcal{S}_{1}.

Proposition 2.1. If F is an invariant k-linear functional on \mathcal{B} then $F\left(\omega_{f}(z), \omega_{f}(z), \ldots, \omega_{f}(z)\right)$ is a closed k-form on $\sigma^{c}(f)$.

The proof of Proposition 2.1 is a general argument based on the identity (2.1). Similar argument was used in Chern characteristic classes (cf. [Ch]).

For g of the type $g=I-g^{\prime}$ with $\left\|g^{\prime}\right\|<1$, we consider the power series expansion in g^{\prime} of the right-hand side of (2.2). By (2.2), the terms involving $\left(g^{\prime}\right)^{m}$ for $m \geq 1$ are all zero. In particular, the first order term is zero, which implies that

$$
\begin{equation*}
\sum_{i=1}^{k} F\left(a_{1}, a_{2}, \ldots, g^{\prime} a_{i}-a_{i} g^{\prime}, \ldots, a_{k}\right)=0 \tag{2.3}
\end{equation*}
$$

By linearity (2.3) remains true when $a_{1}, a_{2}, \ldots, a_{k}$ are \mathcal{B}-valued differential forms and g^{\prime} is any element in \mathcal{B}. Now if $a_{1}, a_{2}, \ldots, a_{k}$ are \mathcal{B}-valued 1 -forms, one checks that for any $1 \leq s \leq n$,

$$
\begin{aligned}
& F\left(a_{1}, a_{2}, \ldots, g^{\prime} d z_{s} \wedge a_{i}+a_{i} \wedge g^{\prime} d z_{s}, \ldots, a_{k}\right) \\
& \quad=F\left(a_{1}, a_{2}, \ldots, g^{\prime} a_{i}-a_{i} g^{\prime}, \ldots, a_{k}\right)(-1)^{k-i+1} d z_{s}
\end{aligned}
$$

hence by (2.3)

$$
\sum_{i=1}^{k}(-1)^{i-1} F\left(a_{1}, a_{2}, \ldots, g^{\prime} d z_{s} \wedge a_{i}+a_{i} \wedge g^{\prime} d z_{s}, \ldots, a_{k}\right)=0
$$

Clearly, the above equality remains true if $g^{\prime} d z_{s}$ is replaced by any \mathcal{B}-valued 1 form. So when $a_{1}, a_{2}, \ldots, a_{k}$ and ω are all \mathcal{B}-valued 1 -forms, (2.3) implies that

$$
\begin{equation*}
\sum_{i=1}^{k}(-1)^{i-1} F\left(a_{1}, a_{2}, \ldots, \omega \wedge a_{i}+a_{i} \wedge \omega, \ldots, a_{k}\right)=0 \tag{2.4}
\end{equation*}
$$

Now we check that if F is a bounded invariant k-linear functional on \mathcal{B}, then

$$
d F\left(\omega_{f}(z), \omega_{f}(z), \ldots, \omega_{f}(z)\right)=0
$$

$k=1,2, \ldots, n$. The key is identity (2.1).

$$
\begin{aligned}
d F & \left(\omega_{f}(z), \omega_{f}(z), \ldots, \omega(z)\right) \\
\quad= & \sum_{i=1}^{k}(-1)^{i-1} F(\omega_{f}(z), \omega_{f}(z), \ldots, d \underbrace{\omega_{f}(z)}_{\text {ith place }}, \ldots, \omega_{f}(z)) \\
& =-\sum_{i=1}^{k}(-1)^{i-1} F\left(\omega_{f}(z), \omega_{f}(z), \ldots, \omega_{f}(z) \wedge \omega_{f}(z), \ldots, \omega_{f}(z)\right) .
\end{aligned}
$$

Letting $a_{1}, a_{2}, \ldots, a_{k}$ and ω be all equal to $\omega_{f}(z)$ in (2.4), we obtain

$$
d F\left(\omega_{f}(z), \omega_{f}(z), \ldots, \omega(z)\right)=0
$$

and the proof is complete.
Example 2.2. Now we consider the case when \mathcal{B} is a Banach algebra with a trace tr. It is easy to see that

$$
F\left(a_{1}, a_{2}, \ldots, a_{k}\right):=\operatorname{tr}\left(a_{1} a_{2} \cdots a_{k}\right)
$$

is an invariant k-linear functional on \mathcal{B}, and

$$
F\left(\omega_{f}(z), \ldots, \omega_{f}(z)\right)=\operatorname{tr}\left(\omega_{f}^{k}(z)\right)
$$

is a closed k-form on $\sigma^{c}(f)$. If k is even, say $k=2 m$ where $m \geq 1$, then because of the equality $d \omega_{f}(z)=-\omega_{f}(z) \wedge \omega_{f}(z)$,

$$
\begin{aligned}
\operatorname{tr}\left(\omega_{f}^{k}(z)\right) & =(-1)^{m} \operatorname{tr}\left(\left(d \omega_{f}(z)\right)^{m}\right) \\
& =(-1)^{m+1} d \operatorname{tr}\left(\omega_{f}(z)\left(d \omega_{f}(z)\right)^{m-1}\right) \\
& =(-1)^{2 m} d \operatorname{tr}\left(\left(\omega_{f}(z)\right)^{2 m-1}\right) \\
& =0
\end{aligned}
$$

In the case f is a linear function, something interesting can be said about $\operatorname{tr}\left(\omega_{f}^{3}(z)\right)$. Consider $f(z)=z_{1} A_{1}+z_{2} A_{2}+z_{3} A_{3}+z_{4} A_{4}$. To be consistent with notions in [Ya], we denote $\sigma(f)$ by $P(A)$, and denote $\omega_{f}(z)$ by $\omega_{A}(z)$.

Theorem 2.3. If $A=\left(A_{1}, A_{2}, A_{3}, A_{4}\right)$ is a 4-tuple of elements in a Banach algebra \mathcal{B} with trace ϕ, then

$$
\begin{equation*}
\phi\left(\omega_{A}^{3}\right)=g(z) S(z) \tag{2.5}
\end{equation*}
$$

where $S(z)=z_{1} d z_{2} \wedge d z_{3} \wedge d z_{4}-z_{2} d z_{1} \wedge d z_{3} \wedge d z_{4}+z_{3} d z_{1} \wedge d z_{2} \wedge d z_{4}-z_{4} d z_{1} \wedge$ $d z_{2} \wedge d z_{3}$, and $g(z)$ is holomorphic on $P^{c}(A)$.

Proof. Recall that for $A, C \in \mathcal{B}$ and $x \in \mathbb{C}$ we have $\phi(A C)=\phi(C A)$ and $\phi(x A)=x \phi(A)$. Using these properties, a straightforward calculation yields the formula

$$
\begin{equation*}
\phi\left(\omega_{A}^{3}\right)=\sum_{1 \leq i<j<k \leq 4} I_{i j k} d z_{i} \wedge d z_{j} \wedge d z_{k} \tag{2.6}
\end{equation*}
$$

Where

$$
I_{i j k}=3 \cdot \phi\left(A(z)^{-1} A_{i} A(z)^{-1} A_{j} A(z)^{-1} A_{k}-A(z)^{-1} A_{i} A(z)^{-1} A_{k} A(z)^{-1} A_{j}\right)
$$

Furthermore, we have the following identity, $\frac{I_{123}}{z_{4}}=\frac{-I_{124}}{z_{3}}$, this is seen by the following calculation.

$$
\begin{aligned}
\frac{z_{3}}{3} I_{123}= & z_{3} \phi\left(A(z)^{-1} A_{1} A(z)^{-1} A_{2} A(z)^{-1} A_{3}\right. \\
& \left.-A(z)^{-1} A_{1} A(z)^{-1} A_{3} A(z)^{-1} A_{2}\right) \\
= & \phi\left(A(z)^{-1} A_{1} A(z)^{-1} A_{2} A(z)^{-1} z_{3} A_{3}\right. \\
& -A(z)^{-1} A_{1} A(z)^{-1} z_{3} A_{3} A(z)^{-1} A_{2} \\
& +A(z)^{-1} A_{1} A(z)^{-1} A_{2} A(z)^{-1} z_{1} A_{1} \\
& -A(z)^{-1} A_{1} A(z)^{-1} z_{1} A_{1} A(z)^{-1} A_{2} \\
& +A(z)^{-1} A_{1} A(z)^{-1} A_{2} A(z)^{-1} z_{2} A_{2} \\
& -A(z)^{-1} A_{1} A(z)^{-1} z_{2} A_{2} A(z)^{-1} A_{2} \\
& +A(z)^{-1} A_{1} A(z)^{-1} A_{2} A(z)^{-1} z_{4} A_{4} \\
& -A(z)^{-1} A_{1} A(z)^{-1} z_{4} A_{4} A(z)^{-1} A_{2} \\
& -A(z)^{-1} A_{1} A(z)^{-1} A_{2} A(z)^{-1} z_{4} A_{4} \\
& \left.+A(z)^{-1} A_{1} A(z)^{-1} z_{4} A_{4} A(z)^{-1} A_{2}\right) \\
= & \phi\left(A(z)^{-1} A_{1} A(z)^{-1} A_{2} A(z)^{-1} A(z)\right. \\
& \left.-A(z)^{-1} A_{1} A(z)^{-1} A(z) A(z)^{-1} A_{2}\right) \\
& -\phi\left(A(z)^{-1} A_{1} A(z)^{-1} A_{2} A(z)^{-1} z_{4} A_{4}\right. \\
& \left.-A(z)^{-1} A_{1} A(z)^{-1} z_{4} A_{4} A(z)^{-1} A_{2}\right) \\
= & \phi\left(A(z)^{-1} A_{1} A(z)^{-1} A_{2}-A(z)^{-1} A_{1} A(z)^{-1} A_{2}\right) \\
& -z_{4} \phi\left(A(z)^{-1} A_{1} A(z)^{-1} A_{2} A(z)^{-1} A_{4}\right. \\
& \left.-A(z)^{-1} A_{1} A(z)^{-1} A_{4} A(z)^{-1} A_{2}\right) \\
= & -z_{4} \\
3 & I_{124} .
\end{aligned}
$$

A similar calculation shows that $\frac{I_{123}}{z_{4}}=\frac{-I_{124}}{z_{3}}=\frac{I_{134}}{z_{2}}=\frac{-I_{234}}{z_{1}}$. Since

$$
\begin{aligned}
\phi\left(\omega_{A}^{3}\right)= & I_{123} d z_{1} \wedge d z_{2} \wedge d z_{3}+I_{124} d z_{1} \wedge d z_{2} \wedge d z_{4} \\
& +I_{134} d z_{1} \wedge d z_{3} \wedge d z_{4}+I_{234} d z_{2} \wedge d z_{3} \wedge d z_{4}
\end{aligned}
$$

it follows that $\phi\left(\omega_{A}^{3}\right)=\frac{-I_{123}}{z_{4}} S(z)$. Note, if $z_{4}=0$ then the above calculation shows $I_{123}=0$. Hence $g(z)=\frac{-I_{123}}{z_{4}}$ is holomorphic on $P^{c}(A)$.

It is not hard to see that the function g in Theorem 2.3 is invariant under similarity. That is if $B=\left(B_{1}, B_{2}, B_{3}, B_{4}\right)$ is another tuple of elements such
that $A_{i}=s B_{i} s^{-1}$ for some invertible element s and all i, then $P(A)=P(B)$ and $g_{A}=g_{B}$. Properties of g appear to be an interesting topic, which we will take up in another paper. There is no doubt that g can be more explicit for certain simpler algebras \mathcal{B}. One example is given in [Ya] for the case \mathcal{B} is the algebra of 2×2 matrices.

3. Projective spectrum of a free n-tuple of Haar unitary elements

In this section, we take another look at the case when $f(z)$ is the linear function $z_{1} A_{1}+z_{2} A_{2}+\cdots+z_{n} A_{n}$. We will compute $\sigma(f)$ when A is a tuple of free Haar unitaries.

Let M denote a finite von Neumann algebra with faithful normal trace τ (cf. [KR]). Recall that $\|A\|_{2}=\tau\left(A^{*} A\right)^{1 / 2}$ for every $A \in M$. We say that a unitary element U in M is a Haar unitary element (with respect to τ) if $\tau\left(U^{m}\right)=0$ when $m \neq 0$. For example, any of the standard unitary generators in the von Neumann algebra of a free group is a Haar unitary element.

We now describe $*$-freeness with respect to τ in the sense of Voiculescu (cf. [Vo]). A family of $*$-subalgebras $\left(\mathcal{A}_{i}\right)_{i \in \Lambda}$ of M with $I \in A_{i}$ is $*$-free (with respect to τ) if products of centered variables such that consecutive ones are from different algebras have expectation zero, more precisely if

$$
\tau\left(a_{1} a_{2} \cdots a_{n}\right)=0
$$

whenever $\tau\left(a_{j}\right)=0$ for $1 \leq j \leq n$ and $a_{j} \in A_{i(j)}$ where $i(j) \neq i(j+1)$ for $1 \leq j \leq n-1$. A family $\left(x_{i}\right)_{i \in \Lambda}$ of elements in M is called $*$-free if the family of unital von Neumann subalgebras $\left(\left\{1, x_{i}\right\}^{\prime \prime}\right)_{i \in \Lambda}$ they generate is $*$-free in the above sense. The simplest example of a $*$-free family is the set of standard unitary generators in the group von Neumann algebra of a free group.

Also recall that an element $T \in M$ is called R-diagonal if T has polar decomposition $U|T|$, where U is a Haar unitary $*$-free from $|T|$ with respect to τ. We recall (Lemma 3.9 of [HL]) that if $A \in M$ is an arbitrary element and $U \in M$ is a Haar unitary element $*$-free from A, then the element $A U$ and $U A$ are both R-diagonal elements.

The crucial element in our computation is Proposition 4.6 of [HL]. We only use a small part of this result and so state only what we need, for brevity.

Proposition 3.1 (Proposition 4.6 of [HL]). Let U, H be elements in M that are $*$-free with respect to τ, with U Haar unitary and H positive.
(i) If H is invertible, then

$$
\sigma(U H)=\left\{z \in C:\left\|H^{-1}\right\|_{2}^{-1} \leq|z| \leq\|H\|_{2}\right\}
$$

(ii) If H is not invertible, then

$$
\sigma(U H)=\left\{z \in C:|z| \leq\|H\|_{2}\right\}
$$

In what follows, we consider the function $f(z)=\sum_{i=1}^{n} z_{i} U_{i}$. Let

$$
\Omega_{j}=\left\{z \in \mathbb{C}^{n}: 2\left|z_{j}\right|^{2}>|z|^{2}\right\}, \quad j=1,2, \ldots, n
$$

Proposition 3.2. Let $U=\left(U_{1}, U_{2}, \ldots, U_{n}\right)$ be a tuple, where $\left(U_{i}\right)_{i \in\{1,2, \ldots, n\}}$ is a*-free family of Haar unitary elements in M. Then

$$
\sigma^{c}(f)=\bigcup_{j=1}^{n} \Omega_{j}
$$

Proof. For simplicity, we prove the result for the case $U=(U, V, W)$ where U, V, W are free Haar unitary elements. The proof for the general case is similar.

Let $\left(z_{1}, z_{2}, z_{3}\right)$ be any point in \mathbb{C}^{3} that is not the origin. Without loss of generality, we assume $\left|z_{1}\right| \geq\left|z_{2}\right| \geq\left|z_{3}\right| . A(z)$ is invertible if and only if $U\left(z_{1} I+z_{2} U^{*} V+z_{3} U^{*} W\right)$ is invertible, and it is the case if and only if $-z_{1} \notin$ $\sigma\left(z_{2} U^{*} V+z_{3} U^{*} W\right)$. Since $U^{*} V$ and $V^{*} W$ are $*$-free,

$$
z_{2} U^{*} V+z_{3} U^{*} W=U^{*} V\left(z_{2} I+z_{3} V^{*} W\right)
$$

is R-diagonal by Lemma 3.9 of [HL]. Hence, $\sigma\left(z_{2} U^{*} V+z_{3} U^{*} W\right)$ is determined by Proposition 4.6 of [HL] as follows:
Case 1. If $H:=\left|z_{2} I+z_{3} V^{*} W\right|$ is not invertible, then

$$
\sigma\left(z_{2} U^{*} V+z_{3} U^{*} W\right)=\left\{w \in \mathbb{C}:|w| \leq\|H\|_{2}=\sqrt{\left|z_{2}\right|^{2}+\left|z_{3}\right|^{2}}\right\}
$$

Case 2. If H is invertible, then $\left|z_{2}\right|>\left|z_{3}\right|$ and
$\sigma\left(z_{2} U^{*} V+z_{3} U^{*} W\right)=\left\{w \in \mathbb{C}:\left(\left|z_{2}\right|^{2}-\left|z_{3}\right|^{2}\right)^{1 / 2} \leq|w| \leq\left(\left|z_{2}\right|^{2}+\left|z_{3}\right|^{2}\right)^{1 / 2}\right\}$.
Therefore, $-z_{1} \notin \sigma\left(z_{2} U^{*} V+z_{3} U^{*} W\right)$ if and only if $\left|z_{1}\right|^{2}>\left|z_{2}\right|^{2}+\left|z_{3}\right|^{2}$ or $\left|z_{2}\right|^{2}-\left|z_{3}\right|^{2}>\left|z_{1}\right|^{2}$. But $\left|z_{2}\right|^{2}-\left|z_{3}\right|^{2}>\left|z_{1}\right|^{2}$ contradicts the assumption that $\left|z_{1}\right| \geq\left|z_{2}\right| \geq\left|z_{3}\right|$. So in conclusion, for a nonzero triple $\left(z_{1}, z_{2}, z_{3}\right)$ with $\left|z_{1}\right| \geq\left|z_{2}\right| \geq\left|z_{3}\right|, A(z)$ is invertible if and only if $z \in \Omega_{1}$. The theorem is then established by symmetry of A.

Example 3.3. We now compute $\tau\left(\omega_{f}\right)$ for $f(z)=\sum_{i=1}^{n} z_{i} U_{i}$, where U_{i} are *-free Haar unitary elements with respect to τ. On $\Omega_{1}=\left\{z \in \mathbb{C}^{n}: 2\left|z_{1}\right|^{2}>\right.$ $\left.|z|^{2}\right\}$,

$$
\begin{aligned}
f^{-1}(z) d f(z) & =\left(\sum_{i=1}^{n} z_{i} U_{i}\right)^{-1}\left(\sum_{i=1}^{n} U_{i} d z_{i}\right) \\
& =\left(\sum_{i=1}^{n} \frac{z_{i}}{z_{1}} U_{1}^{*} U_{i}\right)^{-1}\left(\frac{1}{z_{1}} U_{1}^{*}\right) U_{1}\left(\sum_{i=1}^{n} U_{1}^{*} U_{i} d z_{i}\right) \\
& =\left(\sum_{i=1}^{n} \frac{z_{i}}{z_{1}} U_{1}^{*} U_{i}\right)^{-1}\left(\sum_{i=1}^{n} U_{1}^{*} U_{i} \frac{d z_{i}}{z_{1}}\right)
\end{aligned}
$$

Denoting $\frac{z_{i+1}}{z_{1}}$ by $\xi_{i}, i=1,2,3, \ldots, n-1$, one sees that $z \in \Omega_{1}$ if and only if $|\xi|<1$. Using the fact

$$
d \xi_{i}=\frac{d z_{i+1}}{z_{1}}-z_{i+1} \frac{d z_{1}}{z_{1}}
$$

we have

$$
\begin{aligned}
\omega_{f} & =\left(I+\sum_{i=1}^{n-1} \xi_{i} U_{1}^{*} U_{i+1}\right)^{-1}\left(\sum_{i=1}^{n-1} U_{1}^{*} U_{i+1} d \xi_{i}+\frac{d z_{1}}{z_{1}}\left(I+\sum_{i=1}^{n-1} \xi_{i} U_{1}^{*} U_{i+1}\right)\right) \\
& =\left(I+\sum_{i=1}^{n-1} \xi_{i} U_{1}^{*} U_{i+1}\right)^{-1}\left(\sum_{i=1}^{n-1} U_{1}^{*} U_{i+1} d \xi_{i}\right)+\frac{d z_{1}}{z_{1}} I
\end{aligned}
$$

For simplicity, we denote $\sum_{i=1}^{n-1} \xi_{i} U_{1}^{*} U_{i+1}$ by $W(\xi)$. Then

$$
\tau\left(\omega_{f}\right)=\frac{d z_{1}}{z_{1}}+\tau(I+W(\xi))^{-1} d W(\xi)
$$

When $|\xi|$ is small enough such that $|W(\xi)|<1,(I+W(\xi))^{-1}=\sum_{j=0}^{\infty}(-1)^{j} \times$ $W^{j}(\xi)$, and hence $\tau\left((I+W(\xi))^{-1} d W(\xi)\right)=0$ because $U_{1}, U_{2}, \ldots, U_{n}$ are Haar unitaries. Since $\tau\left((I+W(\xi))^{-1} d W(\xi)\right)$ is holomorphic, $\tau((I+$ $\left.W(\xi))^{-1} d W(\xi)\right)=0$ for $|\xi|<1$. In conclusion, on $\Omega_{1}, \tau\left(\omega_{f}\right)=\frac{d z_{1}}{z_{1}}$. By symmetry, $\tau\left(\omega_{f}\right)=\frac{d z_{i}}{z_{i}}$ on Ω_{i} for each i.

It is in fact not hard to see that the de Rham cohomology space $H^{1}\left(\Omega_{i}, \mathbb{C}\right)=$ $\mathbb{C} \frac{d z_{i}}{z_{i}}$.

References

[BES] H. Bart, T. Ehrhardt and B. Silbermann, Trace conditions for regular spectral behavior of vector-valued analytic functions, Linear Algebra Appl. 430 (2009), 1945-1965. MR 2503944
[Ch] S. S. Chern, Complex manifolds without potential theory, 2nd ed., Springer-Verlag, New York, 1979. MR 0533884
[Da] K. Davidson, C^{*}-algebra by examples, American Mathematical Society, Providence, RI, 1996.
[Do] R. G. Douglas, Banach algebra techniques in operator theory, 2nd ed., Springer, New York, 1998. MR 1634900
[GS] I. C. Gohberg and E. I. Sigal, An operator generalization of the logarithmic residue theorem and the theorem of Roché, Math. Sb. 13 (1971), 603-625.
[HL] U. Haagerup and F. Larsen, Brown's spectral distribution measure for R-diagonal elements in finite von Neumann algebras, J. Funct. Anal. 176 (2000), 331-367. MR 1784419
[KR] R. V. Kadison and J. R. Ringrose, Fundamentals of the theory of operator algebras, vols. I \& II, Academic Press, London, 1983 \& 1986. MR 0719020
[Vo] D. Voiculescu, K. J. Dykema and A. Nica, Free random variables, CRM Monograph Series, vol. 1, American Mathematical Society, Providence, 1992. MR 1217253
[Ya] R. Yang, Projective spectrum in Banach algebras, J. Topol. Anal. 1 (2009), 289306. MR 2574027
J. P. Bannon, Department of Mathematics, Siena College, Loudonville, NY 12211, USA

E-mail address: jbannon@siena.edu
P. Cade, Department of Mathematics and Statistics, University at Albany, Albany, NY 12222, USA

E-mail address: pcade@siena.edu
R. Yang, Department of Mathematics and Statistics, University at Albany, Albany, NY 12222, USA

E-mail address: ryang@math.albany.edu

[^0]: Received July 5, 2010; received in final form September 11, 2011.
 2010 Mathematics Subject Classification. Primary 32A65. Secondary 47A10.

