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TWO-ENDED r-MINIMAL HYPERSURFACES IN
EUCLIDEAN SPACE

LEVI LOPES DE LIMA AND ANTONIO SOUSA

Abstract. It is shown that embedded, elliptic r-minimal hyper-
surfaces in Euclidean space R

n+1, 3
2
(r + 1) ≤ n < 2(r + 1), with

two ends, both regular, are catenoids (i.e., rotational hypersur-
faces). This extends to this setting previous results by Schoen
and Hounie-Leite.

1. Introduction and statement of results

Since its introduction by Aleksandrov, the Tangency Principle, based on the
maximum principle for second order elliptic PDEs, has been successfully used
to settle many important questions in Differential Geometry. As a remark-
able application of this principle, R. Schoen characterized rotational minimal
hypersurfaces in R

n+1, also known as catenoids.

Theorem 1.1 ([S]). If M ⊂ R
n+1 is a complete nonflat minimal hypersur-

face with two ends, both regular, then M is a catenoid.

We recall that, roughly speaking, a minimal end is regular if it is asymptotic
to the end of a catenoid.

An interesting question is whether this result can be extended to hypersur-
faces whose extrinsic geometry satisfies other conditions than minimality. To
this effect, recall that if M ⊂ R

n+1 is a hypersurface then one has, at least lo-
cally, a unit normal vector field N defining its shape operator A : TM → TM ,
A(v) = −DvN , where D is the standard derivation on R

n. The n real eigen-
values of the field A of symmetric endomorphisms of TM , say κ1, . . . , κn, are
the principal curvatures of the immersion. For each k = 0,1, . . . , n, let Sk be
the kth elementary symmetric function in the entries of κ = (κ1, . . . , κn), also
called the k-curvature of the immersion.
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Definition 1.1. If 0 ≤ r ≤ n − 1 we say that M is r-minimal if Sr+1 = 0
identically.

Thus, in our terminology, minimal hypersurfaces are 0-minimal and scalar-
flat hypersurfaces are 1-minimal. It is well known [R2] that r-minimal hy-
persurfaces are critical points, under compactly supported variations, for a
natural geometric variational problem, namely, that associated to the func-
tional

(1.1) Ar(M) =
∫

M

Sr dM.

Here, dM is the volume element of M . Thus, uniqueness results for r-minimal
hypersurfaces pose global constraints on the solutions of this variational prob-
lem, besides furnishing generalizations of Theorem 1.1.

One of the difficulties in applying the Tangency Principle to r-minimal hy-
persurfaces is that the linearized operator associated to the (r +1)-curvature,
the so-called Jacobi operator, is not always elliptic for r ≥ 1. This question
has been completely clarified by Hounie and Leite in a series of important
papers [HL1], [HL2]: ellipticity takes place at p ∈ M if and only if Sr+2(p) �= 0
or, equivalently, rankAp ≥ r + 1. This motivates the following definition.

Definition 1.2. An r-minimal hypersurface is elliptic if its Jacobi operator
is elliptic everywhere.

Armed with this concept, Hounie and Leite were able to devise a Tangency
Principle for r-minimal hypersurfaces and obtained the following uniqueness
result for r = 1.

Theorem 1.2 ([HL2]). If Mn ⊂ R
n+1 is a complete, embedded, elliptic

1-minimal hypersurface with two ends, both regular, then M is a catenoid.

As in the minimal case, by a catenoid we mean a rotationally invariant r-
minimal hypersurface; see Section 3.1 for a description of such objects. More-
over, that the r-minimal end is regular means that, when written as a graph
over a hyperplane, this end has the same asymptotic expansion as the end of a
catenoid; see Definition 3.1 for a precise discussion. Notice also that, besides
ellipticity, another assumption appears here in comparison to Theorem 1.1:
M has to be embedded. This is due to the fact that that Tangency Princi-
ple in r-minimal case has been established only under this assumption; see
Theorem 2.1.

We should remark that, as pointed out by Leite, the proof of the main
uniqueness theorem in [HL2] only works for n = 3. In a personal communica-
tion [L2], it is shown how the argument can be fixed for n ≥ 4.

The purpose of this paper is to generalize the case n = 3 of Theorem 1.2 to
a large class of r-minimal hypersurfaces. More precisely, we have the following
theorem.
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Theorem 1.3. Let M ⊂ R
n+1 be a complete, embedded and elliptic r-

minimal hypersurface with 3
2 (r + 1) ≤ n < 2(r + 1). If M has two ends, both

regular, then M is a catenoid.

We believe that the general case can be dealt with by adapting Leite’s
argument [L2] in the scalar-flat case and we hope to address this question
elsewhere.

This paper is organized as follows. In Section 2, we recall several basic facts
on r-minimal hypersurfaces, including discussions on the Newton tensors, the
Reilly operator Lr and its ellipticity. In Section 3, we recall the classification
of rotational r-minimal hypersurfaces (catenoids) and determine their asymp-
totic expansion; this expansion motivates the definition of regular ends, which
is presented there. Also, in this section, we compute the flux of such an end
in terms of the coefficient of the leading term of its asymptotic expansion,
a basic ingredient in the proof of Theorem 1.3. In fact, this computation is
the bulk of the paper as it involves rather delicate estimates and crucially
hinges on the assumption 3

2 (r + 1) ≤ n < 2(r + 1). In order to put this result
in its proper perspective, we should mention here that, for r ≥ 1, the flux of
a regular r-minimal end is a second order integral invariant of the homology
class of this end. This should be compared with the minimal case, where the
flux is first order. Thus, when trying to relate this flux to the leading coeffi-
cient in the expansion, we should consider the expansion up to second order
derivatives, and this is in a sense responsible for the restriction on n and r
above. Finally, in Section 4 we combine the previously obtained expression
for the flux with the Tangency Principle developed by the above mentioned
authors to conclude the proof of Theorem 1.3.

2. Some preliminary facts

As in the Introduction, we will consider a hypersurface M ⊂ R
n+1 with

shape operator A. For each 0 ≤ k ≤ n, we denote by Sk = Sk[A] its k-
curvature, so that if Ai

j are the entries of A with respect to some tangential
basis then

(2.1) Sk =
1
k!

n∑
iα,jα=1

δi1···ik
j1···jk

Ai1
j1

· · · Aik
jk

,

where δi1···ik
j1···jk

is the generalized Kronecker delta.
If M is a graph, that is, M = {(x,u(x)) : x ∈ Ω ⊂ R

n}, with u smooth, then
we can use the upward unit normal vector field

N(p) =
(−du(x),1)

W (x)
, p =

(
x,u(x)

)
,

to give an orientation to M . Here, W 2 = 1 + |du|2 and d = D|Rn , so that du
is the gradient of u. Also, we can naturally push upward the canonical basis



1330 L. L. DE LIMA AND A. SOUSA

ei of R
n in order to have a basis B = {(ei, ui(x)), i = 1, . . . , n} of TpM . Here,

subscripts will indicate partial differentiation. With respect to this basis, the
shape operator is

(2.2) Ai
j =

uij

W
− 1

W 3

∑
k

uiukukj .

From (2.1) and (2.2) it is obvious that, if r ≥ 1, the r-minimality condition
locally defines a fully nonlinear second order PDE. This should be contrasted
to the minimal case, where the corresponding equation is quasi-linear.

Due to this fully nonlinear character it is expected that the linearized, or
Jacobi, operator Jr has its symbol depending on second order data (curva-
ture). Indeed, the principal part of this operator is a divergence type operator
with symbol determined by the so-called Newton tensors Pr = Pr[A], which
are recursively defined by

P0 = I, Pr = SrI − APr−1.

Proposition 2.1 ([R1]). If A = [Ai
j ] with respect to some tangent basis

then, with respect to this basis,

(2.3) Pr[A]ij =
1
r!

n∑
ik,jk=1

δi1···iri
j1···jrjA

i1
j1

· · · Air
jr

.

Definition 2.1 ([R2]). If M ⊂ R
n+1 is r-minimal we define a second order

operator acting on functions by

Lru = div
(
Pr[A]∇u

)
,

where div and ∇ are the intrinsic divergence and gradient operators on M .

The following proposition gives a basic property of r-minimal hypersur-
faces.

Proposition 2.2 ([R2]). If M ⊂ R
n+1 is r-minimal and v ∈ R

n+1 then
Lrhv = 0. Here, hv(x) = 〈x, v〉, x ∈ M , is the height function associated to v.

Since L0 is the Laplace–Beltrami operator, this proposition generalizes a
well-known property of minimal hypersurfaces, namely, height functions are
harmonic. It turns out that, as in the minimal case, Lr is the principal
part of Jr = Lr − (r + 2)Sr+2, the Jacobi operator; see [dLdLS] or [Ro] for a
proof of this. Thus, Jr is elliptic precisely where Pr is positive or negative
definite. Since when trying to establish a Tangency Principle for r-minimal
hypersurfaces, the ellipticity of Jr, and hence of Lr, is a crucial issue, the
following result plays a central role in the theory.

Proposition 2.3 ([HL1], [HL2]). If M is r-minimal then Lr is elliptic at
p ∈ M if and only if Sr+2(p) �= 0. Equivalently, rank(Ap) ≥ r + 1.
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Notice that this justifies Definition 1.2.
In this context, Hounie and Leite [HL1] [HL2] developed a Tangency Prin-

ciple for r-minimal hypersurfaces, extending a fundamental result established
in [S] for minimal hypersurfaces. In order to formulate their results, we need
some more notation.

Let Bn−1 ⊂ R
n+1 be a compact, embedded, boundaryless C2 submanifold

(not necessarily connected) and M an embedded submanifold with ∂M = B.
Let us consider R

n+1 = R
n × R with coordinates X = (x,xn+1). Let Ω ⊂ R

n be
a bounded domain whose connected boundary satisfies Sk(∂Ω) ≥ 0, 0 ≤ k ≤ r,
with respect to the inner unit normal. Also, if Σ ⊂ R

n+1 and t ∈ R are given,
we set Σt± = {X ∈ Σ; ±xn+1 ≥ ±t} and Σ∗

t = {(x,2t − xn+1); (x,xn+1 ∈ Σt)},
the reflection of Σt with respect to Πt = {(x, t);x ∈ R

n}; note that Π0 =
R

n. Moreover, if A,B ⊂ R
n+1 we write A ≥ B if for any x ∈ R

n there holds
xn+1 ≥ x′

n+1 for any (x,xn+1) ∈ A, (x,x′
n+1) ∈ B. Finally, we say that a C2

submanifold K has locally bounded slope (over Π0) if its tangent planes do no
contain the vertical vector (0,1).

Theorem 2.1. Let B and Ω as above and assume that: (i) B ⊂ ∂Ω × R;
(ii) B0+ is a graph with locally bounded slope with B∗

0+ ≥ B0− and (iii) M
is r-minimal, elliptic and with all of its interior points contained in Ω × R.
Then M0+ is a graph with locally bounded slope satisfying M ∗

0+ ≥ M0− .

We also consider the flux of certain cycles inside r-minimal hypersurfaces.

Definition 2.2. Given an oriented, smooth (n − 1)-cycle Σ in an r-minimal
immersion M , the flux of Σ in the direction of a unit vector v ∈ R

n+1 is defined
by

(2.4) Flux(Σ;v) =
∫

Σ

〈
Pr[A]∇hv, ξ

〉
dΣ,

where ξ is the exterior co-normal to Σ and dΣ is the volume element of Σ.

Remark 2.1. In applications, ξ is usually given as part of the description
of Σ; see Remark 3.1.

We remark that the flux depends only on the (oriented) homology class
of Σ. Indeed, if Σ′ is homologous to Σ, then Σ − Σ′ = ∂Ω, where Ω ⊂ M is an
n-cycle. Since, by Proposition 2.2,∫

Ω

div
(
Pr[A]∇hv

)
dM =

∫
Ω

Lrhv dM = 0,

integration by parts gives∫
Σ

〈
Pr[A]∇hv, ξ

〉
dΣ =

∫
Σ′

〈
Pr[A]∇hv, ξ

〉
dΣ′,

as desired.
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Notice that in the minimal case (2.4) reduces to

Flux(Σ;v) =
∫

Σ

〈∇hv, ξ〉 dΣ,

whose integrand only depends on the metric and not on the shape operator.

3. Regular r-minimal ends

In this section, we compute the flux of a certain class of r-minimal ends, the
regular ones, whose behavior at infinity is modeled on the rotational examples
(catenoids), so we start by describing this class of r-minimal hypersurfaces;
see [HL3].

3.1. A description of catenoids. Consider a smooth curve α in the plane
x1xn+1 which is the graph of a positive function x1 = f(xn+1). If we rotate
α around the axis xn+1 we obtain a rotationally invariant hypersurface M ,
parameterized by

X(t, θ) =
(
t, f(t)θ

)
, t = xn+1,

where θ = (θ1, . . . , θn) is a local parametrization of the unit sphere S
n−1 ⊂ R

n,
and R

n is viewed as the hyperplane of R
n+1 passing through the origin and

perpendicular to the axis xn+1. If we take

N(t, θ) =
1
w

(
f ′(t), −θ

)
, w =

√
1 + f ′2,

as the unit normal vector field to M then a computation shows that M is
r-minimal if and only if f satisfies the ODE

ff ′ ′ =
(

n

r + 1
− 1

)(
1 + f ′2).(3.1)

From now on, we simply call catenoids those r-minimal hypersurfaces which
are rotationally invariant. Equivalently, the catenoids can be described as
above in terms of a profile function f satisfying (3.1). More precise informa-
tion on the global behavior of maximal solutions of (3.1) have been obtained
by Hounie and Leite.

Proposition 3.1 ([HL3]). In the conditions above, if f is a maximal so-
lution of (3.1) determined by f(0) = ρ0 > 0 and f ′(0) = 0 then f is even,
positive, convex and its growth rate at infinity depends on the ratio n

2(r+1) in
the following manner:
1. If n ≤ 2(r + 1), then f is defined on (−∞,+∞) and has superliner growth

with f(t) = O(|t|
r+1

2(r+1)−n ), as |t| → +∞.
2. If n > 2(r + 1), then f blows up in a finite interval (−L,L), with L ↗ +∞

as n
r+1 ↘ 2.
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Thus, the ends of the catenoid are asymptotic to parallel planes precisely
when n > 2(r + 1). Notice also that in the threshold case n = 2(r + 1) the
profile function approaches a catenary at infinity. We will not consider these
cases here. In fact, we start by assuming n < 2(r + 1) and work toward a
description of the asymptotic behavior of the ends of the catenoid, viewed
as a graph over the hyperplane orthogonal to the t-axis, but first we need
to determine a nonparametric representation for the ends; see [L] for the
computation in case r = 1.

We multiply (3.1) by 2f ′ and integrate to obtain

fq

1 + f ′2 = K

for some K ∈ R, where

(3.2) q = qn,r = 2
(

n

r + 1
− 1

)
.

If f(0) = ρ0 > 0 and f ′(0) = 0 as before then K = ρq
0 and

f ′ =

√
fq − ρq

0√
ρq
0

.

By Proposition 3.1, f is invertible for t ≥ 0 and there its inverse t = u(x1) =
u(x) is

(3.3)
u(x)√

ρq
0

=
∫ |x|

ρ0

dt√
tq − ρq

0

, |x| ≥ ρ0.

This gives a graph parametrization for (the upper piece) of the catenoid,
namely, x �→ (x,u(x)).

3.2. Regular r-minimal ends. Starting from (3.3), it is possible to obtain
the asymptotic expansion for u = u(x) as |x| → +∞, at least in the case
1 ≤ q < 2 or, equivalently, 3

2 (r + 1) ≤ n < 2(r + 1); see [HL2] for a similar
computation in case r = 1.

Proposition 3.2. Let u = u(x) be defined by (3.3) with 1 ≤ q < 2 and
x0 ∈ R

n. Then, as |x| → ∞,

u(x − x0)√
ρq
0

= A +
2

2 − q
|x|1− q

2 − 〈x0, x〉
|x|1+ q

2
+

ρq
0

2 − 3q
|x|1− 3q

2 + O
(

|x| −1− q
2
)
,

or, equivalently,

u(x − x0)√
ρq
0

= A +
2

2 − q
|x|2− n

r+1 − 〈x0, x〉
|x| n

r+1
+

ρq
0

2 − 3q
|x|4− 3n

r+1 + O
(

|x| − n
r+1

)
.
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For the proof, we expand the integrand in (3.3) to obtain

(
tq − ρq

0

)− 1
2 = t− q

2

(
1 −

(
ρ0

t

)q)− 1
2

= t− q
2

(
1 +

1
2

(
ρ0

t

)q

+ O
(
t−2q

))
= t− q

2 +
1
2
ρq
0t

− 3q
2 + O

(
t− 5q

2
)
,

where in the second step we used
1√

1 − s
= 1 +

1
2
s + O

(
s2

)
,

with s = (ρ0
t )q → 0 when t → ∞. In this way, since q < 2,

u(x)√
ρq
0

=
∫ |x|

ρ0

t− q
2 dt +

1
2
ρq
0

∫ |x|

ρ0

t− 3q
2 dt +

∫ |x|

ρ0

O
(
t− 5q

2
)
dt

= A +
2

2 − q
|x|1− q

2 +
1
2
ρq
0

2
2 − 3q

|x|1− 3q
2 + O

(
|x|1− 5q

2
)
,

so that for x0 ∈ R
n,

u(x − x0)√
ρq
0

= A +
2

2 − q
|x − x0|1− q

2(3.4)

+
1
2
ρq
0

2
2 − 3q

|x − x0|1− 3q
2 + O

(
|x|1− 5q

2
)
.(3.5)

We will need the following elementary lemma.

Lemma 3.1. If x0 ∈ R
n and k ∈ R, then

|x − x0|k = |x|k
(

1 − k
〈x0, x〉

|x|2 + O
(

|x| −2
))

.

Continuing with the proof, we use the previous lemma with k = 1 − q
2 and

k = 1 − 3q
2 in (3.5) to obtain

u(x − x0)√
ρq
0

(3.6)

= A +
2

2 − q
|x|1− q

2

(
1 −

(
1 − q

2

)
〈x0, x〉

|x|2 + O
(

|x| −2
))

+
1
2
ρq
0

2
2 − 3q

|x|1− 3q
2

(
1 −

(
1 − 3q

2

)
〈x0, x〉

|x|2 + O
(

|x| −2
))

+ O
(

|x|1− 5q
2

)
= A +

2
2 − q

|x|1− q
2 − 〈x0, x〉

|x|1+ q
2

+ O
(

|x| −1− q
2
)
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+
ρq
0

2 − 3q
|x|1− 3q

2 − 1
2
ρq
0

〈x0, x〉
|x|1+ 3q

2

+ O
(

|x| −1− 3q
2

)
+ O

(
|x|1− 5q

2
)
.

Observe now that
〈x0, x〉

|x|1+ 3q
2

∈ O
(

|x| − 3q
2

)
⊂ O

(
|x| −1− q

2
)

precisely because − 3q
2 ≤ −1 − q

2 , which amounts to the assumption q ≥ 1. By
the same reason,

O
(

|x| −1− 3q
2

)
⊂ O

(
|x| − 3q

2
)

⊂ O
(

|x| −1− q
2
)
, O

(
|x|1− 5q

2
)

⊂ O
(

|x| −1− q
2
)
,

and leading this information to (3.6) the proof of the proposition follows.
Proposition 3.2 clearly motivates the following definition.

Definition 3.1. An r-minimal end with 3
2 (r +1) ≤ n < 2(r +1), is regular

with growth rate a �= 0 if it can be written as the graph of a function u(x)
defined on the exterior of a ball in a hyperplane Π ⊂ R

n+1 such that, as
|x| → +∞, there holds

u(x) =
a

|x| n
r+1 −2

+ a1 +
n∑

j=1

cjxj

|x| n
r+1

+
a2

|x| 3n
r+1 −4

+ O
(

|x| − n
r+1

)
,(3.7)

where a, a1, a2, cj are real constants.

3.3. The Newton tensor of a regular end. The next step in computing
the flux of a regular end is to determine its Newton tensor.

Proposition 3.3. The Newton tensor of a regular r-minimal end as in
Definition 3.1 is given by

Pr[A]ij =
cra

r

|x|n− q
2 −1

(
[ω0]ij − n

r + 1
1

|x|2 [ω1]ij

)
+ O

(
|x| −n+ q

2
)
,

where

cr =
1
r!

(
n

r

)(
2 − n

r + 1

)r

, [ω0]ij =
(

n

r

)
δi
j ,

and

[ω1]ij =
(

n

r − 1

)
r
(
δi
j

(
|x|2 − x2

i

)
−

(
1 − δi

j

)
xixj

)
.

The proof is a somewhat involved computation. We write

u(x) = a|x|pn,r + ϕ(x), pn,r = 2 − n

r + 1
,

so that
ui(x) =

pn,ra

|x| n
r+1

xi + ϕi(x),
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uij(x) =
pn,ra

|x| n
r+1

(
δij − n

r + 1
xixj

|x|2
)

+ ϕij ,

with ϕi ∈ O(|x| − n
r+1 ) and ϕij ∈ O(|x| − n

r+1 −1). We already know from (2.2)
that

Ai
j = uij + O

(
|x| − 3n

r+1+2
)
,

since W −1 = 1 − 1
2 |du|2 + O(|du|4) = 1 + O(|x| − 2n

r+1+2). With these prelimi-
naries, we can use (2.3) to compute the Newton tensor. Initially,

r∏
α=1

Aiα
jα

=
r∏

α=1

uiαjα

+
r∑

k=1

(
ui1j1 · · · uik−1jk−1 O

(
|x| − 3n

r+1+2
)
uik+1jk+1 · · · uirjr

)
+ · · ·

+
(

O
(

|x| − 3n
r+1+2

))r−1
r∑

k=1

uikjk
+

(
O

(
|x| − 3n

r+1+2
))r

,

and since uikjk
∈ O(|x| − n

r+1 ) and

− 3n

r + 1
+ 2 = − n

r + 1
− q,

this gives
r∏

α=1

Aiα
jα

=
r∏

α=1

uiαjα +
(

O
(

|x| − n
r+1

))r O
(

|x| −q
)
+ · · ·

+
(

O
(

|x| − n
r+1

))r(O
(

|x| −q
))r−1 +

(
O

(
|x| − n

r+1
))r(O

(
|x| −q

))r
.

Noticing that (
O

(
|x| −q

))r ⊂
(

O
(

|x| −q
))r−1 ⊂ · · · ⊂ O

(
|x| −q

)
,

we have

Ai1
j1

· · · Air
jr

= ui1j1 · · · uirjr +
(

O
(

|x| − n
r+1

))r O
(

|x| −q
)

= ui1j1 · · · uirjr + O
(

|x| −n− q
2+1

)
,

since
− nr

r + 1
− q = −n − q

2
+ 1,

and replacing this in (3.9) we get

Pr[A]ij =
1
r!

n∑
iα,jα=1

δi1···iri
j1···jrjui1j1 · · · uirjr + O

(
|x| −n− q

2+1
)
.(3.8)
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We now should compute the product of the second derivatives uiαjα , α =
1, . . . , n. To make things easier we write, for each α = 1, . . . , n, uiαjα = ψiαjα +
ϕiαjα , where

ψiαjα =
pn,ra

|x| n
r+1

(
δiα

jα
− n

r + 1
xiαxjα

|x|2
)

,

and ϕiαjα is as before. Using the expansion

r∏
α=1

uiαjα =
r∏

α=1

ψiαjα

+
r∑

α=1

ψi1j1 · · · ψiα−1jα−1ϕiαjαψiα+1jα+1 · · · ψirjr + · · ·

+
r∏

α=1

ϕiαjα ,

and moreover that ψiαjα ∈ O(|x| − n
r+1 ) and ϕiαjα ∈ O(|x| − n

r+1 −1) = O(|x| −1) ·
O(|x| − n

r+1 ), we get

r∏
α=1

uiαjα =
r∏

α=1

ψiαjα + O
(

|x| − n
r+1

)r O
(

|x| −1
)
+ · · ·

+ O
(

|x| − n
r+1

)r O
(

|x| −1
)r

=
r∏

α=1

ψiαjα + O
(

|x| − n
r+1

)r[O
(

|x| −1
)
+ · · · + O

(
|x| −1

)r]

=
r∏

α=1

ψiαjα + O
(

|x| − n
r+1

)r O
(

|x| −1
)
,

where in the last step we used(
O

(
|x| −1

))r ⊂
(

O
(

|x| −1
))r−1 ⊂ · · · ⊂ O

(
|x| −1

)
.

Moreover, since

− nr

r + 1
− 1 = −n +

q

2
,

it follows that

ui1j1 · · · uirjr =
r∏

α=1

pn,ra

|x| n
r+1

(
δiα

jα
− n

r + 1
xiαxjα

|x|2
)

+ O
(

|x| −n+ q
2
)

=
pr

n,ra
r

|x|n− q
2 −1

r∏
α=1

(
δiα

jα
− n

r + 1
xiαxjα

|x|2
)

+ O
(

|x| −n+ q
2
)
,
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and replacing this in (3.8) we obtain

Pr[A]ij =
1
r!

pr
n,ra

r

|x|n− q
2 −1

n∑
iα,jα=1

δi1···iri
j1···jrj

r∏
k=1

(
δik
jk

− n

r + 1
xik

xjk

|x|2
)

(3.9)

+ O
(

|x| −n+ q
2
)
+ O

(
|x| −n− q

2+1
)

=
1
r!

pr
n,ra

r

|x|n− q
2 −1

n∑
iα,jα=1

δi1···iri
j1···jrj

r∏
k=1

(
δik
jk

− n

r + 1
xik

xjk

|x|2
)

+ O
(

|x| −n+ q
2
)
,

where here we have used again that q ≥ 1. The proof of Proposition 3.3 is
then completed by using the algebraic lemma below, with C = n/(r + 1), to
(3.9).

Lemma 3.2. Given C ∈ R there holds
n∑

iα,jα=1

δi1···iri
j1···jrj

r∏
k=1

(
δik
jk

− C
xik

xjk

|x|2
)

= [ω0]ij − C

|x|2 [ω1]ij ,

where

[ω0]ij =
(

n

r

)
δi
j , [ω1]ij =

(
n

r − 1

)
r
[
δi
j

(
|x|2 − x2

i

)
−

(
1 − δi

j

)
xixj

]
.

The proof of this lemma is presented in the Appendix.

3.4. The flux of regular ends. Here we finally compute the flux of a
regular r-minimal end.

Proposition 3.4. Let ΣR = {(x,u(x)), |x| = R} be the oriented cycle in a
regular r-minimal end with growth rate a �= 0 with respect to a hyperplane Π;
see Definition 3.1. If 3

2 (r + 1) ≤ n < 2(r + 1), then

Flux(ΣR;v) = 〈v, η〉γr Vol
(
S

n−1
)
ar+1,(3.10)

where γr = cr(2 − n
r+1 )

(
n
r

)
, cr is as in Proposition 3.3 and η is the positive

unit normal to Π.

Remark 3.1. Since the sign of the growth rate a clearly depends on the
choice of orientations we must explain the meaning of this proposition. First,
in applications as in Proposition 4.1 below, ΣR is given an orientation as part
of the boundary of an oriented r-minimal domain. This orientation on ΣR

naturally induces an orientation on the sphere Sn−1
R = {x ∈ Π; |x| = R}, so

we can give to Π the orientation such that Sn−1
R is the oriented boundary of

Bn
R = {x ∈ Π; |x| = R}. Thus, the given orientation on ΣR uniquely defines an

orientation on Π. In this setting, the positive direction in the axis orthogonal
to Π, which determines the graph representation of the end, is such that, when
added up to the orientation on Π, in this order, gives the (fixed) orientation on
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R
n+1. It is under this convention that we fix the sign of a and Proposition 3.4

should be interpreted accordingly.

For the proof, we may assume that the end is a graph over the horizontal
plane xn+1 = 0, which we identity to R

n ⊂ R
n+1. Thus, if ξ is the exterior

unit co-normal to ΣR, we have ξ = ϑ/|ϑ|, where ϑ satisfies(
x

R
,0

)
= ϑ +

〈(
x

R
,0

)
,

1
W

(−du,1)
〉

1
W

(−du,1),

so that

ϑ =
(

x

R
,0

)
+ du(x)

(
x

R

)(
− du

W 2
,

1
W 2

)

=
(

x

R
,du(x)

(
x

R

))
+ du(x)

(
x

R

)(
(0, −1) +

(
− du

W 2
,

1
W 2

))

=
(

x

R
,du(x)

(
x

R

))
− 1

W 2
du(x)

(
x

R

)(
du, |du|2

)
.

But ∣∣∣∣ 1
W 2

du(x)
(

x

R

)(
du, |du|2

)∣∣∣∣ ≤ |du|
W 2

√
|du|2 + |du|4

=
|du|2
W

= |du|2
(

1 − 1
2

|du|2 + O
(

|du|4
))

= O
(

|x| −q
)
,

so that

ϑ
(
x,u(x)

)
=

(
x

R
,du(x)

(
x

R

))
+ O

(
|x| −q

)
.

If p = (x,u(x)) ∈ M then TpM is endowed with the standard basis B =
{(ei, du(x)ei); i = 1, . . . , n}. In this basis,

ϑ =
1

|x|

⎛
⎜⎝ x1

...
xn

⎞
⎟⎠ + O

(
|x| −q

)
.

Now let v ∈ R
n+1 be a unit vector. In order to compute Flux(ΣR;v) we must,

by (2.4), compute 〈Pr[A](∇hv), ξ〉. Using that Pr[A] is symmetric and ∇hv

is the tangential component of v, we clearly have〈
Pr[A](∇hv), ξ

〉
=

1
|ϑ|

〈
v,Pr[A](ϑ)

〉
.
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In the basis B, Pr[A] has coefficients given by Proposition 3.3, so that if
1 ≤ i ≤ n, Pr[A](ϑ)i =

∑
j Pr[A]ijϑ

j is given by

Pr[A](ϑ)i =
n∑

j=1

(
cra

r

|x|n− q
2 −1

(
[ω0]ij − n

r + 1
1

|x|2 [ω1]ij

)
+ O

(
|x| −n+ q

2
))

ϑj

=
cra

r

|x|n− q
2 −1

(
n∑

j=1

[ω0]ijn
j

︸ ︷︷ ︸
A

− n

r + 1
1

|x|2
n∑

j=1

[ω1]ijn
j

︸ ︷︷ ︸
B

)

+
n∑

j=1

O
(

|x| −n+ q
2
)
nj .

︸ ︷︷ ︸
C

Let us compute A, B and C. We have

A =
n∑

j=1

[ω0]ijϑ
j

=
n∑

j=1

(
n

r

)
δi
j

(
xj

|x| + O
(

|x| −q
))

=
(

n

r

)
xi

|x| + O
(

|x| −q
)
,

B =
n∑

j=1

[ω1]ijϑ
j

=
n∑

j=1

(
n

r − 1

)
r
[
δi
j

(
|x|2 − x2

i

)
−

(
1 − δi

j

)
xixj

]( xj

|x| + O
(

|x| −q
))

=
(

n

r − 1

)
r

(
n∑

j=1

δi
j

(
|x|2 − x2

i

) xj

|x| −
n∑

j=1

(
1 − δi

j

)
xi

x2
j

|x|

)
+ O

(
|x| −q+2

)

=
(

n

r − 1

)
r

(
xi|x| − x3

i

|x| − xi|x| +
x3

i

|x|

)
+ O

(
|x| −q+2

)
= O

(
|x| −q+2

)
,

and finally,

C =
n∑

j=1

O
(

|x| −n+ q
2
)
ϑj

=
n∑

j=1

O
(

|x| −n+ q
2
)( xj

|x| + O
(

|x| −q
))

= O
(

|x| −n+ q
2
)
.
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Thus,

Pr[A](ϑ)i =
cra

r

|x|n− q
2 −1

((
n

r

)
xi

|x| + O
(

|x| −q
)

− n

r + 1
1

|x|2 O
(

|x| −q+2
))

+ O
(

|x| −n+ q
2
)

= cra
r

(
n

r

)
xi

|x|n− q
2

+ O
(

|x| −n− q
2+1

)
+ O

(
|x| −n− q

2+1
)

+ O
(

|x| −n+ q
2
)

=
(

n

r

)
cra

rxi

|x|n− q
2

+ O
(

|x| −n+ q
2
)
,

where we used the assumption 3
2 (r + 1) ≤ n in the last identity.

On the other hand, the last component of Pr[A](ϑ) is

du(x)
(
Pr[A](ϑ)

)
=

(
pn,ra

|x| n
r+1

x + O
(

|x| − n
r+1

))((
n

r

)
cra

rx

|x|n− q
2

+ O
(

|x| −n+ q
2
))

= pn,r

(
n

r

)
cra

r+1

|x|n−1
+ O

(
|x| − q

2
)

O
(

|x| −n+ q
2
)

+ O
(

|x| − n
r+1

)
O

(
|x| −n+ q

2+1
)
+ O

(
|x| − n

r+1
)

O
(

|x| −n+ q
2
)

= pn,r

(
n

r

)
cra

r+1

|x|n−1
+ O

(
|x| −n

)
+ O

(
|x| −n

)
+ O

(
|x| −n−1

)
= pn,r

(
n

r

)
cra

r+1

|x|n−1
+ O

(
|x| −n

)
,

and we finally have

〈
v,Pr[A](ϑ)

〉
=

(
n

r

)
cra

r

|x|n− q
2

n∑
i=1

vixi + O
(

|x| −n+ q
2
)

+ pn,r

(
n

r

)
cra

r+1

|x|n−1
vn+1 + O

(
|x| −n

)
=

(
n

r

)
cra

r

|x|n− q
2

n∑
i=1

vixi + pn,r

(
n

r

)
cra

r+1

|x|n−1
vn+1

+ O
(

|x| −n+ q
2
)
,

and replacing this into (2.4) we get

Flux(ΣR, v) =
∫

ΣR

1
|ϑ|

{
cra

r

(
n

r

)
1

|x|n− q
2

n∑
i=1

vixi

+ cra
r+1pn,r

(
n

r

)
1

|x|n−1
vn+1 + O

(
|x| −n+ q

2
)}

dΣR
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= cra
r

(
n

r

)∫
ΣR

1
|ϑ|

n∑
i=1

vixi

Rn− q
2

dΣR

+ cra
r+1pn,r

(
n

r

)∫
ΣR

1
|ϑ|

vn+1

Rn−1
dΣR

+
∫

ΣR

1
|ϑ| O

(
R−n+ q

2
)
dΣR.

The computation is completed observing that, since the flux depends only
on the homology class of the cycle, we can take R → +∞, so that |ϑ| → 1
and dΣR asymptotically approaches dωR = Rn−1 dω, the volume element of
Sn+1

R ⊂ R
n. Here, dω is the volume element of S

n−1 ⊂ R
n. Now, the first

integral asymptotes

R
q
2 −1

∫
Sn−1

n∑
i=1

vixi dω,

and since q < 2 it vanishes due to the symmetry of integrand. On the other
hand, the third integral asymptotes∫

Sn−1
O

(
R

q
2 −1

)
dω,

and it vanishes again because q < 2. Thus,

Flux(ΣR,v) = cra
r+1pn,r

(
n

r

)
lim

R→∞

∫
ΣR

1
|ϑ|

vn+1

Rn−1
dΣR

= cra
r+1pn,r

(
n

r

)∫
Sn−1

dω,

and this concludes the proof of the Proposition.

4. The proof of Theorem 1.3

In this section, we finally prove Theorem 1.3. We will need an auxiliary
proposition which says that, in the conditions of the theorem, the ends of the
hypersurface are balanced.

Proposition 4.1. If M ↪→ R
n+1 is a complete, embedded and oriented r-

minimal hypersurface with 3
2 (r +1) ≤ n < 2(r +1) with two ends, both regular,

then the ends are parallel with the same growth rate.

Before starting the proof, we explain the meaning of the balancing conclu-
sion. First, there exist planes Π1 and Π2 above which the ends are expressed
as graphs. Take R large enough so that the intersection of the cylinders of
radius R over the hyperplanes contains the compact piece of M , say MR,
complementary to the ends. Note that ∂MR = Σ1

R ∪ Σ2
R, a union of two cy-

cles, which we endow with the boundary orientation. By Remark 3.1, this
completely determines the asymptotic expansions of the ends, so that in par-
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ticular the growth rates, say a and b, are determined. We want to show that
a = b.

If v ∈ R
n+1 is a unit vector then Proposition 2.2 and integration by parts

gives
Flux

(
Σ1

R, v
)
+ Flux

(
Σ2

R, v
)

= 0
so that by (3.10),

ar+1〈v, η1〉 + br+1〈v, η2〉 = 0,(4.1)

where ηi is the positively oriented unit normal to Πi, i = 1,2.
Attached to each end we have the corresponding coordinate system rela-

tively to which the expansions are written, say (x,xn+1) and (y, yn+1). We
denote the corresponding graphing functions by u = u(x) and v = v(y), re-
spectively. This determines two orthogonal decompositions of R

n+1, namely,

(x,xn+1) ∈ Π1 ⊕ [η1], (y, yn+1) ∈ Π2 ⊕ [η2],

and we can consider an orientation preserving orthogonal map T : Π1 ⊕ [η1] →
Π2 ⊕ [η2] with T η1 = η2. Using this in (4.1), we get〈

ar+1v + br+1T T v, η1

〉
= 0,

that is, T T maps Π1 over itself, so that Π1 = Π2 and we should have η2 = η1

or η2 = −η1. In both cases, we already conclude that the ends are parallel.
Returning to (4.1), we get (ar+1 ± br+1)〈v, η1〉 = 0, and taking v = η1 we

conclude that ar+1 ± br+1 = 0. In case r is odd we necessarily have ar+1 −
br+1 = 0 so that |a| = |b|. Moreover, η2 = −η1 so that yn+1 = −xn+1 and
|y| = |x|, which means that T restricted to Π1 changes orientation. If we
compare the two ends in the same coordinate system, say (x,xn+1), then v(y)
becomes −v(x) and b becomes −b. Thus, if b = −a the ends are asymptotic
to each other. Now, since M is embedded, we may displace a hyperplane
parallel to Π1 starting from infinity in the direction opposed to the ends.
This hyperplane will eventually touch M at a point where all the principal
curvatures have the same sign. But the ellipticity of M implies that at least
r + 1 of the curvature are non-null and this contradicts r-minimality. Thus,
in this case, a = b as desired.

The case where r is even is more immediate. First, if ar+1 − br+1 = 0
we promptly conclude that a = b and η1 = −η2, as desired. If, on the other
hand, ar+1 + br+1 = 0 we have a = −b computed in the same coordinated
system, since η1 = η2 in this case. This obviously means that if we compute
the expression of v in the system determined by −η2 the growth rates coincide
and the proposition is proved in any case.

We now are ready to prove the main result in this work, namely, Theo-
rem 1.3. Given Proposition 4.1, the proof is an adaptation of the argument
given in [S] (see also [HL2]) so we merely give a sketch emphasizing the points
where their arguments should be modified. By Proposition 4.1, if we write
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both ends relative to the same coordinate system then we have, after possibly
vertically translating Π1, the asymptotic expansions are

u(x) =
a

|x| n
r+1 −2

+ a1 + O
(

|x| − n
r+1+1

)
,

v(x) = − a

|x| n
r+1 −2

− a1 + O
(

|x| − n
r+1+1

)
.

In these coordinates we consider the hyperplane Πt = {(x, t);x ∈ R
n, with

t > 0 fixed. Choose R > 0 so that |x| > R implies u(x) + v(x) < 2t, which
is possible due to the above expansions. In the notation in the paragraph
preceding Theorem 2.1, this means that B∗

t+ ≥ Bt− , where B = M ∩ ∂C and C
is the infinite cylinder having Bn

R ⊂ Π1 as basis. By Theorem 2.1, (M ∩ C)∗
t+ ≥

(M ∩ C)t− and setting t → 0 we conclude that M ∗
0+ ≥ M0− . Changing xn+1

by −xn+1 and repeating the argument we have M ∗
0− ≥ M0+ , so that in fact

M ∗
0+ = M0− , that is, M is symmetric with respect to the reflection leaving Π1

invariant.
In order to proceed, we need to determine the symmetry axis of M . We

already know that the expansion of M at infinity is

u(x) =
a

|x| n
r+1 −2

+ a1 +
〈c, x〉

|x| n
r+1

+
a2

|x| 3n
r+1 −4

+ O
(

|x| − n
r+1

)
,(4.2)

so that if we take x = y − β and use Lemma 3.1 we get
a

|x| n
r+1 −2

=
a

|y − β| n
r+1 −2

(4.3)

=
a

|y| n
r+1 −2

(
1 − pn,r

〈β, y〉
|y|2 + O

(
|y| −2

))

=
a

|y| n
r+1 −2

− apn,r
〈β, y〉

|y| n
r+1

+ O
(

|y| − n
r+1

)
.

Moreover, an easy computation shows that
〈c, x〉

|x| n
r+1

=
〈c, y〉

|y| n
r+1

+ O
(

|y| − n
r+1

)
,

a2

|x| 3n
r+1 −4

=
a2

|y| 3n
r+1 −4

+ O
(

|y|3− 3n
r+1

)
,

and O(|x| − n
r+1 ) = O(|y|− n

r+1 ), so that

u(y − β) =
a

|y| n
r+1 −2

− apn,r
〈β, y〉

|y| n
r+1

+
〈c, y〉

|y| n
r+1

+ O
(

|y| − n
r+1

)
+

a2

|y| 3n
r+1 −4

+ O
(

|y|3− 3n
r+1

)
=

a

|y| n
r+1 −2

+
〈apn,rβ + c, y〉

|y| n
r+1

+
a2

|y| 3n
r+1 −4

+ +O
(

|y| − n
r+1

)
,



TWO-ENDED r-MINIMAL HYPERSURFACES IN EUCLIDEAN SPACE 1345

since 3
2 ≤ n

r+1 . Choosing β = −c/apn,r and changing y by x we get

u(x) =
a

|x| n
r+1 −2

+ a1 +
a2

|x| 3n
r+1 −4

+ O
(

|x| − n
r+1

)
,(4.4)

so that the new xn+1-axis is a good candidate for the symmetry axis.
We now look at the symmetry of M with respect to the hyperplane Π0 given

by x1 = 0. Let B = M ∩ { |xn+1| = Λ} = B+ ∪ B−, where B± = M ∩ {xn+1 =
±Λ} and Λ > 0 is large enough. We consider the parallel hyperplanes Πt given
by x1 = t, t > 0. From (4.4), we have

∂u

∂x1
= apn,r

x1

|x| n
r+1

+ a2

(
4 − 3n

r + 1

)
x1

|x| 3n
r+1 −2

+ O
(

|x| − n
r+1 −1

)
,

which is positive for x1 ≥ t > 0 and |x| large enough. Thus, Bt+ is a graph over
Πt with bounded slope. Moreover, since B± asymptotes a sphere as R → +∞,
we see easily that B∗

t+ ≥ Bt− . Again by Theorem 2.1, (M ∩ { |xn+1| ≤ Λ})∗
t+ ≥

(M ∩ { |xn+1| ≤ Λ})t− and letting t → 0 we get (M ∩ { |xn+1| ≤ Λ})∗
0+ ≥ (M ∩

{|xn+1| ≤ Λ})0− . Changing x1 by −x1 and repeating the argument, (M ∩
{|xn+1| ≤ Λ})∗

0− ≥ (M ∩ { |xn+1| ≤ Λ})0+ , so that in fact (M ∩ { |xn+1| ≤
Λ})∗

0+ = (M ∩ {|xn+1| ≤ Λ})0− , that is, M is invariant under the reflection
relative to Π0. The full symmetry of M now follows from the observation
that the right-hand side of (4.4) is, up to the error term, rotationally invari-
ant. This means that the above argument can be used after replacing Π0 by
any hyperplane containing the xn+1-axis. The theorem is proved.

Appendix: The proof of Lemma 3.2

The purpose of this Appendix it to prove Lemma 3.2. We set

ωi
j =

n∑
iα,jα=1

δi1···iri
j1···jrj

r∏
k=1

(
δik
jk

− C
xik

xjk

|x|2
)

,

so that

ωi
j =

r∑
l=0

(−1)l Cl

|x|2l
[ωl]ij ,

where

[ωl]ij =
n∑

iα,jα=1

δi1···iri
j1···jrj(A.1)

×
∑

1≤k1<···<kl ≤r

δh
j1i1 · · · xik1

xjk1
· · · xikl

xjkl
· · · δir

jr

=
(

n

r − l

) n∑
iα,jα=1

∑
1≤k1<···<kl ≤r

δ
ik1 ···ikl

i

jk1 ···jkl
jxik1

xjk1
· · · xikl

xjkl
.
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We have

[ω0]ij =
n∑

iα,jα=1

δi1···iri
j1···jrjδ

i1
j1

· · · δir

jr

=
n∑

iα=1

δi1···iri
i1···irj

=
(

n

r

)
δi
j

and

[ω1]ij =
n∑

iα,jα=1

δi1···iri
j1···jrj

r∑
k=1

δi1
j1

· · · xik
xjk

· · · δir
jr

=
r∑

k=1

n∑
iα,jα=1

δi1···ik ···iri
i1···jk ···irjxik

xjk

=
(

n

r − 1

) r∑
k=1

n∑
ik,jk=1

δiki
jkjxik

xjk
.

In case i = j, δiki
jki �= 0 only if ik = jk with ik �= i. Thus,

[ω1]ii =
(

n

r − 1

) r∑
k=1

n∑
ik=1;ik �=i

δiki
ikix

2
ik

=
(

n

r − 1

)
r
(
x2

1 + · · · + x2
i−1 + x2

i+1 + · · · + x2
n

)
=

(
n

r − 1

)
r
(

|x|2 − x2
i

)
.

On the other hand, if i �= j then δiki
jkj �= 0 only if ik = j and jk = i, and we have

[ω1]ij =
(

n

r − 1

) r∑
k=1

δji
ijxixj

= −
(

n

r − 1

)
rxixj ,

so that in general,

[ω1]ij =
(

n

r − 1

)
r
[
δi
j

(
|x|2 − x2

i

)
−

(
1 − δi

j

)
xixj

]
.



TWO-ENDED r-MINIMAL HYPERSURFACES IN EUCLIDEAN SPACE 1347

The proof of the lemma will be completed if we show that ωl = 0 for l ≥ 2.
Again we consider two cases. If i = j then [ωl]ii is proportional to

n∑
iα,jα=1

∑
1≤k1<···<kl ≤r;km �=i

δ
ik1 ···ikl
jk1 ···jkl

xik1
xjk1

· · · xikl
xjkl

,

and since δ
ik1 ···ikl
jk1 ···jkl

is skew-symmetric in the indexes jk1 , . . . , jkl
and the prod-

uct xik1
xjk1

· · · xikl
xjkl

is symmetric in these same indexes, this sum clearly
vanishes, as desired. Now fix i and j such that i �= j. Let us look initially at
the case l = 2. Thus δ

ik1 ik2 i

jk1 jk2 j �= 0 only if j = ik1 or j = ik2 . Let us assume, for
example, that j = ik1 and set ik2 = k for simplicity. Then the corresponding
sum is clearly a multiple of

xixj

∑
k �=i,j

x2
k

(
δjki
ikj + δjki

kij

)
= xixj

∑
k �=i,j

x2
k

(
δjki
ikj − δjki

ikj

)
= 0,

and this proves that ω2 = 0.
A similar cancelation takes place if l ≥ 3 and i �= j. We illustrate the

argument by considering only the case l = 3, since in general the difficulty is
mostly notational. Again, δ

ik1 ik2 ik3 i

jk1 jk2jk3 j �= 0 only if j equals one of the indexes
ik1 , ik2 or ik3 . The sum (A.1) splits accordingly and we may assume, without
loss of generality, that j = ik1 . Setting ik2 = k and ik3 = m the corresponding
sum is

xixj

∑
k,m �=i,j

x2
kx2

m

(
δjkmi
ikmj + δjkmi

imkj + δjkmi
kimj + δjkmi

kmij + δjkmi
mkij + δjkmi

mikj

)
= 0.

The proof of Lemma 3.2 is complete.
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