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ON THE FOURIER TRANSFORMS OF INHOMOGENEOUS
SELF-SIMILAR MEASURES

ANTONIS BISBAS

Abstract. The inhomogeneous self-similar measure μ is defined
by the relation

μ =

N∑
j=1

pjμoS−1
j + pν,

where (p1, . . . , pN , p) is a probability vector, Sj : R
n → R

n, j =
1, . . . ,N are contracting similarities and ν is a probability mea-
sure on R

n with compact support. The existence of such mea-
sures is well known, see (Math. Proc. Cambridge Philos. Soc.

144 (2008) 465–493) and the references therein. In (Math. Proc.

Cambridge Philos. Soc. 144 (2008) 465–493), the authors have

studied the Fourier transforms of inhomogeneous self-similar mea-
sures and they give relations about the asymptotic behavior of the

Fourier transform of ν and μ. Some constructions which are given

with precise asymptotic behavior arise from a discrete measure ν.

Here we will see that these constructions can be extended with
purely continuous measures ν. In order to prove this, we will con-
struct suitable symmetric Bernoulli convolution measures (Essays

in Commutative Harmonic Analysis (1979) Springer) and will use
the results of (J. Math. Anal. Appl. 299 (2004) 550–562).

1. Introduction

The study of the Fourier transforms of measures has a long history, see
[5], [6], [12], [13], [14], [18], [19]. Recently, many authors have studied the
asymptotic behavior of the Fourier transforms of probability measures, see for
example [1], [4], [8], [9], [16], [17]. Here, we will discuss the inhomogeneous
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self-similar measures μ which are defined by the relation

(1) μ =
N∑

j=1

pjμoS−1
j + pν,

where Sj : R
n → R

n, j = 1, . . . ,N are contracting similarities, (p1, . . . , pN , p)
is a probability vector and ν is a probability measure on R

n with compact
support. The existence of such measures is well known, see [11]. For a Borel
probability measure on R

n we define its Fourier transform by the relation

μ̂(x) =
∫

Rn

e−i2πxy dμ(y)

and for q ∈ (0, ∞) we define the qth lower Fourier dimension Δq(μ) by the
relation

Δq(μ) = lim inf
R→∞

log
(

1
Ln(B(0,R))

∫
B(0,R)

|μ̂(x)|q dx
) 1

q

− logR
,

where Ln denotes the n-dimensional Lebesgue measure. We also define

Δ∞(μ) = lim inf
R→∞

log(sup|x|≥R |μ̂(x)|)
− logR

.

Similarly are defined the qth upper Fourier dimension and Δ∞(μ). Of course
the construction of measures with precise value of Δ∞(μ) or Δ∞(μ) is a hard
problem see [5].

In [10], the authors have studied the Lq spectra and Renyi dimensions of
inhomogeneous self-similar measures and in the sequel in [11] (see also [15])
the Fourier transforms of these measures and more precisely the quantities

Δq(μ), Δq(μ), Δ∞(μ), Δ∞(μ)

and their relation with the corresponding quantities of the measure ν. They
have also constructed an example of a measure μ such as that the following
holds:

Theorem A. There exists an inhomogeneous measure μ given by (1) such
that

Δq(ν) = Δq(μ) = 0, q ≥ 1.

The construction is based to a measure ν which is discrete and as a result
it gives discrete part to the measure μ, as one can easily see using Wiener’ s
characterization of continuous measures, see [7], [21] and [3], so is easy to take
the desired results. Here we shall see that the same is possible with a measure
ν purely continuous (and so by Wiener’s theorem with μ purely continuous).
The following proposition is a direct consequence of Wiener’s characterization
of continuous measures and of the definitions.
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Proposition 1. (i) The measure ν has discrete part if and only if the same
holds for μ.

(ii) If μ is a measure with discrete part then Δq(ν) = Δq(μ) = 0 and
Δ∞(ν) = Δ∞(μ) = 0.

In order to prove our results, we will construct suitable symmetric Bernoulli
convolution measures see [5, Section 6.6 ] and will make use the results of [1].
More precisely, we prove the following.

Theorem 2. Let β ∈ [0,1]. Then there exists an inhomogeneous measure
μ on [0,1] given by (1) with ν purely continuous measure such that Δ2(ν) =
Δ2(ν) = β

2 and

(i) β
2 ≤ Δq(μ) ≤ Δq(μ) ≤ β

q , for 0 < q ≤ 2,

(ii) β
q ≤ Δq(μ) ≤ Δq(μ) ≤ β

2 , for q ≥ 2.

Remark 1. (i) In the above theorem for β = 0, we take Theorem A with
μ continuous measure and q ∈ (0,+∞).

(ii) For q = 2, we have measures such that Δq(ν) = Δq(ν) = Δ2(μ) =
Δ2(μ) = β

2 .
(iii) The results of theorem agree with the conjectures of [11].

Also for q = ∞, we have the following theorem.

Theorem 3. There exists an inhomogeneous measure μ given by (1) with
ν purely continuous measure such that

Δ∞(ν) = Δ∞(μ) = 0.

In view of the above theorems, it is natural to ask the following:

Question. Does there exist an inhomogeneous measure μ given by (1) so
as in the above theorems we additionally have that

ν̂(x) → 0, as |x| → ∞?

In a such case, it is well known that the measure ν is purely continuous
and the converse does not hold, see [7].

Note 1. We work with Bernoulli convolution measures for which the
Fourier–Stieltjes transforms do not tend to zero. If one requires the con-
vergence to zero, then must work with numbers which are not Pisot, [5, Sec-
tion 6.6 ] (the number 1/2 is Pisot number), and for such numbers we don’t
have estimations about the asymptotic behavior of the Fourier transform of
the corresponding Bernoulli convolution, in contrary to some Pisot numbers
for which we have estimations, see [4].

The proofs are given in the next section.
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2. The construction of the measure μ

For the proof of Theorem 2, we need some notations and some well known
results which are stated consequently. We observe that it is convenient to
construct a continuous measure ν with the property that

(2) C1R
1−β−ε ≤

∫
|x|≤R

∣∣ν̂(x)
∣∣2 dx ≤ C2R

1−β+ε, R → +∞

for any ε > 0, where C1 and C2 are constants which are dependent only on ε.
Then we will have that

Δ2(ν) = limsup
R→∞

log
(

1
2R

∫
|x|≤R

|ν̂(x)|2 dx
) 1

2

− logR

≤ limsup
R→∞

log
(

1
2RC1R

1−β−ε
) 1

2

− logR
=

β + ε

2
.

Using the other inequality, we take that

Δ2(ν) ≥ β − ε

2
.

Since the above holds for any ε > 0, we take that

Δ2(ν) = Δ2(ν) =
β

2
.

Also we want to inherit the property (2) to μ. For this, we take n = 1,
S1x = 1

2x and

μ =
1
2
μ ◦ S−1

1 +
1
2
ν.

It is easy to see that we have

μ̂(x) =
∞∑

j=0

1
2j+1

ν̂

(
x

2j

)
.

By this, we take that

(3)
∣∣μ̂(x)

∣∣2 =
∞∑

j=0

1
4j+1

∣∣∣∣ν̂(
x

2j

)∣∣∣∣2 +
∑
i,j=0

i �=j

1
2i+1

1
2j+1

ν̂

(
x

2i

)
ν̂

(
x

2j

)
.

We observe that by the relation (3) we have the following estimation:
∞∑

j=0

1
4j+1

∫
|x|≤R

∣∣∣∣ν̂(
x

2j

)∣∣∣∣2 dx =
∞∑

j=0

1
2j+2

∫
|x|≤ R

2j

∣∣ν̂(y)
∣∣2 dx(4)

≥ C

∞∑
j=0

1
2j+2

(
R

2j

)1−β−ε

= C ′R1−β−ε,

and an analogous inequality holds as an upper bound.
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In order for the property (2) to be inherited to the inhomogeneous measure
μ, we require the measure ν to be such that we have “cancellation” of the
integrals of the terms ν̂( x

2i )ν̂( x
2j ).

In [1], we have studied the asymptotic behavior of the Fourier transforms
of coin-tossing measures. These are probability measures on [0,1] of the form

(5) ν′ =
∞∗

n=1

(
1 + an

2
δ(0) +

1 − an

2
δ
(
1/2n

))
,

where an ∈ [−1,1], δ(x) denotes the probability atom at x and the convergence
is in the weak* sense. We proved the following theorem.

Theorem B. If ε > 0,

β = 1 − limsup
N →∞

1
N

N∑
n=1

log2

(
1 + a2

n

)
and γ = 1 − lim inf

N →∞

1
N

N∑
n=1

log2

(
1 + a2

n

)
,

then there exist positive constants c1 and c2, which are dependent only on ε
such that

c2R
1−γ−ε ≤

∫
|x|≤R

∣∣ν̂′(x)
∣∣2 dx ≤ c1R

1−β+ε, R → +∞.

We construct a measure ν′
1 of the form (5) with some conditions. We want

(see [5], [2])

(6)
∞∑

n=1

a2
n = +∞

in order to have singular measure and

(7)
∞∑

n=1

(
1 − |an|

)
= +∞

in order to have purely continuous measure.
In order for the relation (2) to hold, we take the value of γ so as to be equal

to β. In other words, we need to have

(8) lim
N →∞

1
N

N∑
n=1

log2

(
1 + a2

n

)
= 1 − β.

We take a subsequence nk of the natural numbers such that for the sequence
an holds that ank

= 0, the other values of an to be 1 and simultaneously satisfy
the relations (6), (7) and (8). It is easy for one to see that the measure ν′

1

with the above values of the an is of Cantor type. The measure ν′
1 is the

Bernoulli convolution

ν′
1 =

∞∗
k=1

(
1
2
δ(0) +

1
2
δ
(
1/2nk

))
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for which we have that

(9) ν̂′
1(x) =

∞∏
k=1

cos
(

πx

2nk

)
ei πx

2nk

and so ∣∣ν̂′
1(x)

∣∣2 =
∞∏

k=1

cos2
(

πx

2nk

)
.

In order to estimate the integrals of (3), we need to avoid the exponential
term of the product in (9). This is possible by doing the convolution of the
measure ν′

1 with ν0 where

ν0 =
∞∗

k=1
δ

(
− 1

2nk+1

)
.

The measure
ν = ν′

1 ∗ ν0

is given by the relation

ν =
∞∗

k=1

[
1
2
δ

(
− 1

2nk+1

)
+

1
2
δ

(
1

2nk+1

)]
a symmetric Bernoulli convolution measure, see [5]. The Fourier transform is
given by the formula

ν̂(x) =
∞∏

k=1

cos
(

πx

2nk

)
and so

(10)
∣∣ν̂(x)

∣∣2 =
∣∣ν̂′

1(x)
∣∣2.

We need the following lemmas.

Lemma 1. Let aj ∈ R, j = 1, . . . , n,n ∈ N. Then we have that∑
εj ∈ { ±1}
j=1,...,n

cos

(
n∑

j=1

εjaj

)
= 2n

n∏
j=1

cosaj .

Proof. Elementary properties of the trigonometric functions. �

Lemma 2. The following equality holds∫
|x|≤R

ν̂

(
x

2i

)
ν̂

(
x

2j

)
dx = lim

M →∞

∫
|x|≤R

M∏
k=1

cos
(

πx

2nk+i

) M∏
k=1

cos
(

πx

2nk+j

)
dx.

Proof. The proof is left to the reader. �
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Proof of Theorem 2. We suppose that i < j. Now using Lemma 1 and
trigonometric identities, we take that∫

|x|≤R

M∏
k=1

cos
(

πx

2nk+i

) M∏
k=1

cos
(

πx

2nk+j

)
dx

=
1

4M

∫
|x|≤R

( ∑
εk ∈ { ±1}
k=1,...,M

cos

(
M∑

k=1

εk
πx

2nk+i

))

×
( ∑

εk ∈ { ±1}
k=1,...,M

cos

(
M∑

k=1

εk
πx

2nk+j

))
dx

=
1

4M

∑
εk,ε′

k ∈ { ±1}
k=1,...,M

∫
|x|≤R

cos

(
M∑

k=1

εk
πx

2nk+i

)
cos

(
M∑

k=1

ε′
k

πx

2nk+j

)
dx

=
1

4M

∑
εk,ε′

k ∈ { ±1}
k=1,...,M

∫
|x|≤R

1
2

cos

(
M∑

k=1

εk
πx

2nk+i
+

M∑
k=1

ε′
k

πx

2nk+j

)
dx

+
1

4M

∑
εk,ε′

k ∈ { ±1}
k=1,...,M

∫
|x|≤R

1
2

cos

(
M∑

k=1

εk
πx

2nk+i
−

M∑
k=1

ε′
k

πx

2nk+j

)
dx.

The absolute value of each of the above integrals is bounded from above
by the quantity c′2n1+i, where c′ is a constant, as one can see supposing that
n2 is sufficient large that n1. Using Lemma 2 and the above, we take that∣∣∣∣∣

∞∑
i,j=0

i �=j

∫
|x|≤R

1
2i+1

1
2j+1

ν̂

(
x

2i

)
ν̂

(
x

2j

)
dx

∣∣∣∣∣(11)

= 2

∣∣∣∣∣
∞∑

i,j=0
i<j

∫
|x|≤R

1
2i+1

1
2j+1

ν̂

(
x

2i

)
ν̂

(
x

2j

)
dx

∣∣∣∣∣
≤ 2c′

∞∑
i,j=0
i<j

1
2i+1

1
2j+1

2n1+i

= c′2n1

∞∑
j=1

j

2j+1
= C(n1).
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By the construction of the measure ν and combining the relations (3), (4),
(10), (11), we have our result for q = 2.

Next, we will see that the above is enough for q > 0. Using Hölder’s in-
equality for q ≥ 2 we take that∫

|x|≤R

∣∣μ̂(x)
∣∣2 dx ≤

(∫
|x|≤R

∣∣μ̂(x)
∣∣q dx

)2/q(∫
|x|≤R

dx

)1− 2
q

and so that ∫
|x|≤R

∣∣μ̂(x)
∣∣q dx ≥ C(ε)R1− q

2 (β+ε).

Also we have the obvious inequality that∫
|x|≤R

∣∣μ̂(x)
∣∣q dx ≤

∫
|x|≤R

∣∣μ̂(x)
∣∣2 dx ≤ C(ε)R1−(β+ε).

That is for q ≥ 2, we have that

(12) C(ε)R1− q
2 (β+ε) ≤

∫
|x|≤R

∣∣μ̂(x)
∣∣q dx ≤ C(ε)R1−(β+ε).

For 0 < q ≤ 2, we have∫
|x|≤R

∣∣μ̂(x)
∣∣q dx ≤

(∫
|x|≤R

∣∣μ̂(x)
∣∣2 dx

)q/2(∫
|x|≤R

dx

)1− q
2

and so that ∫
|x|≤R

∣∣μ̂(x)
∣∣q dx ≤ C(ε)R1− q

2 (β+ε).

Also we have that (since |μ̂(x)| ≤ 1)∫
|x|≤R

∣∣μ̂(x)
∣∣q dx ≥

∫
|x|≤R

∣∣μ̂(x)
∣∣2 dx ≥ C(ε)R1−β−ε.

That is for 0 < q ≤ 2 we have that

(13) C(ε)R1−(β+ε) ≤
∫

|x|≤R

∣∣μ̂(x)
∣∣q dx ≤ C(ε)R1− q

2 (β+ε).

The relations (12) and (13) give our result. �

Note 2. The measure ν′
1 is concentrated on a set with Hausdorff dimension

equal to β, see [2]. Using the fact that the Hausdorff dimension is translation
invariant, we also have that the measure ν is concentrated on a set with
Hausdorff dimension equal to β, that is dim(ν) = β. Using the inequality
(12) and [20, Corollary 8.7], we have that the inhomogeneous measure μ is
concentrated on a set with Hausdorff dimension at least equal to β, that is
dim(μ) ≥ β.
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Proof of Theorem 3. It is well known and easy to prove that the tetraedric
Cantor measure ν4 has the form

ν4 =
∞∗

n=1

(
1
2
δ(0) +

1
2
δ
(
2/4n

))
,

is purely continuous measure and it’s Fourier–Stieltjes transform does not
tend to 0 at infinity. It’s Fourier transform is given by the formula

ν̂4(x) = ei x
3

∞∏
j=1

cos
(

πx

4j

)
.

Since |ν̂4(4n)| = c 	= 0 for any n ∈ N, we have that Δ∞(ν) = Δ∞(ν) = 0. We
take the inhomogeneous measure μ with n = 1 and S1x = 1

4x by the relation

μ =
1
2
μoS−1

1 +
1
2
ν.

Then we have that

μ̂(x) =
∞∑

j=0

1
2j+1

ν̂4

(
x

4j

)
.

By the above and since the series converges uniformly, we take that

lim
n→∞

μ̂
(
4n

)
→ ν̂4(1) = ei π

3

∞∏
j=1

cos
(

π

4j

)
= c′ 	= 0.

Using this, we take that Δ∞(μ) = Δ∞(μ) = 0. �
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