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EXISTENCE OF REGULAR NEIGHBORHOODS FOR
H-SURFACES

WILLIAM H. MEEKS, III AND GIUSEPPE TINAGLIA

Abstract. In this paper, we study the global geometry of com-
plete, constant mean curvature hypersurfaces embedded in n-
manifolds. More precisely, we give conditions that imply proper-
ness of such surfaces and prove the existence of fixed size one-
sided regular neighborhoods for certain constant mean curvature
hypersurfaces in certain n-manifolds.

1. Introduction

In this paper, we present some useful results on the geometry of a complete
H-hypersurface M in an n-manifold N , where by H-hypersurface we mean
that M is an embedded (injectively immersed) hypersurface of constant mean
curvature H ≥ 0. When H > 0, N has bounded absolute sectional curvature
and M is connected, has bounded second fundamental form and it is proper
and separating in N , then we prove that M has a fixed size regular neighbor-
hood on its mean convex side (see Remark 3.4 and Theorem 3.5). This result
is useful for obtaining local (n − 1)-dimensional volume estimates for such an
M in terms of local volume estimates in N . This existence of a fixed size one-
sided neighborhood for certain H-surfaces M is a cornerstone in proving the
CMC Dynamics and Minimal Elements Theorems in [14], and more generally,
the CMC Dynamics and Minimal Elements Theorems in other homogenous
n-manifolds such as R

n and hyperbolic n-space H
n [13]. Theorem 3.5 also

plays a key role in the classification of H-spheres in the 3-dimensional solv-
able group Sol3 with respect to its usual homogeneous structure; see [8].
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In Proposition 2.4, we demonstrate that complete embedded H-hypersur-
faces M with locally bounded second fundamental form in certain complete
n-manifolds N are properly embedded. For example, when n = 3 this propo-
sition implies that if for some ε > 0, M and N satisfy H2 ≥ SN + ε, where SN

is the average sectional curvature (scalar curvature) of N , then M is properly
embedded in N ; this special case of Proposition 2.4 was found independently
by Harold Rosenberg and this case is essentially the statement of Theorem 1.1
in [18] (also see [10]). If N = H

3 and H > 1, it then follows that such an M
is properly embedded in H

3; see [15] for the same properness result for con-
nected, embedded H = 1 surfaces in H

3.
Finally, in the last section we observe how using results by Grosse-

Brauckmann in [5] make it possible to construct examples of complete discon-
nected H-surfaces in a fixed horizontal slab in R

3, each of which is properly
embedded in the open slab but not properly embedded in R

3.

2. Background on H-laminations

In order to help understand the results described in this paper, we make
the following definitions. For further discussion on the general theory of weak
H-laminations, whose definition appears below, and related CMC foliations,
see the survey [10].

Definition 2.1. Let M be a complete surface embedded in a three-mani-
fold N . A point p ∈ N is a limit point of M if there exists a sequence of
points {pn}n ⊂ M which diverges to infinity on M with respect to the intrinsic
Riemannian topology on M but converges in N to p as n → ∞. Let L(M)
denote the set of all limit points of M in N . In particular, L(M) is a closed
subset of N and M − M ⊂ L(M), where M denotes the closure of M in N .

Definition 2.2. A weak H-lamination L of a three-manifold N is a col-
lection of immersed surfaces {Lα}α∈I of constant positive mean curvature H
called leaves of L satisfying the following properties.
1. L =

⋃
α∈I Lα is a closed subset of N .

2. For each leaf Lα of L, considered to be the zero section Zα of its nor-
mal bundle Nb(Lα), there exists a closed one-sided neighborhood Δ(Zα) ⊂
Nb(Lα) of Zα such that:
(a) The exponential map exp : Δ(Zα) → N is a submersion.
(b) With respect to the pull-back metric on Δ(Zα), Zα ⊂ ∂Δ(Zα) is mean

convex.
(c) The inverse image exp−1(L) ∩ Δ(Zα) is a lamination of Δ(Zα).

When H = 0, by the maximum principle, each leaf of L is embedded; thus L
is an actual lamination and we call L a minimal lamination. When H > 0,
the maximum principle implies that each nonembedded leaf of a weak H-
lamination is almost-embedded in the following sense.



EXISTENCE OF REGULAR NEIGHBORHOODS FOR H-SURFACES 837

Definition 2.3. We call an immersed hypersurface in an n manifold N ,
which is the image of an immersion f : M → N , almost-embedded if whenever
p, q ∈ M and f(p) = f(q), then there exist disjoint neighborhoods Up,Uq such
that f(Up) and f(Uq) lie locally on opposite sides of f(p) and f is injective
on an open dense set of M .

The reader not familiar with the subject of minimal or weak H-laminations
should think about a geodesic on a Riemannian surface. If the geodesic is
complete and embedded (a one-to-one immersion), then its closure is a ge-
odesic lamination of the surface. When this geodesic has no accumulation
points, then it is proper. Otherwise, there pass complete embedded geodesics
through the accumulation points forming the leaves of the geodesic lamination
of the surface. The similar result is true for a complete H-surface of locally
bounded second fundamental form (curvature is bounded in compact extrin-
sic balls) embedded in a Riemannian three-manifold, that is, the closure of a
complete, embedded H-surface of locally bounded second fundamental form
has the structure of a weak H-lamination. For the sake of completeness, we
now sketch the proof of this elementary fact for H-surfaces in 3-manifolds,
see [11] for the proof in the minimal case.

Consider a complete H-surface M of locally bounded second fundamental
form embedded in a three-manifold N . Consider a limit point p of M , which
is a limit of a sequence of divergent points pn in M . Since M has bounded
curvature near p and M is embedded, then for some small ε > 0, a subsequence
of the intrinsic disks BM (pn, ε) converges C2 to an embedded H-disk D(p, ε) ⊂
N of intrinsic radius ε, centered at p and of constant mean curvature H .
Since M is embedded, any two such limit disks, say D(p, ε), D′(p, ε), do not
intersect transversally (in fact, two such intersecting disks lie locally on one
side of each other). By the maximum principle for H-surfaces, we conclude
that if a second disk D′(p, ε) exists, then D(p, ε), D′(p, ε) are the only such
limit disks and they are oppositely oriented at p.

Now consider any sequence of embedded disks En of the form BM (qn, ε
4 )

or D(qn, ε
4 ) such that qn converges to a point in D(p, ε

2 ) and such that En

locally lies on the mean convex side of D(p, ε). For ε sufficiently small and
for n, m large, En and Em must be graphs over domains in D(p, ε) such that
when oriented as graphs, they have the same mean curvature (see also the
proof of Lemma 3.1). By the maximum principle, the graphs En and Em are
disjoint. It follows that near p and on the mean convex side of D(p, ε), M has
the structure of a lamination with leaves with constant mean curvature H .
This proves that M has the structure of a weak H-lamination.

The next proposition is a simple consequence of the fact that the closure
M of a complete, H-hypersurface M of locally bounded second fundamental
form in a complete n-manifold N has the structure of a weak H-lamination
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and the fact that if M is not proper in N , then M contains a limit leaf L
which is stable by the main theorem in [9].

Proposition 2.4. Suppose M is a complete connected H-hypersurface with
locally bounded second fundamental form in a complete n-manifold N . If the
only complete, stable, almost-embedded, H-hypersurfaces in N are compact
with finite fundamental group, then M is properly embedded in N .

Proof. After possibly lifting to a 2-sheeted cover of N , we may assume that
M is 2-sided. If M is not proper in N , then L = M has the structure of a
weak H-lamination with a limit leaf L. By the Theorem 1 in [9], L is stable
and since it is almost-embedded, our hypotheses imply that L is compact with
finite fundamental group.

Let Π : L̃ → L denote the finite sheeted universal cover of L and consider L̃
to be the zero section of its normal bundle Nb(L̃). For some small ε > 0, the ε-
neighborhood Δ(L̃) in Nb(L̃) submerses to its image in N under the exponen-
tial map. With respect to the pulled back lamination L̃ = (exp |Δ(L̃))

−1(L),

we obtain a lamination of Δ(L̃) with the compact simply-connected hyper-
surface L̃ as a limit leaf. By a monodromy argument, the leaves in L̃ close to
L̃ are also compact and naturally diffeomorphic to L̃, and there is a sequence
of them which converges to L̃. Hence, the images or projections to N under
the exponential map of these compact leaves correspond to components of M ,
which contradicts our assumption that M is connected. This contradiction
completes the proof of the proposition. �

The importance of the above proposition is that in certain cases, the hy-
potheses in the statement of it follow from simple geometric hypotheses. In
the next corollary, we list some of these cases. Item 1 in the next corollary
was found independently by Harold Rosenberg and this item is essentially the
statement of Theorem 1.1 in [18] (also see [10]).

Corollary 2.5. Let N be an n-manifold with absolute sectional curvature
less than or equal to 1 and let M be a 2-sided H-hypersurface with locally
bounded second fundamental form in N . If any of the following items holds,
then M is properly embedded in N .
1. n = 3 and for some ε > 0, H2 ≥ −SN +ε, where SN is the average sectional

curvature of N (also called the scalar curvature of N ). Note that if SN ≥
δ > 0, then this condition holds for all H ≥ 0.

2. n = 4 and H > 10
9 .

3. n = 5 and H > 7
4 .

4. n = 3,4,5, N is flat and H > 0.

Proof. Any of the above listed conditions is sufficient to guarantee that any
stable H-hypersurface in N is compact with finite fundamental group. The
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condition in item 1 appears in [3], [7], [17] and the idea behind it originates
from the techniques developed by Fischer-Colbrie and Schoen in [4] (see also
[10] for a complete discussion). See [1], [3] for the conditions in items 2 and 3
and see [1], [3], [7], [17] for item 4.

Applying Proposition 2.4 completes the proof of the corollary. �

3. The existence of a one-sided regular neighborhood

In [12], Meeks and Rosenberg proved that a complete H-surface M of
bounded second fundamental form and embedded in R

3 has a fixed size regular
neighborhood on its mean convex side (on both sides when H = 0). In other
words, for such an M there exists an ε > 0 such that for any p ∈ M , the normal
line segment lp of length ε based at p and contained on the mean convex side
of M , forms a collection of pairwise disjoint embedded line segments. An
immediate consequence of the existence of such a regular neighborhood is
that the surface is properly embedded and for some c > 0, the area of the
surface is at most cR3 in any ball of radius R ≥ 1. The next lemma and
theorem generalize this result in the case that the mean curvature is positive.

Lemma 3.1. Suppose N is a complete n-manifold with absolute sectional
curvature bounded by a constant S0 and with injectivity radius at least I0 > 0.
Suppose W ⊂ N is a proper smooth mean convex subdomain whose boundary
M has constant mean curvature H0 > 0 and |AM | ≤ A0, where |AM | is the
norm of the second fundamental form of M . Then there exists a positive
number τ ∈ (0, I0), depending on A0,H0, I0, S0, such that M has a regular
neighborhood of width τ in W .

Remark 3.2. Since a geodesic triangle W in the hyperbolic plane with 3
vertices at infinity does not have a fixed size regular neighborhood in W for
its boundary, we see that Lemma 3.1 does not generalize to the case when the
mean curvature vanishes.

Proof of Lemma 3.1. The uniform bound |AM | ≤ A0 together with the
bounds given by I0 and S0 implies that there exists an ε > 0 sufficiently
small so that for any p ∈ M , every component of BN (p,2ε) ∩ M is a graph
over its projection to the disk of radius 3ε in TpM ; here we are considering
the tangent plane to be a plane in normal coordinates and for the orthogonal
projection map to be well defined in these coordinates. Moreover, we can
choose ε sufficiently small and a smaller positive δ, depending on the bounds
A0, I0, S0, such that every component of BN (p,2ε) ∩ M intersecting BN (p, δ)
contains a graph over D(p, ε), that is the disk of radius ε in TpM . Also, we
may assume that in our coordinates, these graphs all have gradient of norm
less than 1.

The theorem will follow from the observation that two disjoint graphs, u1

and u2 over D(p, ε) with bounded gradients and of constant mean curvature
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H0 which are oppositely oriented and such that u2 lies on the mean convex
side of u1, cannot be too close at their centers (this is essentially a conse-
quence of the maximum principle for quasi-linear uniformly elliptic PDEs, see
for instance [2, Chapter 7]). Let p ∈ M and let u1 ⊂ M be the graph over
D(p, ε) containing p. Let δ1 ∈ (0, δ) and suppose that BN (p, δ1) ∩ M contains
a connected component different from u1 ∩ BN (p, δ1) and which lies on the
mean convex side of u1. Let u2 ⊂ M be the graph over D(p, ε) which contains
such a component and choose it to be the closest one. In other words, the
region between the graphs is contained in W and so, since W is mean convex,
u2 lies on the mean convex side of u1 and they are oppositely oriented. This
contradicts our observation, if δ1 is chosen sufficiently small. Hence, when δ1

is sufficiently small, BN (p, δ1) does not intersect M on the mean convex side
of u1. Letting τ be such a small δ1 proves the lemma. �

Definition 3.3. We call a proper, almost-embedded H-hypersurface f :
M → N strongly Alexandrov embedded if there exists a proper immersion
F : W → N of a mean convex 3-manifold W with ∂W = M , which extends
the map f and which is injective on the interior of W .

Remark 3.4. Note that if M is a connected, properly embedded and sep-
arating H-hypersurface in an n-manifold N , then it is strongly Alexandrov
embedded.

Theorem 3.5 (One-sided regular neighborhood). Suppose N is a complete
n-manifold with absolute sectional curvature bounded by a constant S0. Let M
be a strongly Alexandrov embedded hypersurface with constant mean curvature
H0 > 0 and |AM | ≤ A0. Then the following statements hold.

1. There exists a positive number τ ∈ (0, π
S0

), depending on A0, H0, S0, such
that M has a regular neighborhood of width τ on its mean convex side.

2. There exists a positive number C, depending on A0, H0, S0, such that the
(n − 1)-dimensional volume of M in balls of radius 1 in N is less than C.

Proof. We will first prove the existence of a one-sided regular neighborhood
of M in N with width a certain τ ∈ (0, π

S0
). We will prove item 1 in the

case when M is embedded; with minor modifications, the same arguments
demonstrate the case when M is almost-embedded.

Let Π : Ñ → N be the universal cover of N . Since M is strongly Alexandrov
embedded, there is a proper subdomain W ⊂ N with ∂W = M that lies on the
mean convex side of M . Without loss of generality, we can assume that W is
connected. Let W̃ ⊂ Ñ be one of the connected components of Π−1(W ). Note
that ∂W̃ is mean convex with respect to the pull-back metric. Furthermore,
it consists of a collection of surfaces {M̃α}α∈I such that for each α ∈ I , the
restriction Π : M̃α → M is a covering space.
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Recall that any complete simply-connected manifold with sectional curva-
ture bounded from above by S0 ≥ 0 has positive injectivity radius at least π

S0
.

Therefore, by Lemma 3.1, there exists a one-sided regular τ -neighborhood,
N(∂W̃ , τ) for ∂W̃ , where τ ∈ (0, π

S0
) depends on A0,H0 and S0. Note that

for any point p ∈ N(∂W̃ , τ) − ∂W̃ , there exists a unique geodesic in N(∂W̃ , τ)
joining p to ∂W̃ of least length.

For each x ∈ ∂W̃ , let γx ⊂ W̃ be the unit speed geodesic starting at x,
perpendicular to ∂W̃ and parameterized on [0, τ).

Assertion 3.6. For each x, y ∈ ∂W̃ the following hold.

1. Π(γx) ∩ M = Π(x) and Π(γx(0, τ)) ∩ M = ∅.
2. Π|γx is injective.
3. If Π(x) 	= Π(y), then Π(γx) ∩ Π(γy) = ∅.

Proof. Item 1 is a consequence of the fact that γx(0, τ) ⊂ Int(W̃ ) and
Π(Int(W̃ )) = Int(W ).

In order to prove items 2 and 3, we first note that if g : Ñ → Ñ is a covering
transformation and g(W̃ ) ∩ W̃ 	= ∅, then g(W̃ ) = W̃ . To see this, suppose that
p ∈ g(W̃ ) ∩ W̃ . Since g : Ñ → Ñ is an isometry, g : Π−1(M) → Π−1(M) and
∂W̃ is mean convex, we may pick p to be in the interior of W̃ ∩ g(W̃ ). We
first show that W̃ ⊂ g(W̃ ). Let q ∈ W̃ and choose a path γ ⊂ W̃ from p to
q and such that γ − q ⊂ Int(W̃ ). Note that γ can only intersect Π−1(M) at
q and only if q ∈ ∂W̃ ; hence γ − q is disjoint from ∂(g(W̃ )). Since p is in
the interior of g(W̃ ) and γ − q is disjoint from ∂(g(W̃ )), then γ ⊂ g(W̃ ) and
thus q ∈ g(W̃ ), which proves that W̃ ⊂ g(W̃ ). Note that proving g(W̃ ) ⊂ W̃

is equivalent to proving that W̃ ⊂ g−1(W̃ ). Applying g−1 to g(W̃ ) ∩ W̃ 	= ∅

gives W̃ ∩ g−1(W̃ ) 	= ∅. Arguing as previously, W̃ ⊂ g−1(W̃ ) and this proves
that W̃ = g(W̃ ).

We now prove item 2. Suppose that there exists x ∈ ∂W̃ for which Π|γx is
not injective. Then there exist points a, b ∈ γx, a 	= b, such that Π(a) = Π(b).
Since Ñ is the universal covering space of N , there exists a nontrivial covering
transformation g : Ñ → Ñ such that g(a) = b. In particular, g(W̃ ) ∩ W̃ 	= ∅

and by the previous observation, g(W̃ ) = W̃ . In other words, g|
W̃

: W̃ → W̃
is an isometry and

d
W̃

(a, ∂W̃ ) = d
W̃

(
g(a), ∂W̃

)
= d

W̃
(b, ∂W̃ ).

However, different points in γx have different distances to ∂W̃ and thus

d
W̃

(a, ∂W̃ ) 	= d
W̃

(b, ∂W̃ ).

This contradiction finishes the proof of item 2.
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The proof of item 3 is similar. Let x, y ∈ ∂W̃ such that Π(x) 	= Π(y).
If Π(γx) ∩ Π(γy) 	= ∅, then there exist a ∈ γx and b ∈ γy such that Π(a) =
Π(b). As before, there exists a nontrivial covering transformation g : Ñ →
Ñ inducing an isometry g|

W̃
: W̃ → W̃ and such that g(a) = b. Since g|

W̃

preserves distances to ∂W̃ and g(a) = b, then g(γx) = γy and so g(x) = y,
which implies Π(x) = Π(y). This contradiction finishes the proof of item 3
and the proof of the assertion. �

It follows from Assertion 3.6 that as x ∈ M varies, the geodesic segments
γx ⊂ W starting at x and perpendicular to M of length τ are embedded and
form a pairwise disjoint collection. This proves the first statement of the
theorem.

Let N(M,τ) be the one-sided regular neighborhood of M in N given by
item 1. For a domain E ⊂ M , let N(E,τ) ⊂ N(M,τ) be the associated one-
sided regular neighborhood in W ⊂ N . The uniform bound on |AM | and on
the absolute sectional curvature of N implies that there exists a constant K,
depending also on τ , such that the (n − 1)-dimensional volume of any compact
domain E on M is less than K times the volume of N(E,τ). Thus, since
the volumes of balls in N of radius 2 are uniformly bounded by a constant
depending only on S0, the (n − 1)-dimensional volume of M in such balls is
also uniformly bounded. In other words, for such a τ and for any p ∈ M ,

Volumen−1

[
M ∩ BN (p,1)

]
≤ K · Volumen

[
N

(
M ∩ BN (p,1), τ

)]
≤ K · Volumen

[
BN (p,2)

]
≤ C,

where C depends solely A0, S0 and H0. This proves item 2, and thus com-
pletes the proof of the theorem. �

Our proof of the Dynamics Theorem in [16] uses the following corollary to
Theorem 3.5.

Corollary 3.7. Suppose N is a complete, simply-connected n-manifold
with absolute sectional curvature bounded by a constant S0. Let M be a con-
nected, properly immersed, almost-embedded hypersurface with constant mean
curvature H0 > 0 and |AM | ≤ A0. Then the following statements hold.
1. There exists a positive number τ ∈ (0, π

S0
), depending on A0, H0, S0, such

that M has a regular neighborhood of width τ on its mean convex side.
2. There exists a positive number C, depending on A0, H0, S0, such that the

(n − 1)-dimensional volume of M in balls of radius 1 in N is less than C.

Proof. Since a connected, properly embedded surface in N separates N
into two connected components, a surface M satisfying the hypotheses of the
corollary is seen to be strongly Alexandrov embedded. Applying Theorem 3.5
finishes the proof. �
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4. The existence of H-surfaces in R
3 which are not properly

embedded

In [5], Grosse-Brauckmann constructed a one-parameter family M(t), 0 <
t < ∞, of properly embedded doubly periodic H-surfaces with the (x1, x2)-
plane P as a plane of Alexandrov symmetry and varying constant mean cur-
vature HM(t) > 0. This family contains the doubly periodic surface ξ2,2 of
Lawson [6]. The rescaled surfaces M̂(t) = HM(t)M(t) have constant mean cur-
vature 1 and converge pointwise to P with area multiplicity two as t → 0. In
particular, for n ∈ N, there exists a properly embedded surface Mn ⊂ R

3 with
constant mean curvature 1 and contained in the slab {( 1

2 )n+1 < x3 < ( 1
2 )n}.

The disconnected surface M∞ =
⋃

n∈N
Mn is a complete 1-surface properly

embedded in the slab {0 < x3 < 1
2 } which is not properly embedded in R

3.
A simple modification of this argument proves the following proposition when
H > 0 and when H = 0, the proposition follows trivially by using an appro-
priate infinite collection of horizontal planes in the slab.

Proposition 4.1. For any H ≥ 0, there exists a complete, disconnected
H-surface properly embedded in the slab {0 < x3 < 1

2 }, which is not properly
embedded in R

3.
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[7] F. J. López and A. Ros, Complete minimal surfaces of index one and stable constant

mean curvature surfaces, Comment. Math. Helv. 64 (1989), 34–53. MR 0982560

[8] W. H. Meeks, III, Constant mean curvature spheres in Sol3, to appear in Amer. J.
Math.
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