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STABLE SEMIGROUPS ON HOMOGENEOUS TREES AND
HYPERBOLIC SPACES

ANDRZEJ STÓS

Abstract. We prove the kernel estimates for subordinated semi-
groups on homogeneous trees. We study the long time propaga-
tion problem. We exploit this to show exit time estimates for

large balls in an abstract setting of metric measure spaces. Fi-
nally, we give estimates for the Poisson kernel of a ball.

1. Introduction

In 1961 Getoor [12] proposed subordinated semigroups in the context of
the real hyperbolic spaces. It is only recently when the corresponding kernel
estimates were found ([1], [14]).

The aim of this paper is to give a corresponding result in the context of
homogeneous trees. Our motivations come from the fact that such structures
make a discrete counterpart for hyperbolic spaces. Large scale analogy holds
not only in geometry but also in analysis, see e.g. [8], [10], [11].

Our starting point is a diffusion semigroup considered in [8]. By subordi-
nation we obtain a new semigroup, which is referred to as to the stable one.
We show estimates for the corresponding kernel (Theorem 3.1 below). Our
present theorem sheds some light on a natural interpretation for the analogous
result from [14] (see remarks after the proof).

We consider the long time propagation problem (Theorem 3.2). It turns
out that for large time t the mass of our kernel is distributed at distances
comparable with t2/α. We give two different proofs. First of them is of
general nature and exploits properties of the underlying diffusion semigroup.
The proof works for hyperbolic spaces or Riemannian manifolds as well. The
other proof shows that in this context our Theorem 3.1 is useful as well.
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Getoor [12] raised the question of “stability” properties for semigroups of
this type. Obviously, here we have neither classical scaling, nor its weak form
which is typical for e.g. fractals [6]. However, one may interpret Theorem 3.2
as an asymptotic scaling property.

Finally, we give some applications of Theorem 3.1. We study exit time
from balls for the stable process corresponding to our semigroup. For related
results we refer the reader to [13] or [19]. In general, we were inspired by the
approach from [4], for stable case see [6]. The results in Section 4 have their
analogues in these papers. Observe, however, that the argument of [4] and
[6] hinges on the Ahlfors-regularity of the measure, i.e. polynomial volume
growth. Clearly, this excludes the homogeneous trees and hyperbolic spaces.
Our contribution is to find a convenient setting so that the the argument can
be adapted for stable processes in spaces with exponential volume growth (see
(26) and (27) below). We use a more abstract framework of metric measure
spaces (cf. [16]). In this way, we can obtain some results for homogeneous
trees and hyperbolic spaces at the same time. For example, we get estimates
for the Poisson kernel for balls. The interplay between (26) and (27) may be
of independent interest.

The paper is organized as follows. The necessary notations are gathered in
Preliminaries. Section 3 is devoted to the heat kernel estimates and the long
time propagation problem. In Section 4, we introduce our abstract setting
and prove the exit time estimates. As a consequence, in Section 5 the Poisson
kernel estimates are obtained.

2. Preliminaries

In what follows, X denotes a homogeneous tree of degree q + 1, i.e. a con-
nected graph without loops, in which every vertex has q + 1 neighbors. Fix
an arbitrary reference point o ∈ X . For any vertex x ∈ X , the graph distance
from x to o will be denoted by |x|. Consider the nearest-neighbor Laplacian
Δ and the related heat semigroup Ht with continuous time on X of degree
q + 1 with q ≥ 2, that is,

Δf(x) = f(x) − 1
q + 1

∑
y∼x

f(y), x ∈ X and Ht = e−tΔ, t > 0.

See [8] for detailed exposition. We adopt the general setting from that paper.
For the reader’s convenience, we recall definitions needed in what follows. In
particular, let ht denote the corresponding heat kernel and hZ

t the heat kernel
in the case of q = 1, when the tree can be identified with the set of integers.
We have

hZ

t (j) = e−tI|j|(t), t > 0, j ∈ Z,
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where Iν(t) stands for the modified Bessel function of the first kind. Further-
more, set

γ =
2

√
q

q + 1
so that b2 = 1 − γ is the bottom of the spectrum of the Laplacian acting on
L2(X).

We adopt the convention that c (without subscripts) denotes a generic
constant whose value may change from one place to another. To avoid some
curiosities occasionally, we write c̃, c′, . . . with the same properties. Numbered
constants (with subscripts) always keep their particular value throughout the
current theorem or proof. We often write f � g to indicate that there exists
c > 0 such that c−1 < f/g < c. Similarly, f(x) � g(x), x → ∞, means c−1 <
f/g < c for x large enough.

The kernel ht is known to satisfy the following estimates [8]:

ht(x) � e−b2t

t
φ0(x)hZ

tγ

(
|x| + 1

)
,

where

(1) φ0(x) =
(

1 +
q − 1
q + 1

|x|
)

q− |x|
2 , x ∈ X

is the spherical function. Using the definition of hZ

t , we obtain

(2) ht(x) � e−t

t
φ0(x)I1+|x|(tγ), t > 0, x ∈ X.

In what follows, we fix α ∈ (0,2) and consider the subordinate semigroup
(T (α)

t )t≥0,

T
(α)
t =

∫ ∞

0

e−uΔηt(u)du,

where the subordinator ηt(·) is a (defined on R
+) continuous density function

of a probability measure, determined by its Laplace transform,

L
[
ηt(·)

]
(λ) = e−tλα/2

.

By an analogy with the classical situation (subordination of the gaussian
semigroup on R

n), the generator of the new semigroup is denoted by Δα/2

and called the fractional Laplacian.
For the corresponding kernels, we have

(3) pt(x) =
∫ ∞

0

hu(x)ηt(u)du.

Sometimes we refer to pt(x) as to the α-stable kernel. For more details con-
cerning this construction, we refer the reader for example, to [5].
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3. α-stable kernel

Our main result may be stated as follows.

Theorem 3.1. For any constants K,M > 0

(4) pt(x) �
{

φ0(x)t−3/2 exp(−t(1 − γ)α/2), |x| < Kt1/2, t ≥ 1,
φ0(x)t|x| −2−α/2q− |x|/2, |x| > Mt2/α.

Proof. First, we collect some auxiliary estimates for Bessel function Iν(z).
Recall its integral representation (e.g., [15], (8.431.1))

Iν(z) =
(z/2)ν

Γ(ν + 1/2)
√

π

∫ 1

−1

(
1 − u2

)ν−1/2
e−zu du

=
(2πz)−1/2ez

2ν−1/2Γ(ν + 1/2)

∫ 2z

0

[
u(2 − u/z)

]ν−1/2
e−u du.

We only need ν ≥ 1 here. Clearly, the last integral is bounded above by
2ν−1/2Γ(ν + 1/2) so that

(5) Iν(z) ≤ cz−1/2ez, z > 0, ν ≥ 1.

Let us recall that ([8])

(6) Iν(z) � e
√

ν2+z2

√
z + ν

(
z

ν +
√

ν2 + z2

)ν

, z > 0, ν ≥ 1/2.

Assume that z > max(1, ν2/a) with some a > 0 and ν > 1. Thus,
√

ν2 + z2 −
z ≤ a/2 so that exp(

√
ν2 + z2) � exp(z) (in the upper bound there is a con-

stant that depends on a, the lower bound holds with constant 1). Clearly,√
z + ν � √

z and the quotient in the parentheses in (6) is bounded above
by 1. Further,

zν

(ν +
√

ν2 + z2)ν
≥ 1

(
√

a/
√

z +
√

1 + a/z)
√

az

≥ 1
(1 + 2

√
a/

√
z)

√
z/(2

√
a)×2a

≥ 1
e2a

.

Consequently, we obtain the desired simplification

(7) Iν(z) � z−1/2ez, z > max
(
1, ν2/a

)
, ν ≥ 1.

We recall the exact estimates of the densities ηt(·) which will be fundamen-
tal in what follows (see, e.g., [17]). We have

(8) ηt(u) � t
1

2−α u− 4−α
4−2α exp

(
−c1t

2
2−α u− α

2−α
)
, t−2/αu ≤ c,

where

c1 = c1(α) =
2 − α

2

(
α

2

) α
2−α
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and

(9) ηt(u) � tu−1−α/2, t−2/αu > c.

According to (8) and (9), it is convenient to split the integral (3) as follows

pt(x) =
∫ c0t2/α

0

hu(x)ηt(u)du +
∫ ∞

c0t2/α

hu(x)ηt(u)du(10)

� φ0(x)t
1

2−α

∫ c0t2/α

0

e−uI1+|x|(γu)(11)

× u− 4−α
4−2α −1 exp

(
−c1t

2
2−α u− α

2−α
)
du

+ φ0(x)t
∫ ∞

c0t2/α

e−uI1+|x|(γu)u−2−α/2 du

def= φ0(x)(A(x,t) + B(x,t)).

Fix K > 0. We assume that c0 = 1 and |x| ≤ K
√

t with x and t large
enough. Note that neither x, nor t is fixed. It follows that (1 + |x|)2 ≤
(1 + K

√
t)2 ≤ γt2/α. Hence, by (7) with a = 1 we get

I1+|x|(γu) ≤ cu−1/2eγu, u > t2/α.

In consequence,

B(x,t) ≤ ct

∫ ∞

t2/α

e−(1−γ)uu−(5+α)/2 du

≤ ct−5/α

∫ ∞

t2/α

e−(1−γ)u du

= ct−5/αe−(1−γ)t2/α

.

To estimate A(x,t) let us split it as follows

A(x,t) = t
1

2−α

(∫ αt/2

0

+
∫ t2/α

αt/2

)
e−uI1+|x|(γu)

× u− 4−α
4−2α −1 exp

(
−c1t

2
2−α u− α

2−α
)
du

= A(x,t)
1 + A(x,t)

2 .

We apply (7) to the integral A(x,t)
2 . After the change of variable u → tu we

get

(12) A(x,t)
2 � ct−1

∫ t
2
α

−1

α
2

u− 4−α
4−2α − 3

2 exp
(

−t
(
(1 − γ)u + c1u

− α
2−α

))
du.
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Observe that the minimum of function p(u) = (1 − γ)u + c1u
−α/(2−α) is at-

tained at u0 = (1 − γ)−(1−α/2)( αc1
2−α )1−α/2. Putting in c1 we get

u0 =
α/2

(1 − γ)1−α/2
and p(u0) = (1 − γ)α/2.

For t large enough u0 is in the integration range. The integral (12) is bounded
by integrals with the following limits independent of t

∫ u0

α
2

≤
∫ t

2
α

−1

α
2

≤
∫ ∞

0

.

The Laplace method [21] applied to the extreme members of this inequality
gives the same asymptotic result

ct−1/2e−tp(u0) as t → ∞.

Consequently,

A(x,t)
2 � t−3/2 exp

(
−(1 − γ)α/2t

)
, |x| < K

√
t, t ≥ 1.

Similarly, using (5) we get

A(x,t)
1 ≤ ct−1

∫ α/2

0

u− 4−α
4−2α − 3

2 exp
(

−t
(
(1 − γ)u + c1u

− α
2−α

))
du.

Since the minimum of p(u) is not attained in (0, α/2) and p is nondecreasing
in this interval, the Laplace method gives the following upper bound:

A(x,t)
1 ≤ ct−2 exp

(
−p(α/2)t

)
.

It follows that pt(x) � A(x,t)
2 and the first of the desired estimates follows.

Now, assume that |x| > Mt2/α. We put c0 = aM in the decomposition
(11), where a ∈ (0,1) is to be specified later. To simplify the notation, first
we estimate the integral obtained by replacing 1 + |x| by |x| in the definition
of A(x,t). By (6) and the elementary inequalities e

√
|x|2+γ2u2 ≤ e|x|+γu, |x| +√

|x|2 + γ2u2 ≥ 2|x|, we get

t
1

2−α

∫ aMt2/α

0

e−uI|x|(γu)u− 4−α
4−2α −1e−c1t

2
2−α u

− α
2−α

du

≤ c|x| α
4−2α

∫ a|x|

0

e
√

|x|2+γ2u2−u(γu)|x|u− 4−α
4−2α −1e−c1t

2
2−α u

− α
2−α√

|x| + γu(|x| +
√

|x|2 + γ2u2)|x|
du

≤ c|x| α
4−2α − 1

2

(
aeγ

2

)|x| ∫ a|x|

0

e−(1−γ)uu− 4−α
4−2α −1e−c1t

2
2−α u

− α
2−α

du.
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Clearly, the last integral is convergent and bounded above by a constant
independent of |x|. Therefore, for t ≥ 1 we have

(13) A(x,t) ≤ c(|x| + 1)
α

4−2α − 1
2

(
aeγ

2

)|x|+1

≤ c|x| α
4−2α − 1

2

(
aeγ

2

)|x|
.

On the other hand, again by (6) and the change of variable u → u|x|, we
obtain

B(x,t) = t

∫ ∞

aMt2/α

I|x|(γu)u−2−α/2e−u du

≥ ct

∫ ∞

a|x|

e
√

|x|2+γ2u2−u√
|x| + γu

(γu)|x|u−2−α/2

(|x| +
√

|x|2 + γ2u2)|x|
du

≥ ctγ|x| |x| − α+3
2

∫ ∞

a

e|x|(
√

1+γ2u2−u)u−2−α/2+|x|
√

1 + γu(1 +
√

1 + γ2u2)|x|
du

� tγ|x| |x| − α+3
2

×
∫ ∞

a

e|x|(
√

1+γ2u2−u+log(u)−log(1+
√

1+γ2u2)) u−2−α/2

√
1 + γu

du.

Observe that a similar computation with the lower limit of integration equal
to 0 gives

B(x,t) ≤ tγ|x| |x| − α+3
2

×
∫ ∞

0

e|x|(
√

1+γ2u2−u+log(u)−log(1+
√

1+γ2u2)) u−2−α/2

√
1 + γu

du.

Let

p(u) =
√

1 + γ2u2 − u + log(u) − log
(
1 +

√
1 + γ2u2

)
and g =

√
1 + γ2u2. Then p′(u) = −1 + g/u and, consequently, p(u) attains

the maximum at u1 = q+1
q−1 > 1. Hence, u1 belongs to the integration range

for integrals in both upper and lower bound for B(x,t). Consequently, by the
Laplace method, both of them have the same asymptotic as |x| → ∞. Since

p(u1) =

√
1 +

4q

(q − 1)2
− q + 1

q − 1
+ log

(
q + 1

(q − 1)(1 +
√

1 + 4q
(q−1)2 )

)

= − log
(

2q

q + 1

)
= − log(γ

√
q),

it follows that

B(x,t) � t|x| −2−α/2e|x|(logγ−log(γ
√

q)) = t|x| −2−α/2q− |x|/2,
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if |x| ≥ Mt2/α and |x| is large enough (and hence for |x| > 1). Moreover, if
we take a = 1/e then aeγ/2 ≤ q−1/2 so that A(x,t) = o(B(x,t)), |x| → ∞ and
pt(x) � B(x,t). The assertion follows. �

Remark 1. Our theorem can be compared with the following result of
[14]. For reader’s convenience we give it below, specialized to the real hyper-
bolic space H

n. The corresponding α-stable kernel and spherical function are
denoted with the tilde.

Theorem ([14], Corollary 5.6). Let |ρ| = (n − 1)/2. If K,M > 0 and t +
|x| > 1 then

(14) p̃t(x) �
{

φ̃0(x)t−3/2e− |ρ|αt, |x| ≤ Kt1/2

φ̃0(x)t|x| −2−α/2e− |ρ||x|, |x| ≥ Mt2/α.

In the context of hyperbolic space (or, more generally, symmetric space of
noncompact type), the parameter |ρ| plays a double role: it is the square root
of the bottom of the spectrum of the Laplace–Beltrami operator; at the same
time, the volume of the ball of the radius r is equivalent to e2|ρ|r as r → ∞.
One may ask, whether it is the spectral data or the geometry which appears
in the above estimates. The comparison with Theorem 3.1 gives us a natural
interpretation: in the first part (i.e., in the long time asymptotics) we deal
with the spectral data, in the other case the volume growth intervenes.

Remark 2. Note that for the remaining region Kt1/2 < |x| < Mt2/α, in
the continuous setting there is no simple homogeneous estimate of p̃t(x) (see
[14], Corollary 5.6).

Before we state our next result for stable processes on trees, we provide
some motivations and classical background. The Brownian motion and α-
stable processes in R

d share the same type of long time heat repartition.
Namely, with the standard understanding that α = 2 corresponds to the Brow-
nian motion, for A1 < A2 we have∫

A1t1/α ≤ |x|≤A2t1/α

pt(x)dx = c(A1,A2) ∈ (0,1).

This follows immediately from the scaling property

(15) pt(x) = t−d/αp1

(
t−1/αx

)
.

Moreover, c(A1,A2) → 1 if A1 → 0 and A2 → ∞ so that

(16)
∫

A1tβ ≤ |x|≤A2tβ

pt(x)dx → 0, t → ∞,

provided β 	= 1/α (cf. [2], p. 50).
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On the other hand, for the Brownian motion in the real hyperbolic space
H

n, a nonclassical phenomenon of concentration was observed in [9]. Namely,∫
A1t≤ |x|≤A2t

ht(x)dx → 1, t → ∞,

provided A1 < n − 1 < A2. Notice the change of the “space-time scaling”,
that is, t instead of t1/2 in the integration bounds, as compared to (16) with
α = 2. This result was sharpened and generalized to symmetric space setting
([2], [3]). In the context of homogeneous trees an analogous result was shown
in [20] and [23]: ∑

R0t−r(t)≤ |x|≤R0t+r(t)

ht(x) → 1, t → ∞,

where R0 = (q − 1)/(q+1) and r(t) is a positive function such that r(t)t−1/2 →
∞, t → ∞. This might suggest a hypothesis of the same kind for our kernel
pt(x), for example, the asymptotic concentration of the mass of the heat kernel
on the region {A1t

2/α ≤ |x| ≤ A2t
2/α}. The following theorem shows that the

actual behavior of the kernel is different.

Theorem 3.2. For 0 < A1 < A2 let R(t) = {x ∈ X : A1t
2/α ≤ |x| ≤

A2t
2/α}. Then there exist c1 and c2 such that

(17) 0 < c1 <
∑

x∈R(t)

pt(x) < c2 < 1, t → ∞.

Conversely, for any given 0 < c1 < c2 < 1 there exist A1 and A2 such that (17)
holds true.

Proof. Set R0 = (q − 1)/(q +1) and let R1, R2 be such that R1 < R0 < R2.
Then, by Theorem 1 of [20], we have

(18)
∑

R1u≤ |x|≤R2u

hu(x) → 1, u → ∞.

Moreover, let c3 = A1/R1 and c4 = A2/R2. We require additionally that R1

and R2 be close to R0 so that c3 < c4. Then c3t
2/α < u < c4t

2/α yields

(19) |x| ∈ (R1u,R2u) =⇒ x ∈ R(t).

From the definition of pt(x), (18) and (19), we get∑
x∈R(t)

pt(x) =
∫ ∞

0

( ∑
x∈R(t)

hu(x)
)

ηt(u)du

≥
∫ c4t2/α

c3t2/α

( ∑
R1u≤ |x|≤R2u

hu(x)
)

ηt(u)du

→
∫ c4t2/α

c3t2/α

ηt(u)du, t → ∞.
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Formally, the last integral depends on t. By the scaling property (15), how-
ever, it equals

(20) t−2/α

∫ c4t2/α

c3t2/α

η1

(
t−2/αu

)
du =

∫ c4

c3

η1(u)du = c0.

This is an absolute constant which depends on c3, c4 and α only. The lower
bound in (17) follows. Since the lower bound holds for any A1 < A2, the mass
of the annulus R(t) (with A1 and A2 fixed) is strictly less than 1. In other
words, c2 < 1 in (17) and there is no mass concentration. The proof of (17) is
complete.

By choosing R1 (R2, respectively) sufficiently close to R0, we get c3 (c4,
resp.) arbitrarily close to A1/R0 (A2/R0, resp.) so that

(21) lim
t→∞

∑
x∈R(t)

pt(x) ≥
∫ A2/R0

A1/R0

η1(u)du.

Since (21) holds for any A1 < A2 and t > 0 we have
∑

x∈X pt(x) = 1 =∫ ∞
0

η1(u)du, it follows that we have the equality in (21). The proof is com-
plete. �

The following corollary is an analogue of the classical counterpart (16).

Corollary 3.3. For 0 < Ã1 < Ã2 and some β > 0 let R̄(t) = {x ∈ X :
Ã1t

β ≤ |x| ≤ Ã2t
β }. If β 	= 2/α then

(22)
∑

x∈R̄(t)

pt(x) −→ 0, t → ∞.

Proof. For t large enough, R(t) and R̄(t) are disjoint. �

Corollary 3.4. Let ν(x) := limt→0 pt(x)/t be the the Lévy measure den-
sity for our semigroup. Then

ν(x) � |x| −1−α/2q− |x|, |x| ≥ 1.

Proof. From Theorem 3.1 and (1) we get

ν(x) � φ0(x)|x| −2−α/2q− |x|/2 � |x| −1−α/2q− |x|. �

Remark 3. Evidently, the summation bounds (space-time scaling) in (17)
is characteristic for the Brownian motion in hyperbolic spaces and homoge-
neous trees. However, the concentration phenomenon is not observed. From
the probabilistic point of view this may be explained by the influence of the
long jumps of the corresponding stable process. Indeed, the Lévy measure
density is of the same exponential order as volume growth because it arises
from the second estimate in (4).
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Below we include an alternative approach that relies directly on the α-stable
kernel estimates (4). It shows that the mass of the region in Theorem 3.1 is
large enough to be useful in some applications.

Second proof of (17). For x ∈ R(t) we have

(23) pt(x) � tφ0(x)|x| −2−α/2q− |x|/2.

By (1),
φ0(x) � |x|q− |x|/2, |x| → ∞.

Therefore, ∑
x∈R(t)

pt(x) � t
∑

x∈R(t)

|x| −1−α/2q− |x|, as t → ∞.

We use an analogue of polar coordinates. At each sphere {|x| = n} we have
exactly (q + 1)qn−1 vertices, so that

∑
x∈R(t)

pt(x) � t
∑

A1t2/α ≤n≤A2t2/α

n−1−α/2 � t

∫ A2t2/α

A1t2/α

y−1−α/2 dy.

Clearly, the last integral behaves as

(24)
(
A

−α/2
1 − A

−α/2
2

)
(α/2)−1t−1, t → ∞.

Thus, we get the lower bound in (17). Since this holds true for any any
A1 < A2, as before, the upper bound by a constant c2 < 1 follows. The proof
of (17) is complete. �

Remark. This direct argument enables us to prove (22) for β > 2/α as
well. Indeed, (23) holds also for R̄(t) with β > 2/α. In this case, (24) implies
that ∑

x∈R̄(t)

pt(x) → 0, t → ∞.

However, the argument fails for β < 2/α. (Actually, if (23) held for |x| ≥ Atβ

with some β < 2/α, then we would obtain t−αβ/2 in (24). Consequently, the
mass of the annulus goes to infinity, which is impossible.)

The proof of Theorem 3.2 with only minor modifications can be applied
in the context of the symmetric spaces of noncompact type with Theorem 1
of [2] instead of (18). We prefer, however, to take the opportunity given
by Theorem 2 of that article to state our result in the a general setting of
manifolds. For reader’s convenience, we recall the framework. We assume
that M is a complete, noncompact Riemannian manifold with the volume
growth controlled by

vol
(
B(x, r)

)
� rκe2Kr, r → ∞,



1448 A. STÓS

with some positive constants κ and K, and the spectral gap E2 =
inf spec(−Δ) > 0. In general we have E ≤ K, while for the symmetric spaces
of noncompact type E = K = |ρ|. Set R1 = 2(K −

√
K2 − E2), R2 = 2(K +√

K2 − E2). Let A(t) be a function such that

A(t) − κ − 1
2

√
K2 − E2

log t ↗ ∞ if K < E,

A(t) = (2κt log t)1/2 if K = E and κ > 0,

A(t)t−1/2 ↗ ∞ if K = E and κ = 0.

Let h(x, y) denote the heat kernel on M (see [2] for more details). By Theo-
rem 2 from [2] ∫

R1t−A(t)≤d(x,y)≤R2t+A(t)

ht(x, y) → 1, t → ∞.

Note that we may and do require A(t) = o(t), which is essential for our proof
to work (cf. (19)). Since the heat kernel h depends on two variables, we fix
an arbitrary y ∈ M and redefine slightly R(t) = {x ∈ X : A1t

2/α ≤ d(x, y) ≤
A2t

2/α} for any 0 < A1 < A2. We obtain the following corollary.

Corollary 3.5. If 0 < A1 < A2, then there exist c1 and c2 such that

(25) 0 < c1 <

∫
R(t)

pt(x)dx < c2 < 1, t → ∞.

Conversely, for any 0 < c1 < c2 < 1 there exist 0 < A1 < A2 such that (25)
holds true.

4. Exit time

We conclude our work by giving an application of Theorem 3.1. Since
the results below are very similar for both homogeneous trees and hyperbolic
spaces, we will use the following notation of metric spaces.

Let (E,d) be a locally compact separable metric space and μ be a Radon
measure with full support. Suppose that E admits a fractional diffusion
(Xt, Px) [3] with a heat kernel pt(x, y) in the sense of the axiomatic Defi-
nition 2.1 of [16] (see also [22]). For the reader’s convenience, we recall it
shortly. We assume that pt(·, ·) is a μ × μ nonnegative measurable function
and for μ-almost all x, y ∈ E and all s, t > 0 we have pt(x, y) = pt(y,x),∫

E

pt(x, y)dμ(y) = 1, pt+s(x, y) =
∫

E

pt(x, z)ps(z, y)dμ(z),

and for each u ∈ L2(E,μ)∫
E

pt(x, y)u(y)dμ(y) L2

−→ u(x), t → 0+.

In the case of the hyperbolic spaces or homogeneous trees, we have
pt(x, y) = pt(d(x, y)), where d(x, y) is the distance.
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This kernel is the transition density for the process, that is,

Px[Xt ∈ B] =
∫

B

pt(x, y)dμ(y).

For simplicity, we suppose that the space is homogeneous, that is, there exists
a function V (r), called a volume growth, such that V (r) = μ(B(x, r)), x ∈ E.
It can be seen that for the proofs below this assumption is not essential and
we could deal with nonhomogeneous version V (x, r) as well.

Further, assume that there exist A ≥ 1 and c1 < 1 such that

(26) V (r) ≤ c1V (r + A) and V (r + 1) � V (r), r ≥ 1.

Note that (26) is satisfied in the case of trees and hyperbolic spaces (with e.g.
A = 1). Suppose also that for any M > 0

(27) pt(x, y) � td(x, y)−1−α/2V
(
d(x, y)

)−1
,

provided d(x, y) > Mt2/α and d(x, y) > 1. The condition is satisfied in the
context of trees and hyperbolic spaces as well (cf. Theorem 3.1 and (14) resp.).

Note that the first part of (26) implies that limr→∞ V (r) = ∞. In par-
ticular, our space is not bounded. Below, we use this fact without further
mention.

Proposition 4.1. For any M > 0 and r > 1, we have

Px

[
Xt /∈ B(x, r)

]
� tr−α/2, r > Mt2/α.

Proof. By (27), we get

Px

[
Xt /∈ B(x, r)

]
�

∫
d(x,y)>r

pt(x, y)dμ(y)

� t
∞∑

k=0

∫
r+k<d(x,y)≤r+k+1

d(x, y)−1−α/2V
(
d(x, y)

)−1
dμ(y)

≤ ct
∞∑

k=0

(r + k)−1−α/2V (r + k)−1
(
V (r + k + 1) − V (r + k)

)
.

Clearly, by (26) we get

V (r + k)−1
(
V (r + k + 1) − V (r + k)

)
≤ c.

Moreover, by a comparison of the series with the corresponding integral it can
be easily seen that

∞∑
k=0

(r + k)−1−α/2 = r−1−α/2 +
∞∑

k=1

(r + k)−1−α/2

≤ r−α/2 +
∫ ∞

r

z−1−α/2 dz ≤ cr−α/2
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and the upper bound in the assertion follows.
On the other hand, we have similarly

Px

[
Xt /∈ B(x, r)

]
� t

∞∑
k=0

∫
r+kA<d(x,y)≤r+(k+1)A

d(x, y)−1−α/2V
(
d(x, y)

)−1
dμ(y)

≥ ct

∞∑
k=0

(r + kA + A)−1−α/2 V (r + kA + A) − V (r + kA)
V (r + kA + A)

.

Again, by (26)

V (r + kA + A) − V (r + kA)
V (r + kA + A)

= 1 − V (r + kA)
V (r + kA + A)

≥ 1 − c1 > 0.

Moreover,
∞∑

k=0

(r + kA + A)−1−α/2 ≥
∫ ∞

r+A

z−1−α/2 dz = c(r + A)−α/2 ≥ cr−α/2,

since r > 1. The proof is complete. �

For a measurable set D define the exit time τD = inf{t ≥ 0;Xt /∈ D}. Then
we have the following proposition.

Proposition 4.2. For any M > 0 and r > 1, we have

Px[τB(x,r) < t] ≤ ctr−α/2, r > Mt2/α.

Proof. The proof follows the lines of [4] (or [6]). Since it is short, we sketch
it for the reader’s convenience. Denote T = τB(x,2r). Then

Px[T < t] = Px

[
Xt /∈ B(x, r);T < t

]
+ Px

[
Xt ∈ B(x, r);T < t

]
≤ Px

[
Xt /∈ B(x, r)

]
+ Px

[
Xt ∈ B(x, r);T < t

]
= A + B.

By Proposition 4.1 we obtain A ≤ ctr−α/2. By the strong Markov property,
we have

B = Ex

[
PX(T )

[
Xt−u ∈ B(x, r)

]
|u=T

;T < t
]

≤ sup
u≤t

sup
z∈B(x,2r)c

Ex

[
Pz

[
Xu ∈ B(x, r)

]
;T < t

]
≤ sup

u≤t
sup

z∈B(x,r)c

Ex

[
Pz

[
Xu /∈ B(z, r)

]
;T < t

]
≤ ctr−α/2.

The result follows. �
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Theorem 4.3. For r > 1,

EyτB(x,r) ≤ crα/2, y ∈ B(x, r)

and

ExτB(x,r) � rα/2.

Proof. For any y ∈ B(x, r) by Proposition 4.1, we have

Py[τB(x,r) > t] ≤ Py

[
Xt ∈ B(x, r)

]
= 1 − Py

[
Xt /∈ B(x, r)

]
≤ 1 − ctr−α/2

provided that r > Mt2/α with some M > 0. Let t0 = rα/2 so that for some c0

we get

(28) Py[τB(x,r) > t0] ≤ 1 − c0.

Then, by Markov property, for k = 1,2, . . . we have

Py

[
τB(x,r) > (k + 1)t0

]
= Py[τB(x,r) ◦ θt0 > kt0, τB(x,r) > t0]

= Ey

[
PX(t0)[τB(x,r) > kt0]; τB(x,r) > t0

]
≤ Py[τB(x,r) > t0] sup

z∈B(x,r)

Pz[τB(x,r) > kt0]

(here θ stands for the standard shift operator on the space of trajectories).
By induction we get

Py[τB(x,r) > kt0] ≤ (1 − c0)k, y ∈ B(x, r), k = 0,1,2, . . .

Thus,

EyτB(x,r) =
∫ ∞

0

Py[τB(x,r) > t]dt

≤
∞∑

k=0

t0Py[τB(x,r) > kt0] ≤ rα/2
∞∑

k=0

(1 − c0)k

and the upper bound in the assertion follows.
On the other hand, let t1 = c1r

α/2 with c1 to be specified below. From
Proposition 4.2, we get

Px[τB(x,r) < t1] ≤ c1c2.

Observe that the constant c2 above does not depend on c1 provided c1 < 1.
Hence, we may and do choose c1 small enough to get c1c2 < 1. It follows that

ExτB(x,r) ≥ t1Px[τB(x,r) > t1] ≥ (1 − c1c2)t1 � rα/2

The proof is complete. �
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5. Poisson kernel

In this section, we give estimates for the Poisson kernel for balls. Since in
general our development follows ideas of [6], we give only a short sketch of the
construction. For more detailed exposition, we refer the reader to Sections 5
and 6 of that article. Since the results in what follows are similar for both
the homogeneous trees and hyperbolic spaces, we continue to use the notation
introduced in the previous section.

In what follows, we assume that for x, y ∈ X the following limit exists

N(x, y) = lim
t→0

pt(x, y)
t

> 0.

This is verified whenever our α-stable kernel arises by a subordination of a
reasonable diffusion with ηt described above. Clearly, the case of homogeneous
trees and hyperbolic spaces is included. From (27) it follows that

(29) N(x, y) � d(x, y)−1−α/2V
(
d(x, y)

)−1
, d(x, y) ≥ 1.

Let

(30) n(x,E) =
∫

E

N(x, y)dμ(y).

For an open set D let (PD
t ) be the semigroup generated by the process killed

on exiting D, i.e.
PD

t f(x) = Ex

[
f(Xt); t < τD

]
.

This semigroup possesses transition densities denoted by pD
t (x, y) (see [7]; the

argument applies here as well). Let GD(x, y) be the Green function for D,
that is, the potential for (PD

t ):

GD(x, y) =
∫ ∞

0

pD
t (x, y)dt.

With these definitions, one verifies the assumptions of the following Ikeda–
Watanabe formula (see [6] or [18]). For homogeneous trees and hyperbolic
spaces, this is straightforward and we omit the details. We get

Proposition 5.1 (Ikeda–Watanabe formula). Assume that D ⊂ X is an
open nonempty bounded set, E ⊂ X is a Borel set and dist(D,E) > 0. Then

Px[XτD
∈ E] =

∫
D

GD(x, y)n(x,E)dμ(y).

In particular, by (30) we get that Px[XτD
∈ ·] is absolutely continuous w.r.

to μ on (D̄)c (this is nontrivial only for the hyperbolic spaces). Let PD(x, ·)
denote the density of the measure (i.e., Poisson kernel).

Proposition 5.2. For any x0 ∈ X and r ≥ 1 let D = B(x0, r). Then

PD(x, z) ≤ c
rα/2V (2r)

d(x, z)1+α/2V (d(x, z))
, z ∈ B(x0,3r)c, x ∈ D.
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If r ≥ 2 then

PD(x, z) ≥ c
rα/2

V (2r)d(x, z)1+α/2V (d(x, z))
, z ∈ Dc, x ∈ B(x0, r/2).

Proof. By (29), we have

(31) PD(x, z) �
∫

D

GD(x, y)
d(y, z)1+α/2V (d(y, z))

dμ(y).

Clearly, d(y, z) � d(x, z). Moreover, for the hyperbolic spaces and homoge-
neous trees we have V (r) � Cr

1 where C1 depends on the dimension or the
degree, respectively. It follows that

V
(
d(y, z)

)
≥ V

(
d(x, z) − d(x, y)

)
≥ V

(
d(x, z) − 2r

)
� V (2r)−1V

(
d(x, y)

)
.

Since
∫

D
GD(x, y)dμ(y) = ExτD the upper bound in the assertion follows by

Theorem 4.3.
On the other hand, fix x ∈ B(x0, r/2). Then d(y, z) ≤ cd(x, z), y ∈ D, z ∈

Dc. Similarly as before, V (d(y, z)) ≤ V (d(y,x) + d(x, z)) � V (2r)V (d(x, z)).
Moreover, ExτD ≥ ExτB(x,r/2) � rα/2. By (31) the lower bound follows. �
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[11] A. Figà Talamanca and M. Picardello, Harmonic analysis on free groups, Lecture
Notes in Pure and Applied Mathematics, vol. 87, Marcel Dekker, New York, 1983.

MR 0710827

http://www.ams.org/mathscinet-getitem?mr=1736928
http://www.ams.org/mathscinet-getitem?mr=1144681
http://www.ams.org/mathscinet-getitem?mr=1284654
http://www.ams.org/mathscinet-getitem?mr=1668115
http://www.ams.org/mathscinet-getitem?mr=1406564
http://www.ams.org/mathscinet-getitem?mr=2013738
http://www.ams.org/mathscinet-getitem?mr=1329992
http://www.ams.org/mathscinet-getitem?mr=1653343
http://www.ams.org/mathscinet-getitem?mr=0990239
http://www.ams.org/mathscinet-getitem?mr=1152801
http://www.ams.org/mathscinet-getitem?mr=0710827


1454 A. STÓS
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