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MULTIPLE ERGODIC AVERAGES FOR FLOWS AND AN
APPLICATION

AMANDA POTTS

Abstract. We show the L2-convergence of continuous time er-
godic averages of a product of functions evaluated at return times

along polynomials. These averages are the continuous time ver-
sion of the averages appearing in Furstenberg’s proof of Sze-
merédi’s Theorem. For each average, we show that it is sufficient

to prove convergence on special factors, the Host–Kra factors,

which have the structure of a nilmanifold. We also give a de-
scription of the limit. In particular, if the polynomials are inde-
pendent over the real numbers then the limit is the product of the

integrals. We further show that if the collection of polynomials

has “low complexity”, then for every set E of real numbers with

positive density and for every δ > 0, the set of polynomial return

times for the “δ-thickened” set Eδ has bounded gaps. We give

bounds for the flow average complexity and show that in some

cases the flow average complexity is strictly less than the discrete
average complexity.

1. Introduction

1.1. Multiple convergence for flows. Furstenberg’s groundbreaking proof
of Szemerédi’s theorem via ergodic theory gave rise to many interesting av-
enues of research. Of particular importance, it established the connection
between recurrence properties of subsets of N and the limiting behavior of
certain associated multiple ergodic averages. In this paper, we focus on the
natural analogues of some of these results for multiple ergodic averages along
flows. Let m denote Lebesgue measure on R

d, d ∈ N. We show the following
theorem.
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Theorem 1.1. Let {Tt}t∈R be a measure preserving flow on a Lebesgue
space (X, X , μ) and let {p1, . . . , pk : R

d → R} be any collection of polynomials.
Then for any k ∈ N, and f1, . . . , fk ∈ L∞(μ),

(1.1)
1

R1

∫ R1

0

· · · 1
Rd

∫ Rd

0

f1 ◦ Tp1(s) · · · · · fk ◦ Tpk(s) ds

converges in L2(μ) as R1, . . . ,Rd → ∞.

It is known in the discrete case that for polynomials Z
d → Z, the multiple

polynomial averages for a single ergodic transformation converge in L2(μ),
with results given in [7], [11], [14], [17], [16], [18].

In this paper, we also describe the limit of (1.1). If {p1, p2, . . . , pk } is a
family of polynomials such that {1, p1, p2, . . . , pk } is independent over the real
numbers, we show that the average (1.1) converges to the product of the
integrals:

Theorem 1.2. Suppose {Tt}t∈R is an ergodic measure preserving flow on
a Lebesgue space (X, X , μ), the family of polynomials {p1, . . . , pk : R

d → R} is
R-independent, and f1, . . . , fk ∈ L∞(μ). Then as R1, . . . ,Rd → ∞,

1
R1

∫ R1

0

· · · 1
Rd

∫ Rd

0

f1 ◦ Tp1(s) · f2 ◦ Tp2(s) · · · · · fk ◦ Tpk(s) ds

converges in L2(μ) to ∫
f1 dμ ·

∫
f2 dμ · · · · ·

∫
fk dμ.

The discrete version of Theorem 1.2 was proved in [10].
We also give a formula for the limit of (1.1) when p1, . . . , pk are not neces-

sarily independent (see discussion in Section 5.2). In the discrete setting, an
explicit formulation of the limit is given for various cases in [8], [21], [29]. In
the setting of a flow, the extra level of connectedness in the underlying space
allows us to give an explicit description of the limit in general.

1.2. Optimal lower bounds. Suppose f1 = · · · = fk = 1A for some mea-
surable set A. In this situation, Theorem 1.2 shows that the best lower bound
we could expect for (1.1) is μ(A)k. We know that in general the limit is
not μ(A)k (see Section 5.2 for a counter-example; see [4], [8], [21], [29] for
counterexamples in the discrete case). However, we show that under certain
conditions the average is frequently greater than μ(A)k − ε for every ε > 0.
We say a set S ⊆ R

d is syndetic if there exists a compact set C ⊂ R
d such that

R
d = C + S. We show that for collections of polynomials with complexity 0

or 1 (see Section 5.4 for the definition), the optimal lower bound is reached
for a syndetic set of times.
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Theorem 1.3. Suppose {Tt}t∈R is an ergodic measure preserving flow on
a Lebesgue space (X, X , μ), A ∈ X with μ(A) > 0, and {p1, . . . , pk : R

d → R}
is a collection of polynomials with complexity 0 or 1. Then for every ε > 0 the
set {

s ∈ R
d : μ(A ∩ Tp1(s)A ∩ · · · ∩ Tpk(s)A) ≥ μ(A)k+1 − ε

}
is syndetic.

We note that a family of polynomials has complexity 0 if and only if it is
R-independent. Some examples of families with complexity 1 are {t, t2, t+ t2},
{t,2t, t2}, and {t, t2, t3, t + t2 + t3}.

Remark 1.1. In the case where {p1, . . . , pk } has complexity 0, Theorem 1.3
holds without the assumption that {Tt}t∈R is ergodic. The proof follows from
Theorem 1.2, an ergodic decomposition argument, and Hölder’s inequality.

The discrete time version of Theorem 1.3 for polynomials of the form
{n,2n} and {n,2n,3n} was given by Bergelson, Host, and Kra in [4], and
was generalized by Frantzikinakis in [8] to include all collections of three
polynomials of Weyl complexity 1 or 2 (see [5] for the definition). For the
discrete case, it is known that the optimal lower bound is not reached for
the polynomial family {n,2n,3n,4n} (see [4]). We note that here the discrete
and continuous versions differ, as there exist collections of three polynomials
which have Weyl complexity 3, but have complexity 1. One such collection is
{n,2n,n2}, for which the discrete version of Theorem 1.3 is likely to fail [8]
(this is currently unknown).

We give a family of polynomials with complexity 2 which achieves the
optimal lower bound:

Theorem 1.4. Suppose {Tt}t∈R is an ergodic measure preserving flow on
a Lebesgue space (X, X , μ), A ∈ X with μ(A) > 0, and l,m ∈ N. Then for each
polynomial p : R

d → R, and for every ε > 0, the set{
s ∈ R

d : μ(A ∩ Tlp(s)A ∩ Tmp(s)A ∩ T(l+m)p(s)A) ≥ μ(A)4 − ε
}

is syndetic.

It is unknown whether Theorem 1.3 holds for families of complexity 2. In
the discrete case, {2n,3n,4n} is a family of complexity 2 for which the discrete
version of Theorem 1.3 is likely to fail [8]. The discrete analog of Theorem 1.4
was given in [8].

1.3. Application. Just as Furstenberg used ergodic results [11] to derive
Szemerédi’s theorem, we are able to derive combinatorial results from our
study of continuous time averages. In particular, given a sufficiently large
subset E ⊆ R, we ask which types of configurations are guaranteed to lie
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arbitrarily close to E. Let us make this question more precise. The upper
Banach density of a subset E ⊆ R is the quantity

D∗(E) = limsup
(N −M)→∞

m(E ∩ [M,N ])
(N − M)

.

For δ > 0, we write Eδ := {v ∈ R : dist(v,E) < δ} = {v ∈ R : |v − e| < δ for
some e ∈ E}. If E ⊆ R with D∗(E) > 0, we are interested in paths {a1(t), . . . ,
ak(t)}t∈R which have the property that for each δ > 0 there exists x, t0 ∈ R

with x + a1(t0), . . . , x + ak(t0) ∈ Eδ . For example, it is shown in [30] that
given {α1, . . . , αk } ⊂ R and δ > 0, there exists t0 ∈ R such that for every
t ≥ t0, Eδ ∩ (Eδ − α1t) ∩ · · · ∩ (Eδ − αkt) 
= ∅.

We use the following modified version of the correspondence principle of
Furstenberg, Katznelson, and Weiss [13]:

Theorem 1.5. Suppose E ⊂ R with D∗(E) > 0. Then there exists an er-
godic measure preserving flow (X, X , μ, {Tt}) and some Ẽ ∈ X with μ(Ẽ) ≥
D∗(E) such that if {u1, u2, . . . , uk } ⊆ R, then for all δ > 0,

D∗(Eδ ∩ (Eδ − u1) ∩ · · · ∩ (Eδ − uk)
)

≥ μ
(
Ẽ ∩ T −1

u1
Ẽ ∩ · · · ∩ T −1

uk
Ẽ
)
.

The original correspondence principle1 of Furstenberg, Katznelson, and
Weiss was developed in order to study configurations in the plane and states
that Eδ ∩ (Eδ − u1) ∩ · · · ∩ (Eδ − uk) is nonempty, but does not give a lower
bound for the upper density, and does not guarantee that the flow (X, X , μ,
{Tt}) will be ergodic (see [13]). The proof of Theorem 1.5 is similar to the
proof in [13], but for the sake of completeness we include a proof in Appen-
dix A. The proof also makes use of the Ergodic Decomposition theorem and
the fact that almost every point in X is quasi-generic (see Appendix A for
the definition) to obtain the lower bound.

Combining Theorem 1.3 and Theorem 1.5 we have the following theorem.

Theorem 1.6. Suppose E ⊂ R with D∗(E) > 0 and {p1, . . . , pk : R
d → R}

is a collection of polynomials with p1(0) = · · · = pk(0) = 0 and with complexity
0 or 1. Then the set{
s ∈ R

d : ∀δ > 0,D∗(Eδ ∩
(
Eδ − p1(s)

)
∩ · · · ∩

(
Eδ − pk(s)

))
> D∗(E)k+1 − ε

}
is syndetic.

For example, Theorem 1.3 holds for the families {t,2t}, {t, t2,3t2 +πt}, and
{t, t2 + t, . . . , tk + tk−1}. It is an open question as to whether Theorem 1.6
still holds when Eδ is replaced by E.

It also follows that the conclusion of Theorem 1.6 holds for a family of
polynomials with complexity 2:

1 An R
d version was subsequently used by Ziegler in [30] to study configurations in R

d,

by examining discrete time averages for transformations which arise from an Rd-action.
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Theorem 1.7. Suppose E ⊂ R with D∗(E) > 0 and l,m ∈ N. Let p : R
d →

R be a polynomial with p(0) = 0 and let ε > 0. Then the set of s ∈ R
d such

that for all δ > 0,

D∗(Eδ ∩
(
Eδ − mp(s)

)
∩
(
Eδ − lp(s)

)
∩
(
Eδ − (l + m)p(s)

))
> D∗(E)4 − ε

is syndetic.

1.4. Guide to the paper. We begin by giving some background information
in Section 2. In Section 3, we show that for ergodic flows the average (1.1)
is bounded by the Host–Kra seminorms, as developed in [17], starting first
with the linear case and then proving the general case using an induction
argument, as developed in [3]. From results in [17] and [30], we then show
that the Host–Kra factors are characteristic for (1.1) and hence reduce to the
case where (X, X , μ, {Tt}) is an inverse limit of nilflows.

In Section 4, we complete the proof of Theorem 1.1 by reducing to the case
where (X, X , μ, {Tt}) is an ergodic nilflow. Convergence in this setting follows
from [26].

In Section 5, we give a formula for the limit (1.1). First, we prove Theo-
rem 1.2 using methods given in [10], by reducing to the case of a nilflow, then
further reducing to the Abelianization and using the Weyl Equidistribution
theorem. We then show how in general the form of the limit (1.1) can be
deduced from [21]. In particular, we show that it suffices to compute the limit
of (1.1) for collections of linear polynomials. Using this fact, we develop a
method for bounding the complexity of a collection polynomials.

Section 6 contains the proofs of Theorems 1.3 and 1.4, using techniques
developed in [8]. The proof of Theorem 1.3 makes use of the fact that the
Kronecker factor is characteristic for the average (1.1) in the relevant case,
allowing us to compute the limit along some syndetic set of times. The proof of
Theorem 1.4 is similar, but uses the symmetry of the polynomials {lp,mp, (l+
m)p} to compensate for the fact that the characteristic factor is non-Abelian.

2. Background

2.1. The setting. For simplicity of notation, we assume that all functions
are real-valued, but note that all statements hold in the case of complex-valued
functions.

Throughout, (X, X , μ) is a Lebesgue space with μ(X) = 1, and {Tt}t∈R is
a measure preserving flow . This means {Tt}t∈R is a collection of invertible
measure preserving transformations {Tt : (X, X , μ) → (X, X , μ)} such that the
map R × X → X given by (t, x) → Tt(x) is measurable, T0 is the identity trans-
formation, and Ts ◦ Tt = Tt+s for all s, t ∈ R. We also assume (X, X , μ, {Tt})
is ergodic, i.e., a set A ∈ X satisfies Tt(A) = A for all t ∈ R if and only if
μ(A) = 0 or 1. If T : X → X is a measure preserving transformation we fre-
quently denote f ◦ T by Tf .
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Of particular importance, as (X, X , μ) is a Lebesgue space, the map R ×
L2(μ) → L2(μ) given by (t, f) → f ◦ Tt is continuous (see [1]). This fact al-
lows us to work under connectedness assumptions which make several proofs
simpler than the discrete counterparts, and in some cases lead to stronger
results.

We utilize the following result of Pugh and Shub.

Theorem 2.1 (Pugh and Shub, [24]). Let {Tt}t∈R be an ergodic measure
preserving flow on a Lebesgue space (X, X , μ). Then there exists a countable
set E ⊂ R such that for each t0 /∈ E, the transformation Tt0 is ergodic.

We call E = E({Tt}) the exceptional set of {Tt}t∈R.

2.2. Factors. A measure preserving flow (Y, Y , ν, {St}t∈R) is a factor of the
measure preserving flow (X, X , μ, {Tt}t∈R) if there is some {Tt}-invariant, full
measure subset X ′ of X , some {St}-invariant, full measure subset Y ′ of Y ,
and some measurable map π : X ′ → Y ′ such that ν = μ ◦ π−1 and St ◦ π(x) =
π ◦ Tt(x) for all t ∈ R and for all x ∈ X ′.

A factor (Y, Y , ν, {St}t∈R) of (X, X , μ, {Tt}t∈R) can be naturally identified
with the {Tt}-invariant sub-σ-algebra π−1(Y ) of X , or equivalently, with the
closed {Tt}-invariant subspace L2(π−1(Y )) of L2(X ). If Y is a {Tt}-invariant
sub-σ-algebra of X and f ∈ L2(X ), then the conditional expectation of f on Y
is the orthogonal projection of f on the closed subspace L2(π−1(Y )) of L2(X ),
and is denoted by E(f | Y ).

We say (X, X , μ, {Tt}) is an inverse limit of the factors (X, Xi, μ, {Tt}) if
Xi is an increasing sequence of {Tt}t∈R-invariant sub-σ-algebras of X and

X =
∨∞

i=1 Xi up to sets of measure zero.

2.3. Host–Kra seminorms and factors. Let T be an ergodic measure
preserving transformation on (X, X , μ). In [17], Host and Kra developed a
sequence of seminorms { |‖ · |‖k,T }k∈N on L∞(μ) which they used to bound
discrete time multiple ergodic averages. We review some constructions and
statements given in [17].

A collection of measure preserving systems {(X [k], X [k], μ[k], T [k])}k∈N is in-
ductively defined such that (X [0], X [0], μ[0]) = (X, X , μ), and for every integer
k ≥ 1, X [k] = X2k

, and T [k] = T × T × · · · × T (2k times). Furthermore, if I [k]

denotes the T [k]-invariant σ-algebra of (X [k], μ[k], T [k]), then μ[k] is defined on
X [k] by ∫

X[k]
F × Gdμ[k] =

∫
X[k−1]

E
(
F | I [k−1]

)
E
(
G| I [k−1]

)
dμ[k−1]

for all F,G ∈ L∞(X [k−1]). It follows that μ[k] is T [k]-invariant. For each k ≥ 1,
define

|‖f |‖2k

k :=
∫

X[k]

⊗
ε∈{0,1}k

f dμ[k]
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for all f ∈ L∞(μ). It was shown this defines a seminorm on L2(μ). We
sometimes write

⊗
2k f instead of

⊗
ε∈{0,1}k f .

By ergodicity, the σ-algebra I [0] is trivial, μ[1] = μ × μ, and |‖f |‖1 =
|
∫

f(x)dμ(x)|. Furthermore, for every integer k ≥ 1 and every f ∈ L∞(μ),
|‖f |‖2k+1

k+1 = limN →∞
1
N

∑N −1
n=0 |‖f · Tnf |‖2k

k and |‖f |‖k+1 ≥ |‖f |‖k.
For each ergodic measure-preserving system (X, X , μ,T ), there exists a

sequence of factors Z0(T ) ⊆ Z1(T ) ⊆ · · · ⊆ Zk(T ) ⊆ · · · such that for each k ≥
1, Zk−1(T ) is characteristic for the average 1

N

∑N −1
n=0 Tnf1 · T 2nf2 · · · · · T knfk

where f1, . . . , fk ∈ L∞(μ). In other words, the L2-limit of this average is
unchanged if f1, . . . , fk are replaced by E(f1| Zk−1(T )), . . . , E(fk | Zk−1(T )).
These factors are controlled by the seminorms {|‖ · |‖k,T } in the sense that for
all k ≥ 1 and for all f ∈ L∞(μ), |‖f |‖k,T = 0 if and only if E(f | Zk−1(T )) = 0.
Moreover, it is proved in [17] that each Zk(T ) is the inverse limit of a sequence
of (k − 1)-step nilsystems. In particular, Z0(T ) is the trivial factor of X and
Z1(T ) is the Kronecker factor.

2.4. Seminorms and factors for flows. Frantzikinakis and Kra showed
in [9] that if T and S are commuting ergodic transformations of a probabil-
ity space (X, X , μ) with associated Host–Kra seminorms {|‖ · |‖k,T }k∈N and

{|‖ · |‖k,S }k∈N, then |‖f |‖k,T = |‖f |‖k,S for all integers k ≥ 1 and for all f ∈
L∞(μ). Furthermore, the Host–Kra factors associated to T and S agree.
These two facts, in combination with Theorem 2.1, allow us to define a collec-
tion of seminorms on L∞(μ) corresponding to the ergodic flow (X, X , μ, {Tt}),
as well as an associated sequence of factors.

Definition 2.2. |‖f |‖k := |‖f |‖k,Ts for all f ∈ L2(μ), s ∈ EC , and k ∈ N.

Definition 2.3. Zk(X, {Tt}) := Zk(X,Ts) for each integer k ≥ 0 and for
all s ∈ EC .

We simply write Zk instead of Zk(X, {Tt}) when it is clear which flow is
being considered. The use of these factors in the setting of flows was originated
by Ziegler in [30]. In the discrete setting, the Zk were shown to be inverse
limits of nilsystems in [17]. In [30], Ziegler shows that the analogous result
for flows holds as well. In other words, for each integer k ≥ 0,

(2.1) Zk is an inverse limit of (k − 1)-step nilflows.

3. Averages are controlled by seminorms

3.1. Linear averages are controlled by seminorms. Any finite collection
of polynomials p1, . . . , pk : R

d → R is called a family. A family of polynomials
{p1, . . . , pk } is said to be essentially distinct if pi − pj is non-constant for all
i, j ∈ {1, . . . , k} with i 
= j and nice if the pi are non-constant and essentially
distinct. We prove the following proposition.
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Proposition 3.1. Let {Tt} be an ergodic flow on a Lebesgue space (X, X , μ)
and let p1, . . . , pk : R

d → R be a nice family of linear polynomials with
pi(0) = 0 for i = 1, . . . , k. Then for all f1, . . . , fk ∈ L∞(μ) with ‖f1‖ ∞, . . . ,
‖fk ‖ ∞ ≤ 1,

limsup
R1,...,Rd →∞

∥∥∥∥ 1
R1

∫ R1

0

· · · 1
Rd

∫ Rd

0

Tp1(s)f1 · · · · · Tpk(s)fk ds
∥∥∥∥

L2(μ)

≤ min
1≤l≤k

|‖fl|‖k.

We say that a collection of transformations {Tα : X → X}α∈Λ is totally
ergodic if Tn1

α1
· · · · · Tnl

αl
is ergodic for all distinct elements α1, . . . , αl ∈ Λ and

for all n1, . . . , nl ∈ Z with (n1, . . . , nl) 
= (0, . . . ,0). We remark that the set of
zeros of a nonzero polynomial p : R

d → R has Lebesgue measure zero. Con-
sequently, given a family of non-constant polynomials {q1, . . . , ql : R

d → R},
there exists some Δ ∈ R

l·d of Lebesgue measure zero such that {Tq1(s1), . . . ,
Tql(sl)}(s1,...,sl)∈Rl·d \Δ is a totally ergodic collection of transformations.

Lemma 3.2. For all integers d, k ≥ 1, for each nonconstant linear polyno-
mial p : R

d → R with p(0) = 0, and for and every f ∈ L∞(μ),

(3.1) |‖f |‖2k+1

k+1 = lim
R1,...,Rd →∞

1
R1

∫ R1

0

· · · 1
Rd

∫ Rd

0

|‖f · Tp(s)f |‖2k

k ds.

Proof. Let α1, . . . , αd ∈ R\ {0} such that p(s) = α1s1 + · · · + αdsd for all
s = (s1, . . . , sd) ∈ R

d. Fix u1, . . . , ud ∈ R such that ui > 0 for i ∈ {1, . . . , d} and
such that the collection {Tα1u1 , . . . , Tαdud

} is totally ergodic. Set βi = αiui

for each i ∈ {1, . . . , d} and let p̃(s) = β1s1 + · · · + βdsd for each s ∈ R
d. For all

N1, . . . ,Nd ∈ N and s ∈ R
d,

1
N1

N1−1∑
n1=0

· · · 1
Nd

Nd −1∑
nd=0

∣∣∥∥f · Tn1
β1

· · · Tnd

βd
(Tp̃(s)f)

∣∣∥∥2k

k
(3.2)

=
∫

X[k]

1
N1

N1−1∑
n1=0

· · · 1
Nd

×
Nd −1∑
nd=0

[(⊗
2k

f

)
·
(
T

[k]
β1

)n1 · · ·
(
T

[k]
βd

)nd

(⊗
2k

Tp̃(s)f

)]
dμ[k].

It was shown in [9] that if T and S are two commuting ergodic transformations
of (X, X , μ), then T [k] and S[k] have the same invariant sets. For almost every
s ∈ R

d, the collection {Tp̃(s), Tβ1 , . . . , Tβd
} is totally ergodic, and thus by (3.2),

the definition of the measures μ[k], the invariance of I [k] under the collection
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{T
[k]
p̃(s), T

[k]
β1

, . . . , T
[k]
βd

}, and the ergodic theorem,

lim
N1,...,Nd →∞

1
N1

N1−1∑
n1=0

· · · 1
Nd

Nd −1∑
nd=0

∣∣∥∥f · Tn1
β1

· · · Tnd

βd
(Tp̃(s)f)

∣∣∥∥2k

k
(3.3)

=
∫ (⊗

2k

f

)
· E

(⊗
2k

Tp̃(s)f | I [k]

)
dμ[k]

= |‖f |‖2k+1

k+1 .

For R ∈ R, let �R� denote the integer part of R. As the integrand of
(3.1) is bounded, for each i ∈ {1, . . . , d}, we can replace Ri with �Ri� without
changing the limit. Furthermore, we can write

[0, �Ri� − 1] =
�Ri 	 −1⋃
ni=1

[ni, ni + 1]

for each i ∈ {1, . . . , d} and break up the integrals accordingly. Thus by (3.3),
the linearity of p, and the change of variables (s1, . . . , sd) → (u1s1, . . . , udsd),

lim
R1,...,Rd →∞

1∏d
i=1 Ri

∫ R1

0

· · ·
∫ Rd

0

|‖f · Tp(s)f |‖2k

k ds

= lim
R1,...,Rd →∞

1∏d
i=1�Ri�

×
�R1	 −1∑
n1=0

∫ (n1+1)

n1

· · ·
�Rd 	 −1∑
nd=0

∫ (nd+1)

nd

|‖f · Tp̃(s)f |‖2k

k ds

=
∫

[0,1]d
lim

R1,...,Rd →∞

1∏d
i=1�Ri�

×
�R1	 −1∑
n1=0

· · ·
�Rd 	 −1∑
nd=0

∣∣∥∥f · Tn1
β1

· · · Tnd

βd
(Tp̃(s)f)

∣∣∥∥2k

k
ds

=
∫

[0,1]d
|‖f |‖2k+1

k+1 ds = |‖f |‖2k+1

k+1 . �

We now prove Proposition 3.1 using a version of the van der Corput lemma
and a corollary. For a full statement and proof, see Lemma B.1 and Corol-
lary B.2, Appendix B. The use of van der Corput’s lemma for bounding dis-
crete time averages was first introduced by Bergelson in [3].

Proof of Proposition 3.1. We proceed by induction on k. First, suppose
k = 1. For s ∈ R

d, we apply the van der Corput lemma to the elements
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gs = Tp1(s)f1 in L2(μ). For any set Ψ ⊆ R
d of finite positive Lebesgue mea-

sure,

limsup
N →∞

∥∥∥∥ 1
R1

∫ R1

0

· · · 1
Rd

∫ Rd

0

Tp1(s)f1 ds
∥∥∥∥2

L2(μ)

(3.4)

≤ limsup
N →∞

1
m(Ψ)2

×
∫

Ψ2

1
R1

∫ R1

0

· · · 1
Rd

∫ Rd

0

∫
Tp1(s+u)f1 · Tp1(s+v)f1 dμdsdudv

= limsup
N →∞

1
m(Ψ)2

×
∫

Ψ2

1
R1

∫ R1

0

· · · 1
Rd

∫ Rd

0

∫
Tp1(u)f1 · Tp1(v)f1 dμdsdudv

=
∫

1
m(Ψ)2

∫
Ψ

∫
Ψ

Tp1(u)f1 · Tp1(v)f1 dudvdμ.

By taking the limsup over all rectangles Ψ ⊂ R
d and by the ergodic theorem,

we see that (3.4) is less than or equal to |
∫

f1 dμ|2 = |‖f1|‖2
1.

Next suppose k ≥ 2 and Proposition 3.1 holds for k − 1. We show Propo-
sition 3.1 also holds for k. For s ∈ R

d, we apply the van der Corput lemma
and Corollary B.2 to the element gs = Tp1(s)f1 · · · · · Tpk(s)fk of L2(μ). For any
Ψ ⊂ R

d with positive finite Lebesgue measure and for any l ∈ {1, . . . , k − 1}
(the case k = l is similar),

limsup
N →∞

∥∥∥∥∥ 1
R1

∫ R1

0

· · · 1
Rd

∫ Rd

0

k∏
i=1

Tpi(s)fi ds

∥∥∥∥∥
2

L2(μ)

(3.5)

≤ 1
m(Ψ)

∫
Ψ

1
m(Ψ)

∫
Ψ

limsup
N →∞

‖Tpk(u)fk · Tpk(v)fk ‖L2(μ)

·
∥∥∥∥∥ 1

R1

∫ R1

0

· · · 1
Rd

×
∫ Rd

0

k−1∏
i=1

Tpi(s)−pk(s)(fi ◦ Tpi(u) · fi ◦ Tpi(v))ds

∥∥∥∥∥
L2(μ)

dudv

≤
(

1
m(Ψ)

∫
Ψ

1
m(Ψ)

∫
Ψ

|‖fl · Tpl(v)−p1(u)fl|‖2k−1

k−1 dudv
) 1

2k−1

.

Notice that the map (u,v) → pl(v) − p1(u) is a linear polynomial from R
2d

into R. By taking the limsup over all rectangles Ψ ⊂ R
d and using Lemma 3.2,

we see that (3.5) is less than or equal to |‖fl|‖2
k. �
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3.2. Polynomial averages are controlled by seminorms. In this sec-
tion, we prove the following proposition.

Proposition 3.3. Let {Tt} be an ergodic flow on a Lebesgue space (X,
X , μ). For any k ∈ N and for any nice family of polynomials P = {p1, . . . ,
pk : R

d → R} with pi(0) = 0 for i = 1, . . . , k, there exists r ∈ N such that for
any f1, . . . , fk ∈ L∞(μ),

limsup
R1,...,Rd →∞

∥∥∥∥ 1
R1

∫ R1

0

· · · 1
Rd

∫ Rd

0

Tp1(s)f1 · · · · · Tpk(s)fk ds
∥∥∥∥

L2(μ)

≤ min
1≤l≤k

|‖fl|‖r.

Remark 3.1. The integer r in Proposition 3.3 depends neither on the flow
(X, X , μ, {Tt}) nor on d.

The following is a consequence of Propositions 3.1 and 3.3.

Corollary 3.4. Let {Tt} be an ergodic flow on a Lebesgue space (X, X , μ).
For any nice family of polynomials {p1, . . . , pk : R

d → R}, there exists r ∈ N

such that for all f1, . . . , fk ∈ L∞(μ),

1
R1

∫ R1

0

· · · 1
Rd

∫ Rd

0

k∏
i=1

Tpi(s)fi ds − 1
R1

∫ R1

0

· · · 1
Rd

∫ Rd

0

k∏
i=1

Tpi(s)E(fi| Zr)ds

converges to zero in L2(μ) as R1, . . . ,Rd → ∞. If {p1, . . . , pk } are all linear
then r = k − 1.

In other words, Corollary 3.4 states that Zr is characteristic for the average
(1.1). Leibman proved the discrete time version of Corollary 3.4 in [18]; our
proof (including elements of the proof of Proposition 3.3) is similar.

Proof of Corollary 3.4. By the multilinearity of the average, it suffices to
show that

(3.6) lim
R1,...,Rd →∞

∥∥∥∥∥ 1
R1

∫ R1

0

· · · 1
Rd

∫ Rd

0

k∏
i=1

Tpi(s)fi ds

∥∥∥∥∥
L2(μ)

= 0

whenever E(fi| Zr) = 0 for some i ∈ {1,2, . . . , k}. Notice that E(fi| Zr) = 0 ex-
actly when E(Tpi(0)fi| Zr) = Tpi(0)E(fi| Zr) = 0. It follows from Definitions 2.2
and 2.3 that E(fi| Zr) = 0 if and only if |‖Tpi(0)fi|‖r+1 = 0 and hence (3.6) fol-
lows from Propositions 3.1 and 3.3. �

We prove Proposition 3.3 using an induction argument, as developed by
Bergelson in [3]. If P = {p1, . . . , pk } is a family of polynomials then its degree,
degP , is the largest degree of its elements. We define two polynomials p and
q to be equivalent if deg p = deg q and deg |p − q| < deg p. For example, t2 + t
and t2 are equivalent, while t2 + t and 3t2 are not. This partitions the set
of all polynomials into equivalence classes, and the degree of an equivalence
class is the degree of any of its elements.
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We assign each family P of degree b a weight vector ω(P ) = (ω1, . . . , ωb) ∈
N

b, where each ωi is the number of equivalence classes of degree i in P , and
we say ω(P ) has degree b. For example, the weight vector of {t,2t,3t, t2, t2 −
t,4t2 + t, t3} is (3,2,1). We write ω < ω′ if degω < degω′. If degω = degω′,
we resort to right-aligned lexicographical ordering. In other words, ω < ω′ if
degω < degω′, or if degω = degω′ and there exists some j ≤ b so that ωj < ω′

j

and ωi = ω′
i for j < i ≤ b. The set of weight vectors is well ordered with respect

to this relation, and we use induction on this set.
We call a nice family of polynomials P = {p1, . . . , pk } standard if degP =

deg p1.

Proof of Proposition 3.3. We first prove that for every standard family P =
{p1, . . . , pk : R

d → R} with pi(0) = 0 for i = 1, . . . , k, there exists r ∈ N such
that for any f1, . . . , fk ∈ L∞(μ),

limsup
R1,...,Rd →∞

∥∥∥∥ 1
R1

∫ R1

0

· · · 1
Rd

∫ Rd

0

Tp1(s)f1 · · · · · Tpk(s)fkds
∥∥∥∥

L2(μ)

(3.7)

≤ |‖f1|‖r.

We proceed by induction on ω = ω(P ). Proposition 3.1 is the base case in
our induction. Let P = {p1, . . . , pk : R

d → R} be a standard family of degree
≥ 2 and of weight ω, and suppose that (3.7) holds for any standard family with
weight vector ω′ < ω. We assume that pk is a polynomial of minimal degree
in P . Without loss of generality, we assume that ‖f1‖ ∞, . . . , ‖fk ‖ ∞ ≤ 1. Let
I1 = {i ∈ {1, . . . , k} : deg pi = 1} and I2 = {i ∈ {1, . . . , k} : deg pi ≥ 2}.

We use the van der Corput lemma and Corollary B.2. Write gs(x) =
Tp1(s)f1 · · · · · Tpk(s)fk for every s ∈ R

d. Then

1
R1

∫ R1

0

· · · 1
Rd

∫ Rd

0

〈gs+u, gs+v〉 ds

=
1

R1

∫ R1

0

· · · 1
Rd

∫ Rd

0

∫ ∏
i∈I2

Tpi(s+u)fi ·
∏
i∈I2

Tpi(s+v)fi

·
∏
i∈I1

Tpi(s+v)(fi · Tpi(u)−pi(v)fi)dμds

=
1

R1

∫ R1

0

· · · 1
Rd

∫ Rd

0

∫ m∏
j=1

Tqu,v,j(s)hu,v,j dμds,

where, for u,v ∈ R
d, qu,v,1, . . . , qu,v,m are the elements of the family

Pu,v =
{
pi(s + u), pi(s + v) : i ∈ I2

}
∪
{
pi(s + v) : i ∈ I1

}
,

and each hu,v,j is of the form fi for some i ∈ I2, or fi · Tpi(u)−pi(v)fi for some
i ∈ I1. We assume that qu,v,1(s) = p1(s + v) and qu,v,m(s) = pk(s + v).
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As {Tt}t∈R is μ-preserving, by the Cauchy–Schwarz Inequality,

1
R1

∫ R1

0

· · · 1
Rd

∫ Rd

0

〈gs+u, gs+v〉 ds(3.8)

≤ ‖hu,v,m‖L2(μ)

·
∥∥∥∥∥ 1

R1

∫ R1

0

· · · 1
Rd

∫ Rd

0

m−1∏
j=1

T(qu,v,j −qu,v,m)(s)hu,v,j ds

∥∥∥∥∥
L2(μ)

.

For almost all (u,v) ∈ R
2d, the collection of polynomials

P ′
u,v = {qu,v,1 − qu,v,m, . . . , qu,v,m−1 − qu,v,m}

is a standard family. Furthermore, P , Pu,v and P ′
u,v have the same equivalence

classes, of the same degrees, with the exception that in P ′
u,v the equivalence

class in Pu,v containing qu,v,m either splits into one or more equivalence classes
of lower degree or vanishes completely. Thus, for all (u,v) ∈ R

2d, ω(P ′
u,v) <

ω(P ) = ω.
There are only finitely many integer vectors with ω′ < ω which are the

weights of families with m < 2k elements. Thus, there exists r ∈ N such that
for all standard families {Q1, . . . ,Qm : R

d → R} of weight ω′ < ω with m ≤ 2k,
and any H1, . . . ,Hm ∈ L∞(μ),

limsup
R1,...,Rd →∞

∥∥∥∥ 1
R1

∫ R1

0

· · · 1
Rd

∫ Rd

0

TQ1(s)H1 · · · · · TQm(s)Hm ds
∥∥∥∥

L2(μ)

(3.9)

≤ |‖H1|‖r.

Combining (3.9) and (3.8) and using Corollary B.2,

limsup
R1,...,Rd →∞

∥∥∥∥ 1
R1

∫ R1

0

· · · 1
Rd

∫ Rd

0

Tp1(s)f1 · · · · · Tpk(s)fk ds
∥∥∥∥2

L2(μ)

≤ 1
m(Ψ)2

∫
Ψ

∫
Ψ

|‖hu,v,1|‖r dudv = |‖f1|‖r.

We now prove the theorem in general, where P = {p1, . . . , pk } is a nice, but
not necessarily standard, family of polynomials of degree b. Let f1, . . . , fk ∈
L∞(μ). By Corollary B.3, there exists a sequence of rectangles {ΘN }N ∈N in
R

3d such that

limsup
N →∞

∥∥∥∥∥ 1
R1

∫ R1

0

· · · 1
Rd

∫ Rd

0

k∏
i=1

Tpi(s)fi ds

∥∥∥∥∥
2

L2(μ)

(3.10)

≤ limsup
N →∞

1
m(ΘN )

×
∫
u,v,s∈ΘN

∫ k∏
i=1

Tpi(s+u)fi ·
k∏

i=1

Tpi(s+v)fi dμdsdudv
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≤ limsup
N →∞

∥∥∥∥ 1
m(ΘN )

∫
u,v,s∈ΘN

k∏
i=1

Tpi(s+u)+q(s)fi

·
k∏

i=1

Tpi(s+v)+q(s)fi dsdudv
∥∥∥∥

L2(μ)

for any polynomial q : R
d → R of degree b. The set{

pi(s + u) + q(s), pi(s + v) + q(s) : 1 ≤ i ≤ k
}

of polynomials R
3d → R is a standard family of degree b with 2k elements.

Thus there exists r ∈ N such that (3.10) is less than or equal to |‖fl|‖r for each
l = 1, . . . , k. �

4. Convergence on a nilsystem

4.1. Nilflows. Let G be a group. For h, g ∈ G, we write [g,h] = g−1h−1gh.
For A,B ⊆ G, [A,B] is the closed subgroup of G spanned by {[a, b] : a ∈ A,
b ∈ B}. The lower central series G = G1 ⊃ G2 ⊃ · · · ⊃ Gj ⊃ Gj+1 ⊃ · · · of G is
defined by G1 = G and Gj+1 = [G,Gj ] for j ≥ 1. We say G is r-step nilpotent
if r is the smallest integer such that Gr+1 = {Id }.

Let G be an r-step nilpotent Lie group and let Γ be a uniform subgroup
(i.e., Γ is a discrete cocompact subgroup). The compact manifold X = G/Γ is
called an r-step nilmanifold. Let a be a fixed element of G and let Ta : X → X
be the transformation defined by Ta(gΓ) = (a · g)Γ for all g ∈ G. Let μ be Haar
measure on X . Then (X,μ,Ta) is called an r-step nilsystem and Ta is called a
nilrotation. If {at}t∈R is a one-parameter subgroup of G then {at}t∈R induces
a flow {Tat }t∈R on X defined by Tat(gΓ) = (at · g)Γ for all g ∈ G and for all
t ∈ R. A flow defined in this manner is called a nilflow.

A sub-nilmanifold of X is a closed subset Y of X of the form Y = Hx,
where x is an element of X and H is a closed subgroup of G. If H is a closed
subgroup of G, then HΓ/Γ is a subnilmanifold of X if and only if H ∩ Γ is
uniform in H if and only if HΓ is closed in G (see [20]). Our goal is to describe
the orbits of certain paths in X .

4.2. Polynomial paths. As we only consider continuous ergodic flows, it
suffices to assume X is connected. A (multi-parameter) path {gs}s∈Rd in G
is a continuous function g : R

d → G and we write gs = g(s) for s ∈ R
d. If

g : R
d → G is a continuous homomorphism, then g(s) is called a linear path.

Any path in G naturally induces a path in X .
Let G0 be the connected component of the identity element in G. Then

G0Γ is both open and closed in G, hence G0Γ/Γ is both open and closed
in X , and X = G0Γ/Γ. Let Θ : G0Γ/Γ → G0/(Γ ∩ G0) be the map given by
Θ(g0γΓ) = g0Γ ∩ G0 for g0 ∈ G0 and γ ∈ Γ. This map is a homeomorphism
which preserves the left action of G0. If g(0) ∈ G0 then g(s) ⊆ G0 for all
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s ∈ R
d, and Θ preserves the orbits of {g(s)}s∈Rd . Thus, in order to describe

the orbits of {g(s)}s∈Rd in X , it suffices to describe the orbits of {g(s)}s∈Rd

in G0/(Γ ∩ G0). We frequently use the map Θ to reduce to the case when G
is connected.

If G is connected, then the exponential map from the Lie algebra of G
into G is onto. In particular, for every element a in G there exists some
one-parameter subgroup {α(t)}t∈R such that α(1) = a. We denote α(t) by at.

By [22], if G is any connected simply-connected nilpotent Lie group, and
Γ is a closed uniform subgroup of G, then G contains a Malcev basis. In
other words, there is a finite collection {a1, . . . , al} ⊆ Γ so that each a ∈ G
is uniquely representable in the form a = at1

1 · · · atl

l for some t1, . . . , tl ∈ R.
Furthermore, every one-parameter subgroup {at}t∈R of G is polynomial in
{a1, . . . , al}. This means there exist polynomials q1, . . . , ql : R → R so that
at = a

q1(t)
1 · · · aql(t)

l for all t ∈ R. Every connected nilpotent Lie group is a
factor of a connected simply-connected nilpotent Lie group, and hence also
has these properties. Thus, we may restrict our attention to (multi-parameter)
polynomial paths, i.e., multi-parameter paths of the form g(s) = a

p1(s)
1 · · · · ·

a
pl(s)
l for some a1, . . . , al ∈ G, some collection of polynomials {p1, . . . , pl : R

d →
R}, and for all s ∈ R

d.

4.3. Uniform distribution on a subnilmanifold. A multi-parameter
path {xs}s∈Rd in X is uniformly distributed in X if

lim
N →∞

m({s ∈ R
d : xs ∈ U } ∩ [0,R1] × · · · × [0,Rd])

R1 · · · · · Rd
= μ(U)

for any open set U in X such that the boundry of U has μ-measure zero.
Equivalently, for any f ∈ C(X),

lim
R1,...,Rd →∞

1
R1

∫ R1

0

· · · 1
Rd

∫ Rd

0

f(xs)ds =
∫

f dμ.

We use the following specific case of a more general result of Shah.

Proposition 4.1 (Shah, [26]). Suppose G is a nilpotent Lie group and
Γ ⊂ G is a uniform subgroup. Let g : R

d → G be a polynomial path and let
x ∈ X = G/Γ. Then there exists a connected closed subgroup H of G such that
Y = Hx is a closed sub-nilmanifold of X , {g(s)x}s∈Rd = Hx, and {g(s)x}s∈Rd

is uniformly distributed in Hx.

In [26], Shah proves a more general version of Proposition 4.1 for real
algebraic groups. Every nilpotent Lie group is isomorphic to a real algebraic
group [15], and hence Proposition 4.1 follows. Proposition 4.1 follows from
[25] when {g(t)}t∈R is linear. An ergodic proof of the case where d = 1, G is
connected, and g is linear is given by Green in [2]. Leibman proved analogous
versions of Proposition 4.1, as well as Corollary 4.2 and Proposition 4.3 below,
for polynomial mappings from Z

d to G in [19].
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Corollary 4.2. Suppose g : R
d → G is a polynomial path. Let x be any

element of X , and let Y = {g(s)x}s∈Rd . For any f ∈ C(X),

lim
R1,...,Rd

1
R1

∫ R1

0

· · · 1
Rd

∫ Rd

0

f
(
g(s)x

)
ds =

∫
Y

f dμY ,

where μY is Haar measure on Y .

4.4. Proof of Theorem 1.1. We now have all the tools necessary to prove
Theorem 1.1.

Proof of Theorem 1.1. We may always write the average so that {p1, . . . ,
pk } are essentially distinct. By using the ergodic decomposition of the measure
μ, it suffices to assume {Tt} is ergodic. By Corollary 3.4, Zr is characteristic
for the average (1.1) for some r ∈ N, and hence it suffices to assume X is
equal to Zr. By (2.1), Zr is an inverse limit of (r − 1)-step nilflows, and
by an approximation argument it further suffices to assume (X, X , μ, {Tt})
is a (r − 1)-step nilflow. Suppose Tt = Tat for some one-parameter subgroup
{at} ⊆ G. We now obtain Theorem 1.1 from Corollary 4.2 as follows. Replace
X = G/Γ with Xk = Gk/Γk, g(s) with (ap1(s), . . . , apk(s)), and f with f1 ⊗
· · · ⊗ fk. Applying Corollary 4.2 to points on the diagonal of Xk, we obtain
pointwise convergence of the average (1.1) when (X, X , μ, {Tt}) is a nilflow.
Convergence in L2(μ) for the general case follows. �
4.5. Tools for computing the limit. We now give an important result
that is useful for computing the limit of (1.1) in the next section. We denote
the connected component of the identity of G as G0. Let Z be the maximal
factor torus of X , Z = G/([G0,G0]Γ), and let ρ : X → Z be the factorization
mapping. We show that uniform distribution on X is equivalent to uniform
distribution on Z.

Proposition 4.3. Suppose X is connected, x ∈ X , and g : R
d → G is a

polynomial path. The following are equivalent:
(1) {g(s)x}s∈Rd is dense in X ;
(2) {g(s)x}s∈Rd is uniformly distributed in X ;
(3) {g(s)ρ(x)}s∈Rd is dense/uniformly distributed in Z.

In the case where G is connected and g is given by a one-parameter sub-
group of G, Proposition 4.3 was shown by Green (see also [23]):

Theorem 4.4 (Green, [2]). If (X = G/Γ, X , μ, {Tt}) is nilflow with G con-
nected, then {Tt} is ergodic on X if and only if it is ergodic on G/G2Γ.

Proof of Proposition 4.3: The proof is similar to the proof of Theorem B
in [19], but we state it here for the sake of completeness.

(1) implies (2) by Proposition 4.1. That (2) implies (1) follows from the
definition of uniform distribution and the fact every nonempty open set has
positive Haar measure. It is clear that (1) implies (3).
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Assume (3) holds. Case 1 : Suppose G is connected. Then Z = G/G2Γ. By
Proposition 4.1, there is a closed subgroup H of G so that {g(s)x}s∈Rd = Hx.
Therefore, Z = Hρ(x) and hence G = HG2Γ. As Γ is countable, by the Baire
Category Theorem HG2 has nonempty interior. Since G is connected, we
have G = HG2. By Lemma 3.4 in [20], H = G and thus {g(s)x}s∈Rd = X .

Case 2 : Now assume G is not necessarily connected. Without loss of
generality, we may assume g(0) = 1G. As g is continuous, it follows that
g(Rd) is connected, and so g(s) ∈ G0 for all s ∈ R

d. This property is one of
the main reasons that proofs in the continuous time case are somewhat easier
than proofs in the discrete time case.

Let Θ : X → G0/(Γ ∩ G0) be as defined in Section 4.2. As Θ preserves
the action of g(s), and as Θ([G0,G0]Γ) = [G0,G0](Γ ∩ G0), we have that
{g(s)Θ(x)}s∈Rd is uniformly distributed in G0/[G0,G0](Γ ∩ G0). By case 1,
g(s) is uniformly distributed in G0/(Γ ∩ G0), and since Θ is a homeomorphism,
g(s) is uniformly distributed in G0Γ/Γ = X . �

5. Computation of the limit

5.1. Independent polynomial averages converge to the product of
the integrals. In this subsection, we prove Theorem 1.2. The idea of the
proof is similar to, but also simpler than, that of the discrete time version
given in [10].

We use the following result.

Proposition 5.1. Let (X = G/Γ, G/Γ, μ) be a connected nilmanifold such
that G is abelian. Then any nilflow on X is isomorphic to translation by a
one parameter subgroup on some finite dimensional torus.

Proof. Suppose (X = G/Γ, G/Γ, μ, {Tt}) is an ergodic nilflow induced by
a one-parameter subgroup {at}t∈R of G. As G is Abelian, Γ is a normal
subgroup of G. Thus, G/Γ is a connected compact Abelian Lie group and
is isomorphic to some finite dimensional torus T

m. Letting ψ : G/Γ → T
m

denote the isomorphism between G/Γ and T
m, we have that Tt is isomorphic

to the flow St = ψTtψ
−1 acting on T

m by translation by the one-parameter
subgroup {ψ(at)}. �

We call a family of polynomials {p1, . . . , pk : R
d → R} R-independent if

there does not exist a set of real numbers {a1, . . . , ak }, which are not all zero,
such that a1p1 + · · · + akpk is a constant polynomial.

Theorem 1.2 follows from Corollary 3.4, (2.1), an approximation argument,
and the following result.

Proposition 5.2. Let (X = G/Γ, G/Γ, μ, {Tt}) be an ergodic nilflow in-
duced by a one-parameter subgroup {at}t∈R of G. If {p1, p2, . . . , pk : R

d → R}
is an R-independent family of polynomials, then for every x ∈ X , the path
{(ap1(s)x,ap2(s)x, . . . , apk(s)x)}s∈Rd is uniformly distributed in Xk.
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Proof. By Proposition 4.3 it suffices to prove Proposition 5.2 under the
assumption that G is Abelian. Let Θ : X → G0/Γ ∩ G0 be as defined in
Section 4.2, and let Θk = Θ × · · · × Θ (k-times). As the homeomorphism
Θk : Xk → (G0)k/(Γ ∩ G0)k preserves the action of {(ap1(s), ap2(s), . . . ,
apk(s))}s∈Rd , we may further that assume G is connected. By Proposition 5.1,
there is an isomorphism ψ : G/Γ → T

m such that Tt is isomorphic to the flow
St = ψTtψ

−1 acting on T
m by translation by the one-parameter subgroup

{ψ(at)}.
Write ψ(at) = bt = (bt,1, . . . , bt,m) ∈ T

m for all t ∈ R. Then each {bt,i} is a
one-parameter subgroup of T and hence there is some αi ∈ R such that bt,i =
αit for all t ∈ R. As St is ergodic, {α1, . . . , αm} are rationally independent,
i.e., every non-trivial rational combination of α1, . . . , αm is non-zero.

It remains to show that for each x ∈ T
m,{

(Sp1(s)x, . . . , Spk(s)x)
}
s∈Rd =

{(
x1 + p1(s)α1, . . . , xm + p1(s)αm,

. . . , x1 + pk(s)α1, . . . , xm + pk(s)αm

)}
s∈Rd

is uniformly distributed in T
km. As the polynomials {αipj : 1 ≤ i ≤ m,1 ≤

j ≤ k} are rationally independent (i.e., every nontrivial rational combination
of the polynomials {αipj : 1 ≤ i ≤ m,1 ≤ j ≤ k} is nonconstant), this follows
from Theorem 5.3 below. �

Theorem 5.3 (Weyl, [28]). Suppose q1, . . . , qw : R
d → R are rationally in-

dependent polynomials. Then {(q1(s), . . . , qw(s))}s∈Rd is uniformly distributed
in T

w.

Remark 5.1. It is worth noting that Theorem 1.2 fails if the polynomials
{p1, . . . , pk } are not R-independent. Suppose there exist a1, . . . , ak ∈ R, not
all zero, and c ∈ R, so that a1p1(s) + · · · + akpk(s) = c for all s ∈ R

d. For
each i ∈ {1, . . . , k}, let {Tai,t}t∈R be the flow on the torus T = R/Z defined by
Tai,t(x) = x + ait for all x ∈ T and all t ∈ R. Let St = Ta1,t × · · · × Tak,t and
let fj(x1, . . . , xk) = e2πixj ∈ L∞(Tk) for all j ∈ {1, . . . , k}. Then

1
R1

∫ R1

0

· · · 1
Rd

∫ Rd

0

Sp1(s)f1 · · · · · Spk(s)fk ds

converges to e2πi(x1+···+xk+c) in L2(μ) as R1, . . . ,Rd → ∞.

5.2. General description of the limit. In this section, we compute the
L2-limit of (1.1). By (2.1) and Corollary 3.4 it suffices to compute (1.1) in the
case where (X = G/Γ, X , μ, {Tt}) is a nilflow induced by some one-parameter
subgroup {at}t∈R of G. We note that by Proposition 4.1, in order to compute
this limit, it suffices to describe for x ∈ X the closure of the orbit

(5.1)
{
(ap1(s)x, . . . , apk(s)x)

}
s∈Rd
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in Xk. Leibman gives a description of orbits of the form (5.1) in [21]. In
this section, we show that in order to compute the limit of (1.1) it suffices to
describe (5.1) when p1, . . . , pk are linear.

Proposition 5.4. Suppose {p1, . . . , pk : R
d → R} is a collection of poly-

nomials of the form {
∑l

i=1 α1,iqi, . . . ,
∑l

i=1 αk,iqi} for some collection of R-
independent polynomials {q1, . . . , ql : R

d → R} with qi(0) = 0 for i = 1, . . . , l,
and with αj,i ∈ R for i = 1, . . . , l and j = 1, . . . , k. If f0, . . . , fk ∈ L∞(μ), then
the averages

1
Rd

∫ R

0

· · ·
∫ R

0

∫
f0 ·

k∏
j=1

Tpj(s)fj dμds

and
1
Rl

∫ R

0

· · ·
∫ R

0

∫
f0 ·

k∏
j=1

T∑l
i=1 αj,iui

fj dμdu

have the same limit as R → ∞.

A discrete time version of Proposition 5.4, for averages along collections of
three polynomials of Weyl complexity 2, is proved in [8].

Proof of Proposition 5.4. We adapt the method of [8] (Lemma 4.3). By
Corollary 3.4 and (2.1) it suffices to verify the lemma when the system is
an ergodic nilflow, say (X = G/Γ, G/Γ, μ,Tt), induced by some one-parameter
subgroup {at} of G. By Proposition 4.3, it suffices to show that for every
x ∈ X the sets

A =
{
(au0x,au0+

∑l
i=1 α1,iui

x, . . . , au0+
∑l

i=1 αk,iui
x)
}

u0,...,ul ∈R

and

B =
{
(au0x,au0+

∑l
i=1 α1,iqi(s)

x, . . . , au0+
∑l

i=1 αk,iqi(s)
x)
}

u0∈R,s∈Rd

have the same closure.2 Identifying X with G0/Γ ∩ G0, as in Section 4.2, it
suffices to assume G is connected.

By Proposition 4.1, the closure of A is a connected nilmanifold of the form
H/Δ, where H is a connected closed subgroup of Gk+1 and Δ = H ∩ Γk+1.
B is clearly contained in H/Δ and it remains to be shown that B = H/Δ.

Let π : H/Δ → H/([H,H]Δ) be the natural projection. Then π(A) =
H/([H,H]Δ) and hence by Proposition 4.3 it suffices to show that π(B) =
π(A). As H is connected, Proposition 5.1 applies. Thus, we have reduced to
showing that if X = T

m, γ ∈ T
m, and the rotation x → x+ tγ is ergodic, then

2 The sets A and B are both subsets of Xk+1, despite the fact that A is parameterized

by Rl+1 and B is parameterized by R
d+1.
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for all R-independent polynomials q1, . . . , ql : R
d → R, and for all x ∈ X , the

sets {(
x + u0γ,x +

(
u0 +

l∑
i=1

α1,iui

)
γ, . . . ,(5.2)

x +

(
u0 +

l∑
i=1

αk,iui

)
γ

)}
u0,...,ul ∈R

and {(
x + u0γ,x +

(
u0 +

l∑
i=1

α1,iqi(s)

)
γ, . . . ,(5.3)

x +

(
u0 +

l∑
i=1

αk,iqi(s)

)
γ

)}
u0∈R,s∈Rd

have the same closure.
Write γ = (γ1, . . . , γm). Let Λ = {1, . . . , k} × {1, . . . , l} × {1, . . . ,m} and

write α̃λ = αj,iγv , qλ = qi, and uλ = ui for all λ = (j, i, v) ∈ Λ. Let Λ′ ⊆ Λ such
that {α̃λqλ(s)}λ∈Λ′ is maximal rationally independent subset of {α̃λqλ(s)}λ∈Λ.
Let w = |Λ′ | and write Λ′ = {λ1, . . . , λw }. Every element of {α̃λqλ(s)}λ∈Λ can
be written as a linear combination of {α̃λqλ(s)}λ∈Λ′ with rational coefficients:

α̃λqλ(s) = cλ,λ1 α̃λ1qλ1(s) + · · · + cλ,λm α̃λwqλw(s).

Write each cλ,λ′ as a quotient of integers and let d be the least common mul-
tiple of the denominators. For each λ ∈ Λ′, let βλ = α̃λ

d . Then {βλqλ(s)}λ∈Λ′

is rationally independent and every element of {α̃λqλ(s)}λ∈Λ can be written
as a linear combination of {βλqλ(s)}λ∈Λ′ with integer coefficients.

As the collections {q1, . . . , ql} and {u1, . . . , ul} are both R-independent,
they have the same dependence relations. In particular, {βλuλ}λ∈Λ′ is ra-
tionally independent. By Theorem 5.3, {(βλ1qλ1(s), . . . , βλwqλw(s))}s∈Rd and
{(βλ1uλ1 , . . . , βλwuλw)}uλ1 ,...,uλw ∈R are each equidistributed in T

w. Thus for
each set of fixed values u1, . . . , ul ∈ R, there exists s ∈ R

d such that the dis-
tance in T

w between βλqλ(s) and βλuλ is as small as desired for all λ ∈ Λ′. If
for every λ ∈ Λ

α̃λqλ(s) = mλ,λ1βλ1qλ1(s) + · · · + mλ,λwβλwqλw(s)

for integers {mλ,λi }, then for every λ ∈ Λ

α̃λuλ = mλ,λ1βλ1uλ1 + · · · + mλ,λwβλwuλw .

Thus, s ∈ R
d can be chosen so that the distance in T

w between
∑l

i=1 αj,iqi(s)γ
and

∑l
i=1 αj,iuiγ is as small as desired for all j ∈ {1, . . . , k}. This shows that

(5.2) is contained in the closure of (5.3). A similar argument shows that (5.3)
is contained in the closure of (5.2). �
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By Proposition 5.4, in order to describe the limit of (1.1) in general it
remains to give a description of the limit along linear polynomials. Let G/Γ
be an r-step nilmanifold. For each k ∈ {1, . . . , r}, let Ωk = {(l1, . . . , lm) ∈
N

k :
∑m

i=1 li = k}. Given αj,i ∈ R, for all i ∈ {1, . . . , d} and j ∈ {1, . . . , k},
define the set

H =

{(
b0

r∏
n=1

∏
ω∈Ωn

b

∏d
i=1 (α1,i

li
)

n,ω , . . . , b0

r∏
n=1

∏
ω∈Ωn

b

∏d
i=1 (αk,i

li
)

n,ω

)
:

bn,ω ∈ Gn ∀n ∈ {1, . . . , r}, ∀ω ∈ Ωn

}
and let Δ = Γk ∩ H . H is a closed subgroup of Gk, and the discrete subgroup
Δ is cocompact [21]. Thus, H/Δ is a nilmanifold with a Haar measure mH .

Theorem 5.5 (Leibman, [21]). Let (X = G/Γ, G/Γ, μ,Tt) be an ergodic
nilflow and let {p1, . . . , pk : R

d → R} be a nice family of polynomials of the
form {

∑d
i=1 α1,isi, . . . ,

∑d
i=1 αk,isi}. If f1, . . . , fk ∈ L∞(μ) then for a.e. x =

gΓ ∈ X

lim
R1,...,Rd →∞

1
R1

∫ R1

0

· · · 1
Rd

∫ Rd

0

f1(Tp1(s)x) · · · · · fk(Tpk(s)x)ds

=
∫

H/Δ

f1(gy1Γ) · · · · · fk(gykΓ)dmH(yΔ),

where y = (y1, . . . , yk), and H , Δ are as above.

Theorem 5.5 follows from a specific case of Theorem 8.3 in [21], and the
fact that for each n ∈ N, the polynomials {

∏d
i=1

(
si

li

)
: ω ∈ Ωn} algebraically

generate the polynomials R
d → R of degree n. For further explanation, see

[21], Section 0.7. The discrete time version of Theorem 5.5 in the d = 1 case
was given by Ziegler in [29].

5.3. Limit formula. We now compute the L2-limit of (1.1). If necessary,
rewrite (1.1) so that pi(0) = 0 for i = 1, . . . , k. Write {p1, . . . , pk } in the form
{
∑l

i=1 α1,iqi, . . . ,
∑l

i=1 αk,iqi}, where {q1, . . . , ql} are R-independent polyno-
mials. By Theorem 1.1, the L2-limit and the weak limit of (1.1) both exist and
coincide. Thus, by Proposition 5.4 the limit will be unchanged if we replace
{
∑l

i=1 α1,iqi, . . . ,
∑l

i=1 αk,iqi} with the linear polynomials {
∑l

i=1 α1,iui, . . . ,∑l
i=1 αk,iui}. Let r ∈ N such that Zr is characteristic for (1.1). After replac-

ing f1, . . . , fk with their projections on Zr we assume that X = Zr. As Zr is
an inverse limit of r-step nilsystems, we can further assume that our system is
an ergodic nilflow and compute the limit using Theorem 5.5 (or by the more
general method given by Theorem 8.3 in [21]).

If Z1 is characteristic, then we can assume that our system is an ergodic flow
given by multiplication by a one-parameter subgroup on a compact Abelian
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Lie group G with the Haar measure μ. Identifying X with G0/(Γ ∩ G0), as in
Section 4.2, we may assume G is connected, so X = T

m for some nonnegative
integer m. Thus for every f1, . . . , fk ∈ L∞(μ), the L2-limit of (1.1) is

(5.4)
∫

Tm

· · ·
∫

Tm

k∏
j=1

fj

(
x +

l∑
i=1

αj,iui

)
dμ(u)

for a.e. x ∈ T
m.

5.4. Complexity. We define the flow average complexity of a given family
of polynomials {p1, . . . , pk } to be the smallest value of r ∈ N such that for
any flow (X, X , μ, {Tt}), Zr({Tt}) is characteristic for (1.1). We just write
complexity when it is clear we are referring to the flow average complexity.
For applications, it is useful to know the complexity of specific collections of
polynomials. By Proposition 5.4, it suffices to compute the complexity for
linear polynomials. Combining Proposition 5.4 with Corollary 3.4, we have
the following result.

Corollary 5.6. The complexity of a family {p1, . . . , pk } of non-constant
essentially distinct polynomials is at most k − 1.

For linear polynomials, a similar bound holds for the discrete average com-
plexity [18]. However, it is still unknown whether in the discrete time setting
a version of Corollary 5.6 holds for general families of polynomials.

It is shown in [18] that if {p1, . . . , pk : Z
d → Z} is a nice family of polyno-

mials with pi(0) = 0 for all i ∈ {1, . . . , k}, then there is some r ∈ N so that
for each probability space (X, X , μ), for each measure preserving transforma-
tion T : X → X , and for each Følner sequence {ΦN }N ∈N in Z

d, Zr(X,T ) is
characteristic for the discrete time average

(5.5)
1

|ΦN |
∑

n∈ΦN

T p1(n)f1 · · · · · T pk(n)fk, f1, . . . , fk ∈ L∞(μ).

In other words, for any f1, . . . , fk ∈ L∞(μ) with E(fi| Zk−1) = 0 for some
i ∈ {1, . . . , k}, the average (5.5) converges to zero in L2(μ) as N → ∞. In
this paper, we will refer to the minimal such r ∈ N as the discrete average
complexity of {p1, . . . , pk : Z

d → Z}. A method for calculating the discrete
average complexity is given in Section 6 of [21].

Proposition 5.7. Let {p1, . . . , pk : R
d → R} be a family of linear poly-

nomials with pi(0) = 0 and pi(Zd) ⊆ Z for all i ∈ {1, . . . , k}. Then the flow
average complexity of {p1, . . . , pk : R

d → R} is bounded by the discrete average
complexity of {p1, . . . , pk : Z

d → Z}.

Proof. Let r be the discrete average complexity of {p1, . . . , pk : Z
d → Z}.

It suffices to show that if f1, . . . , fk ∈ L∞(X), with E(fi| Zr) = 0 for some
i ∈ {1, . . . , k}, then the L2-limit of (1.1) is zero.
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First suppose T1 is totally ergodic. If E(fi| Zr) = 0, then E(Tpi(s)f | Zr) = 0
for all s ∈ R

d. By an argument similar to the proof of Lemma 3.2, and the
Dominated Convergence theorem,

lim
R1,...,Rd →∞

1∏d
i=1 Ri

∫ R1

0

· · ·
∫ Rd

0

k∏
i=1

Tpi(s)fi ds(5.6)

=
∫

[0,1]d
lim

R1,...,Rd →∞

1∏d
i=1�Ri�

×
�R1	 −1∑
n1=0

· · ·
�Rd 	 −1∑
nd=0

k∏
i=1

T
pi(n)
1 (Tpi(s)fi)ds.

As r is the discrete average complexity of {p1, . . . , pk : Z
d → Z}, the inte-

grand is zero, and hence (5.6) is equal to zero.
If T1 is not totally ergodic, fix u ∈ R such that u > 0 and Tu is totally

ergodic. Let {T̃t}t∈R be the flow given by T̃t = Tut for all t ∈ R. Then T̃1

is totally ergodic and hence the L2-limit of (1.1) is zero when Tt is replaced
with T̃t. The change of variable (s1, . . . , sd) → (us1, . . . , usd) now gives the
result. �

Combining Theorem 1.2 and Remark 5.1, we can characterize all families
of complexity 0.

Corollary 5.8. A family {p1, . . . , pk } of non-constant essentially distinct
polynomials has complexity 0 if and only if {p1, . . . , pk } are R-independent.

5.5. Bounding the complexity in examples. Let {p1, . . . , pk : R
l → R}

be a nice family of polynomials. Define the pj-complexity of {p1, . . . , pk : R
l →

R} to be the smallest value of r ∈ N such that whenever fj ∈ L∞(μ) with
E(fj | Zr) = 0, the average (1.1) converges to zero in L2(μ). Then the com-
plexity of {p1, . . . , pk : R

l → R} is the maximum of the pj -complexities for
j = {1, . . . , k}.

We describe a method for determining a bound for the p1-complexity.
Bounds for the other complexities can be determined by a similar process. By
Proposition 5.4, it suffices to assume {p1, . . . , pk : R

l → R} are linear polyno-
mials of the form {

∑l
i=1 α1,iui, . . . ,

∑l
i=1 αk,iui}. By relabeling the variables,

we can further assume α1,1 
= 0. Let Λ1 = {αj,1 : αj,1 
= 0,1 ≤ j ≤ k}. Then
Λ1 are all coefficients of the variable u1 in {

∑l
i=1 α1,iui, . . . ,

∑l
i=1 αk,iui}. In

Proposition 5.9 below, we show that if α1,1 
= αj,1 for all 2 ≤ j ≤ k, then the
p1-complexity is at most |Λ1| − 1. Later in this section we explain how any
collection of polynomials can be replaced by a collection of polynomials with
the same complexities and which meets these requirements.

Proposition 5.9. Suppose {p1, . . . , pk : R
l → R} is a collection of distinct

linear polynomials of the form {
∑l

i=1 α1,iui, . . . ,
∑l

i=1 αk,iui} with αj,i ∈ R for
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i = 1, . . . , l and j = 1, . . . , k, and let Λ1 = {αj,1 : αj,1 
= 0,1 ≤ j ≤ k}. If α1,1 
=
0, and α1,1 
= αj,1 for all 2 ≤ j ≤ k, then the p1-complexity of {p1, . . . , pk : R

l →
R} is no greater than |Λ1| − 1.

A similar type of result, for discrete time averages along collections of three
polynomials of Weyl complexity 2, is proved in [8].

Proof of Proposition 5.9. We adapt the method of [8] (Lemma 4.2). Let
r = |Λ1| − 1, and for all u ∈ R

l write u = (u1, . . . , ul). Let f1, . . . , fk ∈ L∞(μ)
with ‖fi‖ ∞ ≤ 1 for i = 1, . . . , k. It suffices to show that if E(f1| Zr) = 0 then
the L2-limit of (1.1) is zero. By Theorem 1.1, the L2-limit of (1.1) is identical
to the L2-limit of

(5.7) lim
N →∞

1
a(N) · m(RN )

∫
RN

∫ a(N)

0

Tp1(u)f1 · · · · · Tpk(u)fk du,

where RN = [−N,N ]l−1 for all N ∈ N and a(N) is an increasing sequence of
integers to be chosen as follows. By Corollary 3.4, the (αj,1u1)-complexity
of the family {αj,1u1}j∈Λ is at most r. Write p̃j(u2, . . . , ul) =

∑l
i=2 αj,iui for

all j = 1, . . . , k and note that if E(f1| Zr) = 0 then E(f1 ◦ Tp̃1(u2,...,ul)| Zr) = 0
for all u2, . . . , ul ∈ R. Since the map RN → L2(μ) given by ũ = (u2, . . . , ul) →∏

j∈Λ fj ◦ Tp̃j(ũ) is uniformly continuous, for each N ∈ N we are able to choose
a(N) ∈ N with a(N) > a(N − 1) so that for all ũ = (u2, . . . , ul) ∈ RN ,

(5.8)
∥∥∥∥ 1

a(N)

∫ a(N)

0

∏
j∈Λ

Tαj,1u1(Tp̃j(ũ)fj)du1

∥∥∥∥
L2(μ)

≤ 1
N

.

Then for each N ∈ N,∥∥∥∥ 1
a(N) · m(RN )

∫
RN

∫ a(N)

0

Tp1(u)f1 · · · · · Tpk(u)fk du
∥∥∥∥

L2(μ)

≤ 1
m(RN )

∫
RN

∥∥∥∥ 1
a(N)

∫ a(N)

0

∏
j∈Λ

Tαj,1u1(Tp̃j(ũ)fj)du1

∥∥∥∥
L2(μ)

dũ.

By (5.8), the L2-limit of (5.7) is zero, which completes the proof. �

Now we describe how when k ≥ 2, a nice family of linear polynomials
{p1, . . . , pk : R

l → R} can always be replaced with a collection of polynomi-
als with the same complexities, which satisfies the requirements of Proposi-
tion 5.9.

Define the coefficient matrix of {
∑l

i=1 α1,iui, . . . ,
∑l

i=1 αk,iui} to be:

A =

⎛⎜⎜⎜⎝
α1,1 α1,2 . . . α1,l

α2,1 α2,2 . . . α2,l

...
... . . .

...
αk,1 αk,2 . . . αk,l

⎞⎟⎟⎟⎠ .
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Notice that α1,1 will be distinct from {α2,1, . . . , αk,1} if and only if the first
entry of the first column is distinct from the other entries in that column.
By Proposition 5.4, the p1-complexity will remain unchanged if u1, . . . , ul

are each replaced with R-independent linear polynomials q1, . . . , ql. Write
qj =

∑l
i=1 γj,iui for each j ∈ {1, . . . , l}. It is elementary to show that q1, . . . , ql

are R-independent if and only if the coefficient matrix B = (qj,i) is invertible.
Moreover, the coefficient matrix C of the produced polynomials will be the
product, C = A · B. Notice that the first entry of the first column of C will
be distinct from the other entries in that column if and only if

αj,1γ1,1 + αj,2γ2,1 + · · · + αj,lγl,1 
= α1,1γ1,1 + α1,2γ2,1 + · · · + α1,lγl,1

for all j ∈ {1, . . . , k} with j 
= j′. This happens precisely when (pj − p1)(γ) 
= 0
for all j ∈ {2, . . . , k}, where γ = (γ1,1, . . . , γl,1). As the solution set to the
equation (pj − p1)(x) = 0 has measure zero for all j ∈ {2, . . . , k}, there will
certainly exist some non-zero γ with this property. The remaining columns of
B can always be chosen so that B is invertible. Thus, B can always be found
so that the resulting collection of polynomials will satisfy the hypotheses of
Proposition 5.9. In many cases B can be chosen so that the size of Λ1 will be
preserved, although it is unknown whether this will always be the case.

Example 5.1. The collections of polynomials {u1,2u1, u2}, {u1, u2,2u1 −
u2}, {u1, u2, u3, πu1 +π2u3,3u2}, and {u1, u2, u3,2u1 +u4,2u2 +u4,2u3 +u4}
each have complexity at most 1, by a direct application of Proposition 5.9.
None of these families are R-independent, so by Corollary 5.8, the complexity
of each is 1.

Example 5.2. The collection of polynomials {p1(u), p2(u), p3(u)} = {u1,
u2, u1 +u2} has complexity 1. To see this, we use the method described above,
setting u1 = s + t and u2 = s − t. The resulting collection of polynomials is
{s + t, s − t,2s}. Using Proposition 5.9, and examining the variable t, the p1-
complexity and the p2-complexity are each at most 1. Examining the variable
s, we see that the p3 complexity is also at most 1. Taking the maximum of
the pi-complexities, we see that the complexity of {p1(u), p2(u), p3(u)} is at
most 1. By Corollary 5.8, the complexity is equal to 1.

Example 5.3. The collection of polynomials {p1(u), p2(u), p3(u), p4(u)} =
{u1, u2, u3, u1 + u2 + u3} has complexity 1. To see this, use Proposition 5.4
and the change of variable u1 = s, u2 = t, u3 = w − s, to obtain the collec-
tion {s, t,w − s, t + w} with the same complexities. By Proposition 5.9, the
p1-complexity and the p3-complexity are no greater than 1. By symmetry, a
similar change of variable shows the p2-complexity is no greater than 1. A dif-
ferent change of variable, u1 = s, u2 = s + t, and u3 = w, gives the collection
{s, s + t,w,2s + t + w}, and by examining the coefficients of the variable s,
we see that the p4-complexity is at most 1. By Corollary 5.8, the complexity
is 1.
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Example 5.4. We show {p1(u), p2(u), p3(u), p4(u), p5(u), p6(u), p7(u)} =
{u1, u2, u3, u1 +u2, u2 +u3, u1 +u3} has complexity at most 2. By the change
of variable u1 = s, u2 = t − s, u3 = w − s, we obtain the collection {s, t − s,w −
s, t,w, t + w − 2s, t + w − s}. By examining the coefficients of the variable s,
we see that the p1 and p6 complexities are at most 2. By symmetry, the p2,
p3, p4, and p5-complexities are at most 2. The change of variable u1 = s,
u2 = t + s, u3 = w + s, we obtain the collection {s, t + s,w + s, t + 2s,w +
2s, t + w + 2s, t + w + 3s}, and hence the p7-complexity is bounded by 2.

Example 5.5. Let l ≥ 1, and let V = {0,1}l. Let Pl be the l-dimensional
cube, i.e., {ε · u : ε ∈ V }. The the complexity of Pl is at most l. This can be
seen by doing a series of change of variables of the form u1 → u1, (u2, . . . , ul) →
(u2, . . . , ul) − u1ε, for ε ∈ { −1,1}l−1.

Alternately, this fact follows from Proposition 5.7 and results in [17].

Example 5.6. The collection {p1(u), p2(u), p3(u), p4(u)} = {πu1 + π2u2,
π2u1 +π3u3, πu1 +π2u2 +πu3, πu2 +πu3} has complexity 1. By the change of
variable (u1, u2, u3) → (u1, u2 + 1

π u1, u3 − 1
π u1), to get the collection {2πu1 +

π2u2, π
3u3, (2π − 1)u1 + π2u2 + πu3, πu2 + πu3}, and examining the coeffi-

cients of the variable u1, we see that the p1 and p3-complexities are also at
most 1. By the change of variable (u1, u2, u3) → (−πu1, u2 +u1, u3), to get the
collection {π2u2, −π3u1 +π3u3, π

2u2 +πu3, πu1 +πu2 +πu3}, and examining
the coefficients of the variable u1, we see that the p2 and p4-complexities are
also at most 1. Thus, the complexity is at most 1. By Corollary 5.8, the
complexity is exactly 1.

Example 5.7. The collection {t,2t, t2} has discrete average complexity 2
[8]. However, it is easily seen that the flow average complexity is 1. To see this,
by Proposition 5.4, it suffices to examine the linear polynomials {u1,2u1, u2}.
Thus by Proposition 5.9, the flow average complexity is at most 1, and is in
fact equal to 1 by Corollary 5.8.

It is unknown whether the bounds produced by the above method will
achieve the flow average complexity for each nice family of polynomials.

6. Lower bounds

We now prove Theorems 1.3 and 1.4 using the method given in [8].

Proof of Theorem 1.3. As much of this proof is identical to the proof of
Theorem C (case 1) in [8], we give only a summary here.

Without loss of generality, we assume {p1, . . . , pk } are non-constant and
essentially distinct. If {p1, . . . , pk } has complexity 0, the result follows from
Theorem 1.2.
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Suppose {p1, . . . , pk } has complexity 1, and rewrite {p1, . . . , pk } in the
form {q1, . . . , ql,

∑l
i=1 α1,iqi, . . . ,

∑l
i=1 αk−l,iqi}, for R-independent polynomi-

als {q1, . . . , ql}. By Proposition 5.1, we may assume the Kronecker factor
Z1 is of the form (Tw,m, {Rt}), where Rt is defined by Rt(x) = x + tγ for
some fixed γ ∈ T

w, and for all x ∈ T
w and t ∈ R. Let π1 : X → Z1 be the

factor map. For δ > 0, define the sets Vδ := B(0, δ)l ⊆ Z l
1 and Sδ := {s ∈

R
d : (q1(s)γ, q2(s)γ, . . . , ql(s)γ) ∈ Vδ }.
First notice that Z1 is characteristic for the average

1
R1

∫ R1

0

· · · 1
Rd

∫ Rd

0

1Sδ
(s) · Tp1(s)f1 · · · · · Tpk(s)fk ds,(6.1)

f1, . . . , fk ∈ L∞(μ).

To see this, let χ1, χ2, . . . , χl be any characters of G and suppose E(fi| Z1) = 0
for some i = 1, . . . , k. Then E(χi ◦ π1 · fi| Z1) = χi ◦ π1 · E(fi| Z1) = 0, and hence

1
R1

∫ R1

0

· · · 1
Rd

∫ Rd

0

Tp1(s)(χ1 ◦ π1 · f1) · · · · · Tpk(s)(χk ◦ π1 · fk)ds.

converges to zero in L2(μ) as R1, . . . ,Rd → ∞. Approximating 1Sδ
(s) =

1Vδ
(q1(s)γ, . . . , ql(s)γ) by functions of the form χ1(q1(s)γ) · · · · · χl(ql(s)γ),

we see that Z1 is characteristic for (6.1).
By Theorem 5.3, the path {(q1(s)γ, q2(s)γ, . . . , ql(s)γ)}s∈Rd is uniformly

distributed in T
wl, and hence

(6.2) lim
N →∞

m(Sδ ∩ [0,R1] × · · · × [0,Rd])
R1 · · · · · Rd

= m(Vδ).

It now follows from (5.4) and (6.2) that if f0, . . . , fk ∈ L∞(μ) and f̃i =
E(fi| Z1) for i = 1, . . . , k, then for any increasing sequence of rectangles
{ΦN }N ∈N in R

d, each containing zero, with
⋃

N ∈N
ΦN = R

d, we have

lim
N →∞

1
m(Sδ ∩ ΦN )

∫
Sδ ∩ΦN

∫
f0 ·

k∏
j=1

Tpj(s)fj dμds(6.3)

=
1

m(Vδ)

∫
Vδ

∫
G

f̃0 ·
l∏

j=1

f̃j(x + uj) ·
k−l∏
j=1

f̃l+j

(
x +

l∑
i=1

αj,iui

)
dxdu.

The limit of expression (6.3) as δ approaches zero is
∫

f̃0 · f̃1 · · · · · f̃k dm.
Thus if δ is small enough and fi = f = 1A for i = 0,1, . . . , k, then the quantity
in (6.3) is greater than∫

(f̃)k+1 dm − ε ≥
(∫

f̃ dm

)k+1

− ε = μ(A)k+1 − ε.
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Therefore, if {p1, . . . , pk } has complexity 1, then for every ε > 0 there exists
δ > 0 so that

lim
N →∞

1
m(Sδ ∩ ΦN )

∫
Sδ ∩ΦN

μ
(
A ∩ T−p1(s)(A) ∩ · · · ∩ T−pk(s)(A)

)
ds

≥ μ(A)k+1 − ε. �

It is worth noting that it is our ability to give an explicit description of the
limit of (1.1) in general which allows us to compute (6.1), and hence to prove
Theorem 1.3 in its full generality.

The proof of Theorem 1.4 is identical to the proof of Theorem C (part 2)
in [8], and thus we omit it.

Appendix A: The correspondence principle

In this section, we prove Theorem 1.5 by modifying the proof of Proposi-
tion 2.2 in [13].

Let E ⊂ R such that D∗(E) > 0. Let d : R
2 → R be the Euclidean distance

and define the function ϕ : R → R by

ϕ(s) := min
{
1, d(s,E)

}
.

Let X be the closure of the equicontinuous, uniformly bounded family
of functions ϕt(s) = ϕ(s + t) in the topology of uniform convergence over
bounded sets in R. By the Ascoli–Arzelá theorem, X is compact.

We define a flow on X by Ttψ(s) = ψ(s + t) for ψ ∈ X , s, t ∈ R. Since
D∗(E) > 0, there exists a sequence of intervals Sn ⊂ R such that

m(Sn ∩ E)
m(Sn)

→ D∗(E) > 0,

and each interval Sn induces a probability measure μn on X :

μn(f) =
1

m(Sn)

∫
Sn

f(Ttϕ)dt.

By the Riesz Representation theorem, Borel measures on X correspond to
linear functionals on C(X), and thus there is a probability measure ν on X
and some subsequence {nk } such that

μnk

ω∗
→ ν.

Let f0 : X → R be the function given by f0(ψ) = ψ(0) for all ψ ∈ X . Then f0

is continuous. Define Ẽ ⊂ X by

ψ ∈ Ẽ ⇔ f0(ψ) = 0 ⇔ ψ(0) = 0.

Lemma A.1. ν(Ẽ) ≥ D∗(E).
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Proof. Recall that ϕ(t) = 0 if t ∈ E. For each l ∈ N,∫
X

(
1 − f0(ψ)

)l
dν(ψ) = lim

k→∞

1
m(Snk

)

∫
Snk

(
1 − f0(Ttϕ)

)l
dt

= lim
k→∞

1
m(Snk

)

∫
Snk

(
1 − ϕ(t)

)l
dt

≥ lim
k→∞

m(Snk
∩ E)

m(Snk
)

= D∗(E).

Thus,

ν(Ẽ) = lim
l→∞

∫
X

(
1 − f0(ψ)

)l
dν(ψ) ≥ D∗(E). �

By the ergodic decomposition of ν, there exists an ergodic measure μ on
X such that μ(Ẽ) ≥ ν(Ẽ) > D∗(E). As C(X) is separable, by the ergodic
theorem μ-almost every ψ ∈ X is a generic point for μ, i.e.,

lim
R→∞

1
R

∫ R

0

f(Ttψ)dt =
∫

f dμ

for every continuous function f ∈ C(X).
Furthermore, ϕ ∈ X is quasi-generic (for the definition and proof of this

fact in the discrete case, see [12]) for μ, meaning there exists some sequence
of intervals {IN }N ∈N in R with diam(IN ) → ∞ such that

lim
N →∞

1
m(IN )

∫
IN

f(Ttϕ)dt =
∫

f dμ

for every continuous function f ∈ C(X). To see that ϕ is quasi-generic, let ψ0

be a generic point in X . For each f ∈ C(X),

lim
N →∞

1
N

∫ N

0

f(Ttψ0)dt =
∫

f dμ.

Let {fk } be a dense set of functions in C(X), and let Nk be an increasing
sequence such that ∣∣∣∣ 1

Nk

∫ Nk

0

fj(Ttψ0)dt −
∫

fj dμ

∣∣∣∣< 1
2k

for j = 1,2, . . . , k. If tk is chosen so that the distance between ψ0 and Ttk
ϕ is

sufficiently small, then∣∣∣∣ 1
Nk

∫ Nk+tk

tk

fj(Ttϕ)dt −
∫

fj dμ

∣∣∣∣= ∣∣∣∣ 1
Nk

∫ Nk

0

fj(Tt+tk
ϕ)dt −

∫
fj dμ

∣∣∣∣< 1
k

for j = 1,2, . . . , k. Set Ik = [tk,Nk + tk]. Then limN →∞
1

m(IN )

∫
IN

fk(Ttϕ)dt =∫
fk dμ for each k ∈ N. By the density of {fk } in C(X), ϕ is quasi-generic for μ.
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Proposition A.2. Let μ and Ẽ be as above. For {u1, . . . , ul} ⊂ R, we have
for all δ > 0,

D∗({t ∈ R : t, t + u1, . . . , t + ul ∈ Eδ }
)

≥ μ
(
Ẽ ∩ T −1

u1
Ẽ ∩ · · · ∩ T −1

ul
Ẽ
)
.

Proof. Define the function g : X → R by

g(ψ) =

{
δ − f0(ψ), f0(ψ) < δ,

0, f0(ψ) ≥ δ.

As ϕ is quasi-generic for μ, there exists a sequence of intervals IN ⊂ R such
that ∫

f(ψ)dμ(ψ) = lim
N →∞

1
m(IN )

∫
IN

f(Ttϕ)dt

for all f ∈ C(X).
Since g(ψ) = δ for ψ ∈ Ẽ, we have

δl+1 · μ
(
Ẽ ∩

(
T −1

u1
Ẽ
)

∩ · · · ∩
(
T −1

ul
Ẽ
))

≤
∫

g(ψ)g(Tu1ψ) · · · g(Tul
ψ)dμ(ψ)

= lim
N →∞

1
m(IN )

∫
IN

g(Ttϕ)g(Tu1Ttϕ) · · · g(Tul
Ttϕ)dt

≤ δl+1 · D∗({t ∈ R : t, t + u1, . . . , t + ul ∈ Eδ }
)
. �

Appendix B: van der Corput lemma

The following useful lemma is analogous to the discrete version given by
van der Corput (see [27]).

Lemma B.1. Let (X,μ) be a probability space. Suppose (x, s) → gs(x) is a
map in L∞(X × R

d) with ‖gs‖L∞(μ) ≤ 1 for almost every s ∈ R
d. Suppose ν

is a Borel measure on R
d and let Ψ be any ν-measurable subset Ψ ⊆ R

d with
0 < ν(Ψ) < ∞. Then

limsup
R1,...,Rd →∞

∥∥∥∥ 1
R1

∫ R1

0

· · · 1
Rd

∫ Rd

0

gs ds
∥∥∥∥2

L2(μ)

(B.1)

≤ limsup
R1,...,Rd →∞

1
ν(Ψ)2

×
∫

Ψ

∫
Ψ

1
R1

∫ R1

0

· · · 1
Rd

∫ Rd

0

〈gs+u, gs+v〉 dsdudv.

Proof. Let Ψ ⊆ R
d with 0 < ν(Ψ) < ∞, and let R

(1)
N , . . . ,R

(d)
N be sequences

of positive real numbers with with R
(1)
N , . . . ,R

(d)
N → ∞ as N → ∞. Set ΦN =



MULTIPLE ERGODIC AVERAGES FOR FLOWS AND AN APPLICATION 619

[0,R
(1)
N ] × · · · × [0,R

(d)
N ] for each N ∈ N. Then for all N ∈ N,

1
m(ΦN )

∫
ΦN

gs ds =
1

ν(Ψ)

∫
Ψ

1
m(ΦN )

∫
ΦN

gs dsdu

=
1

ν(Ψ)

∫
Ψ

1
m(ΦN )

∫
ΦN

gs+u dsdu

+
1

ν(Ψ)

∫
Ψ

1
m(ΦN )

∫
(ΦN −u)\ΦN

gs+u dsdu

− 1
ν(Ψ)

∫
Ψ

1
m(ΦN )

∫
ΦN \(ΦN −u)

gs+u dsdu.

The last two terms approach zero as N → ∞. Thus, using the Cauchy–
Schwarz Inequality, (B.1) is equal to

limsup
N →∞

∥∥∥∥ 1
ν(Ψ)

∫
Ψ

1
m(ΦN )

∫
ΦN

gs+u dsdu
∥∥∥∥2

L2(μ)

≤ limsup
N →∞

1
m(ΦN )

∫
ΦN

∥∥∥∥ 1
ν(Ψ)

∫
Ψ

gs+u du
∥∥∥∥2

L2(μ)

ds

= limsup
N →∞

1
ν(Ψ)2

∫
Ψ

∫
Ψ

1
m(ΦN )

∫
ΦN

〈gs+u, gs+v〉 dsdudv. �

We use the following corollaries of Lemma B.1.

Corollary B.2. Under the hypotheses of Lemma B.1,

limsup
R1,...,Rd →∞

∥∥∥∥ 1
R1

∫ R1

0

· · · 1
Rd

∫ Rd

0

gs ds
∥∥∥∥2

L2(μ)

≤ 1
ν(Ψ)2

∫
Ψ

∫
Ψ

limsup
R1,...,Rd →∞

∣∣∣∣ 1
R1

∫ R1

0

· · · 1
Rd

∫ Rd

0

〈gs+u, gs+v〉 ds
∣∣∣∣dudv.

Proof. First use Lemma B.1. Then we are allowed to interchange the
limsup and the integral by Fatou’s lemma. �

Corollary B.3. Under the hypotheses of Lemma B.1, there exists a se-
quence of rectangles ΘN in R

3d with {0} ⊂ Θ1 ⊆ Θ2 ⊆ Θ3 ⊆ · · · , and⋃
N ∈N

ΘN = R
3d, such that

limsup
R1,...,Rd →∞

∥∥∥∥ 1
R1

∫ R1

0

· · · 1
Rd

∫ Rd

0

gs dm(s)
∥∥∥∥2

L2(μ)

≤ limsup
N →∞

1
m(ΘN )

∫
(s,u,v)∈ΘN

〈gs+u, gs+v〉 dm(s)dm(u)dm(v).
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Proof. Let {ΦN }N ∈N be an increasing sequence of rectangles {ΦN }N ∈N in
R

d with
⋃

N ∈N
ΦN = R

d and 0 ∈ ΨN for all N ∈ N, such that

limsup
N →∞

∥∥∥∥ 1
m(ΦN )

∫
ΦN

gs dm(s)
∥∥∥∥2

L2(μ)

= limsup
R1,...,Rd →∞

∥∥∥∥ 1
R1

∫ R1

0

· · · 1
Rd

∫ Rd

0

gs dm(s)
∥∥∥∥2

L2(μ)

.

Let J denote the quantity (B.2). Choose any increasing sequence of rectan-
gles {ΨN }N ∈N in R

d with
⋃

N ∈N
ΨN = R

d and 0 ∈ ΨN for all N ∈ N. Using
Lemma B.1, find a sequence {MN }N ∈N ⊆ N so that for each N ∈ N+, MN ≥ N
and

1
m(ΨN )2

∫
ΨN

∫
ΨN

1
m(ΦMN

)

∫
ΦMN

〈gs+u, gs+v〉 dsdudv > J − 1
N

.

Define ΘN = ΦMN
× ΨN × ΨN . Then

limsup
N →∞

1
m(ΘN )

∫
(s,u,v)∈ΘN

〈gs+u, gs+v〉 dsdudv ≥ J. �
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