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IRREDUCIBLE VECTOR-VALUED MODULAR FORMS OF
DIMENSION LESS THAN SIX

CHRISTOPHER MARKS

Abstract. An algebraic classification is given for spaces of holo-
morphic vector-valued modular forms of arbitrary real weight and

multiplier system, associated to irreducible, T -unitarizable rep-
resentations of the full modular group, of dimension less than six.

For representations of dimension less than four, it is shown that

the associated space of vector-valued modular forms is a cyclic

module over a certain skew polynomial ring of differential oper-
ators. For dimensions four and five, a complete list of possible

Hilbert–Poincaré series is given, using the fact that the space of

vector-valued modular forms is a free module over the ring of

classical modular forms for the full modular group. A mild re-
striction is then placed on the class of representation considered

in these dimensions, and this again yields an explicit determina-
tion of the associated Hilbert–Poincaré series.

1. Introduction

The general theory of vector-valued modular forms is now well-established
in the literature, largely due to the efforts of Knopp/Mason [7], [8], [9], [13],
[14] and Bantay/Gannon [1], [2], [3], [4]. The present paper builds upon
the foundation of the Knopp/Mason theory, and is in some sense a direct
generalization, to higher dimension, of the main results of [14]. Specifically,
we generalize Theorem 5.5, loc. cit., which gives an algebraic classification
of Z-graded spaces of holomorphic vector-valued modular forms associated
to two-dimensional irreducible, T -unitarizable representations of Γ = SL2(Z).
This is accomplished in [14] by establishing that each such space is a cyclic
module over a certain skew polynomial ring R of differential operators (2.27),
and a free module of rank two over the ring M = C[E4,E6] of holomorphic,
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integral weight modular forms for Γ. This classification (and in particular the
computation of the minimal weight associated to the space) is made possible
by exploiting the theory of modular differential equations, as introduced in
[13], together with Theorem 3.1 of [14], which classifies indecomposable, T -
semi-simple representations ρ : Γ → GL2(C), according to the eigenvalues of
ρ(T ); here T =

(
1
0

0
0

)
.

More recently, it has been shown [12, Thm 1], [9, Thm 3.13] that this free
M-module structure is realized in arbitrary dimension, for an even broader
class of representation than was treated in [14]. Consequently, giving an al-
gebraic classification of spaces of vector-valued modular forms in arbitrary
dimension is equivalent to determining the weights of the free generators for
the M-module structure of the given spaces, including the all-important min-
imal weight. Furthermore, Theorem 3 of [12] gives an equivalence between the
cyclicity of an R-module of vector-valued modular forms, and the existence
of a certain monic modular differential equation. This is significant because
cyclic R-modules exhibit the simplest M-module structure possible and, even
more importantly, the minimal weight can be determined explicitly in these
cases.

Because of these advances, it is quite natural to try and generalize the
techniques used in [14] to arbitrary dimension (in fact, the main results of
this paper were established before [12] was written (cf. [11]) and formed the
initial evidence which led to Theorems 1 and 3 in [12]). What one requires
for this task is a higher dimension analogue of Theorem 3.1 of [14], that is,
one needs to classify indecomposable, T -unitarizable representations of Γ in
arbitrary dimension. Unfortunately, very little is known about the represen-
tation theory of Γ, even in the irreducible setting. A notable exception is [16],
which classifies irreducible representations of the braid group B3, of dimen-
sion less than six. As is well known, PSL2(Z) = Γ/{±I} is isomorphic to the
quotient of B3 by its (infinite cyclic) center, and the Main theorem of [16],
when translated into the modular setting (Theorem 5.6 below), serves as the
desired generalization of [14, Thm 3.1]. This result is, to our knowledge, the
strongest such generalization that exists in the literature and, furthermore (as
can be seen in the Appendix below), dimension five is in any event a natu-
ral boundary for the applicability of the techniques used here and in [14]. It
should be noted that [16] does not address the classification of indecomposable
representations of Γ, and this creates an obstruction to using the techniques
of [14] (see comments following Theorem 5.6 below). For this reason, we de-
fine in Section 5 a slightly restricted class of irreducible representations of Γ,
for which the theory of modular differential equations may be applied with
impunity; cf. Definition 5.7 below.

The layout of the paper is quite simple. In Section 2, we define the relevant
terms and review the theory of vector-valued modular forms and modular dif-
ferential equations. We then proceed in subsequent sections with the algebraic
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classifications, on a dimension-by-dimension basis. Section 3 contains a quick
and easy proof of [14, Thm 5.5], made possible by the results of [12], and
requiring no knowledge of the representation theory of Γ, nor of the theory of
modular differential equations. The dimension three setting is handled in a
completely analogous way, and this is the content of Section 4; in particular
(Theorem 4.1 below), we prove there that every irreducible, T -unitarizable
ρ : Γ → GL3(C) yields a space of holomorphic vector-valued modular forms
which is cyclic as R-module. In Sections 5 and 6, we first use the Free Mod-
ule theorem [12, Thm 1] to determine the possible Hilbert–Poincaré series
for M-modules of vector-valued modular forms of dimension four and five,
respectively, and then by restricting slightly to the T -determined representa-
tions (cf. Definition 5.7 below), we are able to give an explicit classification in
these dimensions as well. Finally, we include the Appendix, containing what
we find to be an interesting example from the theory of modular differential
equations; among other things, this example gives another indication of the
impossibility of generalizing the results of [16] to dimension greater than five.

2. Preliminaries

Let ρ : Γ → GLd(C) denote a d-dimensional representation of Γ = SL2(Z),
k ∈ R an arbitrary real number, and υ a multiplier system in weight k (see
Section 2.1 below). A function

(2.1) F (z) =

⎛⎜⎝f1(z)
...

fd(z)

⎞⎟⎠
from the complex upper half-plane H to C

d is a holomorphic vector-valued
modular form of weight k (for the pair (ρ, υ)) if the following conditions are
satisfied:

(1) Each component function fj : H → C is holomorphic in H, and is of
moderate growth at infinity, i.e. there is an integer N ≥ 0 such that
|f(x + iy)| < yN holds for any fixed x and y � 0.

(2) For each γ ∈ Γ, F |υkγ = ρ(γ)F .

Here |υk denotes the standard “slash” action of Γ on the space H of holomorphic

functions f : H → C, where for γ =
(

a
c

b
d

)
∈ Γ, z ∈ H we have

(2.2) f |υkγ(z) = υ−1(γ)(cz + d)−kf

(
az + b

cz + d

)
.

We write H(k, ρ, υ) for the C-linear space of weight k vector-valued modu-
lar forms for (ρ, υ). If ρ(−I) is a scalar matrix, then the space H(ρ, υ) of
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holomorphic vector-valued modular forms for (ρ, υ) is Z-graded as

H(ρ, υ) =
⊕
k≥0

H(k0 + 2k, ρ, υ),(2.3)

for some minimal weight k0 which is congruent (mod Z) to the cusp param-
eter of υ (see Section 2.1 below), and satisfies the inequality k0 ≥ 1 − d (see
Corollary 2.9 below). Note that if ρ(−I) is not a scalar matrix, then ρ neces-
sarily decomposes into a direct sum ρ+ ⊕ ρ− of sub-representations such that
ρ±(−I) = ±I (cf. comments following Lemma 2.3 in [8]), so the assumption
is merely one of convenience.

For U ∈ GLd(C), denote by ρU the representation ρU (γ) = Uρ(γ)U −1. As
usual, we say that ρ and ρ′ : Γ → GLd(C) are equivalent, and write ρ ∼ ρ′, if
ρ′ = ρU for some U . It is clear that in this case there is a graded isomorphism
of C-linear spaces

H(ρ, υ) ∼= H
(
ρ′, υ

)
,(2.4)

F ∈ H(k, ρ, υ) ↔ UF ∈ H
(
k, ρ′, υ

)
.

This isomorphism allows us to focus, within a given equivalence class, on
representations with particularly nice properties. Along these lines, note that
we consider in this paper only those ρ which are T -unitarizable, meaning that
ρ(T ), T =

(
1
0

1
1

)
, is similar to a unitary matrix. By the above isomorphism

we may, and henceforth shall, assume that

ρ(T ) = diag
{
e(r1), . . . ,e(rd)

}
, 0 ≤ rj < 1.(2.5)

(Here and throughout, we write the exponential of a real number r as e(r) :=
e2πir.) Assuming this form for ρ(T ) ensures that the components of any
F ∈ H(ρ, υ) have q-expansions familiar from the classical theory of modular
forms. In other words, slashing F with the T matrix and using the assumption
of moderate growth shows that each component of F has the form

(2.6) fj(z) = qλj

∑
n≥0

aj(n)qn,

where q = e2πiz , for each j we have

0 ≤ λj ≡ rj +
m

12
(mod Z),(2.7)

and m denotes the cusp parameter of υ (Section 2.1 below). We define an
admissible set for (ρ, υ) to be any real numbers {λ1, . . . , λd} which satisfy
(2.7). Thus, the set of leading exponents of the components of any nonzero
F ∈ H(ρ, υ) will, by definition, form an admissible set for (ρ, υ) (but not
conversely, that is, we are not claiming that every admissible set appears as
the set of leading exponents of some F ). Among all admissible sets, there is
a unique one which additionally satisfies λj < 1 for each j; we will refer to
this as the minimal admissible set for (ρ, υ). If {λ1, . . . , λd} is the minimal
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admissible set for (ρ, υ), then every nonzero vector F ∈ H(ρ, υ) will have the
form ⎛⎜⎝qλ1+n1

∑
n≥0 a1(n)qn

...
qλd+nd

∑
n≥0 ad(n)qn

⎞⎟⎠ ,(2.8)

where aj(0) �= 0 for each j, and the nj are nonnegative integers.
We write M =

⊕
k≥0 M2k for the graded ring of integral weight, holomor-

phic modular forms for Γ, that is, for each k ≥ 0 we have M2k = H(2k,1,1),
where 1 denotes the trivial one-dimensional representation/multiplier system,
which satisfies 1(γ) = 1 for each γ ∈ Γ. As is well known, M = C[E4,E6] is
also a graded polynomial algebra, where for each even integer k ≥ 2 we write

Ek(q) = 1 − 2k

Bk

∑
k≥1

σk−1(n)qn

for the normalized Eisenstein series in weight k; here Bk denotes the kth
Bernoulli number and σk(n) =

∑
0<d|n dk. Componentwise multiplication

makes H(ρ, υ) a graded left M-module, and it is clear that the isomorphism
(2.4) is one of graded M-modules as well as vector spaces. Regarding this
structure, one of the most important results we use in this paper [12, Thm 1]
is the following theorem.

Theorem 2.1. Suppose ρ : Γ → GLd(C) is T -unitarizable, such that ρ(−I)
is a scalar matrix, and let υ be any multiplier system for Γ. Then H(ρ, υ) is
a free M-module of rank d.

Theorem 2.1 implies that the data needed to describe the M-module struc-
ture of the graded space (2.3) boils down to the minimal weight k0, together
with d distinguished nonnegative integers k1, . . . , kd, which give the weights
k0 + 2k1, . . . , k0 + 2kd of the free generators for H(ρ, υ). Because the gener-
ators of M as graded polynomial algebra are of weights four and six, each
space H(ρ, υ) has a Hilbert–Poincaré series (cf. [5]) of the form

Ψ(ρ, υ)(t) =
∑
k≥0

dim H(k0 + 2k, ρ, υ)tk0+2k(2.9)

=
tk0(t2k1 + · · · + t2kd)

(1 − t4)(1 − t6)
.

Ideally, one would like to be able to determine explicitly the Hilbert–Poincaré
series of H(ρ, υ) for a representation ρ : Γ → GLd(C) of arbitrary dimension d,
in terms of some invariants attached to the equivalence class of ρ. It seems that
the crucial step in solving this problem is the determination of the minimal
weight k0. For example, it follows from the bounds developed in the proof of
[12, Thm 1] that if ρ is irreducible of dimension d and H(ρ, υ) has minimal
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weight k0, then the weights of the d free generators of H(ρ, υ) as M-module
must lie in the interval [k0, k0 + 2(d − 1)]; in particular, there are only a finite
number of possible Hilbert–Poincaré series which could describe H(ρ, υ).

Unfortunately, it is not known how to determine the minimal weight of a
graded space (2.3) for arbitrary ρ. In fact, it is not even known whether the
minimal weight of H(ρ, υ) has a universal upper bound as a function of dimρ,
although it seems likely that this is true (and in particular, when ρ is unitary
this universal bound does exist, a fact which is implicit in the proof of the Main
Theorem of [7]). Note, however, that in situations where one is able to exploit
the existence of a vector-valued modular form arising from the solution space
of a monic modular differential equation (Section 2.2 below), and in particular
in the case that H(ρ, υ) is a cyclic R-module (cf. Theorem 2.11 below), the
minimal weight can be determined explicitly; this provides a strong motivation
for elucidating the general theory of such equations.

2.1. Multiplier systems for Γ. See [15, Ch 3] for a discussion of multiplier
systems of arbitrary real weight. Note that (unlike [15]) we do not assume
that our multiplier systems are defined on PSL2(Z), thus we obtain twelve
multiplier systems for each weight, instead of the six described in loc. cit.

Let S
1 = {z ∈ C | |z| = 1} denote the unit circle. A multiplier system in

weight k ∈ R is a function υ : Γ → S
1 which makes the map (2.2) a right

action of Γ on H. The ratio of any two multiplier systems of weight k is a
homomorphism, and in fact the group Hom(Γ,C×) acts transitively on the set
Mult(k) of multiplier systems in weight k. As is well known, the commutator
quotient of Γ is cyclic of order 12, thus Hom(Γ,C×) = 〈χ〉 is cyclic of order 12
as well, with generator χ satisfying

(2.10) χ(T ) = e
(

1
12

)
, χ(S) = e

(
− 1

4

)
,

where S =
(

0
1

−1
0

)
. So we have, for example,

Mult(k) =
{
υkχN | 0 ≤ N ≤ 11

}
,

where υk is the multiplier system which makes η2k a modular form of weight
k; here

(2.11) η(q) = q
1
24

∏
n≥1

(
1 − qn

)
denotes Dedekind’s eta function. We have Mult(k) = Mult(l) if and only if
k ≡ l (mod Z), and in particular, if k ∈ Z then υk = χk is a character of Γ, so
that Mult(k) = Hom(Γ,C×) in this case. For a given multiplier system υ, we
define the cusp parameter of υ to be the unique real number 0 ≤ m < 12 such
that υ(T ) = e( m

12 ); note that this differs from the definition given in [15] by a
factor of 12.
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We mention here that in Theorem 2.1 above and in the remainder of this
section, we state results in terms of arbitrary real weight and multiplier sys-
tem, whereas the reference given usually will contain a statement and proof
in the integral weight, trivial multiplier system setting. In all cases, an anal-
ysis of the proof shows that the appearance of a nontrivial multiplier system
is either inconsequential (as in the statement and proof of Theorem 2.1), or
that one may make some trivial modifications to the original proof in order to
obtain what is being claimed; most of these proofs are written down explicitly
in the present author’s doctoral dissertation [11], thus we will say nothing
further regarding these modifications.

2.2. Modular differential equations and the modular Wronskian.
Recall (e.g., [10, Ch 10]) the modular derivative in weight k ∈ R,

Dk =
1

2πi

d

dz
− k

12
E2 = q

d

dq
− k

12
E2.

Dk acts (componentwise) as a weight two operator on spaces of vector-valued
modular forms, so that

F ∈ H(k, ρ, υ) �→ DkF ∈ H(k + 2, ρ, υ)

for any (ρ, υ). This defines a weight two operator D : H(ρ, υ) → H(ρ, υ),
which acts as Dk on H(k, ρ, υ), and is graded with respect to the M-module
structure of H(ρ, υ), that is,

(f,F ) ∈ Mk × H(l, ρ, υ) �→ D(fF ) = FDkf + fDlF ∈ H(k + l + 2, ρ, υ).

For each n ≥ 1, we write Dn
k for the composition

Dn
k = Dk+2(n−1) ◦ · · · ◦ Dk+2 ◦ Dk.

An dth order monic modular differential equation (MMDE) in weight k ∈ R

is an ordinary differential equation in the disk |q| < 1, of the form

(2.12) L[f ] = Dd
kf + M4D

d−2
k f + · · · + M2(d−1)Dkf + M2df = 0,

with Mj ∈ Mj for each j. When rewritten in terms of d
dq , one obtains from

(2.12) an ODE

(2.13) qdf (d)(q) + qd−1gd−1(q)f (d−1)(q) + · · · + g0(q)f = 0,

where f (n) = dnf
dqn and gj is holomorphic in |q| < 1 for each j (in fact, each

gj ∈ C[E2,E4,E6], the ring of quasi-modular forms for Γ). Thus, an MMDE
has, at worst, q = 0 as regular singular point, and no other singularities. The
theory (cf. [6]) of such equations, due to Fuchs and Frobenius, tells us that if
the indicial roots of (2.13) are nonnegative real numbers λ1, . . . , λd, pairwise
incongruent (mod Z), then the d-dimensional solution space V of (2.12) has
a basis, which in this context is called a fundamental system of solutions of
(2.12), consisting of functions of the form (2.6). It is clear that V defines a
subspace of H, consisting of moderate growth functions. Furthermore, it is
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proven in [13, Thm 4.1] that V , when viewed in this way, is invariant under
the |υk action of Γ on H, for any multiplier υ in weight k. Thus, MMDEs
provide a rich source of vector-valued modular forms, as we record in the
following theorem.

Theorem 2.2 (Mason). Suppose that the MMDE (2.12) has real, nonneg-
ative indicial roots λ1, . . . , λd, which are pairwise incongruent (mod Z). Then
there is a vector

F (z) =

⎛⎜⎝qλ1 +
∑

n≥1 a1(n)qλ1+n

...
qλd +

∑
n≥1 ad(n)qλd+n

⎞⎟⎠ ,

whose components form a basis of the solution space V of (2.12), with the
following property: given any multiplier system υ in weight k, there is a rep-
resentation ρ : Γ → GLd(C), arising from the |υk action of Γ on V , such that
F ∈ H(k, ρ, υ).

Note that if m denotes the cusp parameter of υ, then any such ρ will
satisfy (2.5), where for each j the relation (2.7) holds; in fact υ(T )ρ(T ) is the
monodromy matrix for (2.12) at the regular singular point q = 0, relative to
the ordered basis {f1, . . . , fd} of V .

We define an nth order Eisenstein operator (of weight k ∈ R) to be an
expression of the form

(2.14) L = Dn
k + α4E4D

n−2
k + · · · + α2nE2n,

where αj ∈ C for each j. We have the

Lemma 2.3. Let n ≥ 1, and suppose L[f ] = 0 is an MMDE with L the
Eisenstein operator (2.14). Then the weight k and the αj are uniquely deter-
mined by the indicial roots of the equation.

Proof. First of all, note that a simple inductive argument shows that the
operator Dn

k can be written in the form

(2.15) Dn
k = qn dn

dqn
+ qn−1fn,n−1(q)

dn−1

dqn−1
+ · · · + fn,0(q),

where the fn,j are holomorphic in |q| < 1 and, furthermore,

(2.16) fn,n−1(0) =
n(5(n − 1) − k)

12
.

If we rewrite the given MMDE in the form (2.13) (replacing d with n) then
we have, in the notation of (2.15),

(2.17) gn−j =

⎧⎨⎩
fn,n−1, j = 1,
fn,n−2 + α4E4, j = 2,

fn,n−j + α2jE2j +
∑j−1

i=2 α2iE2ifn−i,n−j , j ≥ 3.
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Let r1, . . . , rn denote the indicial roots of the MMDE. The corresponding
indicial polynomial factors as

(2.18)
n∏

j=1

(r − rj) =
n∑

j=0

(−1)jejr
n−j ,

where ej denotes the jth elementary symmetric polynomial in r1, . . . , rn. On
the other hand, if for each i ∈ {0,1, . . . , n − 1} we define integers ai

j such that

i∏
j=0

(r − j) =
i+1∑
j=1

ai
jr

j ,

then we may write the indicial equation as

(2.19) rn + An−1r
n−1 + · · · + A1r + A0 = 0,

where we set A0 = g0(0), and for 1 ≤ j ≤ n − 1 we define

(2.20) An−j = an−1
n−j +

j+1∑
i=2

an−i
n−jgn−i+1(0).

Equating coefficients in (2.18) and (2.19), we obtain for each j the identity

(2.21) (−1)jej = An−j .

Taking j = 1 in (2.21) yields

−(r1 + · · · + rn) = an−1
n−1 + an−2

n−1gn−1(0),

and combining this with (2.17) and (2.16) (and noting that ai−1
i = 1 for any

i ≥ 0) produces the formula

k =
12
n

(
an−1

n−1 +
n∑

j=1

rj

)
+ 5(n − 1),

thus the weight k of the MMDE is determined uniquely by the rj (note that
this also follows from Theorem 2.8 below). For j = 2, (2.21) and (2.17) (recall
also that E4(0) = 1 by definition) yield

e2 = an−1
n−2 + an−2

n−2fn,n−1(0) + fn,n−2(0) + α4,

so by (2.16) we have α4 as a function of k and the indicial roots; since we
have just shown that k itself is a function of the rj , we see that α4 is as
well. For arbitrary j ≥ 3, (2.17) and (2.21) show that α2j is a function of the
indicial roots and k,α4, . . . , α2(j−1). If we assume inductively that k and α2i,
2 ≤ i ≤ j − 1 are determined uniquely by the indicial roots of the MMDE, then
we find that α2j is as well. �

Corollary 2.4. Let n ≤ 5. For each set {λ1, . . . , λn} of complex numbers,
there is a unique nth order MMDE with indicial roots λ1, . . . , λn.
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Proof. This follows directly from the previous lemma and the fact that
M2j is spanned by E2j for j = 2,3,4,5, so that every MMDE of order less
than 6 is of the form L[f ] = 0, with L an Eisenstein operator. �

As is well known, the solution space of the first-order MMDE Dkf = 0 is
spanned by η2k, and this immediately implies the following lemma.

Lemma 2.5. Assume that dimρ ≥ 2, and that F ∈ H(ρ, υ) has linearly in-
dependent components. Then DF �= 0.

Thus, we have the useful corollary.

Corollary 2.6. If ρ is irreducible, dimρ ≥ 2, then for each multiplier
system υ, D is an injective operator on H(ρ, υ).

We will also make use of the lemma below.

Lemma 2.7. Suppose F = (f1, . . . , fd)t ∈ H(k, ρ, υ) has linearly independent
components. Then for each n ≤ d, the set {F,DkF, . . . ,Dn−1

k F } is independent
over M; in particular, this set spans a rank n free submodule

n−1⊕
j=0

MDj
kF

of H(ρ, υ).

Proof. Suppose there is a relation

(2.22) Mn−1D
n−1
k F + Mn−2D

n−2
k F + · · · + M1DkF + M0F = 0

with Mj ∈ M for each j. Rewriting (2.22) in terms of d
dq yields an ordinary

differential equation L[f ] = 0 of order at most n − 1, for which each of the d
linearly independent components of F is a solution. By the Fuchsian theory
of ODEs in the complex domain, this is impossible unless L is identically 0,
and one sees easily that this forces Mj = 0 for each j. �

The modular Wronskian, defined in [13, Sec 3], plays a key role in the
techniques we use in the current paper. We gather here various results (Thms
3.7, 4.3 loc. cit.) in the following theorem.

Theorem 2.8 (Mason). Assume F ∈ H(k, ρ, υ) is of the form (2.8), and has
linearly independent components; set λ =

∑
λj , n =

∑
nj . Then the modular

Wronskian of F has the form

W (F ) = η24(λ+n)g ∈ H
(
d(d + k − 1),detρ, υd

)
,

for some nonzero modular form g ∈ Md(d+k−1)−12λ which is not a cusp form.
In particular, the weight k of F satisfies the inequality

(2.23) k ≥ 12(λ + n)
d

+ 1 − d,
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and equality holds in (2.23) if, and only if, the components of F span the
solution space of an MMDE (2.12) in weight k.

Since the exponents λj +nj in (2.8) are nonnegative, we obtain from (2.23)
a universal lower bound on the minimal weight k0 in (2.3).

Corollary 2.9. Assume ρ is irreducible with ρ(T ) given by (2.5), let υ be
an arbitrary multiplier system, and let {λ1, . . . , λd} be the minimal admissible
set for (ρ, υ), with λ =

∑
λj . Then the minimal weight k0 in (2.3) satisfies

the inequality

(2.24) k0 ≥ 12λ

d
+ 1 − d.

One also obtains from the modular Wronskian the important observation
that the representations “of MMDE type”—that is, those representations aris-
ing from the slash action of Γ on the solution space of an MMDE—are always
indecomposable.

Lemma 2.10. Suppose ρ : Γ → GLd(C) is T -unitarizable, υ ∈ Mult(k), and
H(ρ, υ) contains a vector

(2.25) F =

⎛⎜⎝f1

...
fd

⎞⎟⎠=

⎛⎜⎝qλ1 +
∑

n≥1 a1(n)qn

...
qλd +

∑
n≥1 ad(n)qn

⎞⎟⎠
whose components form a fundamental system of solutions of an MMDE in
weight k. Then ρ is indecomposable.

Proof. Suppose ρ decomposes into a direct sum ρ = ρ1 ⊕ ρ2. We may as-
sume, up to equivalence of representation, that the |υk -invariant subspaces cor-
responding to ρ1 and ρ2 are spanned by {f1, . . . , fd1 }, {fd1+1, . . . , fd} respec-
tively, for some 1 ≤ d1 ≤ d. Set dimρ2 = d2 = d − d1, and Λ1 = λ1 + · · · + λd1 ,
Λ2 = λd1+1 + · · · + λd. By Theorem 2.8, we have

(2.26) d(k + d − 1) = 12(Λ1 + Λ2).

On the other hand, if we define F1 = (f1, . . . , fd1)
t, F2 = (fd1+1, . . . , fd)t, then

F1 ∈ H(k, ρ1, υ), F2 ∈ H(k, ρ2, υ), and Theorem 2.8 yields the inequalities

d1(k + d1 − 1) ≥ 12Λ1,

d2(k + d2 − 1) ≥ 12Λ2.

Adding these inequalities and using (2.26) yields the inequality

2d1d2 ≤ 0,

so that d1 = d, d2 = 0. �
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Finally, we recall [14, Sec 2] the skew polynomial ring

(2.27) R =
{
f0 + f1d + · · · + fndn | fj ∈ M, n ≥ 0

}
of differential operators, which combines the actions of M and the modu-
lar derivative on H(ρ, υ). Addition is defined in R as though it were the
polynomial ring M[d], and multiplication is performed via the identity

df = fd + Df,

where D denotes the modular derivative. Each space H(ρ, υ) of vector-valued
modular forms is a Z-graded left R-module in the obvious way, and again we
point out that the isomorphism (2.4) is one of graded R-modules as well as
vector spaces. Regarding this structure, we record here another key result
from [12], which will be used frequently in subsequent sections.

Theorem 2.11. Suppose ρ : Γ → GLd(C) satisfies (2.5), ρ(−I) is a scalar
matrix, and let υ be any multiplier system for Γ. Let {λ1, . . . , λd} denote the
minimal admissible set for (ρ, υ), put λ =

∑d
j=1 λj , and write H(ρ, υ) as in

(2.3). Then the following hold:
(1) If H(ρ, υ) = RF0 is cyclic as R-module, then F0 has the form (2.25), and

the fj form a fundamental system of solutions of a dth-order MMDE of
weight k0 = 12λ

d + 1 − d. The indicial roots of the MMDE are λ1, . . . , λd,
and they are distinct.

(2) Conversely, suppose that the λj are distinct. Then there is a dth-order
MMDE in weight k0 = 12λ

d + 1 − d, such that

H
(
ρ′, υ

)
=
⊕
k≥0

H
(
k0 + 2k, ρ′, υ

)
= RF

is cyclic as R-module; here F is as in (2.25), the fj span the solution
space V of the MMDE, and ρ′ denotes the representation of Γ arising
from the |υk0

-action of Γ on V , relative to the ordered basis {f1, . . . , fd}.
Consequently, ρ′(T ) = ρ(T ), and ρ′ is indecomposable by Lemma 2.10, so
in particular ρ′(−I) is a scalar matrix.

This completes the necessary review of the basic theory of vector-valued
modular forms and modular differential equations. We now proceed to the
classification of spaces H(ρ, υ) for irreducible ρ of dimension d ≤ 5. As a
warm-up, we derive here the well-known results from the classical (i.e., one-
dimensional) setting, using the vector-valued methods.

Fix an integer 0 ≤ N ≤ 11 and a character χN : Γ → C
∗, with χ as in

(2.10), and let υ be a multiplier system for Γ, with cusp parameter m. Then
χN (T ) = e( N

12 ), and the minimal admissible set for (χN , υ) is {λ1}, where λ1

satisfies the congruence (2.7), with r1 = N
12 . Viewing λ1 as an indicial root,

we obtain by Corollary 2.4 a unique first order MMDE Dk0f = 0, where by
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Theorem 2.8 we have k0 = λ1
12 . The solution space V of the MMDE is spanned

by a function

f1(z) = qλ1 +
∑
n≥1

a(n)qλ1+n ∈ H(k0, ρ, υ),

where ρ : Γ → C
∗ is the representation afforded us by Theorem 2.2, which

arises from the |υk0
action of Γ on V , relative to the basis 〈f1〉 of V . In

fact f1 = η2k0 , as is well known, and from Theorem 2.11 we obtain a cyclic
R-module

H(ρ, υ) =
⊕
k≥0

H(k0 + 2k, ρ, υ) = Rη2k0 ,

which in the one-dimensional setting is equivalent to saying that H(ρ, υ) is
a free M-module of rank one, with generator η2k0 ; this is the content of
Theorem 2.1, as it pertains to the present setting. Note that by definition
we have η2k0 |υk0

T = ρ(T )η2k0 , so from (2.7) we conclude that ρ(T ) = e( N
12 ).

Recalling that a character of Γ is completely determined by its value at the
matrix T , this shows that ρ = χN , so we have classified our space H(χN , υ).

It will be seen in what follows that this same method may, to some extent,
be utilized in any dimension less than six.

3. Dimension two

This has been worked out in the trivial multiplier system case in [14]. Here
we extend the results to arbitrary real weight, and provide a streamlined
(indeed, nearly trivial) proof, made possible by Theorems 2.1 and 2.11.

Theorem 3.1. Let ρ : Γ → GL2(C) be irreducible with ρ(T ) as in (2.5), fix
a multiplier system υ, and let {λ1, λ2} be the minimal admissible set of (ρ, υ).
Then

H(ρ, υ) =
⊕
k≥0

H(k0 + 2k, ρ, υ) = RF0

is cyclic as R-module, with k0 = 6(λ1 +λ2) − 1, and the components of F0 form
a fundamental system of solutions of a second order MMDE in weight k0.

Proof. Write H(ρ, υ) as in (2.3). It is clear that the number of weight
k0 generators of H(ρ, υ) (as M-module) is exactly dim H(k0, ρ, υ). Simi-
larly, since M2 = {0}, the number of weight k0 + 2 generators is dim H(k0 +
2, ρ, υ). But if we fix any nonzero F0 ∈ H(k0, ρ, υ), then by Corollary 2.6
we know that DF0 ∈ H(k0 + 2, ρ, υ) is nonzero, so by Theorem 2.1, we con-
clude that H(k0, ρ, υ) = 〈F0〉 and H(k0 + 2, ρ, υ) = 〈DF0〉 are 1-dimensional,
and H(ρ, υ) = MF0 ⊕ MDF0 as M-module. In particular, H(ρ, υ) = RF0 is
cyclic as R-module, and part 1 of Theorem 2.11 finishes the proof. �
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Corollary 3.2. The Hilbert–Poincaré series of H(ρ, υ) is

Ψ(ρ, υ)(t) =
tk0(1 + t2)

(1 − t4)(1 − t6)
,

thus for each k ≥ 0 we have (using the well-known dimension formula for Mk)

dim H(k0 + 2k, ρ, υ) =
[
k

3

]
+ 1.

We now give an alternate proof of Theorem 3.1, along the same lines as
the method used to classify spaces for one-dimensional representations at the
end of the last section. This is roughly the method used in the original proof
found in [14], and its successful application relies on the following theorem,
[14, Thm 3.1]:

Theorem 3.3 (Mason). Suppose ρ : Γ → GL2(C) is indecomposable, with
ρ(T ) = diag{x1, x2} for some xj ∈ C. Then the following are equivalent:

(1) ρ is irreducible.
(2) The ratio x1/x2 is not a primitive sixth root of 1.
(3) The eigenvalues {x1, x2} of ρ(T ) define a unique equivalence class of 2-

dimensional indecomposable representations of Γ.

Assume once again the hypotheses of Theorem 3.1. By Corollary 2.4, there
is a unique second order MMDE

D2
k0

f + α4E4f = 0

whose set of indicial roots is exactly {λ1, λ2}, the minimal admissible set of
(ρ, υ). By part two of Theorem 2.11, we have k0 = 6(λ1 + λ2) − 1, and there
is a cyclic R-module

H
(
ρ′, υ

)
= RF0 =

⊕
k≥0

H
(
k0 + 2k, ρ′, υ

)
,

where ρ′ : Γ → GL2(C) is a representation arising from the |υk0
action of Γ on

the solution space V of the MMDE, and the generator

F0 =
(

qλ1 + · · ·
qλ2 + · · ·

)
∈ H

(
k0, ρ

′, υ
)

has components which span V . We have ρ′(T ) = ρ(T ) and Theorem 2.11 (re-
ally Lemma 2.10) says that ρ′ is indecomposable. Applying Theorem 3.3, we
see that ρ and ρ′ are equivalent irreducible representations, so the isomor-
phism (2.4) establishes Theorem 3.1.
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4. Dimension three

This is completely analogous to dimension two, and we will prove quite
easily

Theorem 4.1. Let ρ : Γ → GL3(C) be an irreducible representation with
ρ(T ) as in (2.5), fix a multiplier system υ, and write {λ1, λ2, λ3} for the
minimal admissible set of (ρ, υ). Then

H(ρ, υ) =
⊕
k≥0

H(k0 + 2k, ρ, υ) = RF0

is cyclic as R-module, with k0 = 4(λ1 +λ2 +λ3) − 2, and the components of F0

form a fundamental system of solutions of a third order MMDE in weight k0.

Proof. Write H(ρ, υ) as the graded sum (2.3). It follows immediately from
Corollary 2.6 that dim H(k0, ρ, υ) = 1, since otherwise there would be two
generators F,G of weight k0 and two DF,DG of weight k0 +2, in violation of
Theorem 2.1. Fix any nonzero F0 of minimal weight, and write H(k0, ρ, υ) =
〈F0〉. Again by Corollary 2.6, we may take DF0 as a second generator of
H(ρ, υ). Suppose there is another generator of weight k0 +2, say G. Then by
Theorem 2.1 we have

H(ρ, υ) = MF0 ⊕ MDF0 ⊕ MG.

But then D2F0 ∈ H(k0 + 4, ρ, υ) must satisfy a relation D2F0 = M4F0, with
M4 ∈ M4. This is impossible by Lemma 2.7, so we must have H(k0 +2, ρ, υ) =
〈DF0〉, and D2F0 can be taken as the third generator of H(ρ, υ). Therefore
H(ρ, υ) = RF0 is cyclic as R-module, and the rest of the theorem follows from
part 1 of Theorem 2.11. �

Corollary 4.2. The Hilbert–Poincaré series of H(ρ, υ) is

Ψ(ρ, υ)(t) =
tk0(1 + t2 + t4)
(1 − t4)(1 − t6)

,

so that

dim H(k0 + 2k, ρ, υ) =
[
k

2

]
+ 1

for all k ≥ 0.

5. Dimension four

We first record a technical result which we will need in this section.

Lemma 5.1. Let ρ : Γ → GL4(C) be irreducible with ρ(T ) as in (2.5), and
set r =

∑
rj . Then 3r ∈ Z.
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Proof. Because ρ is irreducible, we know that ρ(S2) = ρ(−I) = ±I4, so
the eigenvalues of ρ(S) are ±1, ±i, respectively. Note that in either case
both eigenvalues occur, since ρ is irreducible and, as is well known, S and
T generate Γ. Define R = TS−1 =

(
−1
−1

1
0

)
. Then R3 = I and R,S generate

Γ as well. If ρ(S) has a three-dimensional eigenspace U , then the nonzero
subspace U ∩ ρ(R)U ∩ ρ(R2)U is invariant under both ρ(R) and ρ(S), and
this violates the irreducibility of ρ. Therefore, the eigenvalues of ρ(S) are
either {1,1, −1, −1} or {i, i, −i, −i}, and either way we have detρ(S) = 1.
This implies

e(3r) = detρ
(
T 3
)

= detρ(RS)3 = 1,

so 3r is an integer. �

Continuing with the assumptions of the lemma, fix a multiplier system
υ, and write the minimal admissible set of (ρ, υ) as {λ1, λ2, λ3, λ4}. From
the relations (2.7) and Lemma 5.1, we find that 3λ ≡ m (mod Z), so the
minimal weight k0 in (2.3) must be of the form 3λ + N for some integer N .
Furthermore, if one takes a nonzero vector F of minimal weight, then the
identity F |υ3λ+NS2 = ρ(S2)F implies the relation

ρ
(
S2
)

= υ
(
S2
)−1(−1)3λ+NI4.(5.1)

In particular, if H(ρ, υ) is cyclic as R-module, then by Theorem 2.11 we know
k0 = 3λ − 3, so (5.1) holds exactly when N is odd; this provides a necessary,
though perhaps not sufficient, criterion for H(ρ, υ) to be cyclic as R-module.
Regardless, it turns out that the lowest weight space for H(ρ, υ) will be one-
dimensional, as we now prove the following.

Lemma 5.2. Let F be an arbitrary nonzero vector in H(k0, ρ, υ), written
as in (2.8). Then nj = 0 for j = 1,2,3,4.

Proof. Suppose otherwise, so that ni ≥ 1 for some fixed i ∈ {1,2,3,4}, and
consider the subspace

V =
〈
E10F,E8DF,E6D

2F,E4D
3F
〉

≤ H(k0 + 10, ρ, υ).

By Lemma 2.7 we have dimV = 4, and it is clear that any nonzero G ∈ V ,
written in the form (2.8), will again satisfy ni ≥ 1. For each j ∈ {1,2,3,4} −
{i}, let φj : V → C denote the linear functional which takes such a G to
φj(G) = aj(0), the first Fourier coefficient of the jth component of G. Then
dimkerφj ≥ 3 for each j, so that⋂

j �=i

kerφj �= {0}.

This is equivalent to saying there is a nonzero G ∈ V which satisfies nj ≥ 1
for j = 1,2,3,4, when written in the form (2.8). In other words, recalling the



VECTOR-VALUED MODULAR FORMS OF DIMENSION LESS THAN SIX 1283

weight 12 cusp form

Δ(q) = η24(q) = q
∏
n≥1

(
1 − qn

)24 ∈ M12,

we have that G
Δ is a nonzero vector in H(k0 − 2, ρ, υ). But this cannot be,

since k0 is by definition the minimal weight for H(ρ, υ), and this contradiction
finishes the proof. �

Corollary 5.3. dim H(k0, ρ, υ) = 1.

Proof. Suppose there are two linearly independent vectors F,G in H(k0,
ρ, υ). Since F and G each satisfy the conclusion of Lemma 5.2, it is clear
that some linear combination of these vectors will produce a nonzero vector
in H(k0, ρ, υ) which violates the conclusion of the lemma. �

With these results in hand, we are now able to show that there is only one
possible non-cyclic structure for H(ρ, υ):

Lemma 5.4. If H(ρ, υ) is not cyclic as R-module, then it has the Hilbert–
Poincaré series

(5.2) Ψ(ρ, υ)(t) =
tk0(1 + 2t2 + t4)
(1 − t4)(1 − t6)

,

with corresponding dimension formula

dim H(k0 + 2k, ρ, υ) =
[
2k + 1

3

]
+ 1,

for all k ≥ 0. The minimal weight k0 is congruent (mod Z) to the cusp pa-
rameter of υ, and satisfies the inequality (2.24).

Proof. Corollary 5.3 implies that H(k0, ρ, υ) contributes exactly one gen-
erator to the M-module structure of H(ρ, υ), say F, and we know that
DF ∈ H(k0 + 2, ρ, υ) can be taken as a second generator. If H(ρ, υ) is not
cyclic as R-module, and if there is not a second generator of weight k0 + 2,
then there must be two of weight k0 + 4. But this would imply a relation
D3F = α1E6F +α2DF , in violation of Lemma 2.7. Thus the Hilbert–Poincaré
series indicated is the correct one. �

Thus, there are exactly two possible M-module structures in the four-
dimensional irreducible setting. Unfortunately, in the most general case we
are not able to say definitively which of the two structures obtains, given the
input (ρ, υ); neither are we able to determine explicitly the minimal weight
k0. We can say the following.

Corollary 5.5. Suppose that (5.1) holds for N even. Then the Hilbert–
Poincaré series of H(ρ, υ) is given by (5.2), and k0 = 3λ + N for some even
N ≥ −2.
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Proof. By the comments following (5.1), it is clear that the Hilbert–Poincaré
series is the non-cyclic one, and the inequality N ≥ −2 follows from (2.24). �

In the case where (5.1) holds for N odd, one would like to say that H(ρ, υ)
is a cyclic R-module, but again, this is not known in complete generality.
Nonetheless, in the vast majority of cases, we are able to determine quite
explicitly what occurs. To see this, we will employ the method given in the
alternative proof of Theorem 3.1 above, together with the following results
concerning the representation theory of Γ, due to Tuba and Wenzl (cf. [16],
corollary in Section 2, Main Theorem 2.9, and subsequent corollary).

Theorem 5.6 (Tuba/Wenzl). Let ρ : Γ → GLd(C) be an irreducible repre-
sentation of dimension d ≤ 5. Then the following hold:

(1) The minimal and characteristic polynomials of ρ(T ) coincide.
(2) If d �= 4, then the eigenvalues of ρ(T ) define a unique equivalence class of

irreducible representations.
(3) If d = 4, there are at most two equivalence classes of irreducible represen-

tations defined by the eigenvalues of ρ(T ).

The above theorem provides a higher-dimensional generalization of Theo-
rem 3.3, with the significant caveat that it says nothing about indecomposable
representations which might be lurking about, with the same eigenvalues at
T as the given irreducible representation ρ; note that an important conse-
quence of Theorem 3.3 is that this does not happen in dimension two. To
our knowledge, there is currently no classification theory for indecomposable
representations of Γ, in any dimension, apart from Theorem 3.3. Thus it
is not known to what extent this phenomenon occurs in dimensions 3, 4, 5,
i.e. how often an indecomposable-but-not-irreducible representation ρ′ occurs
such that ρ′(T ) = ρ(T ) for some irreducible ρ; see, however, the Appendix be-
low for an explicit example which shows that this phenomenon definitely does
occur in every dimension greater than five. In any event, this concept presents
an obstruction to the use of the MMDE theory for the classification of spaces
of four- or five-dimensional vector-valued modular forms: one may, as in the
two-dimensional setting, construct MMDEs which produce representations ρ′

such that ρ′(T ) = ρ(T ), where ρ is the given irreducible representation, but
Lemma 2.10 tells us only that ρ′ is indecomposable, so in the most general
context Theorem 5.6 might not apply. In order to overcome this deficiency in
our method, we must restrict to those irreducible representations which have
no “shadow” indecomposables. To this end, we make the following.

Definition 5.7. Let d ≥ 1. An irreducible representation ρ : Γ → GLd(C)
is T-determined if the following condition holds:

If ρ′ : Γ → GLd(C) is indecomposable and ρ′(T ) has the same eigenvalues as
ρ(T ), then ρ′ is irreducible.
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In fact, this is a very mild restriction. For example, given an arbitrary
representation ρ, if no proper sub-product of the eigenvalues of ρ(T ) is a 12th
root of 1 then ρ is T -determined; this follows from the fact that detρ is a
character χN of Γ, with χ as in (2.10). Also, Theorem 3.3 implies that every
irreducible ρ : Γ → GL2(C) with ρ(T ) semi-simple is T -determined. And for
unitary representations, of course, the notions of indecomposable and irre-
ducible coincide. In any event, for the T -determined representations we are
able to give a completely explicit classification in dimension four:

Theorem 5.8. Let ρ : Γ → GL4(C) be a T -determined representation with
ρ(T ) as in (2.5), fix a multiplier system υ for Γ, let {λ1, . . . , λ4} be the minimal
admissible set for (ρ, υ), and set λ =

∑
λj . Then exactly one of the following

holds:
(1) The relation (5.1) holds for N odd, and H(ρ, υ) is cyclic as R-module,

with minimal weight 3λ − 3.
(2) The relation (5.1) holds for N even, and H(ρ, υ) has the Hilbert–Poincaré

series (5.2), with minimal weight 3λ − 2.

Proof. Note first that, since ρ(T ) is diagonal, part one of Theorem 5.6
and the relations (2.7) imply that the λj are distinct. As in the alternate
proof of Theorem 3.1, one views the λj as the indicial roots of a unique (by
Corollary 2.4) MMDE of order 4. By part two of Theorem 2.11, we obtain a
cyclic R-module

H(ρ0, υ) = RF0 =
⊕
k≥0

H(3λ − 3 + 2k, ρ0, υ),

for some representation ρ0 which satisfies ρ0(T ) = ρ(T ); note that (5.1) is
satisfied by ρ0 for N odd. On the other hand, we may take as indicial roots
the set {λ1 + 1, λ2, λ3, λ4}, and obtain a fourth order MMDE in weight 3(λ +
1) − 3 = 3λ. From Theorem 2.2, we obtain a nonzero vector

(5.3) F1 =

⎛⎜⎜⎝
qλ1+1 + · · ·
qλ2 + · · ·
qλ3 + · · ·
qλ4 + · · ·

⎞⎟⎟⎠ ∈ H(3λ,ρ1, υ),

whose components span the solution space of this second MMDE. Note that
this second representation ρ1—arising from the |υ3λ action of Γ on the solution
space of the MMDE—satisfies (5.1) for N even. The isomorphism (2.4) then
shows that ρ0 and ρ1 are inequivalent representations, each of which is inde-
composable thanks to Lemma 2.10. Furthermore, we have ρ0(T ) = ρ1(T ) =
ρ(T ). Since ρ is T -determined, this forces ρ0 and ρ1 to be irreducible. By
part two of Theorem 5.6, we find that ρ is equivalent to exactly one of the ρj ,
thus H(ρ, υ) is isomorphic to H(ρj , υ) for j = 0 or 1; this can be determined
explicitly, of course, by examining the relation (5.1). We have already seen
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that if (5.1) holds for N odd, then ρ is equivalent to ρ0, and part one of the
theorem obtains.

On the other hand, suppose (5.1) holds for N even, so that ρ is equivalent
to ρ1. Then we already know that H(ρ, υ) has the Hilbert–Poincaré series
(5.2), so to finish the proof we need only determine the minimal weight for
this module. By (2.4), it suffices to do this for H(ρ1, υ). We know there is
a nonzero vector in H(3λ,ρ1, υ), so by (2.3) and Corollary 2.9, the minimal
weight is either 3λ or 3λ − 2. But (5.3) and Lemma 5.2 make it clear that 3λ
cannot be the minimal weight, so it must be 3λ − 2. �

6. Dimension five

In this section, we again apply Theorem 2.1, etc., to determine the possible
Hilbert–Poincaré series for spaces of vector-valued modular forms associated
to five-dimensional irreducible representations of Γ, and then restrict to the
T -determined setting in order to obtain the most explicit results possible via
our methods.

Assume for the remainder of this section that ρ : Γ → GL5(C) is irreducible
with ρ(T ) as in (2.5), fix a multiplier system υ with cusp parameter m, and
write {λ1, . . . , λ5} for the minimal admissible set of (ρ, υ). If we write each λj

in the form

λj = rj +
m

12
+ lj , lj ∈ {−1,0}

and set λ =
∑

λj , r =
∑

rj , l =
∑

lj , then we have

12λ

5
− 4 =

12
5

(
r +

5m

12
+ l

)
− 4

= m +
12(r + l)

5
− 4,

so that

12λ

5
− 4 ≡ m (mod Z) ⇔ 12(r + l) ≡ 0 (mod 5).

This shows in particular (via Theorem 2.11) that if H(ρ, υ) is cyclic as R-
module, then necessarily

12(r + l)
5

∈ Z.

Certainly this does not hold in general, and instead represents a very special
case. Note that 12r ∈ Z, since detρ is a character of Γ, and (5,12) = 1, so in
fact there is a unique N ∈ {0,1,2,3,4} such that

12(r + l + N) ≡ 0 (mod 5).(6.1)
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Thus the minimal weight for H(ρ, υ), whatever it turns out to be, will neces-
sarily be of the form

(6.2)
12(λ + N)

5
− 4 + n,

for some n ≥ − 12N
5 (this follows from Corollary 2.9), and N = n = 0 exactly

when H(ρ, υ) is cyclic as R-module.
We will see below that in some sense, the possible Hilbert–Poincaré se-

ries for H(ρ, υ) correspond to the values of N in the discussion above. The
following result starts us down this path, by determining explicitly these pos-
sibilities:

Theorem 6.1. Write H(ρ, υ) as the graded M-module (2.3). Then there
are five possibilities for the associated Hilbert–Poincaré series, namely

(6.3) Ψ(ρ, υ)(t) =
tk0PN (t)

(1 − t4)(1 − t6)
,

where k0 ≥ 12λ
5 − 4 and

P0(t) = 1 + t2 + t4 + t6 + t8,

P1(t) = 2 + 2t2 + t4,

P2(t) = 1 + t2 + 2t4 + t6,

P3(t) = 1 + 2t2 + t4 + t6,

P4(t) = 1 + 2t2 + 2t4.

Proof. The bound claimed for the minimal weight k0 is just that provided
by the modular Wronskian (2.24).

Obviously the N = 0 case occurs exactly when H(ρ, υ) is cyclic as R-
module, so assume for the remainder of the proof that this is not the case.
Then at least one of the spaces H(k0 +2k, ρ, υ), 0 ≤ k ≤ 4, contains more than
one generator for the M-module structure of H(ρ, υ). On the other hand, it
is clear from Theorem 2.1 and Corollary 2.6 that dim H(k0, ρ, υ) < 3, since
assuming otherwise would produce at least six generators in the k0, k0 + 2
spaces alone.

Suppose for the moment that H(k0, ρ, υ) is two-dimensional. By taking an
appropriate linear combination of vectors, it is clear that we may produce an
1 ≤ i ≤ 5 and a nonzero F ∈ H(k0, ρ, υ) which, when written in the notation
(2.8), satisfies ni ≥ 1. Then every vector in the subspace

V =
〈
E4D

4F,E6D
3F,E8D

2F,E10DF,E12F
〉

≤ H(k0 + 12, ρ, υ)

satisfies ni ≥ 1 as well, when written as in (2.8). We again argue via linear
functionals, as in Lemma 5.2, and (noting that dimV = 5 by Lemma 2.7)
obtain a nonzero vector G ∈ H(k0, ρ, υ) such that ΔG ∈ V . Lemma 2.7 and the
fact that ΔG ∈ V make it clear that G is not a scalar multiple of F , so we have
H(k0, ρ, υ) = 〈F,G〉. By Corollary 2.6, we know that H(k0 +2, ρ, υ) is at least
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two-dimensional, as it contains the subspace 〈DF,DG〉; thus four of the five
generators predicted by Theorem 2.1 are already accounted for. Note that the
fifth generator is found in H(k0 +2, ρ, υ) if and only if dim H(k0 +2, ρ, υ) = 3,
and in this case we would know from Corollary 2.6 that dim H(k0 +4, ρ, υ) ≥ 3.
But this arrangement would also imply that H(k0 + 4, ρ, υ) = 〈E4F,E4G〉 is
two-dimensional, since M2 = {0} and there would be no additional generators
in H(k0 + 4, ρ, υ). This contradiction shows that H(k0 + 2, ρ, υ) = 〈DF,DG〉
is in fact two-dimensional.

We claim that D2F may be taken as the fifth generator for the M-module
structure of H(ρ, υ). To prove this, it suffices to establish that D2F /∈ 〈E4F,
E4G〉, but this is clear from the fact that ΔG ∈ V , that is, assuming a relation

D2F = α1E4F + α2E4G

for some α1, α2 ∈ C and multiplying by Δ would produce a relation which
violates the conclusion of Lemma 2.7. Consequently, H(ρ, υ) has the Hilbert–
Poincaré series (6.3), with N = 1, and in all the remaining cases we should,
and will now, assume that H(k0, ρ, υ) is one-dimensional:

Suppose that dim H(k0 + 2, ρ, υ) = 1 as well, and fix any nonzero F in
H(k0, ρ, υ). Then we infer from the hypotheses and Corollary 2.6 that

H(k0, ρ, υ) = 〈F 〉, H(k0 + 2, ρ, υ) = 〈DF 〉.

We may also take D2F ∈ H(k0 + 4, ρ, υ) as a third generator, by Lemma 2.7.
Note that, since H(ρ, υ) is not cyclic as R-module, either H(k0 + 4, ρ, υ) or
H(k0 + 6, ρ, υ) contains more than one generator. In particular, if

H(k0 + 4, ρ, υ) =
〈
E4F,D2F

〉
is two-dimensional then there must be a vector G such that

H(k0 + 6, ρ, υ) =
〈
D3F,E4DF,E6F,G

〉
is four-dimensional, and D3F,G can be taken as the fourth and fifth gener-
ators of H(ρ, υ). This would mean H(k0 + 8, ρ, υ) = 〈E8F,E6DF,E4D

2F 〉 is
three-dimensional, yet (by Corollary 2.6) contains the four-dimensional sub-
space DH(k0 + 6, ρ, υ), contradiction. Thus dim H(k0 + 4, ρ, υ) ≥ 3, which
implies (again by Corollary 2.6) that dim H(k0 + 6, ρ, υ) ≥ 3. Since the three
known generators F,DF,D2F only produce the two-dimensional subspace
〈E6F,E4DF 〉 ≤ H(k0+6, ρ, υ), it is clear in this case that the Hilbert–Poincaré
series for H(ρ, υ) is (6.3) with N = 2.

Finally, suppose that dim H(k0, ρ, υ) = 1, dim H(k0 + 2, ρ, υ) = 2. By the
hypotheses and Corollary 2.6, there are generators F,G such that H(k0, ρ, υ) =
〈F 〉, H(k0 +2, ρ, υ) = 〈DF,G〉. Lemma 2.7, together with the fact that M2 =
{0}, makes it clear that D2F can be taken as a fourth generator. If DG
is not contained in the subspace 〈E4F,D2F 〉 ≤ H(k0 + 4, ρ, υ), then the five
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generators are F,G,DF,D2F,DG and we have the N = 4 case of the theorem.
Otherwise, there is a relation

DG = α1D
2F + α2E4F(6.4)

for some αj ∈ C, and to show that the N = 3 case obtains, it suffices to show
that the set {F,G,DF,D2F,D3F } is independent over M.

Assume there is a homogeneous relation in weight k0 + 2k, say

QG = M2kF + M2(k−1)DF + M2(k−2)D
2F + M2(k−3)D

3F,(6.5)

where Q ∈ M2(k−1), and Mj ∈ Mj for each j. If Q �= 0, then dividing by
Q and taking the modular derivative in (6.5) yields, after utilizing (6.4), a
relation

0 =
M2(k−3)

Q
D4F +

[
M2(k−2)

Q
+ D

(
M2(k−3)

Q

)]
D3F

+
[
M2(k−1)

Q
+ D

(
M2(k−2)

Q

)
− α1

]
D2F

+
[
M2k

Q
+ D

(
M2(k−1)

Q

)]
DF +

[
D

(
M2k

Q

)
− α2E4

]
F.

Noting that Lemma 2.7 obviously still holds when the coefficient functions
lie in the fraction field of M, we conclude that each of the coefficients in the
above equation is identically zero. It is then apparent that all the Mj must
be zero, so that no relation like (6.5) exists with a nonzero Q. But again by
Lemma 2.7, if Q = 0 in (6.5) then all the Mj are zero as well. This concludes
the proof of the theorem. �

As with the analogous statements in the previous section, the above theo-
rem serves as an existence result only, since we face in dimension five the same
obstruction discussed after the statement of Theorem 5.6: the existence of in-
decomposable representations which are not irreducible, yet have the same
eigenvalues at T as some irreducible representation. As in dimension four, in
these cases we cannot say definitively which Hilbert–Poincaré series obtains
in Theorem 6.1, nor can we determine explicitly the minimal weight. How-
ever, if we again fall back into the T -determined setting (cf. Definition 5.7),
everything is quite explicit, as we now show. We begin with an important
lemma.

Lemma 6.2. Retaining the hypotheses and notations from the beginning
of this section, make the additional assumption that ρ is T -determined, let
N ∈ {0,1,2,3,4} be the unique integer such that (6.1) holds, and set

kN =
12(λ + N)

5
− 4.

Then the following statements hold:
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(1) For each set {N1, . . . ,N5} of nonnegative integers such that
∑

Nj = N ,
there is a unique fifth order MMDE with indicial roots λj + Nj , of weight
kN , and a vector-valued modular form

(6.6) F(N1,...,N5)(z) =

⎛⎜⎝qλ1+N1 + · · ·
...

qλ5+N5 + · · ·

⎞⎟⎠ ∈ H
(
kN , ρ′, υ

)
whose components span the solution space of the MMDE. The represen-
tation ρ′ (which depends on the Nj) is equivalent to ρ, and we have

H
(
ρ′, υ

)
=
⊕

k≥nN

H
(
kN + 2k, ρ′, υ

)
,

where the integer nN satisfies the inequality nN ≥ − 6N
5 .

(2) For each integer k ≥ − 6N
5 , we have

dim H
(
kN + 2k, ρ′, υ

)
≤
{

[ 5k
6 ] + N, k ≡ 5 (mod 6),

[ 5k
6 ] + N + 1, k �≡ 5 (mod 6).

Proof. Given any appropriate set of Nj , the existence and uniqueness of
the MMDE follows from Corollary 2.4. Note that part one of Theorem 5.6,
the assumption that ρ(T ) is diagonal, and the relations (2.7) imply that the
indicial roots λj + Nj are incongruent (mod Z), thus by Theorem 2.2 we
obtain the vector F(N1,...,N5) and representation ρ′. Noting that ρ′(T ) = ρ(T ),
we find from Lemma 2.10 and the assumption that ρ is T -determined that ρ′

and ρ are equivalent. The fact that the minimal weight of H(ρ′, υ) is congruent
(mod Z) to kN follows from the discussion at the beginning of this section,
and the inequality on nN follows from the bound (2.24). This establishes part
one of the lemma.

As for part two, suppose that k ≥ − 6N
5 , and assume there is a nonzero

vector F in H(kN +2k, ρ′, υ) of the form (2.8). By Theorem 2.8, the modular
Wronskian of F is of the form W (F ) = η24(λ+n)g, where n =

∑
nj , and the

weight of the non-cusp form g is

wt(g) = 5(kN + 2k + 4) − 12(λ + n)

= 5
(

12(λ + N)
5

− 4 + 2k + 4
)

− 12(λ + n)

= 12(N − n) + 10k.

In particular, g is nonzero, so we know that wt(g) ≥ 0, �= 2, as Mk = {0} if
k < 0,= 2. We clearly have

wt(g) ≡ 2 (mod 12) ⇔ k ≡ 5 (mod 6),
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and this gives the inequalities

(6.7) n ≤
{

[ 5k
6 ] + N − 1, k ≡ 5 (mod 6),

[ 5k
6 ] + N, k �≡ 5 (mod 6).

Now one may argue using linear functionals, as in the proof of Lemma 5.2,
and conclude that the H(kN + 2k, ρ′, υ) will always contain a vector of the
form (2.8), such that the inequality

n ≥ dim H
(
kN + 2k, ρ′, υ

)
− 1

obtains. Combining this fact with (6.7) completes the proof of the lemma. �
Using this lemma, we may now establish the following theorem.

Theorem 6.3. Assume the hypotheses and conclusions of Lemma 6.2.
Then the Hilbert–Poincaré series of H(ρ, υ) is of the form

(6.8) Ψ(ρ, υ)(t) = ΨN (t) =
tkN+nN PN (t)

(1 − t4)(1 − t6)
,

with PN as in the statement of Theorem 6.1, and nN given by

nN = 0,0, −2, −3, −4 for N = 0,1,2,3,4

respectively.

Proof. Thanks to Lemma 6.2 and the isomorphism (2.4), it suffices to de-
termine the Hilbert–Poincaré series for H(ρ′, υ), where ρ′ is any representation
arising from the |υkN

action of Γ on the solution space of any MMDE with in-
dicial roots λj + Nj satisfying

∑
Nj = N . We now proceed on a case-by-case

basis, depending on N :
N = 0. By Theorem 2.11, H(ρ′, υ) is cyclic as R-module, thus the Hilbert–

Poincaré series is of the form (6.8) with N = 0, n0 = 0, as claimed.
N = 1. Choose the integers Nj as N1 = 1, Nj = 0 for 2 ≤ j ≤ 5. Let

F1 = F(1,0,0,0,0) ∈ H(k1, ρ
′, υ) denote the vector (6.6), and note that Lemma 6.2

implies that k1 is the minimal weight space for H(ρ′, υ), since −1 ≡ 5 (mod 6).
We claim that the minimal weight space H(k1, ρ

′, υ) is two-dimensional. To
verify this claim, we use the linear functional argument from Lemma 5.2
together with Lemma 2.7, and produce a vector

(6.9) G̃ = β1E4D
4F1 + β2E6D

3F1 + β3E8D
2F1 + β4E10DF1 + β5E12F1

in H(k1 +12, ρ, υ) such that G = G̃
Δ is a nonzero vector in H(k1, ρ

′, υ). If there
is a relation α1F1 + α2G = 0, then multiplying by Δ and substituting with
(6.9) yields

0 = α2β1E4D
4F1 + α2β2E6D

3F1 + α2β3E8D
2F1(6.10)

+ α2β4E10DF1 + [α1Δ + α2β5E12]F1.

By Lemma 2.7, each coefficient function in (6.10) must be zero. In par-
ticular, we have α1Δ = −α2β5E12. Comparing q-expansions forces α1 = 0,
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which means α2G = 0, i.e. α2 = 0. Therefore F and G are linearly indepen-
dent, so by part two of Lemma 6.2 (with (N,k) = (1,0)), we conclude that
H(k1, ρ

′, υ) = 〈F1,G〉 is two-dimensional. Theorem 6.1 then makes it clear
that the Hilbert–Poincaré series for H(ρ′, υ) must be of the form (6.8) with
N = 1, n1 = 0.

N = 2. Set F2 = F(1,1,0,0,0) ∈ H(k2, ρ
′, υ) in (6.6). As in the N = 1 case just

treated, we use F2 to produce a nonzero vector

G′ ∈
〈
D4F2,E4D

2F2,E6DF2,E8F2

〉
≤ H

(
k2 + 8, ρ′, υ

)
such that G = G′

Δ is a nonzero vector in H(k2 − 4, ρ′, υ). Part one of Lemma 6.2
implies that the minimal weight of H(ρ′, υ) is in fact k2 − 4, and part two with
(k,N) = (−2,2) shows that H(k2 − 4, ρ′, υ) = 〈G〉 is one-dimensional. Simi-
larly, part two of the lemma with (k,N) = (−1,2) and Corollary 2.6 show
that H(k2 − 2, ρ′, υ) = 〈DG〉 is one-dimensional. Since we know from Theo-
rem 2.11 that H(ρ′, υ) is not cyclic, this information is enough to conclude,
via Theorem 6.1, that the Hilbert–Poincaré series of H(ρ, υ) is given by (6.8)
with N = 2, n2 = −2, as claimed.

N = 3. We shall be more particular in this case about our choice of indicial
roots, singling out a j1 ∈ {1, . . . ,5} such that λj1 �= k3 − 6; this is certainly
possible, since the diagonal nature of ρ(T ) and part one of Theorem 5.6 imply
that the λj are distinct. Having made this selection, we then choose distinct
j2, j3, j4, j5 ∈ {1, . . . ,5} − {j1}, and set Nj1 = Nj2 = 0, Nj3 = Nj4 = Nj5 = 1.
Using these integers, we then proceed as usual, and set F3 = F(N1,...,N5) ∈
H(k3, ρ

′, υ) in (6.6). We find, using the linear functional argument, a vector

G ∈
〈
D3F3,E4DF3,E6F3

〉
≤ H

(
k3 + 6, ρ′, υ

)
such that G1 = G

Δ is a nonzero vector in H(k3 − 6, ρ′, υ). Part one of Lemma 6.2
shows that k3 − 6 is the minimal weight for H(ρ′, υ), and part two with
(k,N) = (−3,3) shows that H(k3 − 6, ρ′, υ) = 〈G1〉 is one-dimensional. A sec-
ond application of this reasoning produces a vector

H ∈
〈
D4F3,E4D

2F3,E6DF3,E8F3

〉
≤ H

(
k3 + 8, ρ′, υ

)
such that G2 = H

Δ ∈ H(k3 − 4, ρ′, υ) has the form (2.8) with nj1 ≥ 1. Now,
setting (k,N) = (−2,3) in part two of Lemma 6.2 informs us that H(k3 −
4, ρ′, υ) is at most two-dimensional, and we claim that in fact H(k3 − 4, ρ′, υ) =
〈DG1,G2〉 is exactly two-dimensional. To see this, we must show that no
relation DG1 = αG2 exists, with α ∈ C. Writing G1 in the form (2.8) and
examining the modular Wronskian W (G1), we find from the bound (2.23)
that nj = 0 for 1 ≤ j ≤ 5 in (2.8). Furthermore, because of the way we chose
j1, it follows directly from the definition of the modular derivative that when
we write DG1 in the form (2.8), we again have nj1 = 0. On the other hand, by
definition we know that G2, when written as (2.8), satisfies nj1 ≥ 1. Therefore
DG1 �= αG2 for any α ∈ C, and our claim about H(k3 − 4, ρ′, υ) is verified. Part



VECTOR-VALUED MODULAR FORMS OF DIMENSION LESS THAN SIX 1293

two of Lemma 6.2 with (k,N) = (−1,3) and Lemma 2.7 show that H(k3 −
2, ρ′, υ) = 〈D2G1,E4G1〉 is two-dimensional, and this is enough information
to establish that H(ρ′, υ) has the Hilbert–Poincaré series (6.8) with N = 3,
n3 = −3, as claimed.

N = 4. Set F4 = F(1,1,1,1,0) ∈ H(k4, ρ
′, υ) in (6.6). We find, as usual, a

vector
G ∈

〈
D2F4,E4F4

〉
≤ H

(
k4 + 4, ρ′, υ

)
such that G1 = G

Δ is a nonzero vector in H(k4 − 8, ρ′, υ). Part one of Lemma 6.2
implies that k4 − 8 is the minimal weight for H(ρ′, υ), and part two with
(k,N) = (−4,4) shows that H(k4 − 8, ρ′, υ) = 〈G1〉 is one-dimensional. Similar
to the N = 3 case above, let us fix an i1 ∈ {1, . . . ,5} such that λi1 �= k4−8

12 .
Using this i1 to define the appropriate linear functionals, we may locate a
vector

H ∈
〈
D3F4,E4DF4,E6F4

〉
≤ H

(
k4 + 6, ρ′, υ

)
such that G2 = H

Δ is a nonzero vector in H(k4 − 6, ρ′, υ) which, when written
in the form (2.8), has the property that ni1 ≥ 1. Once again, it then follows
directly from the definition of the modular derivative that DG1 and G2 are
linearly independent, and part two of Lemma 6.2 implies (using (k,N) =
(−3,4)) that H(k3 − 6, ρ′, υ) = 〈DG1,G2〉 is two-dimensional. We iterate this
logic one last time, defining an i2 ∈ {1, . . . ,5} − {i1} such that λi2 �= k4−6

12 , and
using this i2 we define the appropriate linear functionals to produce a vector

G̃ ∈
〈
D4F4,E4D

2F4,E6DF4,E8F4

〉
≤ H

(
k4 + 8, ρ′, υ

)
such that G3 = G̃

Δ is a nonzero vector in H(k4 − 4, ρ′, υ), with the property
that, when written in the form (2.8), we have nj ≥ 1 for j = i1, i2. Using
(k,N) = (−2,4) in part two of Lemma 6.2 shows that H(k4 − 4, ρ′, υ) is at
most three-dimensional, and we claim that this bound is realized, that is,

H
(
k4 − 4, ρ′, υ

)
= 〈E4G1,DG2,G3〉.

To verify this, assume there is a relation

(6.11) α1E4G1 + α2DG2 + α3G3 = 0

for some αj ∈ C. Now, it follows directly from the definition of G1 and the
bound obtained from Theorem 2.8 that when G1 is written in the form (2.8),
we have nj = 0 for 1 ≤ j ≤ 5. Similarly, when G2 is written in this form we
have ni1 = 1 and nj = 0 otherwise, and for G3 we find that ni1 = ni2 = 1 and
nj = 0 otherwise. From this information, one sees that the jth component of
the left-hand side of (6.11) is of the form(

α1aj(0)qλj + · · ·
)

(6.12)

+
(

α2bj(0)
(

λj + δj,i1 − k4 − 6
12

)
qλj+δj,i1 + · · ·

)
+
(
α3cj(0)qλj+nj + · · ·

)
,
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where aj(0)qλj , bj(0)qλj+δj,i1 , cj(0)qλj+nj denote the leading terms of G1,
DG2, G3, respectively, and nj is as stated above for G3. Setting j = i1
in (6.12), we find that α1 = 0, since ai1(0) �= 0 and the second and third
expansions in (6.12) have no qλi1 term. Similarly, the j = i2 version of (6.12)
shows that α2 = 0, since we now know that α1 = 0, the second expansion in
(6.12) has leading term qλi2 , and the third has leading term qλi2+1. But then
α3 = 0 also, and this proves that H(k4 − 4, ρ′, υ) is three-dimensional. We
now have have enough information to see that {G1,DG1,G2,DG2,G3} forms
a set of free generators for H(ρ′, υ) as M-module, so that the Hilbert–Poincaré
series for H(ρ′, υ) is of the form (6.8), with N = 4, n4 = −4. �

Although we omit them here in favor of concision, we note that explicit M-
bases have been computed for the N = 1,2,3 cases of Theorem 6.3, and may
be found in [11, Secs 4.5.2-4.5.4]. Similarly, one may find in loc. cit. explicit
formulas for the dimensions of the various spaces H(k, ρ, υ); of course this
information may be also be obtained directly from the given Hilbert–Poincaré
series and the classical formula for the dimension of Mk.

Appendix: Cusp forms and modular differential equations

One way of seeing why Definition 5.7 is not frivolous in arbitrary dimension
is to examine the effect of cusp forms on the MMDE theory reviewed in
Section 2.2. For concreteness, we focus on dimension six. Because M12 =
CE12 ⊕ CΔ, one observes that the arbitrary MMDE of order six is of the form
(L + cΔ)[f ] = 0, where L is a sixth order Eisenstein operator (2.14), and c
an arbitrary complex number. Now, Lemma 2.3 states that for any set Λ
of six complex numbers, there is a unique Eisenstein operator LΛ, such that
the MMDE LΛ[f ] = 0 has the indicial roots Λ. Recall (cf. [6]) that if this
MMDE is written in the form (2.13), the indicial polynomial (whose roots
are the indicial roots of (2.13)) is determined by the constant terms of the
holomorphic functions gj(q). But for any c ∈ C, cΔ has constant term 0. Thus
we find that for each set Λ, every operator in the family {LΛ + cΔ | c ∈ C} has
Λ as its set of indicial roots. Using this fact, it is easy to construct irreducible
representations of dimension six which are not T -determined:

For example, let Λ = {r1, . . . , r5} be any set of distinct real numbers satis-
fying 0 < rj < 1 for each j, such that no proper sub-sum of the rj is of the
form x

12 , x ∈ Z, and such that r =
∑

rj = 5
2 . (For example, one may choose

Λ = { 2
22 , 5

22 , 8
22 , 19

22 , 21
22 }.) Using these rj as indicial roots, one obtains by Corol-

lary 2.4 a unique Eisenstein operator in weight (by Theorem 2.8) 12r
5 − 4 = 2,

of the form
LΛ = D5

2 + α4E4D
3
2 + · · · + α10E10.

For each c ∈ C, consider the operator

Lc = LΛD0 + cΔ = D6
0 + α4E4D

4
0 + · · · + α10E10D0 + cΔ,
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and the associated representation ρc : Γ → GL6(C), arising from the |0 action
of Γ on the solution space Vc of the MMDE Lc[f ] = 0, as afforded us by
Theorem 2.2. Recalling that the solution space of Dkf = 0 is spanned by η2k,
one sees immediately that any constant function will be a solution of L0[f ] = 0,
thus the solution space V0 contains a one-dimensional subspace M0 = C of
functions which are invariant under |0. In particular, the representation ρ0 is
indecomposable (by Lemma 2.10) but not irreducible.

As mentioned above, the indicial roots of Lc[f ] = 0 will be the same for
any c ∈ C, and it is clear that the indicial roots of L0[f ] = 0 are {0, r1, . . . , r5}:
The solutions of L0[f ] = 0 are exactly the functions {f | LΛ[D0f ] = 0}, and
if f = qλ + · · · , then D0f = q df

dq = λqλ + · · · , so either λ = 0 or the solution
f satisfying L0[f ] = 0 has the same leading exponent as the solution g =
D0f satisfying LΛ[g] = 0. In particular, for any c ∈ C we have, say, ρc(T ) =
diag{1,e(r1), . . . ,e(r5)}.

We claim that ρc is irreducible for any c ∈ C
∗. To see this, observe that

for any c, the set {0, r1, . . . , r5} of indicial roots of Lc has the same sub-sum
property as Λ, with the obvious exceptions 0 = 0

12 and
∑

rj = 5
2 . But any

proper invariant subspace of a solution space Vc must correspond to some
proper sub-sum of indicial roots of the form x

12 , since this subspace defines
a sub-representation of Γ. Thus for any c ∈ C, the only possibilities are that
the proper invariant subspace of Vc is one-dimensional, and corresponds to
the single indicial root 0, or that it is five dimensional, and corresponds to the
sub-sum 5

2 =
∑

rj . In the former case, the invariant subspace V must again
consist of holomorphic modular forms of weight 0 (since it must be invariant
under |0 and is one-dimensional), so that V = M0 = C again consists of the
constant functions. But clearly a constant function solves Lc[f ] = 0 exactly
when c = 0 (since these functions already satisfy LΛD0[f ] = 0), thus the former
case is impossible. In the latter case, the invariant subspace V yields a sub-
representation ρ : Γ → GL5(C) which is evidently irreducible, and has the
property that ρ(T ) and ρΛ(T ) have the same eigenvalues, where ρΛ denotes
any representation associated to the MMDE LΛ[f ] = 0. Thus ρ ∼ ρΛ, by
Theorem 5.6. But H(ρΛ,1) is a cyclic R-module with minimal weight 2,
by Theorem 2.11, whereas there is a nonzero vector F ∈ H(0, ρ,1), whose
components form a basis of the invariant subspace V . This is a contradiction,
in light of the isomorphism (2.4). Thus the latter case is also ruled out, and
our claim is verified, that is, ρc is irreducible for each c ∈ C

∗.
Along the same line of reasoning, there is one more important aspect of

this example which must be mentioned. By Theorem 2.11, each space H(ρc,1)
is a cyclic R-module RFc, where the minimal weight vector Fc ∈ H(0, ρc,1)
has components which span the solution space Vc of the MMDE Lc[f ] = 0. In
particular, each space H(0, ρc,1) = 〈Fc〉 is one-dimensional. Using this fact, it
is easy to see that ρc1 is equivalent to ρc2 if, and only if, c1 = c2. This follows
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directly from the isomorphism (2.4): If ρc1 ∼ ρc2 , then there is a U ∈ GL6(C)
such that UFc1 = αFc2 for some α ∈ C, and this implies that every component
of Fc2 is a solution of Lc1 [f ] = 0 and vice-versa. Clearly this happens if, and
only if, c1 = c2.

Finally, we point out that this example obviously generalizes to any dimen-
sion/order greater than 5, since there will always be cusp forms available to be
utilized in this same manner. Indeed, it is hoped that a deep understanding of
this type of example may eventually lead to some sort of progress in solving the
general problem of classifying irreducible (or, even better, indecomposable)
representations of Γ in arbitrary dimension.

We summarize the above discussion by recording the following.

Proposition A.1. In each dimension d ≥ 6, there exists a one parameter
family of inequivalent indecomposable, T -unitarizable representations{

ρc : Γ → GLd(C) | c ∈ C
}

with the following properties:

(1) For every c1, c2 ∈ C, ρc1(T ) = ρc2(T ).
(2) ρc is irreducible if, and only if, c ∈ C

∗.

This proposition gives an indication of just how spectacularly the results
of [16] fail to be true in dimension greater than five; see also Remark 2.11.3,
loc. cit.
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