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SYMMETRY IN TENSOR ALGEBRAS OVER
HILBERT SPACE

PALLE E. T. JORGENSEN AND ILWOO CHO

Abstract. This paper deals with three issues: (1) Unitary rep-
resentations U of a scale of (finite and infinite dimensional) non-
compact Lie groups G(H) built on a fixed complex Hilbert space

H; and their covariant systems. Our computations for these rep-
resentations make use of the associated Lie algebras. (2) The

covariant representations involve the C∗-algebras going by the

names, the Toeplitz algebras, and the Cuntz algebras. (3) An

essential result which also is used throughout is our computa-
tion of the commutant of the unitary representation U of G(H)

mentioned in (1). For a fixed Hilbert space H, we apportion the
commutant as a specific projective limit-algebra of operators.

1. Introduction

While our study is motivated by free probability in the sense of Voiculescu
(see [27]), our results have wider scope and can be formulated based on just
fundamental notions from Hilbert space. Our present purpose is to study a
number of symmetries implied by a free tensor operations applied to a fixed
complex Hilbert space. The kinds of tensor algebras in turn have roots in
the study of quantum fields in mathematical physics; in addition to topics
of a more recent vintage: Free probability and the study of noncommutative
random variables. The notion of “freeness” or “free independence” in this
context is now widely used as an analogue or extension of the better known
and classical notion of “independence” as used in statistics.
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Mathematically, it entails free products. This was initiated by Voiculescu
and motivated in turn by a number of long standing open problems in op-
erator algebra theory, especially the free group factor isomorphism problem,
an important unsolved problem dating back to John von Neumann: Given a
free group Fn on some number n of generators, and consider the group von
Neumann algebras L(Fn), generated by Fn (each is a type II 1-factor). For
different values of n, for examples 2 and 3, are the two von Neumann alge-
bras ∗-isomorphic? This problem in turn is analogous to Tarski’s free group
problem: Will two different non-Abelian finitely generated free groups have
the same elementary theory?

Until now, the following is known by Radulescu (see [23]): Either (i) or (ii)
holds true, where

(i) L(Fn) is ∗-isomorphic to L(F∞), for all n ∈ N \ {1},
(ii) L(Fn) and L(Fm) are not ∗-isomorphic, whenever n �= m in N.

Because of connections to a number of applications ([28], and [25]; for
example, random matrix theory, symmetries; [3], [4], and [6]; for example,
groupoid theory, and groupoid dynamical systems; [5], and [29]; for example,
combinatorics, representation theory, which are our present focus), and large
deviations in statistics, these classical questions have found a recent revival.

1.1. Overview. The study of groups of automorphisms of the Toeplitz al-
gebras and their quotients, the Cuntz algebras, was initiated with ideas of
Voiculescu (see [26]). Our present study builds on this and explores its sig-
nificance in the study of representations of certain non-compact Lie groups.
Here, we think of these representations by automorphisms, and covariant C∗-
algebraic systems.

In Voiculescu’s work, the motivation came from free probability theory.
But the implications are wider, for example in the study of Krein spaces
(see [1], [7], [30]). To see this, consider the non-compact Lie group U(H,1),
defined from a fixed C-Hilbert space H . Adjoin one dimension and consider
H × C, and the group of invertible linear transformations action on H × C,
and preserving the quadratic form

Q(h, z) = ‖h‖2 − |z|2 for all (h, z) ∈ H × C.

However, when H is infinite-dimensional, this group and its Lie algebra
plays a prominent role in quantum field theory; starting with the paper by D.
Shale (see [24]).

It was taken up again in [11] (reprinted in 2008 by Dover), and we refer to
this book for additional citations.

Our general framework involves both the theory of C∗-algebras, and a
particular covariant system built with a universal representation. The repre-
sentation is of a certain Lie group U(H,1) and a C∗-algebra T (H) defined
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directly from a given Hilbert space H . Our representation system is univer-
sal in the sense that it includes more familiar representations such as those
arising in the relations known as CCR and CAR from physics. But our frame-
work also allows for deformations. Below is a rough out line, with historical
perspective, of some main ideas.

We begin with some general observation about q-relations (e.g., [3], [15],
[16]), C∗-algebras (e.g., [17]), and representations (e.g., [11]).

1.2. Applications. Mathematical models in physics (quantum theory, quan-
tum fields, elementary particles, and quantum statistical mechanics) involve
systems of generators and relations of operators in Hilbert space, the best
known of them are CCRs for Boson, and CARs for Fermions; standing for
canonical commutation/anti-commutation relations.

Starting with a choice of a complex Hilbert space H , we build a quan-
tization functor: Fock space, C∗-algebras, and representations. If dimH is
finite, we have the Stone–von Neumann uniqueness theorem (e.g., [11]) from
the theory of unitary representations of Lie groups (in this case, Heisenberg
groups). Specially, we get uniqueness of the representation up to unitary
equivalence. So, when H is fixed, there is a canonical C∗-algebra, and repre-
sentations given by an assigned value of a quantum number. “Canonical” is
the C in CCR: canonical commutation relations. This simple picture fails if
dimH = ∞; everything changes.

In more detail, for infinite dimensional Hilbert space H , the conclusion
of the Stone–von Neumann uniqueness theorem is then no longer valid. But
isomorphism class of the C∗-algebra is the same: Still the CCR-C∗-algebra,
often called CCR(H) is unique as a C∗-algebra up to ∗-isomorphism, even
though for infinite dimensional H there is a multitude of inequivalent unitary
irreducible representations; starting with all those from quantum field the-
ory. Without this non-uniqueness, there would be no physics of fields and of
quantum statistical mechanics!

So, for the q-C∗-algebras, work with the first named author and Werner
et al. (e.g., [15], and [16]) yields that for a certain range of q, we have q-
commutation relations and an associated family of C∗-algebras A(q). In these
papers, they show that when the range of q is suitably restricted, there is just
a single C∗-isomorphism class, but as we vary the value of the parameter q,
the associated unitary representations are certainly mutually inequivalent in
the sense of the familiar notation of unitary equivalence for unitary represen-
tations in Hilbert space.

The special feature about C∗-algebras, is that they have their own cate-
gory of morphisms and isomorphisms (e.g., [17]). One can talk about them
independently of their representations; even independently of any mention
of Hilbert space if we return to the axioms of Gelfand, Segal, and Kadison.
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Isomorphism in the context of C∗-algebras simply means isomorphism in the
category of C∗-algebras.

Now, to the unitary representations of the Lie group U(H,1): They act
in the unrestricted Fock space F (H), built over H , and they are not irre-
ducible there. In fact, it is possible to give a canonical isomorphism between
a family of certain martingales on the one hand, and the commutant of our
U(H,1)-unitary representations on F (H) are reduced by the symmetric ten-
sors inside F (H), and by the anti-symmetric tensors (see Section 5 below).
That yields what we call the CCRs and the CARs. And we can also recover
the q-commutation relations by a different projection in the commutant of the
global U(H,1)-unitary representations (e.g., [12], [13], and [14]).

The role of various Fock spaces in the study of representations of the Cuntz
and Toeplitz algebras have been explored in a number of recent papers, but
addressing other questions: [2], [8], [9], [10], [18], [19], [21], [22], and [20].

2. Definitions and background

The purpose of this section is to introduce the precise definition of the ten-
sor categories to be used later. Our starting point is a given (and fixed) Hilbert
space H . From H , we build the Hilbert space F (H), as a Hilbert-orthogonal
sum of n-fold tensors, with n = 0,1,2, . . . . We are concerned with three dual
families of operators on F (H), left tensor multiplication by elements in H , the
operators of right-tensoring in F (H), and finally the annihilatioin operators
on F (H). Each operator in the three families is indexed by the vectors from
H ; and for each one, there is an adjoint operator, where the adjoint operation
is defined from the inner product on F (H).

In a physics context, the Hilbert space F (H) is called the Fock space for
Boltzmann statistics; unrestricted. This is by contrast to the more familiar
two cases of the Fock space of symmetric tensors (Bosons), and antisymmetric
tensors (Fermions). After developing our theory for the unrestricted case, we
compare to the symmetric and antisymmetric cases.

The first two families consist of bounded operators, and so they generate re-
spective C∗-algebras. However, the annihilation operators and their adjoints,
the creation operators, are unbounded. Our main interest is in the unbounded
operators, and their commutation relations; but we will be studying them with
the use of covariant representations involving the two C∗-algebras.

Throughout this paper, let H be C-Hilbert space, and B(H), an algebra
of all (bounded linear) operators on H . Define the Fock space F (H) by

F (H) def= CΩ ⊕
( ∞⊕

n=1

H⊗n

)
,

where H⊗n means the tensor product Hilbert space of n-copies of H , for
n ∈ N, and where Ω means the vacuum vector, satisfying that ‖Ω‖ = 1. Then,
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on this new Hilbert space F (H), we define the left tensor operator l(h) by

l(h)t def= h ⊗ t for all t ∈ F (H)

for all h ∈ H . Similarly, we can define the right tensor operator r(h) by

r(h)t def= t ⊗ h for all t ∈ F (H)

for all h ∈ H . Then we can construct the C∗-algebra Al by the C∗-algebra

C∗({l(h) : h ∈ H
})

,

generated by the left tensor operators l(h), for all h ∈ H . Similarly, the C∗-
algebra Ar is constructed as the C∗-algebra

C∗({r(h) : h ∈ H
})

,

generated by the right tensor operators r(h), for all h ∈ H . By definition, the
C∗-algebras Al, and Ar are the C∗-subalgebras of B(F (H)).

It is easy to check that:

l(h)∗Ω = r(h)∗Ω = 0, the zero vector of H.

Under the above settings, define an operator a(h) on F (H), for a fixed
vector h ∈ H , by

a(h)Ω def= 0,

and

a(h)(k1 ⊗ · · · ⊗ kn) def=
n∑

i=1

(
〈h,ki〉k1 ⊗ · · · ⊗ ki−1 ⊗ ki+1 ⊗ · · · ⊗ kn

)
for all k1 ⊗ · · · ⊗ kn ∈ H⊗n ⊂ F (H), for all n ∈ N.

Definition 2.1. The operator a(h), introduced in the above paragraph, is
called the annihilation operator on F (H), induced by h ∈ H .

On the Fock space F (H), we define the annihilation operator a(h), for a
fixed vector h ∈ H . Thus, it has its unique adjoint a(h)∗.

Definition 2.2. Let a(h) be the annihilation operator on F (H), induced
by h ∈ H . Denote the adjoint a(h)∗ of a(h) by a+(h). Then this operator
a+(h) is said to be the creation operator induced by h.

By definition, we can check that

a+(h)Ω = h for all h ∈ H,

and
a+(h)(k1 ⊗ · · · ⊗ kn) = h ⊗ k1 ⊗ · · · ⊗ kn

+
n−1∑
i=1

k1 ⊗ · · · ⊗ ki−1 ⊗ h ⊗ ki+1 ⊗ · · · ⊗ kn

+ k1 ⊗ · · · ⊗ kn ⊗ h
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for all k1 ⊗ · · · ⊗ kn ∈ H⊗n ⊂ F (H).
Let A, B be operators in B(H). Define the operator Γ(A), by the operator

on F (H),

Γ(A) def=
∞∑

n=0

Γn(A),

with
Γ0(A) def= 1 ∈ CΩ ⊂ F (H),

and
Γn(A)(k1 ⊗ · · · ⊗ kn) def= Ak1 ⊗ · · · ⊗ Akn

for all k1 ⊗ · · · ⊗ kn ∈ H⊗n ⊂ F (H), for all n ∈ N.
Also, define the operator dΓ(B) by the operator on F (H),

dΓ(B) def=
∞∑

n=0

dΓn(B)

with
dΓn(B) def= 0, the zero operator on F (H),

and

dΓn(B)(k1 ⊗ · · · ⊗ kn)

def=
n∑

i=1

(
k1 ⊗ · · · ⊗ ki−1 ⊗ (Bki) ⊗ ki+1 ⊗ · · · ⊗ kn

)
for all k1 ⊗ · · · ⊗ kn ∈ H⊗n ⊂ F (H), for all n ∈ N.

In particular, the operator dΓ(I) on F (H) is called the number operator.
We denote the number operator dΓ(I) by N .

Now, let’s consider the Dirac operator formalism. Let 〈, 〉 be the inner
product on a given Hilbert space H . For a fixed vector h ∈ H , define the
Dirac operators |h〉, and 〈h| by

|h〉h′ def= hh′ for all h′ ∈ H,

and hence, this operator |h〉 is an operator on H .

〈h|h′ def=
〈
h,h′〉 for all h′ ∈ H,

and hence, this operator 〈h| is in fact a linear functional contained in the
dual space H∗ = B(H,C) of H . With the Dirac vectors |h〉, and 〈h|, we can
construct the rank-one operator |h〉〈k|, for h, k ∈ H , determined by

|h〉〈k|x def= 〈k,x〉h for all x ∈ H.

We will need the formula,

trace
(
A|h〉〈k|

)
= 〈k,Ah〉

valid for all A ∈ B(H).
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By definitions, we can obtain the following fundamental lemma.

Lemma 2.1. Let h, k ∈ H . Then
(2.1) a+(k)a(h) = N dΓ(|k〉〈h|),
(2.2) a(h)a+(k) = 〈h, k〉(N + 1Al

) + (N + 1Al
)dΓ(|k〉 〈h|),

(2.3) l(h)∗l(k) = 〈h, k〉1Al
,

(2.4) a(h)l(k) = 〈h, k〉1Al
+ dΓ(|k〉〈h|),

(2.5) [a+(h) − a(h), l(k)] = l(h)l(k) − 〈h,k〉1Al
,

where 1Al
is the identity element in Al, where

[A,B]
def
= AB − BA

for A, B ∈ Al.

Proof. All five formuli concern operator identities for operators which act
on the Fock space F (H). We will prove them by induction, starting with the
case where n = 0 on F (H), that is, evaluation the operators on the vacuum Ω.

Under our definition, check that the operators on left sides of formuli yield
the same when applied to Ω: For (2.1), the left side yield the zero vector 0 in
F (H), i.e.,

a+(k)a(h)Ω = 0.

For (2.2), the two sides yield 〈h, k〉Ω. Similarly, when the operators in
(2.3), and (2.4) are applied to Ω, we get 〈h, k〉Ω.

Then two operators in (2.5), when applied to Ω, yield

h ⊗ k − 〈h,k〉Ω.

Now, make the induction hypothesis, that the formuli (2.1) through (2.5)
hold up to n, that is, that the induction hold on the closed subspaces Fm(H),
for all m ≤ n, where

Fm(H) def= H⊗m.

To get to n + 1, consider vectors s ⊗ t, where s ∈ H , and t = t1 ⊗ · · · ⊗ tn ∈
Fn(H). Then we compute the left-hand side in (2.1) as follows:

a+(k)a(h)(s ⊗ t) = a+(k)
(

〈h, s〉t + s ⊗ a(h)t
)

= 〈h, s〉a+(k)t + k ⊗ s ⊗ a(h)(t) + s ⊗ a+(k)a(h)t.

By the induction hypothesis, we may have that:

a+(k)a(h)t = ndΓ
(

|k〉〈h|
)
,

and
|k〉〈h|s = 〈h, s〉k.

Thus
a+(k)a(h)(s ⊗ t)

= (n + 1)
(
Γ
(

|k〉〈h|
)
s ⊗ t + s ⊗ dΓ

(
|k〉
〈
h|t
))

= (n + 1)dΓ
(

|k
〉

〈h|
)
(s ⊗ t),
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which is the desired conclusion.
The same process applies to the induction step in the verification of (2.2),

and details are left to the reader.
For the left-hand side in (2.3) applied to s ⊗ t, we get that

l(h)∗l(h)(s ⊗ t) = l(h)∗(k ⊗ s ⊗ t)
= 〈h,k〉s ⊗ t,

which is the desired conclusion.
We now turn to the left-hand side in (2.5), applied to s ⊗ t. We get that(

a+(h) − a(h)
)
l(k) − l(k)

(
a+(h) − a(h)

)
− dΓ

(
|k〉 〈h|

)
= a+(h)l(k) − 〈h,k〉1Al

− l(k)a+(h) + l(k)a(h),

by (2.4), and hence[
a+(h) − a(h), l(k)

]
(s ⊗ t) = h ⊗ k ⊗ s ⊗ t − 〈h,k〉s ⊗ t. �

Definition 2.3. Let H be a “finite-dimensional” Hilbert space, and let
Al = C∗({l(h) : h ∈ H}) be the left-C∗-algebra, generated by the left tensor
operators. Let {ej : j = 1, . . . , n = dimH} be the orthonormal basis (ONB, or
Hilbert basis) in H . Set

T
def=

n∑
i=1

l(ei)l(ei)∗,

and let
K def= the two-sided ideal in Al, generated by 1Al

− T.

Let

(2.6) ψ : Al → Al/K

be the canonical (quotient) ∗-homomorphism. We set

O(H) def= Al/K,

and
s(h) def= ψ

(
l(h)
)

for all h ∈ H.

Notice that the C∗-algebra O(H) is the Cuntz algebra, that is, it is a C∗-
algebra, determined by two universal axioms:

(2.7) s(h)∗s(h) = 〈h, k〉I , and
(2.8)

∑n
i=1 s(ei)s(ei)∗ = I ,

where I is the identity operator. Remark that, if dimH = ∞, then we set

O(H) def= Al.
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Proposition 2.2. Let D = Dl be the unital ∗-algebra generated by the
elements l(h), and l(k)∗, for h, k ∈ H , as a ∗-subalgebra of Al. For x ∈ D,
define

(2.9) δh(x)
def
=
[
a+(h) − a(h), x

]
for a fixed h ∈ H . Then

(i) δh is a ∗-derivation, that is,

δh(1) = 0, and δh

(
x∗)=

(
δh(x)

)∗
,

and

(2.10) δh(xy) = δh(x)y + xδh(y)

for x, y ∈ D.
(ii) δh, for h ∈ H , passes to the quotient D/K and defines a densely defined

∗-derivation δ̃h on the Cuntz algebra O(H), satisfying that:

(2.11) δ̃h

(
ψ(x)

)
= ψ
(
δh(x)

)
for all x ∈ D.

Proof. Denote the operator a+(h) − a(h) by Hh, for h ∈ H , as in (2.9).
Then this operator Hh is skew-symmetric, in the sense that

(2.12) 〈Hhξ, η〉F (H) = −〈ξ,Hhη〉 F (H)

for all finite tensor elements ξ, η ∈ F (H). For operator graphs, this reads

Hh ⊆ −H∗
h.

It follows that

(2.13) δh

(
x∗)=

(
δh(x)

)∗

for all x ∈ D. In particular, from (2.5), we obtain that

(2.14) δh

(
l(k)∗)= l(k)∗l(h)∗ − 〈h,k〉1Al

for all k ∈ H , where z means the conjugate of z, for all z ∈ C. By (2.5),

(2.15) δh(x) = [Hh, x] = adHh(x) = Hhx − xHh,

is well-defined, for h ∈ H . So, we conclude that δh passes to the quotient
with (2.6), and (2.11). Indeed, we must check that the idea K is invariant
under the commutator, as in (2.15). But, by using (2.9), (2.10), and by the
definition,

T =
n∑

i=1

l(ei)l(ei)∗,

we can obtain that

δh(T − 1) = l(h)(T − 1) + (T − 1)l(h)∗ ∈ K,

and therefore,

δh

(
x(T − 1)y

)
= δh(x)(T − 1)y + xδh(T − 1)y + x(T − 1)ψδh(y),
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in K, where we used (2.10) in the last derivation.
It follows that δ̃h, given in (2.11), is a densely defined derivation on O(H).

However, note that the formula of the formula (2.9) is not valid for δ̃h. �

To proceed our works, we introduce the following new concepts.

Definition 2.4. Let X be a normed space, and let L be a linear operator
on X . Let x ∈ X be an element such that Lnx is well defined, for all n ∈ N,
inductively;

Ln+1x = L
(
Lnx

)
for n ∈ N.

We say that x is an analytic element, if there are constants C and D (< ∞)
such that

(2.16)
∥∥Lnx

∥∥≤ C · n! · Dn for all n ∈ N.

If a fixed element x ∈ X is analytic, we say that the quantity

r
def=

1
D

is the radius of convergence for x. Here, notice that the constant value D
depends on x.

We can obtain the following theorem.

Theorem 2.3. Let h ∈ H be fixed. Then
(i) The two derivations δh and δ̃h have dense algebras consisting of ana-

lytic elements.
(ii) The operator Hh, in the sense of (2.9), has a dense space of analytic

vectors in F (H).

Proof. (i) It follows from (2.10), and (2.13) that the analytic element for a
∗-derivations form a ∗-algebra. Thus, to prove the statement (i), it is enough
to show that every l(k) is an analytic element for the derivation δh. The
analytic property will pass to the quotient via (2.11) and (2.15). We will
establish the following estimate by induction:

(2.17)
∥∥δm

h

(
l(k)
)∥∥≤ m!

(
2‖h‖H

)m‖k‖H

for all k ∈ H , and m ∈ N, where ‖ · ‖H means the Hilbert norm on H , induced
by the inner product 〈, 〉 on H . First, note that the operator l(k) is bounded.
For its operator norm, we have that

(2.18)
∥∥l(k)

∥∥2 =
∥∥l(k)∗l(k)

∥∥=
∥∥〈k, k〉1Al

∥∥= ‖k‖2
H .

An application of (2.5) holds∥∥δh

(
l(k)
)∥∥ =

∥∥l(h)l(k) − 〈h,k〉1Al

∥∥
≤
∥∥l(h)l(k)

∥∥+
∣∣〈h,k〉

∣∣
≤
∥∥l(h)

∥∥∥∥l(k)
∥∥+ ‖h‖H ‖k‖H = 2‖h‖H ‖k‖H ,
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which is the desired estimate (2.17), for m = 1. But,

δm+1
h

(
l(k)
)

= δm
h

(
δh

(
l(k)
))

= δh

(
l(h)l(k)

)
(2.19)

by (2.15)

=
m∑

j=0

(
m

j

)
δj
h

(
l(k)
)
δm−j
h

(
l(k)
)

by (2.10), where
(
m
j

) def= m!
j!(m−j)! are the binomial coefficients, for j ≤ m ∈ N.

By using the hypothesis (2.17), and (2.18), the desired conclusion for m + 1
follows from a simple norm estimate: Each of the terms makes the summation
on the last equality of (2.19) may be estimated by

m!
(
2‖h‖H

)m+1‖k‖H ,

and there are m + 1 terms in the sum.
(ii) We now turn to the operator Hh = a+(h) − a(h), for h ∈ H , from (2.9),

(2.12), and (2.15). For x ∈ D, we apply (2.15) to the vacuum vector Ω, then
we get that

(2.20) Hh(xΩ) = xHhΩ + δh(x)Ω = xh + δh(x)Ω,

where we use the abbreviated notation xh for x ⊗ h in F (H), or equivalently,

x ⊗ h = l(x)h = r(h)x.

Indeed, the algebra D = Dl is naturally acting both as a subalgebra in Al

and as a subspace in F (H). An iteration of (2.20) yields

(2.21) Hm
h (xΩ) =

m∑
j=0

(
m

j

)
δm−j
h (x)Hj

hΩ.

The right-hand side of (2.21) satisfies that

δm−j
h (x)Hj

hΩ = l
(
δm−j
h (x)

)
,

by applying Hj
hΩ in F (H). Thus, by Lemma 2.1, we have∥∥δm−j

h (x)Hj
hΩ
∥∥

F (H)
≤
∥∥δm−j

h (x)
∥∥∥∥Hj

hΩ
∥∥

F (H)
,

where the norms are identified in the subscripts. But, in the statement (i),
we proved that there are finite estimate C1 and D1 (depending on x and h),
such that ∥∥δm−j

h (x)
∥∥≤ C1(m − j)!Dm−j

1 .

A separate induction shows that∥∥Hj
hΩ
∥∥

F (H)
≤ j!
(
2‖h‖H

)j
.

Set
D2

def= max
{
C1,D1,2‖h‖H

}
.
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Then an estimation applied to (2.21) yields∥∥Hm
h (xΩ)

∥∥
F (H)

≤ m!Dm
2 ,

and the proof of the statement (ii) is complete. �

3. C∗-algebras and representations

Starting with a fixed Hilbert space H , we build in a natural way two
C∗-algebras. Their construction is facilitated with the use of the Fock space
F (H). The two C∗-algebras then are generated by the operations of tensoring
respectively on the left, and on the right, by elements from H . This also allows
us to realize the Cuntz C∗-algebra as a quotient by an ideal in the left C∗-
algebra (also, called the Toeplitz C∗-algebra over H).

All three C∗-algebras, and their covariant representations, will be needed
in our analysis of symmetries of the respective infinite tensor algebras, and
the details are carried our in subsequent sections.

We already mentioned the three C∗-algebras Al, Ar, and O(H), built over
a fixed Hilbert space H , in Section 2. We will keep using the same definitions
throughout this section, too.

Let A be a unital C∗-algebra, and H, a Hilbert space. Define the set
Rep(A, H) by the collection of all unital ∗-homomorphisms from A to B(H),
that is,

(3.1) Rep(A, H) def=
{
π : A → B(H)|π is a unital, ∗-homomorphism

}
.

Each element π of Rep(A, H) is called a representation of A (on H). We
shall use the standard Gelfand–Naimak–Segal (GNS) construction between
states on A and cyclic representations (see, for example, [11]).

A representation π ∈ Rep(A, H) is said to be cyclic, if and only if there is
a vector Ω ∈ H, such that {

π(x)Ω : x ∈ A
}

is dense in H. When a cyclic vector Ω is known, we will assumed it to be
normalized, that is, if Ω is a cyclic vector, then it is automatically assumed
that

‖Ω‖ H = 1.

Let Ω be a cyclic vector. Then we can construct a state ωΩ on A, defined
by

(3.2) ωΩ(x) = 〈Ω, xΩ〉 H for all x ∈ A,

where 〈, 〉H means the inner product on H. Since we assumed the cyclic vector
Ω be normalized,

(3.3) ωΩ(1A) = 1.
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The GNS-construction states the converse: Every state on A is defined
from a cyclic representation π via the formula (3.2); and the representation is
unique up to unitary equivalence.

It is easy to see that the two C∗-algebras Al and Ar from Section 2 may be
specified via two states, and separate applications of the GNS construction.
Note that, if

(3.4) ωΩ(•) = 〈Ω, •Ω〉 F (H)

is the Fock state for the vacuum vector Ω of F (H), and if h, k ∈ H , then

(3.5) ωΩ

(
l(h)l(k)∗)= 0,

by definition.
Assume now that {ei}n

i=1 is an ONB of the given Hilbert space H , and let

T =
n∑

i=1

l(ei)l(ei)∗

be defined as in Section 2. Then we can get that

ωΩ(T − 1Al
) = −1.

The conclusion is that ωΩ(•) does not pass to the quotient (2.6). As a
result, we see that the Cuntz algebra O(H) is not represented on F (H)!

Definition 3.1. Consider a system,

(3.6)
(
π,αt,U(t), H, A, t ∈ R

)
,

where π ∈ Rep(A, H), αt ∈ Aut(A), U(t) ∈ B(H), such that (αt)t∈R is a one-
parameter group of ∗-automorphisms of a C∗-algebra A, and (U(t))t∈R is a
one-parameter group of unitary operators on a Hilbert space H, satisfying
that: for all x ∈ A, and for all ξ ∈ H,{

limt→0

∥∥x − αt(x)
∥∥= 0, and

limt→0

∥∥ξ − U(t)ξ
∥∥

H = 0.
(3.7)

We say that the system (3.6) is a covariant dynamical system (for short,
an R-dynamical system), if

(3.8) π
(
αt(x)

)
= U(t)π(x)U(t)∗

for all x ∈ A, and t ∈ R.

Now, let’s replace the additive group R = (R,+) of a covariant dynamical
system (3.6) to an arbitrary Lie group.

Definition 3.2. Let (
π,αg,U(g), H, A, g ∈ G

)
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be a certain covariant dynamical system, where G is a Lie group, satisfying:
π ∈ Rep(A, H), αg ∈ Aut(A), U(g) ∈ B(H), and

(3.9) U(g)∗ = U
(
g−1
)

for all g ∈ G,

where g−1 means the unique (group-)inverse of g in G, and

(3.10)

{
limg→e

∥∥x − αg(x)
∥∥= 0, and

limg→e

∥∥ξ − U(g)ξ
∥∥

H = 0

for all x ∈ A, ξ ∈ H, where e ∈ G is the group identity. In this case, we assume
the covariance relation;

(3.11) π
(
αg(x)

)
= U(g)π(x)U(g)∗

for all x ∈ A, and g ∈ G. Then the system is called a G-dynamical system.

In our setting, we can obtain the following lemma.

Lemma 3.1 (See [11]). Let H be a finite-dimensional Hilbert space, and
Al be the left C∗-algebra over H , with its Fock space representation π, and
vacuum vector Ω of F (H), where, in particular,

π(h) = l(h) for all h ∈ H.

For a fixed element h ∈ H , set

(3.12) δh(•) =
[
a+(h) − a(h), •

]
.

Then there exists an R-dynamical system

(3.13)
(
π,αt,U(t), F (H),Al, t ∈ R

)
such that

lim
t→0

t−1
(
αt(x) − x

)
= δh(x), and(3.14)

lim
t→0

t−1
(
U(t)ξ − ξ

)
=
(
a+(h) − a(h)

)
ξ(3.15)

hold, for all x ∈ D ⊂ Al, and ξ ∈ π(D)Ω ⊆ F (H).

Remark 3.1. With the use of analytic elements, it is possible to make
precise sense of the following two formal power series expressions:

αt(x) = x + tδh(x) +
t2

2
δ2
h(x) + · · · =

∞∑
m=0

tm

m!
δm
h (x), and(3.16)

U(t)ξ = ξ + tHhξ +
t2

2
H2

hξ + · · · =
∞∑

m=0

tm

m!
Hm

h ξ,(3.17)

where Hh = a+(h) − a(h).
The point is that if x ∈ D, ξ ∈ π(D)Ω, and t ∈ R, sufficiently close to 0,

then the two formal series (3.16), and (3.17) converge in the respective norms.
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But, when evaluated an analytic elements, and for sufficiently small t ∈ R, the
expression

U(t)π(x)U(−t)
can be computed as a power series, and a direct verification yields

U(t)π(x)U(−t) = π
(
αt(x)

)
,

where αt(x) is as in (3.16). We leave the details of the proof of the previous
lemma to the readers (see [11]). The ingredient of the proof is the existence
of dense families of analytic elements, and analytic vectors.

Under our settings and observations, we obtain the following lemma, too.

Lemma 3.2 (See [11]). Let H be a Hilbert space, and let UH denote the
group of all unitaries on H .

For A ∈ UH , there is a unique automorphism αA on Al, such that

(3.18)

{
αA

(
l(h)
)

= l(Ah), and
αA

(
l(h)∗)=

(
l(Ah)

)∗

for all h ∈ H .

Assume that a given Hilbert space H in the above lemma is 1-dimensional.
Then we have

UH = UC

denote= U1 =
{
z ∈ C : |z| = 1

}
.

For z ∈ U1, we can get that:

(3.19) αz

(
l(h)
)

= zl(h) for h ∈ H.

We get an action of UH × U1 by automorphisms. For the group

G = UH × U1,

there is a G-dynamical system (π,αA, F (H),Al,A ∈ G), such that

(3.20) π
(
αA(x)

)
= Γ(A)π(x)Γ(A)∗

holds for all A ∈ UH (regarded as (A,1) ∈ G) and x ∈ Al, and

(3.21) π
(
αeiθ (x)

)
= eiθN π(x)e−iθN

holds for all θ ∈ R, and for all x ∈ Al.
Note that U1 is also understood as the unit circle T of C, and we will use

it as a group with Haar measure, and dual group T̂ of T is group-isomorphic
to Z. Hence, the factor eiθN in (3.21) is a unitary representation of T, and

(3.22) Pn
def=

1
2π

∫ π

−π

einθeiθN dθ

is a projection, for n ∈ N ∪ {0}. For n ∈ N ∪ {0}, the operator Pn is the
projection onto the eigenspaces of N , and hence onto the closed subspaces in
the decomposition of F (H).
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Remark 3.2. If A(t) = etB , for t ∈ R, where B satisfies B∗ = −B, then

π
(
αA(x)

)
= Γ(A)π(x)Γ(A)∗,

and
π
(
δA(x)

)
=
[
dΓ(B), π(x)

]
.

4. The Lie group U(H,1)

On starting point is a fixed Hilbert space H . The other objects will be
generated from H . We are concerned with a canonical group action in three
distinct contexts: First, as a unitary representation U , acting on the Fock
space F (H) of Boltzmann statistics-particles from physics; and at the same
time, actions on two C∗-algebras; the Toeplitz C∗-algebra T (H), and its
quotient O(H) by the ideal K, we introduced in Section 2. The actions by
automorphisms comes about via a covariant system built from the unitary
representation U .

The group G = U(H,1) represented and acting in all three instances de-
pends functorially on H . But it will be necessary to make use of its Lie
algebra in order to account for the representations and their induced groups
of automorphisms. More generally, starting with representations of Lie group
G, we get derived representations of the corresponding Lie algebra: If the rep-
resentation of G is unitary, then it follows that the individual operators (typi-
cally unbounded) are generators of strongly continuous unitary one-parameter
groups of operators. And since we build real Lie algebras from skew-adjoint
operators, we must necessarily work with “real” Lie algebras, even though
the initial Hilbert space H is complex. Rationale: We are studying the global
unitary representation U of G (from Section 3 above), acting on the Fock
space.

But we caution that the two operators a(h) and a+(h) are “not” in the
Lie algebra of G. Rather, in the differentiated representation dU applied to
the Lie algebra of G we get the difference a+(h) − a(h). The differences are
skew-adjoint, but not a(h) be itself, hence, the need for Lie algebras over reals.

When working with dU applied to the Lie algebra of G, the framework
dictates that each dU(x) is a skew-adjoint operator on F (H), for x in the
“real” Lie algebra. This is so even if H at the outset is complex.

Fix some vector h in H . Then we show that the two elements of the form
dU(x):

a+(h) − a(h), and i
(
a+(h) + a(h)

)
,

and their commutators span a copy of the 3-dimensional Heisenberg Lie alge-
bra, with i =

√
−1. Without the i as a factor in front of the sum-operator, we

would not be in the Lie algebra of skew-adjoint operators dU (the Lie alge-
bra). The convention is that the operators in this Lie algebra must generate
unitary one-parameter groups, which each of these two do.
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By contrast, in Section 6 below, we have a discussion of multiplicity of
the global unitary representation U of G. We compute the commutant of
U as it acts on F (H). Our answer is that each element in the commutant
is given by a sequence of functions (tn). Specifically, each function tn is
the system is defined on the symmetric group Sn. We prove that such a
system (tn) of functions correspond to an operator in the commutant if and
only if they satisfy a certain consistency condition as the index n varies;
the consistency condition makes (tn) a martingale. Moreover, we prove that
the correspondence between elements in the commutant and martingales is
bijective.

Before introducing the group U(H,1), we recall some preliminaries. Let G
be a fixed Lie group generating the Lie algebra G. And let

expG : G → G

be the exponential mapping from Lie theory. If G is represented as a matrix
group, then expG is the exponential mapping from linear algebra.

Remark 4.1. The properties of expG we need are the following: It maps
the Lie algebra G onto an open connected neighborhood of the group-identity
e of G;

expG(0) = e,

and
expG

(
(s + t)X

)
= expG(sX) expG(sX)

for all s, t ∈ R, for a fixed element X ∈ G. But, in general,

expG(X + Y ) �= (expG X)(expG Y )

for X , Y ∈ G.

If ρ is a strongly continuous representation of G, acting on a normed space
X , then there is a dense subspace X∞ of X , such that the operators

dρ(X)u
def= lim

t→0
t−1
(
ρ
(
expG(tX)

)
u − u

)
is well-defined, for all u ∈ X ∞, and[

dρ(X), dρ(Y )
]
= dρ

(
[X,Y ]

)
holds on X ∞, for all X , Y ∈ G.

Let V be a vector space over R, or over C, and let J be an invertible
transformation on V . Pick a non-degenerated bi-linear, or sequilinear form ϕ

on V , such that V ∗
ϕ

iso= V , where iso= means “being vector-space isomorphic.”
Set

(4.1) Q(v) def= ϕ(v, Jv) for all v ∈ V.

Then

(4.2) GQ
def=
{
g : V → V |Q(gv) = Q(v), ∀v ∈ V

}
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is a Lie group. We shall take a Hilbert space V = H × C, where H is a Hilbert
space, with

(4.3) Q
(
(h, z)

)
= ‖h‖2

H − |z|2 for all (h, z) ∈ V.

Or, equivalently, with

J =
(

1H 0
0 −1

)
,(4.4)

Q(v) = 〈v, Jv〉V for all v ∈ V,(4.5)

where 〈, 〉V means the inner product on V .
The following lemma is needed for our works.

Lemma 4.1 (See [11]). (i) The Lie group G = U(H,1) of the form Q, from
(4.3) through (4.5), consists of the following block matrices,

(4.6)
(

A h1

〈h2, • 〉H z

)
,

where A ∈ B(H), and h1, h2 ∈ H , and z ∈ C, satisfying

(4.7)

⎧⎪⎨⎪⎩
A∗h1 = zh2,

A∗A − |h2〉〈h2| = 1H ,

‖h1‖2
H − |z|2 = −1.

(ii) The group UH × U1 embeds into U(H,1), via(
A 0
0 z

)
.

(iii) The Lie algebra G, generated by the group U(H,1) consists of the
following block matrices

(4.8)
(

B h
〈h, • 〉H w

)
,

where B : H → H is linear, h ∈ H , and w ∈ C, where B, and w satisfy:

B∗ = −B, and w = −w,

that is, B is skew-Hermitian on H , and w is pure imaginary in C.
(iv) Inside the Lie algebra in the sense of (iii) has two subspaces K and P,

where

K =
{(

B 0
0 w

)∣∣∣B∗ = −B, and w = −w

}
,(4.9)

P =
{(

0 h
〈h, • 〉H 0

)∣∣∣h ∈ H

}
Hilbert= H,(4.10)
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where Hilbert= means “being Hilbert-space isomorphic.” With the Lie commu-
tator [X,Y ] = XY − Y X , we can get the followings:

(4.11) [K,K] ⊆ K, [K,P] ⊆ P, and [P,P] ⊆ K.

(v) The relation (4.11) spells out as follows:[(
0 h1

〈h1, • 〉H 0

)
,

(
0 h2

〈h2, • 〉H 0

)]
(4.12)

=
(

|h1〉〈h2| − |h1〉〈h2| ∗ 0
0 〈h1, h2〉H − 〈h1, h2〉H

)
for all h1, h2 ∈ H

Hilbert= P.

By the previous lemma, we can obtain the following corollary.

Corollary 4.2. Let H be a finite-dimensional Hilbert space and Al, F (H),
given as above, and let G be a Lie group U(H,1), that is,

G = U(H,1).

Then there exist the groups of automorphisms

(αg)g∈G ⊂ Aut(Al), and(4.13) (
U(g)

)
g∈G

⊂ B
(

F (H)
)
,(4.14)

and a unitary representation π of G, such that

(4.15) π
(
αg(x)

)
= U(g)π(x)U(g)∗

for all g ∈ G, and x ∈ Al, that is, the homomorphisms in (4.13) and (4.14)
define a G-dynamical system(

π,αg, F (H),Al, g ∈ U(H,1)
)
.

Moreover, for each one-parameter subgroup of G, the corresponding R-
dynamical system coincides with that of (3.13). Specifically,

(4.16) α

(
expG t

(
0 h

〈h, • 〉H 0

))
= etδh ,

and

(4.17) U

(
expG t

(
0 h

〈h, • 〉H 0

))
= et(a+(h)−a(h))

for all t ∈ R, and h ∈ H .

Proof. This follows from the existence of analytic vectors, and the existence
of the R-dynamical system in the sense of (3.13), and the above lemma. We
further rely on standard tools from representation theory of Lie algebras (e.g.,
[11]). �
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Corollary 4.3. The G-dynamical system in the sense of the above corol-
lary passes to the quotient O(H) in the short exact sequence,

(4.18) 0 → K → Al
ψ→ O(H) → 0,

where ψ is the natural quotient map, where O(H) is the Cuntz algebra, and
K is the two-sided ideal of Al, generated by the single element T − 1Al

, where

T =
∑

e∈ONB

l(e)l(e)∗.

We then have an induced action

α̃ : U(H,1) → Aut
(

O(H)
)
,

by automorphisms as follows:

(4.19) α̃

(
expU(H,1) t

(
0 h

〈h, • 〉 0

))
= etδ̃h ,

where δh is given in (4.17), and

(4.20) δ̃h

(
ψ(x)

)
= ψ
(
δh(x)

)
for all x ∈ Al.

Proof. This follows directly from an application on the covarience relation
(4.15). �

Observe the following lemma.

Lemma 4.4. (i) Let H be a fixed finite dimensional Hilbert space, and
U(H,1), the Lie group from above, and let U be the Lie algebra generated by
U(H,1). Let λ : H → U be the mapping, defined by

λ(h)
def
=
(

0 h
〈h, • 〉H 0

)
,

then we have

(4.21) Aλ(h)A∗ = λ(Ah)

for all A ∈ UH , and h ∈ H .
(ii) If ρ is a representation of U(H,1), then

(4.22) ρ(A)dρ
(
λ(h)

)
ρ(A)−1 = dρ

(
λ(Ah)

)
holds on the space of differentiable vectors for the representations.

Proof. Let A and h be as in the statement of (i). Then A∗ = −A, since
A ∈ UH , and(

A 0
0 1

)(
0 h

〈h, • 〉 0

)(
A−1 0
0 1

)
=
(

0 Ah
〈Ah, •〉 0

)
,(4.23)

where we used the formula (
〈h|
)
A∗ = 〈Ah|
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for composition. The consequence (4.22) in (ii) follows from representation
theory (see, for example, [11]). �

By the previous lemma, we can obtain the following corollary.

Corollary 4.5. Let H and λ : H → U be as above, and let(
B 0
0 β

)
be in the Lie algebra of UH × U1. Then[(

B 0
0 β

)
, λ(h)

]
= λ
(
(B − βI)h

)
holds for all h ∈ H . And the corresponding operator formula holds in any Lie
algebra representation of U . �

The above corollary can be illustrated by the following example.

Example 4.1. Here, we work our the subspace P ⊂ U in the special case
where dimH = 2. The case where dimH = 1 is not of interest here, since the
Cuntz algebra O(H) degenerates when dimH = 1. Let

λ : H → P
be the mapping from (4.21), given by

λ(h) =
(

0 h
〈h, • 〉H 0

)
for all h ∈ H.

Notice that λ is only linear over R. With dimH = 2, we pick the standard
ONB. A computation (4.21) and (4.22) show that

expG

(
tλ(e1)

)
=

⎛⎝ch(t) 0 sh(t)
0 1 0

sh(t) 0 ch(h)

⎞⎠ ∈ U(H,1),

and

expG

(
tλ(e2)

)
=

⎛⎝1 0 0
0 ch(t) sh(t)
0 sh(t) ch(t)

⎞⎠ ∈ U(H,1)

for all t ∈ R, where ch(t), and sh(t) are the cosine-hypobolic, and the sine-
hypobolic functions, respectively, that is,

ch(t) =
1
2
(
et + e−t

)
, and sh(t) =

1
2
(
et − e−t

)
.

Using (4.12), for the Lie commutator of λ(e1), and λ(e2), we have that

[
λ(e1), λ(e2)

]
=

⎛⎝ 0 1 0
−1 0 0
0 0 0

⎞⎠ denote= E,
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and

expG(tE) =

⎛⎝ cos t sin t 0
− sin t cos t 0

0 0 1

⎞⎠ ∈ UH × U1,

in U(H,1).

Thus, generally, we can obtain the following proposition.

Proposition 4.6. Let dimH = 2, and let

σx =
(

0 1
1 0

)
, σy =

(
0 −i
i 0

)
, and σz =

(
1 0
0 −1

)
be the Pauli spin matrices. Then, for the Lie algebra U of U(H,1), we have
the following commutator rules:[

λ(e1), λ(e2)
]
= iσy,[

λ(e1), λ(ie2)
]
= iσx,

and [
λ

(
e1 + ie2√

2

)
, λ

(
ie1 + e2√

2

)]
= iσz.

In particular, [
λ(H), λ(H)

]
= u(H),

where u(H) is the whole Lie algebra of the unitary group U2.

Also, we can get the following proposition.

Proposition 4.7. Let H be a Hilbert space, and consider the group
U(H,1), and its Lie algebra U . The vector part P = λ(H) in U is viewed
as a real Lie algebra. If V is a real form of H , then, for v ∈ V , we have

(4.24) dU
(
λ(iv)

)
= i
(
a+(v) + a(v)

)
,

where dU is the derived Lie algebra representation.

Proof. Recall the general formula

dU
(
λ(h)

)
= a+(h) − a(h)

for h ∈ H . Now, apply this to h = iv, then we get

dU
(
λ(iv)

)
= a+(iv) − a(iv) = ia+(v) + ia(v),

which is the desired conclusion. �
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5. Heisenberg Lie algebras

As before, let H be a fixed complex Hilbert space of dimension at least 2,
but possibly infinite-dimensional, and let F (H) be the Fock space over H . We
will study the representations of the generally infinite-dimensional Lie group
U(H,1).

The purpose of this section is to introduce two finite-dimensional Lie alge-
bras. They turn out to play an important role in our analysis of the represen-
tation of the infinite-dimensional Lie algebra of U(H,1). The reason for this
is two-fold; first, the U(H,1)-Lie algebra contains isomorphic copies of these
“small” Lie algebras. Secondly, we can use known theorems for the “small” Lie
algebras in order to infer spectral theoretic properties of the representations
of U(H,1).

In this section, we consider certain Lie algebras over real, R.

Definition 5.1. (i) A 3-dimensional Lie algebra H over R is called a
Heisenberg Lie algebra, if it has a basis {x, y, z} ⊂ H, satisfying

(5.1) [x, y] = z, and [z,x] = [z, y] = 0,

i.e., the center in � is one-dimensional.
(ii) A real Lie algebra G, spanned by 3-elements x1, x2, x3 is said to be an

isomorphic copy of the Lie algebra sl2(R), if

(5.2) [x1, x2] = x3, [x3, x1] = −x2, and [x3, x2] = x1,

where [·, ·] denotes the Lie bracket in G.

By Section 4, we can obtain the following proposition, with help of above
definition.

Proposition 5.1. Let H be a complex Hilbert space and U(H,1), the Lie
group introduced as above, and let G be the Lie algebra generated by U(H,1).
Let

λ : H → G
be

λ(h)
def
=
(

0 h
〈h, • 〉H 0

)
for h ∈ H,(5.3)

where the 0 in the left top coner denotes the zero operator on H . Then every
λ(h), for h ∈ H \ {0}, is contained in a copy of the Lie algebra sl2(R).

Proof. We may assume, without loss of generality, that ‖h‖H = 1. Now,
let h = e1 be the first vector in some ONB in H . Set

(5.4) x
def= λ(e1), and y

def= λ(ie1),

and
E1

def= |e1〉〈e1|, on H.
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In H , we work with the splitting:

(5.5) H = Ce1 ⊕ (H � Ce1).

Finally, relative to the representation, set

γ0
def
=
(

0 0
0 i

)
.(5.6)

Now, using Proposition 4.6, we get that:

[x, y] = 2
(

−iE1 0
0 i

)
= 2(−iE1 + γ0),

with a slight abuse of notation, where x and y are introduced in (5.4). Again,
with Proposition 4.6, we can get that:

(5.7) [−iE1 + γ0, x] = −2y, and [iE1 + γ0, y] = 2x.

As a result, we conclude that the real space of the three elements

{ −iE1 + γ0, x, y}
is a Lie-isomorphic copy of sl2(R). The spectral projections of the two oper-
ators

dU(x) = a+(h) − a(h),
and

dU(y) = i
(
a+(h) + a(h)

)
follows from [11]. Note here that iE1 is contained in the Lie algebra of UH ,
while γ0 is contained in the Lie algebra of U1. Further, we view UH × U1 as
a compact subgroup in U(H,1). So, the desired conclusion follows. �

By the previous proposition, we can obtain the following two corollaries.

Corollary 5.2. With the raising and lowering operators in F (H), we
have that[

a+(e1) − a(e1), i
(
a+(e1) + a(e1)

)]
= 2i

[
a+(e1), a(e1)

]
(5.8)

= 2
(
dΓ(iE1) + i(N + 1)

)
,

where N is the number operator on F (H), in the sense of Section 1.

Proof. The formula (5.8) is gotten immediately from the results of Sec-
tion 3, and 4, above. We apply the differentiated representation dU and its
restriction dΓ to the two sides in (5.6). �

Remark 5.1. For some purposes, it is convenient to rewrite (5.8) in the
form,

(5.9)
[
a+(e1) − a(e1), i

(
a+(e1) + a(e1)

)]
= −2

(
dΓ(iE1) + (N + 1)

)
,

but note that, in (5.9), the first operator a+(e1) − a(e1) is skew-Hermitian
while the second operator a+(e1) + a(e1) is Hermitian.
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Corollary 5.3. The operator a+(e1) − a(e1) in (5.9) is essentially skew-
adjoint while a+(e1) + a(e1) is essentially self-adjoint. Both operators have
Lebesgue spectrum, that is, the spectral resolution measure for both operators is
absolutely continuous with respect to Lebesgue measure on R; and the spectrum
of the corresponding two self-adjoint operators is equal to R.

Proof. We check that the two operators in (5.9) have deficiency indices
(0,0), then the stated conclusions regarding their spectra follows immediately
from the Stone–von Neumann uniqueness theorem.

But with a use of Nelson’s theorem on analytic vectors (for representations
of Lie algebras, see [11]), we further note that it is enough to prove essential
self-adjointness of

(5.10) Δs
def= dU

(
λ(e1)

)2 + dU
(
λ(ie1)

)2
,

where we introduce the notation Δs for self-Laplacian. We now compute Δs

in detail; a direct computation using the above corollary yields

Δs = (−2)
(
a+(e1)a(e1) + a(e1)a+(e1)

)
(5.11)

= (−2)
{
a+(e1), a(e1)

}
,

where {·, · } is the anti-commutator. Since the operator {a+(e1), a(e1)} com-
mutes with N , its essential self-adjointness may be checked on the individual
eigenspaces for N , as it acts on F (H), that is, recall that each n-subspace,
we have

(5.12) PnF (H) = Fn(H) = H⊗n.

And the desired conclusion is immediate. Indeed, we may read off an exact
formula for {a+(e1), a(e1)} directly from Lemma 2.1, specifically,

(5.13)
{
a+(e1), a(e1)

}
= (N + 1Al

) + (2N + 1Al
)dΓ(E1). �

6. Martingales on the permutation groups

Here, we returned to the representations in F (H) of the Lie group U(H,1).
As noted, in this context, the unitary representations of U(H,1) can best be
understood via representations of the corresponding Lie algebras. Each of
the operators in the Lie algebra are skew-adjoint, and so the question of
spectral type is natural. To resolve this question, it is also helpful to identify
finite-dimensional Lie subalgebras. Two reasons: U(H,1) is in general infinite-
dimensional, so it must be understood as an inductive limit in such a way that
the limit considerations carry over to the operators. Secondly, the standard
results on spectral type apply to specific finite-dimensional Lie algebras. The
two Lie algebras we will need are the Heisenberg Lie algebra, and the sl2(R)-
Lie algebra.

For n ∈ N0 = N ∪ {0}, set S0 = {∅}, S1 = {1}, and

Sn = the group of permutations of {1, . . . , n},
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where a permutation in Sn is a bijective map from {1, . . . , n} onto {1, . . . , n},
for n ∈ N. Thus, if n > 1, we identify elements π ∈ Sn with their graphs(

1 2 · · · n
π(1) π(2) · · · π(n)

)
.

We will consider the set-disjoint union
⊔

n∈N0
Sn, and a C-valued function

t on this set. Notice that a function t on
⊔

n∈N0
Sn means a system (tn)n∈N0

of functions

(6.1) tn : Sn → C for all n ∈ N0.

Given a specific function t, for every n ∈ N0, and subsets A ⊂ Sn, we define

(6.2) E
(n)
A (t) def=

∑
a∈A

tn(a).

We view (6.2) as an expectation.
For every ρ ∈ Sn, and j ∈ {1, . . . , n}, remove the line(

ρ−1(j)
j

)
in the graph of ρ. Then, for π ∈ Sn−1, we can construct the conditional
expectation,

E
(n)
j (t : π) def=

∑
(ρ−1(j)

j
)

∪π=ρ

E
(n−1)
{ρ} (t),

that is, E
(n)
j (t : π) is the summation E

(n)
A (t) in (6.2), where A is the set of

permutations ρ, which agree with π, where some line(
ρ−1(j)

j

)
for j ∈ {1, . . . , n}, is removed from its graph of ρ.

Definition 6.1. We say that a function t on
⊔

n∈N0
Sn is a martingale, if

(6.3) tn−1(π) = E
(n)
j (t : π)

for all j ∈ {1, . . . , n}, and for all n ∈ N.

The convention for the initial terms in the definition (6.3) of a martingale
t are the following: Denote the two elements in S2 by e and s. Then the first
steps in (6.3) are

(6.4) t0 = t1 = t2(e) + t2(s).

Remark 6.1. (i) The set of all martingales is an infinite-dimensional vari-
ety.

(ii) The set of all martingales is not closed under pointwise product.
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Indeed, the statement (i) holds, by (6.3) and by induction. Also, the state-
ment (ii) follows from even (6.4) that the product of two martingales t and t′

does not satisfy (6.4); Note the cross terms in(
t2(e) + t2(s)

)(
t′
2(e) + t′

2(s)
)
.

Proposition 6.1. (i) The set
⊔

n∈N0
Sn of all permutations is a group and

it has a natural unitary representation on

F (H) =
∞⊕

n=0

Fn(H), where(6.5)

F0(H)
def
= C, F1(H)

def
= H, and Fn(H)

def
= H⊗n.(6.6)

In the first two cases n = 0, and n = 1, the action is trivial. If n > 1, and
π ∈ Sn, we set

(6.7) π · (k1 ⊗ k2 ⊗ · · · ⊗ kn)
def
= kπ(1) ⊗ kπ(2) ⊗ · · · ⊗ kπ(n).

(ii) The algebra of the two representations

(6.8) Γn(A) : k1 ⊗ · · · ⊗ kn �→ Ak1 ⊗ · · · ⊗ Akn

for all A ∈ UH , and that of (6.7) are each other’s commutant.

Proof. The statements (i) and (ii) are followed by the Weyl’s theorem in
standard representation theory. �

By the previous discussions, we can obtain the following theorem.

Theorem 6.2. There is a bijective correspondence between the set of mar-
tingales and the commutant of the unitary representation U of the group
U(H,1). If T is in the commutant of U(H,1), and if t is a martingale, then
the correspondence t ↔ T is fixed by

(6.9) PnTPn =
∑

π∈Sn

tn(π)π,

where Pn is the projection in (5.12), and where the action on Fn(H) on the
right-hand side of (6.9) is given by (6.7).

Proof. Assume that some bounded linear operator T on F (H) commutes
with the unitary U(H,1) representation in Corollary 4.2. Using Lemma 3.5,
we conclude that T must commute with the projections P0, P1, P2, . . . . Set

Tn
def= PnTPn = TPn for n ∈ N0.

Then we can get the representation,

(6.10) T =
∞⊕

n=0

Tn.



1004 P. E. T. JORGENSEN AND I. CHO

An application of Proposition 5.1 shows that, for each n ∈ N0, Tn has the
representation (6.9), for some function tn on Sn.

It remains to show that T commutes with the rest of U(H,1), if and only
if t is martingale. (It is clear that the martingale is bounded, if and only if
the operator T in (6.10) and (6.9) is bounded on F (H).)

Using Lemma 4.4, it is clear that

(6.11)
[
T,a+(h) − a(h)

]
= 0 for all h ∈ H.

Combining (6.11), and (6.10), we see that (6.11) amounts to

(6.12)
[
T,a(h)

]
= 0 for all h ∈ H.

To see this, use:

Pma+(h)Pn =
{

a+(h)Pn if m = n + 1,
0 otherwise,

and

Pma(h)Pn =
{

a(h)Pn if m = n − 1,
0 otherwise.

It remains to verify that (6.12) is equivalent to the martingale property
for t = (tn)n∈N0 . And this is a direct computation which we leave to the
readers. �

Now, let’s define the convolution on the group C∗-algebra C∗(Sn), gener-
ated by Sn, which is the operator multiplication on C∗(Sn), precisely.

Definition 6.2. Fix n ∈ N, and Sn, the permutation group, and let C∗(Sn)
be the group C∗-algebra generated by Sn. Define the product A ∗ B of oper-
ators A, and B in C∗(Sn) by

(6.13) (A ∗ B)(ρ) def=
∑

σ∈Sn

A(σ)B
(
σ−1ρ

)
for all ρ ∈ Sn.

By the previous theorem, we can obtain the following corollary, with help
of the above definition.

Corollary 6.3. (i) The commutant in Corollary 5.2 is a projective limit
as follows: An operator T on F (H),

T ↔ (tn), tn ∈ C∗(Sn),

is in the commutant, if and only if, we have

(6.14) E
(n)
j (t : π) = tn−1(π) for π ∈ Sn−1.

(ii) For elements, T = (tn), and W = (wn) in the commutant, we have the
formulas,

(6.15) E
(n)
j (t ∗ w : π) = (tn−1 ∗ wn−1)(π)
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are valid, for all π ∈ Sn−1, for all j = 1, . . . , n, and n ∈ N.

Proof. The statement (i) is a direct consequence of the above theorem.
So, the main point is proving the multiplication formula (6.15) in (ii). Let
T = (tn), and W = (wn) be as specified. We now compute the left-hand side
in (6.15) as follows: Let π ∈ Sn−1. Then

E
(n)
i (t ∗ w : π) =

∑
ρ∈Ai(π)

(tn ∗ wn)(ρ)

=
∑

ρ∈Ai(π)

∑
σ∈Sn

tn(σ)wn

(
σ−1ρ

)
by (6.13)

=
∑

ρ∈Ai(π)

∑
σ∗ ∈Sn−1

∑
σ∈Aj(σ∗)

tn(σ)wn

(
σ−1ρ

)
by the partition property

=
∑

σ∗ ∈Sn−1

tn−1

(
σ∗)wn−1

((
σ∗)−1

π
)

by (6.14)

= (tn−1 ∗ wn−1)(π)

by (6.13). �

The purpose of the next two results is to show that, when the Hilbert
space H is fixed, the commutant of the associated unitary representation of
U(H,1) contains a special element in its center. Secondly, we point out that
the commutant is non-Abelian. Our results are more specific: The element
in the center is special; and the nature of the noncommutativity is further
illustrated.

Corollary 6.4. Consider the correspondence (6.9) between the martin-
gales (tn) and the operators in the commutant CH of the unitary represen-
tation U of U(H,1). Then Psym, given by t

(sym)
n (•) = 1

n! , is in the center of
CH .

Proof. Using Corollary 6.3, we get(
t(sym)
n ∗ wn

)
(ρ) =

(
wn ∗ t(sym)

n

)
(ρ)

=
∑

σ∈Sn

wn(σ)t(sym)
n

(
σ−1ρ

)
=

1
n!

∑
σ∈Sn

wn(σ)
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for all W = (wn) ∈ CH , n ∈ N, and ρ ∈ Sn. The last expression is the normal-
ized Haar measure applied to wn, that is,

hn(wn) =
1
n!

∑
σ∈Sn

wn(σ),

and we obtain
t(sym)
n ∗ wn = hn(wn)t(sym)

n . �

By the previous proposition, we can have the following corollary.

Corollary 6.5. If dimH ≥ 2, then the commutant CH is non-Abelian.

Proof. Note that, for all n ∈ N,

PnCHPn ⊆ C∗(Sn)

(see the Appendix below). Setting n = 3, we see that

t3 = ρ2 + ρ6, and w3 = ρ3 + ρ5

are both in P3CHP3, where the four elements in S3 are

ρ2 = (1,2), ρ3 = (2,3), ρ5 = (1,2)(2,3),

and
ρ6 = (2,3)(1,2),

where (i, j) means the permutations, sending i to j (also, see the Appendix
below). The noncommutativity now follows from the commutator formula

t3 ∗ w3 − w3 ∗ t3 = ρ3 − ρ2 + ρ5 − ρ6 �= 0. �

Also, we can obtain the following corollary.

Corollary 6.6. Let P (sym) denote the projection from F (H) onto the
closed subspace Fsym(H). Then P (sym) is in the commutant CH of the U(H,1)-
representation, and the restriction

(6.16) U(H,1) � g �−→ U(g)| Fsym(H)

is an irreducible unitary representation.

Proof. We show that, for all n ∈ N, we have that

(6.17) P (sym)Pn = PnP (sym) =
1
n!

∑
σ∈Sn

σ,

where

(6.18) σ · k1 ⊗ · · · ⊗ kn = kσ(1) ⊗ · · · ⊗ kσ(n).

If W : Fwym(H) → Fsym(H) is in the commutant of the restricted repre-
sentation (6.16), then

WP (sym) = P (sym)W,
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and the functions wn : Sn → C correspond to W must satisfy

tn ∗ wn = wn, on Sn, for all n ∈ N,

where

(6.19) tn(σ) def=
1
n!

for all σ ∈ Sn.

If we define ϕ = (ϕn)n∈N, by

ϕn(W ) def=
∑

σ∈Sn

wn(σ) for all n ∈ N,

then we can obtain that

(6.20) wn(ρ) =
1
n!

ϕ(wn).

But, if π ∈ Sn−1, then

wn−1(π) =
∑

ρ∈S(j,π)

wn(ρ).

Therefore,

ϕ(wn) = ϕ(wn−1) = · · · = w1 = w0, in C,

by Theorem 6.2. Hence,

(6.21) W = w0P
(sym),

where we used (6.17), (6.19), and (6.20) in the derivation of (6.21). Thus,
the commutant of the restricted representation (6.16) is 1-dimensional; and
so this representation is irreducible. �

7. The action of U(H,1) by automorphisms

Our purpose here is to examine the decomposition theory for the canonical
unitary representation of U(H,1). This representation is reducible. In fact,
we prove that operators in its commutant are in bijective correspondence with
a specific family of martingales on the system of permutation groups Sn, as
n varies. Our second result is that the action of U(H,1) by automorphisms
on the Cuntz algebra is ergodic.

The formulas (4.16), and (4.17) show the existence of the action in covariant
systems by ∗-automorphisms of

Al = C∗({l(h) : h ∈ H
})

,

and its induced action on

(7.1) O(H) = Al/K.

Here, we are referring to the formulas (4.13), (4.15), and (4.17), which
specify the action. For O(H), the relevant formulas are (4.19), and (4.20).
Also, we can obtain the following lemma.
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Lemma 7.1. Let H be a Hilbert space with dimH ≥ 2, and let U(H,1) and
Al be given as above. Let t = (tn)n∈N0 be a bounded martingale and let T be
the corresponding operator in the sense of (6.9) in the commutant,

T ∈ U
(
U(H,1)

)′
.

Then T commutes with the family {r(h) : h ∈ H}, if and only if T is a
constant multiple of the identity operator on F (H).

Proof. The idea is to prove that t is constant. Specifically, for every n ∈ N0,

(7.2) tn(π) = 0 for all π ∈ Sn \ {id },

and t0 = t1 = t2 = · · · , where id means the identity element of Sn.
We study the condition

(7.3)
[
T, r(h)

]
= 0 for all h ∈ H.

Applying this to F1(H) = H , we get

Tr(h)k = T (k ⊗ h)
= t2(e)k ⊗ h + t2(s)h ⊗ k

= t1k ⊗ h.

Since dimH > 1, we may pick k ∈ H � Ch, which is nonzero. Then the two
vectors k ⊗ h, and h ⊗ k are orthogonal in F (H). As a result,

t2(e) = t1, and t2(s) = 0.

Compare this with (7.4) in Section 5. This is the first step in the proof of
(7.2); and the rest follows from a simple induction. �

By the previous lemma, we can get the following proposition.

Proposition 7.2. The action α of G = U(H,1) on Al, and on O(H) is
ergodic.

Proof. We must show that, if T ∈ Al, and

(7.4) αg(T ) = T for all g ∈ G,

then T is a multiple of 1Al
∈ Al; and that the analogues assertion holds in

O(H).
However, the formula (7.4) follows from the above lemma, and the formula

(7.5) below;

(7.5) αg(T ) = U(g)TU(g)−1,

observed in (4.15). For the two C∗-algebras Al and Ar, we have the following
two commutator rules; [

l(k), r(h)
]
= 0, and

(7.6) [
l(k)∗, r(h)

]
= 〈k,h〉HP0.
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It follows from that [T, r(h)] is a compact operator for all h ∈ H . If
[T, r(h)] = 0, then desired conclusion is immediate from the above lemma.

But, even if [T, r(h)] is nonzero, t0 = 0, by the compactness, and an induc-
tion argument yields the desired conclusion. �

Appendix: Computations for martingales

In this Appendix, we collect a number of computations regarding the corre-
spondence between martingales and operators in the commutant of the unitary
representation of U(H,1) discussed above.

Let t = (tn)n∈N0 be a system of C-valued functions with t0 = t1 ∈ C,

tn : Sn → C for all n > 1

on
⊔

n∈N0
Sn, such that

(A.1) tn−1(π) =
∑

ρ∈S(j,π)

tn(ρ) for j = 1,2, . . . , n,

where

S(j, π) =
{

ρ ∈ Sn

∣∣π = ρ
∖ (ρ−1(j)

j

)}
,(A.2)

where ρ \
(
ρ−1(j)

j

)
is the element in Sn−1 resulting from ρ by extraction of the

edge
(
ρ−1(j)

j

)
.

For instance, if S2 is the permutation group over {1,2}, then we can have
two elements in S2, depicted by

e =
(

1 2
1 2

)
=

• •
| |

• •
,

and

s =
(

1 2
2 1

)
=

• •
×

• •
.

Let S3 = {ρ1, ρ2, . . . , ρ6} be the permutation group over {1,2,3}, where

ρ1 =
(

1 2 3
1 2 3

)
, ρ2 =

(
1 2 3
2 1 3

)
, ρ3 =

(
1 2 3
1 3 2

)
,

ρ4 =
(

1 2 3
3 2 1

)
, ρ5 =

(
1 2 3
2 3 1

)
, ρ6 =

(
1 2 3
3 1 2

)
.

If t is martingale, then we obtain

t0 = t1 = t2(e) + t2(s),
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and, for e ∈ S2

t2(e) = t3(ρ1) + t3(ρ2) + t3(ρ5) (j = 1)
= t3(ρ1) + t3(ρ2) + t3(ρ3) (j = 2)
= t3(ρ1) + t3(ρ3) + t3(ρ6) (j = 3).

And, for the element s ∈ S2, we have

t2(s) = t3(ρ3) + t3(ρ4) + t3(ρ6) (j = 1)
= t3(ρ4) + t3(ρ5) + t3(ρ6) (j = 2)
= t3(ρ2) + t3(ρ4) + t3(ρ5) (j = 3).

For the general case, note the following partitioning formula:

(A.3) Sn =
⊔

π∈Sn−1

S(j, π) for all n > 1.

The readers may check the following recursive system for CH :

Lemma. For every n ∈ N, n > 1, fixed, consider the system of equations,

tn−1(π) =
∑

ρ∈S(j,π)

tn(ρ),

with tn−1(•) given. The rank of this system is n − 1, when we consider
(tn(ρ))ρ∈Sn , as undetermined variables.

Example (The projection from F (H) onto the subspace Fsym(H) of all
symmetric tensors). Set

(A.4) t0 = t1 = 1, and tn(π) =
1
n!

for all π ∈ Sn, for n ∈ N. Recall the action of π ∈Sn on H⊗n,

(A.5) π · k1 ⊗ · · · ⊗ kn = kπ(1) ⊗ · · · ⊗ kπ(n).

Hence, t in (A.4) satisfies (A.1), and

(A.6) Psym
def=

∞∑
n=0

P (sym)
n

is well-defined, where

(A.7) P (sym)
n =

1
n!

∑
π∈Sn

π(•),

that is, (A.7) is the special case of

Pn =
∑

π∈Sn

tn(π)π(•),

then t is the family of functions specified in (A.4).
Now, let H be a complex Hilbert space with dimH = 2.
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Proposition. Let U be the unitary representation of Lie group U(H,1)
in F (H), and let

CH
def
=
{
T ∈ B

(
F (H)

)
|TU(g) = U(g)T, ∀g ∈ U(H,1)

}
(A.8)

be the commutatant. Then a subalgebra A in CH is Abelian, if and only if
PnAPn is Abelian, for all n ∈ N.

Proof. Let A be as stated in the proposition, and let

(A.9) tn : Sn → C for n ∈ N ∪ {0},

be the family of functions defined in (A.1). If A ∈ A, then

(A.10) PnAPn =
∑

π∈Sn

t(A)
n (π)π

specifies the correspondence A ←→ (t(A)
n )n.

We make the following observations.

(A.11) (PnAPn)(PnBPn) = PnABPn

holds for all A, B ∈ CH , and for all n ∈ N ∪ {0}. Also,

(A.12) t(AB)
n (π) =

∑
σ∈Sn

t(A)
n (σ)t(B)

n

(
σ−1π

)
for all n ∈ N ∪ {0}, and for all π ∈ Sn. �

Corollary. The correspondence in the above Proposition gives a bijection
between Abelian subalgebras A in the commutant CH , and families of commu-
tative subalgebras in C∗(Sn), where the operator multiplication on C∗(Sn) is
defined to be the convolution, defined in (A.11). The system (tn) of functions
in (A.9) satisfies the martingale condition:

(A.13) tn−1(π) = E
(n)
j (tn : π) for π ∈ Sn−1,

of Definition 5.1, where j ∈ {1, . . . , n}.

Corollary. With the embedding,

(A.14) O(n−1)
H ↪→ O(n)

H ,

specified by (A.13), we see that the rank of O(n)
H over O(n−1)

H is n−1, for all
n ∈ N.

Proof. This follows by induction, making use of the previous results. In
particular, the martingale condition (A.13). �
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