ON THE SPECTRUM OF BANACH ALGEBRA-VALUED ENTIRE FUNCTIONS

J. P. BANNON, P. CADE AND R. YANG

ABSTRACT. In this paper, we investigate a notion of spectrum $\sigma(f)$ for Banach algebra-valued holomorphic functions on \mathbb{C}^n . We prove that the resolvent $\sigma^c(f)$ is a disjoint union of domains of holomorphy when \mathcal{B} is a C^* -algebra or is reflexive as a Banach space. Further, we study the topology of the resolvent via consideration of the \mathcal{B} -valued Maurer–Cartan type 1-form $f(z)^{-1} df(z)$. As an example, we explicitly compute the spectrum of a linear function associated with the tuple of standard unitary generators in a free group factor von Neumann algebra.

0. Introduction

In this paper, \mathcal{B} stands for a Banach algebra with a unit I. For a holomorphic function f from a domain $\Omega \subset \mathbb{C}^n$ to \mathcal{B} , we define

 $\sigma(f) := \{ z \in \Omega : f(z) \text{ is not invertible in } \mathcal{B} \}.$

 $\sigma(f)$ will be called the spectrum of f in this paper. The term is justified by the special case f = A - zI for which $\sigma(f) = \sigma(A)$. Since the set of invertible elements in \mathcal{B} is open, $\sigma^c(f) := \Omega \setminus \sigma(f)$ is open, hence $\sigma(f)$ is relatively closed in Ω . To avoid complications caused by Ω , we will confine ourselves to the case $\Omega = \mathbb{C}^n$. This work is motivated by interest in certain connections between geometric and topological properties of $\sigma(f)$ and the structure of \mathcal{B} . A classical form of this work is the so-called analytic Fredholm theorem which states that if g is a holomorphic map from a domain $\Omega \subset \mathbb{C}$ to the set of compact operators on a Banach space, then $\sigma(I+g)$ is an analytic subset of Ω , meaning it is either the whole Ω or a discrete subset of Ω . A residue theory concerning the integral of the \mathcal{B} -valued 1-form $f^{-1}(z) df(z)$ was carried out by Gohberg and Sigal ([GS]), and by Bart, Ehrhardt and Silbermann in

©2013 University of Illinois

Received July 5, 2010; received in final form September 11, 2011.

²⁰¹⁰ Mathematics Subject Classification. Primary 32A65. Secondary 47A10.

a series of papers, see [BES] and the references therein. Multivariable studies along this line seem scarce. In the case $f(z) = z_1A_1 + z_2A_2 + \cdots + z_nA_n$, where $A_j \in \mathcal{B}$ for each j, $\sigma(f)$ is called the projective spectrum of the tuple $A = (A_1, A_2, \ldots, A_n)$ and is studied by the first author in [Ya]. This paper generalizes the work in [Ya]. Indeed, it is a bit surprising to see that the results that hold for linear functions still hold for general holomorphic functions. Moreover, we will manage to compute the projective spectrum for a tuple of free Haar unitary elements, that is, a tuple of unitary elements in a finite von Neumann algebra M with trace τ that is free with respect to τ in the sense of Voiculescu [Vo], and such that each unitary U in the tuple satisfies $\tau(U^m) = 0$ if $m \neq 0$.

1. Geometric properties of $\sigma^c(f)$

We first look at two examples.

EXAMPLE 1.1. If \mathcal{B} is the $k \times k$ matrix algebra $M_k(\mathbb{C})$, then f(z) is not invertible if and only if det f(z) = 0. Hence, $\sigma(f)$ is the hypersurface $\{z \in \mathbb{C}^n : \det f(z) = 0\}$.

EXAMPLE 1.2. Suppose \mathcal{B} is Abelian, we let \mathcal{M} be the maximal ideal space of \mathcal{B} . Then f(z) is not invertible if and only if there exists a $\phi \in \mathcal{M}$ such that $\phi(f(z)) = 0$. Denoting the hypersurface $\{z \in \mathbb{C}^n : \phi(f(z)) = 0\}$ by $S(\phi, f)$, we have

$$\sigma(f) = \bigcup_{\phi \in \mathcal{M}} S(\phi, f).$$

If \mathcal{B} is a commutative sub-algebra of square matrices, then $\sigma(f)$ is a finite union of hypersurfaces. For general commutative Banach algebra, $\sigma(f)$ may be an uncountable union of hypersurfaces.

Let \mathcal{B} be a subalgebra of a Banach algebra \mathcal{A} . If for every element $b \in \mathcal{B}$ that is invertible in \mathcal{A} then $b^{-1} \in \mathcal{B}$ we say \mathcal{B} is inversion-closed.

THEOREM 1.3. Let \mathcal{H} be a reflexive Banach space, and \mathcal{B} be an inversionclosed Banach sub-algebra of $B(\mathcal{H})$. If f is a \mathcal{B} -valued entire function, then every path connected component of $\sigma^{c}(f)$ is a domain of holomorphy.

Proof. We let U be a path connected component of $\sigma^c(f)$, and λ be a point in ∂U . We will show by contradiction that there exists a $\phi \in \mathcal{B}^*$ such that $\phi(f(z)^{-1})$ does not extend holomorphically to any neighborhood of λ .

Suppose on the contrary for every $\phi \in \mathcal{B}^*$, $\phi(f(z)^{-1})$ extends holomorphically to a neighborhood of λ . Then for every $x \in \mathcal{H}$ and $s \in \mathcal{H}^*$,

$$\phi_{x,s}(C) = s(Cx), \quad C \in \mathcal{B}$$

defines a bounded linear functional on \mathcal{B} . Set $F_m(x,s) := \phi_{x,s}(f(z^m)^{-1})$. Since $\phi_{x,s}(f(z)^{-1})$ extends holomorphically to a neighborhood of λ , $\lim_{m\to\infty} F_m(x,s)$ exists for every x and s. Define

$$F_{\infty}(x,s) = \lim_{m \to \infty} F_m(x,s),$$

and it follows from the Uniform Boundedness Principle that $||F_m|| \leq M, \forall m$, for some positive constant M. In particular F_{∞} is a bounded bilinear form on $\mathcal{H} \times \mathcal{H}^*$. Hence, if we fix x then $F_{\infty}(x, \cdot)$ is in \mathcal{H}^{**} . Now since \mathcal{H} is reflexive, there is a unique $B(x) \in \mathcal{H}$ such that

$$F_{\infty}(x,s) = s(B(x)) \quad \forall x \in \mathcal{H}, s \in \mathcal{H}^*.$$

One checks easily that B is a bounded linear operator on \mathcal{B} . Further,

$$s(Bf(\lambda)x) = F_{\infty}(f(\lambda)x,s)$$

$$= \lim_{m \to \infty} F_m(f(\lambda)x,s)$$

$$= \lim_{m \to \infty} s(f(z^m)^{-1}f(\lambda)x)$$

$$= \lim_{m \to \infty} s(f(z^m)^{-1}(f(z^{(m)}) + f(\lambda) - f(z^{(m)}))x)$$

$$= s(x) + \lim_{m \to \infty} s(f(z^m)^{-1}(f(\lambda) - f(z^{(m)}))x)$$

$$= s(x) + \lim_{m \to \infty} F_m((f(\lambda) - f(z^{(m)}))x,s).$$

Since

$$\left|F_m((f(\lambda) - f(z^{(m)}))x, s)\right| \le M \left\| (f(\lambda) - f(z^{(m)}))x \right\| \|s\|$$

and f is continuous, $s(Bf(\lambda)x) = s(x), \forall x \in \mathcal{H}, s \in \mathcal{H}^*$, which implies that $Bf(\lambda) = I$.

On the other hand, for a $C \in B(\mathcal{H})$, its transpose B^* is an operator on \mathcal{H}^* defined by $B^*(s)(x) = s(Bx)$. Then, applying similar arguments as above we have

$$s(f(\lambda)Bx) = F_{\infty}(x, f^*(\lambda)s) = s(x),$$

and hence $f(\lambda)B = I$. This contradicts with the fact $f(\lambda)$ is not invertible.

In the case where \mathcal{B} is a C^* -algebra, it can be identified (via *-isomorphism) with a C^* -subalgebra of the set of bounded linear operators on a Hilbert space (cf. Davidson [Da], Kadison and Ringrose [KR]), and it is inversion-closed (cf. Douglas [Do]). We therefore have the following corollary.

COROLLARY 1.4. If \mathcal{B} is a C^* -algebra, then every path connected component of $\sigma^c(f)$ is a domain of holomorphy.

The proof of Theorem 1.3 can be modified to work for other Banach algebras. For example, when \mathcal{B} is reflexive as a Banach space. In this case, we define

$$F_m(s) = s(f(z^m)^{-1}) \quad \forall s \in \mathcal{B}^*.$$

By the Uniform Boundedness Principle and an argument similar to that in the proof of Theorem 1.3, $\{F_m\}$ is bounded and the functional $F_{\infty}(s) := \lim_{m \to \infty} F_m(s)$ is in \mathcal{B}^{**} . If $\mathcal{B} = \mathcal{B}^{**}$, then there exists a $B \in \mathcal{B}$ such that

$$F_{\infty}(s) = \phi(B) \quad \forall s \in \mathcal{B}^*$$

Now for a fixed $C \in \mathcal{B}$ and any $\phi \in \mathcal{B}^*$ we consider the bounded linear functional ϕ_C on \mathcal{B} defined by

$$\phi_C(X) := \phi(XC), \quad X \in \mathcal{B}$$

Then

$$\begin{split} \phi \big(Bf(\lambda) \big) &= F_{\infty}(\phi_{f(\lambda)}) \\ &= \lim_{m \to \infty} F_m(\phi_{f(\lambda)}) \\ &= \lim_{m \to \infty} \phi \big(f \big(z^m \big)^{-1} f(\lambda) \big) \\ &= \phi(I) + \lim_{m \to \infty} \phi \big(f \big(z^m \big)^{-1} \big(f(\lambda) - f \big(z^{(m)} \big) \big) \big) \\ &= \phi(I) + \lim_{m \to \infty} F_m(\phi_{(f(\lambda) - f(z^{(m)}))}) \\ &= \phi(I), \end{split}$$

which implies $Bf(\lambda) = I$. Defining

$$\phi'_C(X) := \phi(CX), \quad X \in \mathcal{B},$$

and using the same argument we have $f(\lambda)B = I$. We summarize this observation in the next corollary.

COROLLARY 1.5. If \mathcal{B} is reflexive (as a Banach space), then $\sigma^{c}(f)$ is a disjoint union of domains of holomorphy.

2. On the topology of $\sigma^c(f)$

Define $\omega_f(z) = f(z)^{-1} df(z)$. It appears that $\omega_f(z)$ contains much topological information about $\sigma^c(f)$. First of all, differentiating both sides of

$$f(z)^{-1}f(z) = l$$

one obtains

$$d(f(z)^{-1}) = -f(z)^{-1} df(z) f(z)^{-1},$$

and it follows that

(2.1)
$$d\omega_f(z) = d(f(z)^{-1}) \wedge df(z) = -\omega_f(z) \wedge \omega_f(z).$$

Bounded linear functionals on \mathcal{B} are good tools to decode it. First, one observes that for a $\phi \in \mathcal{S}_1^*$,

$$\phi(\omega_f(z)) = \sum_{j=1}^n \phi\left(f(z)^{-1} \frac{\partial f}{\partial z_j}\right) dz_j$$

is a holomorphic 1-form on $\sigma^c(f)$. Likewise, for a k-linear functional F, $F(\omega_f(z), \omega_f(z), \ldots, \omega_f(z))$ is a holomorphic k-form on $\sigma^c(f)$.

A k-linear functional F on $\mathcal B$ is said to be invariant if

(2.2)
$$F(a_1, a_2, \dots, a_k) = F(ga_1g^{-1}, ga_2g^{-1}, \dots, ga_kg^{-1})$$

for all a_1, a_2, \ldots, a_k in \mathcal{B} and every invertible operator g. One sees that the trace is an invariant 1-linear functional on \mathcal{S}_1 .

PROPOSITION 2.1. If F is an invariant k-linear functional on \mathcal{B} then $F(\omega_f(z), \omega_f(z), \dots, \omega_f(z))$ is a closed k-form on $\sigma^c(f)$.

The proof of Proposition 2.1 is a general argument based on the identity (2.1). Similar argument was used in Chern characteristic classes (cf. [Ch]).

For g of the type g = I - g' with ||g'|| < 1, we consider the power series expansion in g' of the right-hand side of (2.2). By (2.2), the terms involving $(g')^m$ for $m \ge 1$ are all zero. In particular, the first order term is zero, which implies that

(2.3)
$$\sum_{i=1}^{k} F(a_1, a_2, \dots, g'a_i - a_i g', \dots, a_k) = 0.$$

By linearity (2.3) remains true when a_1, a_2, \ldots, a_k are \mathcal{B} -valued differential forms and g' is any element in \mathcal{B} . Now if a_1, a_2, \ldots, a_k are \mathcal{B} -valued 1-forms, one checks that for any $1 \leq s \leq n$,

$$F(a_1, a_2, \dots, g' \, dz_s \wedge a_i + a_i \wedge g' \, dz_s, \dots, a_k) = F(a_1, a_2, \dots, g' a_i - a_i g', \dots, a_k) (-1)^{k-i+1} \, dz_s,$$

hence by (2.3)

$$\sum_{i=1}^{k} (-1)^{i-1} F(a_1, a_2, \dots, g' \, dz_s \wedge a_i + a_i \wedge g' \, dz_s, \dots, a_k) = 0.$$

Clearly, the above equality remains true if $g' dz_s$ is replaced by any \mathcal{B} -valued 1-form. So when a_1, a_2, \ldots, a_k and ω are all \mathcal{B} -valued 1-forms, (2.3) implies that

(2.4)
$$\sum_{i=1}^{k} (-1)^{i-1} F(a_1, a_2, \dots, \omega \wedge a_i + a_i \wedge \omega, \dots, a_k) = 0.$$

Now we check that if F is a bounded invariant k-linear functional on \mathcal{B} , then

$$dF(\omega_f(z), \omega_f(z), \dots, \omega_f(z)) = 0,$$

 $k = 1, 2, \dots, n. \text{ The key is identity } (2.1).$ $dF(\omega_f(z), \omega_f(z), \dots, \omega(z))$ $= \sum_{i=1}^k (-1)^{i-1} F(\omega_f(z), \omega_f(z), \dots, d \underbrace{\omega_f(z)}_{ith \ place}, \dots, \omega_f(z))$ $= -\sum_{i=1}^k (-1)^{i-1} F(\omega_f(z), \omega_f(z), \dots, \omega_f(z) \land \omega_f(z), \dots, \omega_f(z)).$

Letting a_1, a_2, \ldots, a_k and ω be all equal to $\omega_f(z)$ in (2.4), we obtain

 $dF(\omega_f(z), \omega_f(z), \dots, \omega(z)) = 0,$

and the proof is complete.

EXAMPLE 2.2. Now we consider the case when \mathcal{B} is a Banach algebra with a trace tr. It is easy to see that

$$F(a_1, a_2, \ldots, a_k) := \operatorname{tr}(a_1 a_2 \cdots a_k)$$

is an invariant k-linear functional on \mathcal{B} , and

$$F(\omega_f(z),\ldots,\omega_f(z)) = \operatorname{tr}(\omega_f^k(z))$$

is a closed k-form on $\sigma^c(f)$. If k is even, say k = 2m where $m \ge 1$, then because of the equality $d\omega_f(z) = -\omega_f(z) \wedge \omega_f(z)$,

$$\operatorname{tr}(\omega_f^k(z)) = (-1)^m \operatorname{tr}((d\omega_f(z))^m)$$
$$= (-1)^{m+1} d\operatorname{tr}(\omega_f(z)(d\omega_f(z))^{m-1})$$
$$= (-1)^{2m} d\operatorname{tr}((\omega_f(z))^{2m-1})$$
$$= 0.$$

In the case f is a linear function, something interesting can be said about $\operatorname{tr}(\omega_f^3(z))$. Consider $f(z) = z_1A_1 + z_2A_2 + z_3A_3 + z_4A_4$. To be consistent with notions in [Ya], we denote $\sigma(f)$ by P(A), and denote $\omega_f(z)$ by $\omega_A(z)$.

THEOREM 2.3. If $A = (A_1, A_2, A_3, A_4)$ is a 4-tuple of elements in a Banach algebra \mathcal{B} with trace ϕ , then

(2.5)
$$\phi(\omega_A^3) = g(z)S(z),$$

where $S(z) = z_1 dz_2 \wedge dz_3 \wedge dz_4 - z_2 dz_1 \wedge dz_3 \wedge dz_4 + z_3 dz_1 \wedge dz_2 \wedge dz_4 - z_4 dz_1 \wedge dz_2 \wedge dz_3$, and g(z) is holomorphic on $P^c(A)$.

Proof. Recall that for $A, C \in \mathcal{B}$ and $x \in \mathbb{C}$ we have $\phi(AC) = \phi(CA)$ and $\phi(xA) = x\phi(A)$. Using these properties, a straightforward calculation yields the formula

(2.6)
$$\phi(\omega_A^3) = \sum_{1 \le i < j < k \le 4} I_{ijk} \, dz_i \wedge dz_j \wedge dz_k.$$

Where

$$I_{ijk} = 3 \cdot \phi(A(z)^{-1}A_iA(z)^{-1}A_jA(z)^{-1}A_k - A(z)^{-1}A_iA(z)^{-1}A_kA(z)^{-1}A_j).$$

Furthermore, we have the following identity, $\frac{I_{123}}{z_4} = \frac{-I_{124}}{z_3}$, this is seen by the following calculation.

$$\begin{aligned} \frac{z_3}{3}I_{123} &= z_3\phi \Big(A(z)^{-1}A_1A(z)^{-1}A_2A(z)^{-1}A_3 \\ &\quad -A(z)^{-1}A_1A(z)^{-1}A_3A(z)^{-1}A_2\Big) \\ &= \phi \Big(A(z)^{-1}A_1A(z)^{-1}A_2A(z)^{-1}z_3A_3 \\ &\quad -A(z)^{-1}A_1A(z)^{-1}A_2A(z)^{-1}z_1A_1 \\ &\quad -A(z)^{-1}A_1A(z)^{-1}A_2A(z)^{-1}z_2A_2 \\ &\quad +A(z)^{-1}A_1A(z)^{-1}A_2A(z)^{-1}z_2A_2 \\ &\quad -A(z)^{-1}A_1A(z)^{-1}A_2A(z)^{-1}z_4A_4 \\ &\quad -A(z)^{-1}A_1A(z)^{-1}A_2A(z)^{-1}z_4A_4 \\ &\quad -A(z)^{-1}A_1A(z)^{-1}A_2A(z)^{-1}A_2A_4 \\ &\quad +A(z)^{-1}A_1A(z)^{-1}A_2A(z)^{-1}A_2A_4 \\ &\quad -A(z)^{-1}A_1A(z)^{-1}A_2A(z)^{-1}A_2A_4 \\ &\quad -A(z)^{-1}A_1A(z)^{-1}A_2A(z)^{-1}A_4 \\ &\quad -A(z)^{-1}A_1A(z)^{-1}A_2A(z)^{-1}A_4 \\ &\quad -A(z)^{-1}A_1A(z)^{-1}A_2A(z)^{-1}A_4 \\ &\quad -A(z)^{-1}A_1A(z)^{-1}A_4A(z)^{-1}A_2\Big) \\ &= \frac{-z_4}{3}I_{124}. \end{aligned}$$

A similar calculation shows that $\frac{I_{123}}{z_4} = \frac{-I_{124}}{z_3} = \frac{I_{134}}{z_2} = \frac{-I_{234}}{z_1}$. Since

$$\phi(\omega_A^3) = I_{123} dz_1 \wedge dz_2 \wedge dz_3 + I_{124} dz_1 \wedge dz_2 \wedge dz_4 + I_{134} dz_1 \wedge dz_3 \wedge dz_4 + I_{234} dz_2 \wedge dz_3 \wedge dz_4$$

it follows that $\phi(\omega_A^3) = \frac{-I_{123}}{z_4}S(z)$. Note, if $z_4 = 0$ then the above calculation shows $I_{123} = 0$. Hence $g(z) = \frac{-I_{123}}{z_4}$ is holomorphic on $P^c(A)$.

It is not hard to see that the function g in Theorem 2.3 is invariant under similarity. That is if $B = (B_1, B_2, B_3, B_4)$ is another tuple of elements such that $A_i = sB_is^{-1}$ for some invertible element s and all i, then P(A) = P(B)and $g_A = g_B$. Properties of g appear to be an interesting topic, which we will take up in another paper. There is no doubt that g can be more explicit for certain simpler algebras \mathcal{B} . One example is given in [Ya] for the case \mathcal{B} is the algebra of 2×2 matrices.

3. Projective spectrum of a free n-tuple of Haar unitary elements

In this section, we take another look at the case when f(z) is the linear function $z_1A_1 + z_2A_2 + \cdots + z_nA_n$. We will compute $\sigma(f)$ when A is a tuple of free Haar unitaries.

Let M denote a finite von Neumann algebra with faithful normal trace τ (cf. [KR]). Recall that $||A||_2 = \tau (A^*A)^{1/2}$ for every $A \in M$. We say that a unitary element U in M is a Haar unitary element (with respect to τ) if $\tau(U^m) = 0$ when $m \neq 0$. For example, any of the standard unitary generators in the von Neumann algebra of a free group is a Haar unitary element.

We now describe *-freeness with respect to τ in the sense of Voiculescu (cf. [Vo]). A family of *-subalgebras $(\mathcal{A}_i)_{i \in \Lambda}$ of M with $I \in A_i$ is *-free (with respect to τ) if products of centered variables such that consecutive ones are from different algebras have expectation zero, more precisely if

$$\tau(a_1 \ a_2 \ \cdots \ a_n) = 0$$

whenever $\tau(a_j) = 0$ for $1 \leq j \leq n$ and $a_j \in A_{i(j)}$ where $i(j) \neq i(j+1)$ for $1 \leq j \leq n-1$. A family $(x_i)_{i \in \Lambda}$ of elements in M is called *-free if the family of unital von Neumann subalgebras $(\{1, x_i\}'')_{i \in \Lambda}$ they generate is *-free in the above sense. The simplest example of a *-free family is the set of standard unitary generators in the group von Neumann algebra of a free group.

Also recall that an element $T \in M$ is called *R*-diagonal if *T* has polar decomposition U|T|, where *U* is a Haar unitary *-free from |T| with respect to τ . We recall (Lemma 3.9 of [HL]) that if $A \in M$ is an arbitrary element and $U \in M$ is a Haar unitary element *-free from *A*, then the element *AU* and *UA* are both *R*-diagonal elements.

The crucial element in our computation is Proposition 4.6 of [HL]. We only use a small part of this result and so state only what we need, for brevity.

PROPOSITION 3.1 (Proposition 4.6 of [HL]). Let U, H be elements in M that are *-free with respect to τ , with U Haar unitary and H positive.

(i) If H is invertible, then

$$\sigma(UH) = \left\{ z \in C : \left\| H^{-1} \right\|_{2}^{-1} \le |z| \le \|H\|_{2} \right\};$$

(ii) If H is not invertible, then

$$\sigma(UH) = \{ z \in C : |z| \le ||H||_2 \}.$$

In what follows, we consider the function $f(z) = \sum_{i=1}^{n} z_i U_i$. Let

$$\Omega_j = \{ z \in \mathbb{C}^n : 2|z_j|^2 > |z|^2 \}, \quad j = 1, 2, \dots, n.$$

PROPOSITION 3.2. Let $U = (U_1, U_2, ..., U_n)$ be a tuple, where $(U_i)_{i \in \{1, 2, ..., n\}}$ is a *-free family of Haar unitary elements in M. Then

$$\sigma^c(f) = \bigcup_{j=1}^n \Omega_j.$$

Proof. For simplicity, we prove the result for the case U = (U, V, W) where U, V, W are free Haar unitary elements. The proof for the general case is similar.

Let (z_1, z_2, z_3) be any point in \mathbb{C}^3 that is not the origin. Without loss of generality, we assume $|z_1| \ge |z_2| \ge |z_3|$. A(z) is invertible if and only if $U(z_1I + z_2U^*V + z_3U^*W)$ is invertible, and it is the case if and only if $-z_1 \notin \sigma(z_2U^*V + z_3U^*W)$. Since U^*V and V^*W are *-free,

$$z_2 U^* V + z_3 U^* W = U^* V (z_2 I + z_3 V^* W)$$

is R-diagonal by Lemma 3.9 of [HL]. Hence, $\sigma(z_2U^*V + z_3U^*W)$ is determined by Proposition 4.6 of [HL] as follows:

Case 1. If $H := |z_2I + z_3V^*W|$ is not invertible, then

$$\sigma(z_2U^*V + z_3U^*W) = \{ w \in \mathbb{C} : |w| \le ||H||_2 = \sqrt{|z_2|^2 + |z_3|^2} \}.$$

Case 2. If H is invertible, then $|z_2| > |z_3|$ and

$$\sigma(z_2U^*V + z_3U^*W) = \{ w \in \mathbb{C} : (|z_2|^2 - |z_3|^2)^{1/2} \le |w| \le (|z_2|^2 + |z_3|^2)^{1/2} \}.$$

Therefore, $-z_1 \notin \sigma(z_2 U^* V + z_3 U^* W)$ if and only if $|z_1|^2 > |z_2|^2 + |z_3|^2$ or $|z_2|^2 - |z_3|^2 > |z_1|^2$. But $|z_2|^2 - |z_3|^2 > |z_1|^2$ contradicts the assumption that $|z_1| \ge |z_2| \ge |z_3|$. So in conclusion, for a nonzero triple (z_1, z_2, z_3) with $|z_1| \ge |z_2| \ge |z_3|$, A(z) is invertible if and only if $z \in \Omega_1$. The theorem is then established by symmetry of A.

EXAMPLE 3.3. We now compute $\tau(\omega_f)$ for $f(z) = \sum_{i=1}^n z_i U_i$, where U_i are *-free Haar unitary elements with respect to τ . On $\Omega_1 = \{z \in \mathbb{C}^n : 2|z_1|^2 > |z|^2\}$,

$$f^{-1}(z) df(z) = \left(\sum_{i=1}^{n} z_i U_i\right)^{-1} \left(\sum_{i=1}^{n} U_i dz_i\right)$$
$$= \left(\sum_{i=1}^{n} \frac{z_i}{z_1} U_1^* U_i\right)^{-1} \left(\frac{1}{z_1} U_1^*\right) U_1 \left(\sum_{i=1}^{n} U_1^* U_i dz_i\right)$$
$$= \left(\sum_{i=1}^{n} \frac{z_i}{z_1} U_1^* U_i\right)^{-1} \left(\sum_{i=1}^{n} U_1^* U_i \frac{dz_i}{z_1}\right).$$

Denoting $\frac{z_{i+1}}{z_1}$ by ξ_i , i = 1, 2, 3, ..., n-1, one sees that $z \in \Omega_1$ if and only if $|\xi| < 1$. Using the fact

$$d\xi_i = \frac{dz_{i+1}}{z_1} - z_{i+1}\frac{dz_1}{z_1},$$

we have

$$\omega_f = \left(I + \sum_{i=1}^{n-1} \xi_i U_1^* U_{i+1}\right)^{-1} \left(\sum_{i=1}^{n-1} U_1^* U_{i+1} \, d\xi_i + \frac{dz_1}{z_1} \left(I + \sum_{i=1}^{n-1} \xi_i U_1^* U_{i+1}\right)\right)$$
$$= \left(I + \sum_{i=1}^{n-1} \xi_i U_1^* U_{i+1}\right)^{-1} \left(\sum_{i=1}^{n-1} U_1^* U_{i+1} \, d\xi_i\right) + \frac{dz_1}{z_1} I.$$

For simplicity, we denote $\sum_{i=1}^{n-1} \xi_i U_1^* U_{i+1}$ by $W(\xi)$. Then

$$\tau(\omega_f) = \frac{dz_1}{z_1} + \tau \left(I + W(\xi) \right)^{-1} dW(\xi).$$

When $|\xi|$ is small enough such that $|W(\xi)| < 1$, $(I + W(\xi))^{-1} = \sum_{j=0}^{\infty} (-1)^j \times W^j(\xi)$, and hence $\tau((I + W(\xi))^{-1} dW(\xi)) = 0$ because U_1, U_2, \ldots, U_n are Haar unitaries. Since $\tau((I + W(\xi))^{-1} dW(\xi))$ is holomorphic, $\tau((I + W(\xi))^{-1} dW(\xi)) = 0$ for $|\xi| < 1$. In conclusion, on Ω_1 , $\tau(\omega_f) = \frac{dz_1}{z_1}$. By symmetry, $\tau(\omega_f) = \frac{dz_i}{z_i}$ on Ω_i for each i.

It is in fact not hard to see that the de Rham cohomology space $H^1(\Omega_i, \mathbb{C}) = \mathbb{C}\frac{dz_i}{z_i}$.

References

- [BES] H. Bart, T. Ehrhardt and B. Silbermann, Trace conditions for regular spectral behavior of vector-valued analytic functions, Linear Algebra Appl. 430 (2009), 1945–1965. MR 2503944
 - [Ch] S. S. Chern, Complex manifolds without potential theory, 2nd ed., Springer-Verlag, New York, 1979. MR 0533884
 - [Da] K. Davidson, C*-algebra by examples, American Mathematical Society, Providence, RI, 1996.
 - [Do] R. G. Douglas, Banach algebra techniques in operator theory, 2nd ed., Springer, New York, 1998. MR 1634900
 - [GS] I. C. Gohberg and E. I. Sigal, An operator generalization of the logarithmic residue theorem and the theorem of Roché, Math. Sb. 13 (1971), 603–625.
 - [HL] U. Haagerup and F. Larsen, Brown's spectral distribution measure for R-diagonal elements in finite von Neumann algebras, J. Funct. Anal. 176 (2000), 331–367. MR 1784419
 - [KR] R. V. Kadison and J. R. Ringrose, Fundamentals of the theory of operator algebras, vols. I & II, Academic Press, London, 1983 & 1986. MR 0719020
 - [Vo] D. Voiculescu, K. J. Dykema and A. Nica, Free random variables, CRM Monograph Series, vol. 1, American Mathematical Society, Providence, 1992. MR 1217253

[Ya] R. Yang, Projective spectrum in Banach algebras, J. Topol. Anal. 1 (2009), 289– 306. MR 2574027

J. P. BANNON, DEPARTMENT OF MATHEMATICS, SIENA COLLEGE, LOUDONVILLE, NY 12211, USA

E-mail address: jbannon@siena.edu

P. CADE, DEPARTMENT OF MATHEMATICS AND STATISTICS, UNIVERSITY AT ALBANY, ALBANY, NY 12222, USA

E-mail address: pcade@siena.edu

R. Yang, Department of Mathematics and Statistics, University at Albany, Albany, NY 12222, USA

E-mail address: ryang@math.albany.edu