EXTREMAL PROBLEMS IN BERGMAN SPACES AND AN EXTENSION OF RYABYKH'S THEOREM

TIMOTHY FERGUSON

Abstract

We study linear extremal problems in the Bergman space A^{p} of the unit disc for p an even integer. Given a functional on the dual space of A^{p} with representing kernel $k \in A^{q}$, where $1 / p+1 / q=1$, we show that if the Taylor coefficients of k are sufficiently small, then the extremal function $F \in H^{\infty}$. We also show that if $q \leq q_{1}<\infty$, then $F \in H^{(p-1) q_{1}}$ if and only if $k \in H^{q_{1}}$.

An analytic function f in the unit disc \mathbb{D} is said to belong to the Bergman space A^{p} if

$$
\|f\|_{A^{p}}=\left\{\int_{\mathbb{D}}|f(z)|^{p} d \sigma(z)\right\}^{1 / p}<\infty
$$

Here σ denotes normalized area measure, so that $\sigma(\mathbb{D})=1$. For $1<p<\infty$, each functional $\phi \in\left(A^{p}\right)^{*}$ has a unique representation

$$
\phi(f)=\int_{\mathbb{D}} f \bar{k} d \sigma
$$

for some $k \in A^{q}$, where $q=p /(p-1)$ is the conjugate index. The function k is called the kernel of the functional ϕ.

In this paper, we study the extremal problem of maximizing $\operatorname{Re} \phi(f)$ among all functions $f \in A^{p}$ of unit norm. If $1<p<\infty$, then an extremal function always exists and is unique. However, to find it explicitly is in general a difficult problem, and few explicit solutions are known. Here we consider the problem of determining whether the kernel being "well-behaved" implies that the extremal function is also "well-behaved." A known result in this direction is Ryabykh's theorem, which states that if the kernel is actually in the Hardy space H^{q}, then the extremal function must be in the Hardy space H^{p}. In [4],
we gave a proof of Ryabykh's theorem based on general properties of extremal functions in uniformly convex spaces.

In this paper, we obtain a sharper version of Ryabykh's theorem in the case where p is an even integer. Our results are:

- For $q \leq q_{1}<\infty$, the extremal function $F \in H^{(p-1) q_{1}}$ if and only if the kernel $k \in H^{q_{1}}$.
- If the Taylor coefficients of k are "small enough," then $F \in H^{\infty}$.
- The map sending a kernel $k \in H^{q}$ to its extremal function $F \in A^{p}$ is a continuous map from $H^{q} \backslash 0$ into H^{p}.
Our proofs rely heavily on Littlewood-Paley theory, and seem to require that p be an even integer. It is an open problem whether the results hold without this assumption.

1. Extremal problems and Ryabykh's theorem

We begin with some notation. If f is an analytic function, $S_{n} f$ denotes its nth Taylor polynomial at the origin. Lebesgue area measure is denoted by $d A$, and $d \sigma$ denotes normalized area measure.

If h is a measurable function in the unit disc, the principal value of its integral is

$$
\text { p.v. } \int_{\mathbb{D}} h d A=\lim _{r \rightarrow 1} \int_{r \mathbb{D}} h d A,
$$

if the limit exists.
We now recall some basic facts about Hardy and Bergman spaces. For proofs and further information, see [2] and [3]. Suppose that f is analytic in the unit disc. For $0<p<\infty$ and $0<r<1$, the integral mean of f is

$$
M_{p}(f, r)=\left\{\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(r e^{i \theta}\right)\right|^{p} d \theta\right\}^{1 / p}
$$

If $p=\infty$, we write

$$
M_{\infty}(f, r)=\max _{0 \leq \theta<2 \pi}\left|f\left(r e^{i \theta}\right)\right| .
$$

For fixed f and p, the integral means are increasing functions of r. If $M_{p}(f, r)$ is bounded we say that f is in the Hardy space H^{p}. For any function f in H^{p}, the radial limit $f\left(e^{i \theta}\right)=\lim _{r \rightarrow 1^{-}} f\left(r e^{i \theta}\right)$ exists for almost every θ. An H^{p} function is uniquely determined by the values of its boundary function on any set of positive measure. The space H^{p} is a Banach space with norm

$$
\|f\|_{H^{p}}=\sup _{r} M_{p}(f, r)=\left\|f\left(e^{i \theta}\right)\right\|_{L^{p}} .
$$

It is useful to regard H^{p} as a subspace of $L^{p}(\mathbb{T})$, where \mathbb{T} denotes the unit circle. For $0<p<\infty$, if $f \in H^{p}$, then $f\left(r e^{i \theta}\right)$ converges to $f\left(e^{i \theta}\right)$ in L^{p} norm as $r \rightarrow 1$.

For $1<p<\infty$, the dual space $\left(H^{p}\right)^{*}$ is isomorphic to H^{q}, where $1 / p+1 / q=$ 1 , with an element $k \in H^{q}$ representing the functional ϕ defined by

$$
\phi(f)=\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(e^{i \theta}\right) \overline{k\left(e^{i \theta}\right)} d \theta
$$

This isomorphism is not an isometry unless $p=2$, but it is true that $\|\phi\|_{\left(H^{p}\right)^{*}} \leq$ $\|k\|_{H^{q}} \leq C\|\phi\|_{\left(H^{p}\right)^{*}}$ for some constant C depending only on p. If $f \in H^{p}$ for $1<p<\infty$, then $S_{n} f \rightarrow f$ in H^{p} as $n \rightarrow \infty$. The Szegő projection S maps each function $f \in L^{1}(\mathbb{T})$ into a function analytic in \mathbb{D} defined by

$$
S f(z)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{f\left(e^{i t}\right)}{1-e^{-i t} z} d t
$$

It leaves H^{1} functions fixed and maps L^{p} boundedly onto H^{p} for $1<p<\infty$. If $f \in L^{p}$ for $1<p<\infty$ and $f(\theta)=\sum_{n=-\infty}^{\infty} a_{n} e^{i n \theta}$, then $S f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$.

For $1<p<\infty$, the dual of the Bergman space A^{p} is isomorphic to A^{q}, where $1 / p+1 / q=1$, and $k \in A^{q}$ represents the functional defined by $\phi(f)=$ $\int_{\mathbb{D}} f(z) \overline{k(z)} d \sigma(z)$. Note that this isomorphism is actually conjugate-linear. It is not an isometry unless $p=2$, but if the functional $\phi \in\left(A^{p}\right)^{*}$ is represented by the function $k \in A^{q}$, then

$$
\begin{equation*}
\|\phi\|_{\left(A^{p}\right)^{*}} \leq\|k\|_{A^{q}} \leq C_{p}\|\phi\|_{\left(A^{p}\right)^{*}} \tag{1.1}
\end{equation*}
$$

where C_{p} is a constant depending only on p. We remark that $H^{p} \subset A^{p}$, and in fact $\|f\|_{A^{p}} \leq\|f\|_{H^{p}}$. If $f \in A^{p}$ for $1<p<\infty$, then $S_{n} f \rightarrow f$ in A^{p} as $n \rightarrow \infty$.

In this paper, the only Bergman spaces we consider are those with $1<p<$ ∞. For a given linear functional $\phi \in\left(A^{p}\right)^{*}$ such that $\phi \neq 0$, we investigate the extremal problem of finding a function $F \in A^{p}$ with norm $\|F\|_{A^{p}}=1$ for which

$$
\begin{equation*}
\operatorname{Re} \phi(F)=\sup _{\|g\|_{A^{p}}=1} \operatorname{Re} \phi(g)=\|\phi\| \tag{1.2}
\end{equation*}
$$

Such a function F is called an extremal function, and we say that F is an extremal function for a function $k \in A^{q}$ if F solves problem (1.2) for the functional ϕ with kernel k. This problem has been studied by Vukotić [10], Khavinson and Stessin [7], and Ferguson [4], among others. Note that for $p=2$, the extremal function is $F=k /\|k\|_{A^{2}}$.

A closely related problem is that of finding $f \in A^{p}$ such that $\phi(f)=1$ and

$$
\begin{equation*}
\|f\|_{A^{p}}=\inf _{\phi(g)=1}\|g\|_{A^{p}} \tag{1.3}
\end{equation*}
$$

If F solves the problem (1.2), then $\frac{F}{\phi(F)}$ solves the problem (1.3), and if f solves (1.3), then $\frac{f}{\|f\|}$ solves (1.2). When discussing either of these problems, we always assume that ϕ is not the zero functional; in other words, that k is not identically 0 .

The problems (1.2) and (1.3) each have a unique solution when $1<p<\infty$ (see [4], Theorem 1.4). Also, for every function $f \in A^{p}$ such that f is not identically 0 , there is a unique $k \in A^{q}$ such that f solves problem (1.3) for k (see [4], Theorem 3.3). This implies that for each $F \in A^{p}$ with $\|F\|_{A^{p}}=1$, there is some nonzero k such that F solves problem (1.2) for k. Furthermore, any two such kernels k are positive multiples of each other.

The Cauchy-Green theorem is an important tool in this paper.
Cauchy-Green Theorem. If Ω is a region in the plane with piecewise smooth boundary and $f \in C^{1}(\bar{\Omega})$, then

$$
\frac{1}{2 i} \int_{\partial \Omega} f(z) d z=\int_{\Omega} \frac{\partial}{\partial \bar{z}} f(z) d A(z)
$$

where $\partial \Omega$ denotes the boundary of Ω.
The next result is an important characterization of extremal functions in A^{p} for $1<p<\infty$ (see [9], p. 55).

Theorem A. Let $1<p<\infty$ and let $\phi \in\left(A^{p}\right)^{*}$. A function $F \in A^{p}$ with $\|F\|_{A^{p}}=1$ satisfies

$$
\operatorname{Re} \phi(F)=\sup _{\|g\|_{A^{p}=1}} \operatorname{Re} \phi(g)=\|\phi\|
$$

if and only if

$$
\int_{\mathbb{D}} h|F|^{p-1} \overline{\operatorname{sgn} F} d \sigma=0
$$

for all $h \in A^{p}$ with $\phi(h)=0$. If F satisfies the above conditions, then

$$
\int_{\mathbb{D}} h|F|^{p-1} \overline{\operatorname{sgn} F} d \sigma=\frac{\phi(h)}{\|\phi\|}
$$

for all $h \in A^{p}$.
Ryabykh's theorem relates extremal problems in Bergman spaces to Hardy spaces. It says that if the kernel for a linear functional is not only in A^{q} but also in H^{q}, then the extremal function is not only in A^{p} but in H^{p} as well.

Ryabykh's Theorem. Let $1<p<\infty$ and let $1 / p+1 / q=1$. Suppose that $\phi \in\left(A^{p}\right)^{*}$ and $\phi(f)=\int_{\mathbb{D}} f \bar{k} d \sigma$ for some $k \in H^{q}$. Then the solution F to the extremal problem (1.2) belongs to H^{p} and satisfies

$$
\begin{equation*}
\|F\|_{H^{p}} \leq\left\{[\max (p-1,1)] \frac{C_{p}\|k\|_{H^{q}}}{\|k\|_{A^{q}}}\right\}^{1 /(p-1)} \tag{1.4}
\end{equation*}
$$

where C_{p} is the constant in (1.1).
Ryabykh [8] proved that $F \in H^{p}$. The bound (1.4) was proved in [4], by a variant of Ryabykh's proof.

As a corollary Ryabykh's theorem implies that the solution to the problem (1.3) is in H^{p} as well. Note that the constant $C_{p} \rightarrow \infty$ as $p \rightarrow 1$ or $p \rightarrow \infty$.

To obtain our results, including a generalization of Ryabykh's theorem, we will need the following technical lemmas. Their proofs, which involve Littlewood-Paley theory, are deferred to the end of the paper.

Lemma 1.1. Let p be an even integer. Let $f \in H^{p}$ and let h be a polynomial. Then

$$
\text { p.v. } \int_{\mathbb{D}}|f|^{p-1} \overline{\operatorname{sgn} f} f^{\prime} h d \sigma=\lim _{n \rightarrow \infty} \int_{\mathbb{D}}|f|^{p-1} \overline{\operatorname{sgn} f}\left(S_{n} f\right)^{\prime} h d \sigma .
$$

Lemma 1.2. Suppose that $1<p_{1}<\infty$ and $1<p_{2}, p_{3} \leq \infty$, and also that

$$
1=\frac{1}{p_{1}}+\frac{1}{p_{2}}+\frac{1}{p_{3}}
$$

Let $f_{1} \in H^{p_{1}}, f_{2} \in H^{p_{2}}$, and $f_{3} \in H^{p_{3}}$. Then

$$
\mid \text { p.v. } \int_{\mathbb{D}} \overline{f_{1}} f_{2} f_{3}^{\prime} d \sigma \mid \leq C\left\|f_{1}\right\|_{H^{p_{1}}}\left\|f_{2}\right\|_{H^{p_{2}}}\left\|f_{3}\right\|_{H^{p_{3}}}
$$

where C depends only on p_{1} and p_{2}. (Implicit is the claim that the principal value exists.) Moreover, if $p_{3}<\infty$, then

$$
\text { p.v. } \int_{\mathbb{D}} \overline{f_{1}} f_{2} f_{3}^{\prime} d \sigma=\lim _{n \rightarrow \infty} \int_{\mathbb{D}} \overline{f_{1}} f_{2}\left(S_{n} f_{3}\right)^{\prime} d \sigma
$$

2. The norm-equality

Let p be an even integer and let q be its conjugate exponent. Let $k \in H^{q}$ and let F be the extremal function for k over A^{p}. We will denote by ϕ the functional associated with k. Let F_{n} be the extremal function for k when the extremal problem is posed over P_{n}, the space of polynomials of degree at most n. Also, let

$$
\begin{equation*}
K(z)=\frac{1}{z} \int_{0}^{z} k(\zeta) d \zeta \tag{2.1}
\end{equation*}
$$

so that $(z K)^{\prime}=k$. During proof of Ryabykh's theorem in [4], an important step is to show that

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|F_{n}\left(e^{i \theta}\right)\right|^{p} d \theta=\frac{1}{2 \pi\left\|\phi_{\mid P_{n}}\right\|} \int_{0}^{2 \pi} F_{n}\left[\left(\frac{p}{2}\right) \bar{k}+\left(1-\frac{p}{2}\right) \bar{K}\right] d \theta
$$

(see [4], p. 2652). We will now derive a similar result for F :
Theorem 2.1. Let p be an even integer, let $k \in H^{q}$, and let $F \in A^{p}$ be the extremal function for k. Then

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|F\left(e^{i \theta}\right)\right|^{p} h\left(e^{i \theta}\right) d \theta=\frac{1}{2 \pi\|\phi\|} \int_{0}^{2 \pi} F\left[\left(\frac{p}{2}\right) h \bar{k}+\left(1-\frac{p}{2}\right)(z h)^{\prime} \bar{K}\right] d \theta
$$

for every polynomial h.

Proof. Since Ryabykh's theorem says that $F \in H^{p}$, we have

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|F\left(e^{i \theta}\right)\right|^{p} h\left(e^{i \theta}\right) d \theta=\lim _{r \rightarrow 1} \frac{i}{2 \pi} \int_{\partial(r \mathbb{D})}|F(z)|^{p} h(z) z d \bar{z}
$$

where h is any polynomial. Apply the Cauchy-Green theorem to transform the right-hand side into

$$
\text { p.v. } \frac{1}{\pi} \int_{\mathbb{D}}\left((z h)^{\prime} F+\frac{p}{2} z h F^{\prime}\right)|F|^{p-1} \overline{\operatorname{sgn} F} d A(z) .
$$

Invoking Lemma 1.1 with $z h$ in place of h shows that this limit equals

$$
\lim _{n \rightarrow \infty} \frac{1}{\pi} \int_{\mathbb{D}}\left((z h)^{\prime} F+\frac{p}{2} z h\left(S_{n} F\right)^{\prime}\right)|F|^{p-1} \overline{\operatorname{sgn} F} d A(z)
$$

Since $(z h)^{\prime} F+\frac{p}{2} z h\left(S_{n} F\right)^{\prime}$ is in A^{p}, we may apply Theorem A to reduce the last expression to

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{\pi\|\phi\|} \int_{\mathbb{D}}\left((z h)^{\prime} F+\frac{p}{2} z h\left(S_{n} F\right)^{\prime}\right) \bar{k} d A(z) . \tag{2.2}
\end{equation*}
$$

Recall that we have defined $K(z)=\frac{1}{z} \int_{0}^{z} k(\zeta) d \zeta$. To prepare for a reverse application of the Cauchy-Green theorem, we rewrite the integral in (2.2) as

$$
\begin{aligned}
& \frac{1}{\pi\|\phi\|} \int_{\mathbb{D}}\left[\frac{\partial}{\partial \bar{z}}\left\{(z h)^{\prime} F \overline{z K}\right\}+\frac{p}{2} \frac{\partial}{\partial z}\left\{z h S_{n}(F) \bar{k}\right\}\right. \\
& \left.-\frac{p}{2} \frac{\partial}{\partial \bar{z}}\left\{(z h)^{\prime} S_{n}(F) \overline{z K}\right\}\right] d A(z)
\end{aligned}
$$

Now this equals

$$
\begin{aligned}
& \lim _{r \rightarrow 1} \frac{1}{\pi\|\phi\|} \int_{r \mathbb{D}}\left[\frac{\partial}{\partial \bar{z}}\left\{(z h)^{\prime} F \overline{z K}\right\}+\frac{p}{2} \frac{\partial}{\partial z}\left\{z h S_{n}(F) \bar{k}\right\}\right. \\
& \left.\quad-\frac{p}{2} \frac{\partial}{\partial \bar{z}}\left\{(z h)^{\prime} S_{n}(F) \overline{z K}\right\}\right] d A(z) .
\end{aligned}
$$

We apply the Cauchy-Green theorem to show that this equals

$$
\begin{aligned}
& \lim _{r \rightarrow 1}\left[\frac{1}{2 \pi i\|\phi\|} \int_{\partial(r \mathbb{D})}(z h)^{\prime} F \overline{z K} d z+\frac{i p}{4 \pi\|\phi\|} \int_{\partial(r \mathbb{D})} z h S_{n}(F) \bar{k} d \bar{z}\right. \\
& \left.\quad-\frac{p}{4 \pi i\|\phi\|} \int_{\partial(r \mathbb{D})}(z h)^{\prime} S_{n}(F) \overline{z K} d z\right] .
\end{aligned}
$$

Since F is in H^{p} and both k and K are in H^{q}, the above limit equals

$$
\begin{aligned}
& \frac{1}{2 \pi i\|\phi\|} \int_{\partial \mathbb{D}}(z h)^{\prime} F \overline{z K} d z+\frac{i p}{4 \pi\|\phi\|} \int_{\partial \mathbb{D}} z h S_{n}(F) \bar{k} d \bar{z} \\
& \quad-\frac{p}{4 \pi i\|\phi\|} \int_{\partial \mathbb{D}}(z h)^{\prime} S_{n}(F) \overline{z K} d z \\
& =\frac{1}{2 \pi\|\phi\|} \int_{0}^{2 \pi}(z h)^{\prime} F \bar{K}+S_{n}(F)\left(\frac{p}{2} h \bar{k}-\frac{p}{2}(z h)^{\prime} \bar{K}\right) d \theta .
\end{aligned}
$$

We let $n \rightarrow \infty$ in the above expression to reach the desired conclusion.
Taking $h=1$, we have the following corollary, which we call the "normequality."

Corollary 2.2 (The norm-equality). Let p be an even integer, let $k \in H^{q}$, and let F be the extremal function for k. Then

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|F\left(e^{i \theta}\right)\right|^{p} d \theta=\frac{1}{2 \pi\|\phi\|} \int_{0}^{2 \pi} F\left[\left(\frac{p}{2}\right) \bar{k}+\left(1-\frac{p}{2}\right) \bar{K}\right] d \theta
$$

The norm-equality is useful mainly because it yields the following theorem.
THEOREM 2.3. Let p be an even integer. Let $\left\{k_{n}\right\}$ be a sequence of H^{q} functions, and let $k_{n} \rightarrow k$ in H^{q}. Let F_{n} be the A^{p} extremal function for k_{n} and let F be the A^{p} extremal function for k. Then $F_{n} \rightarrow F$ in H^{p}.

Note that Ryabykh's theorem shows that each $F_{n} \in H^{p}$, and that $F \in H^{p}$. But because the operator taking a kernel to its extremal function is not linear, one cannot apply the closed graph theorem to conclude that $F_{n} \rightarrow F$.

To prove Theorem 2.3 we will use the following lemma involving the notion of uniform convexity. A Banach space X is called uniformly convex if for each $\varepsilon>0$, there is a $\delta>0$ such that for all $x, y \in X$ with $\|x\|=\|y\|=1$,

$$
\left\|\frac{1}{2}(x+y)\right\|>1-\delta \quad \text { implies } \quad\|x-y\|<\varepsilon
$$

An equivalent definition is that if $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ are sequences in X such that $\left\|x_{n}\right\|=\left\|y_{n}\right\|=1$ for all n and $\left\|x_{n}+y_{n}\right\| \rightarrow 2$ then $\left\|x_{n}-y_{n}\right\| \rightarrow 0$. This concept was introduced by Clarkson in [1]. See also [4], where it is applied to extremal problems. To apply the lemma, we use the fact that the space H^{p} is uniformly convex for $1<p<\infty$. By $x_{n} \rightharpoonup x$, we mean that x_{n} approaches x weakly.

Lemma 2.4. Suppose that X is a uniformly convex Banach space, that $x \in$ X, and that $\left\{x_{n}\right\}$ is a sequence of elements of X. If $x_{n} \rightharpoonup x$ and $\left\|x_{n}\right\| \rightarrow\|x\|$, then $x_{n} \rightarrow x$ in X.

This lemma is known. For example, it is contained in Exercise 15.17 in [6].
Proof of Theorem 2.3. We will first show that $F_{n} \rightharpoonup F$ in H^{p} (that is, F_{n} converges to F weakly in H^{p}). Next, we will use this fact and the normequality to show that $\left\|F_{n}\right\|_{H^{p}} \rightarrow\|F\|_{H^{p}}$. By the lemma, it will then follow that $F_{n} \rightarrow F$ in H^{p}.

To prove that $F_{n} \rightharpoonup F$ in H^{p}, note that Ryabykh's theorem says that $\left\|F_{n}\right\|_{H^{p}} \leq C\left(\left\|k_{n}\right\|_{H^{q}} /\left\|k_{n}\right\|_{A^{q}}\right)^{1 /(p-1)}$. Let $\alpha=\inf _{n}\left\|k_{n}\right\|_{A^{q}}$ and $\beta=$ $\sup _{n}\left\|k_{n}\right\|_{H^{q}}$. Here $\alpha>0$ because by assumption none of the k_{n} are identically zero, and they approach k, which is not identically 0 . Therefore $\left\|F_{n}\right\|_{H^{p}} \leq C(\beta / \alpha)^{1 /(p-1)}$, and the sequence $\left\{F_{n}\right\}$ is bounded in H^{p} norm.

Now, suppose that $F_{n} \not \neg F$. Then there is some $\psi \in\left(H^{p}\right)^{*}$ such that $\psi\left(F_{n}\right) \nrightarrow \psi(F)$. This implies $\left|\psi\left(F_{n_{j}}\right)-\psi(F)\right| \geq \varepsilon$ for some $\varepsilon>0$ and some subsequence $\left\{F_{n_{j}}\right\}$. But since the sequence $\left\{F_{n}\right\}$ is bounded in H^{p} norm, the Banach-Alaoglu theorem implies that some subsequence of $\left\{F_{n_{j}}\right\}$, which we will also denote by $\left\{F_{n_{j}}\right\}$, converges weakly in H^{p} to some function \widetilde{F}. Then $|\psi(\widetilde{F})-\psi(F)| \geq \varepsilon$. Now $k_{n} \rightarrow k$ in A^{q}, and it is proved in [4] that this implies $F_{n} \rightarrow F$ in A^{p}, which implies $F_{n}(z) \rightarrow F(z)$ for all $z \in \mathbb{D}$. Since point evaluation is a bounded linear functional on H^{p}, we have that $F_{n_{j}}(z) \rightarrow \widetilde{F}(z)$ for all $z \in \mathbb{D}$, which means that $\widetilde{F}(z)=F(z)$ for all $z \in \mathbb{D}$. But this contradicts the assumption that $\psi(\widetilde{F}) \neq \psi(F)$. Hence, $F_{n} \rightharpoonup F$.

Let ϕ_{n} be the functional with kernel k_{n}, and let ϕ be the functional with kernel k. To show that $\left\|F_{n}\right\|_{H^{p}} \rightarrow\|F\|_{H^{p}}$, recall that the norm-equality says

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|F_{n}\left(e^{i \theta}\right)\right|^{p} d \theta=\frac{1}{2 \pi\left\|\phi_{n}\right\|} \int_{0}^{2 \pi} F_{n}\left[\left(\frac{p}{2}\right) \overline{k_{n}}+\left(1-\frac{p}{2}\right) \overline{K_{n}}\right] d \theta
$$

But, if h is any function analytic in \mathbb{D} and $H(z)=(1 / z) \int_{0}^{z} h(\zeta) d \zeta$, it can be shown that $\|H\|_{H^{q}} \leq\|h\|_{H^{q}}$ (see [4], proof of Theorem 4.2). Since $k_{n} \rightarrow k$ in H^{q}, it follows that $K_{n} \rightarrow K$ in H^{q}. Also, $k_{n} \rightarrow k$ in A^{p} implies that $\left\|\phi_{n}\right\| \rightarrow\|\phi\|$. In addition, $\left\|F_{n}\right\|_{H^{p}} \leq C$ for some constant C, and $F_{n} \rightharpoonup F$, so the right-hand side of the above equation approaches

$$
\frac{1}{2 \pi\|\phi\|} \int_{0}^{2 \pi} F\left[\left(\frac{p}{2}\right) \bar{k}+\left(1-\frac{p}{2}\right) \bar{K}\right] d \theta=\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|F\left(e^{i \theta}\right)\right|^{p} d \theta .
$$

In other words, $\left\|F_{n}\right\|_{H^{p}} \rightarrow\|F\|_{H^{p}}$, and so by Lemma 2.4 we conclude that $F_{n} \rightarrow F$ in H^{p}.

3. Fourier coefficients of $|F|^{p}$

Theorem 2.1 can also be used to gain information about the Fourier coefficients of $|F|^{p}$, where F is the extremal function. In particular, it leads to a criterion for F to be in L^{∞} in terms of the Taylor coefficients of the kernel k.

Theorem 3.1. Let p be an even integer. Let $k \in H^{q}$, let F be the A^{p} extremal function for k, and define K by equation (2.1). Then for any integer $m \geq 0$,

$$
\begin{aligned}
& \frac{1}{2 \pi} \int_{0}^{2 \pi}\left|F\left(e^{i \theta}\right)\right|^{p} e^{i m \theta} d \theta \\
& \quad=\frac{1}{2 \pi\|\phi\|} \int_{0}^{2 \pi} F e^{i m \theta}\left[\left(\frac{p}{2}\right) \bar{k}+\left(1-\frac{p}{2}\right)(m+1) \bar{K}\right] d \theta .
\end{aligned}
$$

Proof. Take $h\left(e^{i \theta}\right)=e^{i m \theta}$ in Theorem 2.1.
This last formula can be applied to obtain estimates on the size of the Fourier coefficients of $|F|^{p}$.

Theorem 3.2. Let p be an even integer. Let $k \in A^{q}$, and let F be the A^{p} extremal function for k. Let

$$
b_{m}=\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|F\left(e^{i \theta}\right)\right|^{p} e^{-i m \theta} d \theta
$$

and let

$$
k(z)=\sum_{n=0}^{\infty} c_{n} z^{n}
$$

Then, for each $m \geq 0$,

$$
\left|b_{m}\right|=\left|b_{-m}\right| \leq \frac{p}{2\|\phi\|}\|F\|_{H^{2}}\left[\sum_{n=m}^{\infty}\left|c_{n}\right|^{2}\right]^{1 / 2}
$$

Proof. The theorem is trivially true if $k \notin H^{2}$, so we may assume that $k \in A^{2} \subset A^{q}$. Let $F(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$. Since $F \in H^{p}$, and $p \geq 2$, we have $F \in H^{2}$. Now, using Theorem 3.1, we find that

$$
\begin{aligned}
b_{-m}= & \frac{1}{2 \pi} \int_{0}^{2 \pi}\left|F\left(e^{i \theta}\right)\right|^{p} e^{i m \theta} d \theta \\
= & \frac{1}{2 \pi\|\phi\|} \int_{0}^{2 \pi}\left(F e^{i m \theta}\right)\left[\left(\frac{p}{2}\right) \bar{k}+\left(1-\frac{p}{2}\right)(m+1) \bar{K}\right] d \theta \\
= & \frac{1}{2 \pi\|\phi\|} \int_{0}^{2 \pi}\left[\sum_{n=0}^{\infty} a_{n} e^{i(n+m) \theta}\right] \\
& \times\left[\sum_{j=0}^{\infty}\left(\left(\frac{p}{2}\right) \overline{c_{j}}+\frac{m+1}{j+1}\left(1-\frac{p}{2}\right) \overline{c_{j}}\right) e^{-i j \theta}\right] d \theta \\
= & \frac{1}{\|\phi\|}\left|\sum_{n=0}^{\infty} a_{n}\left(\left(\frac{p}{2}\right) \overline{c_{n+m}}+\frac{m+1}{n+m+1}\left(1-\frac{p}{2}\right) \overline{c_{n+m}}\right)\right|
\end{aligned}
$$

The Cauchy-Schwarz inequality now gives

$$
\begin{aligned}
\left|b_{-m}\right| & \leq \frac{1}{\|\phi\|}\left[\sum_{n=0}^{\infty}\left|a_{n}\right|^{2}\right]^{1 / 2}\left[\sum_{n=m}^{\infty}\left|\left(\frac{p}{2}\right) \overline{c_{n}}+\frac{m+1}{n+1}\left(1-\frac{p}{2}\right) \overline{c_{n}}\right|^{2}\right]^{1 / 2} \\
& \leq \frac{p}{2\|\phi\|}\left[\sum_{n=0}^{\infty}\left|a_{n}\right|^{2}\right]^{1 / 2}\left[\sum_{n=m}^{\infty}\left|c_{n}\right|^{2}\right]^{1 / 2}
\end{aligned}
$$

Since

$$
\left[\sum_{n=0}^{\infty}\left|a_{n}\right|^{2}\right]^{1 / 2}=\|F\|_{H^{2}}
$$

the theorem follows.

The estimate in Theorem 3.2 can be used to obtain information about the size of $|F|^{p}$ and F, as in the following corollary.

Corollary 3.3. If $c_{n}=O\left(n^{-\alpha}\right)$ for some $\alpha>3 / 2$, then $F \in H^{\infty}$.
Proof. First observe that

$$
\sum_{n=m}^{\infty}\left(n^{-\alpha}\right)^{2} \leq \int_{m-1}^{\infty} x^{-2 \alpha} d x=\frac{(m-1)^{1-2 \alpha}}{2 \alpha-1}
$$

By hypothesis it follows that

$$
\left[\sum_{n=m}^{\infty}\left|c_{n}\right|^{2}\right]^{1 / 2}=O\left(m^{(1-2 \alpha) / 2}\right)
$$

Thus, Theorem 3.2 shows that $b_{m}=O\left(m^{(1-2 \alpha) / 2}\right)$. Therefore $\left\{b_{m}\right\} \in \ell^{1}$ if $\alpha>3 / 2$. But $\left\{b_{m}\right\} \in \ell^{1}$ implies $|F|^{p} \in L^{\infty}$, which implies $F \in H^{\infty}$.

In fact, $\left\{b_{m}\right\} \in \ell^{1}$ implies that $|F|^{p}$ is continuous in $\overline{\mathbb{D}}$, but this does not necessarily mean F will be continuous in $\overline{\mathbb{D}}$. There is a result similar to Corollary 3.3 in [7], where the authors show that if the kernel k is a polynomial, or even a rational function with no poles in $\overline{\mathbb{D}}$, then F is Hölder continuous in $\overline{\mathbb{D}}$. Their technique relies on deep regularity results for partial differential equations. Our result only shows that $F \in H^{\infty}$, but it applies to a broader class of kernels.

4. Relations between the size of the kernel and extremal function

In this section, we show that if p is an even integer and $q \leq q_{1}<\infty$, then the extremal function $F \in H^{(p-1) q_{1}}$ if and only if the kernel $k \in H^{q_{1}}$. For $q_{1}=q$ the statement reduces to Ryabykh's theorem and its previously unknown converse. The following theorem is crucial to the proof.

Theorem 4.1. Let p be an even integer and let $q=p /(p-1)$ be its conjugate exponent. Let $F \in A^{p}$ be the extremal function corresponding to the kernel $k \in A^{q}$. Suppose that $k \in H^{q_{1}}$ for some q_{1} with $q \leq q_{1}<\infty$, and that $F \in H^{p_{1}}$, for some p_{1} with $p \leq p_{1}<\infty$. Define p_{2} by

$$
\frac{1}{q_{1}}+\frac{1}{p_{1}}+\frac{1}{p_{2}}=1
$$

If $p_{2}<\infty$, then for every trigonometric polynomial h we have

$$
\left.\left|\int_{0}^{2 \pi}\right| F\right|^{p} h\left(e^{i \theta}\right) d \theta \left\lvert\, \leq C \frac{\|k\|_{H^{q_{1}}}}{\|k\|_{A^{q}}}\|F\|_{H^{p_{1}}}\|h\|_{L^{p_{2}}}\right.
$$

where C is some constant depending only on p, p_{1}, and q_{1}.

The excluded case $p_{2}=\infty$ occurs if and only if $q=q_{1}$ and $p=p_{1}$. The theorem is then a trivial consequence of Ryabykh's theorem.

Proof of Theorem 4.1. First, let h be an analytic polynomial. In the proof of Theorem 2.1, we showed that

$$
\begin{align*}
& \frac{1}{2 \pi} \int_{0}^{2 \pi}\left|F\left(e^{i \theta}\right)\right|^{p} h\left(e^{i \theta}\right) d \theta \tag{4.1}\\
& \quad=\lim _{n \rightarrow \infty} \frac{1}{\pi\|\phi\|} \int_{\mathbb{D}}\left((h z)^{\prime} F+\frac{p}{2} h z\left(S_{n} F\right)^{\prime}\right) \bar{k} d A(z)
\end{align*}
$$

An application of Lemma 1.2 gives

$$
\lim _{n \rightarrow \infty} \int_{\mathbb{D}} h z\left(S_{n} F\right)^{\prime} \bar{k} d A=\text { p.v. } \int_{\mathbb{D}} h z F^{\prime} \bar{k} d A
$$

so that the right-hand side of equation (4.1) becomes

$$
\frac{1}{\pi\|\phi\|} \text { p.v. } \int_{\mathbb{D}}\left((h z)^{\prime} F+\frac{p}{2} h z F^{\prime}\right) \bar{k} d A(z) .
$$

Apply Lemma 1.2 separately to the two parts of the integral to conclude that its absolute value is bounded by

$$
C \frac{1}{\|\phi\|}\|k\|_{H^{q_{1}}}\|f\|_{H^{p_{1}}}\|h\|_{H^{p_{2}}}
$$

where C is a constant depending only on p_{1} and q_{1}. Since

$$
\frac{1}{\|\phi\|} \leq \frac{C_{p}}{\|k\|_{A^{q}}}
$$

by equation (1.1), this gives the desired result for the special case where h is an analytic polynomial.

Now let h be an arbitrary trigonometric polynomial. Then $h=h_{1}+\overline{h_{2}}$, where h_{1} and h_{2} are analytic polynomials, and $h_{2}(0)=0$. Note that the Szegő projection S is bounded from $L^{p_{2}}$ into $H^{p_{2}}$ because $1<p_{2}<\infty$. Thus,

$$
\left\|h_{1}\right\|_{H^{p_{2}}}=\|S(h)\|_{H^{p_{2}}} \leq C\|h\|_{L^{p_{2}}} .
$$

Also,

$$
\left\|h_{2}\right\|_{H^{p_{2}}}=\left\|z S\left(e^{-i \theta} \bar{h}\right)\right\|_{H^{p_{2}}}=\left\|S\left(e^{-i \theta} \bar{h}\right)\right\|_{H^{p_{2}}} \leq C\left\|e^{-i \theta} \bar{h}\right\|_{L^{p_{2}}}=C\|h\|_{L^{p_{2}}},
$$

and so

$$
\left\|h_{1}\right\|_{H^{p_{2}}}+\left\|h_{2}\right\|_{H^{p_{2}}} \leq C\|h\|_{L^{p_{2}}} .
$$

Therefore, by what we have already shown,

$$
\begin{aligned}
\left.\left|\int_{0}^{2 \pi}\right| f\left(e^{i \theta}\right)\right|^{p} h\left(e^{i \theta}\right) d \theta \mid & =\left.\left|\int_{0}^{2 \pi}\right| f\left(e^{i \theta}\right)\right|^{p}\left(h_{1}\left(e^{i \theta}\right)+\overline{h_{2}\left(e^{i \theta}\right)}\right) d \theta \mid \\
& \leq\left.\left|\int_{0}^{2 \pi}\right| f\right|^{p} h_{1} d \theta\left|+\left|\int_{0}^{2 \pi}\right| f\right|^{p} h_{2} d \theta \mid
\end{aligned}
$$

$$
\begin{aligned}
& \leq C \frac{\|k\|_{H^{q_{1}}}}{\|k\|_{A^{q}}}\|f\|_{H^{p_{1}}}\left(\left\|h_{1}\right\|_{H^{p_{2}}}+\left\|h_{2}\right\|_{H^{p_{2}}}\right) \\
& \leq C \frac{\|k\|_{H^{q_{1}}}}{\|k\|_{A^{q}}}\|f\|_{H^{p_{1}}}\|h\|_{L^{p_{2}}} .
\end{aligned}
$$

For a given q_{1}, we will apply the theorem just proved with p_{1} chosen as $p_{1}=p p_{2}^{\prime}$, where p_{2}^{\prime} is the conjugate exponent to p_{2}. This will allow us to bound the $H^{p_{1}}$ norm of f solely in terms of $\|\phi\|$ and $\|k\|_{H^{q_{1}}}$.

ThEOREM 4.2. Let p be an even integer, and let q be its conjugate exponent. Let $F \in A^{p}$ be the extremal function for a kernel $k \in A^{q}$. If, for q_{1} such that $q \leq q_{1}<\infty$, the kernel $k \in H^{q_{1}}$, then $F \in H^{p_{1}}$ for $p_{1}=(p-1) q_{1}$. In fact,

$$
\|F\|_{H^{p_{1}}} \leq C\left(\frac{\|k\|_{H^{q_{1}}}}{\|k\|_{A^{q}}}\right)^{1 /(p-1)}
$$

where C depends only on p and q_{1}.
Proof. The case $q_{1}=q$ is Ryabykh's theorem, so we assume $q_{1}>q$. Set $p_{1}=(p-1) q_{1}$. Then $p_{1}>p=(p-1) q$. Choose p_{2} so that

$$
\frac{1}{q_{1}}+\frac{1}{p_{1}}+\frac{1}{p_{2}}=1
$$

This implies that $p_{2}=p_{1} /\left(p_{1}-p\right)$, and so its conjugate exponent $p_{2}^{\prime}=p_{1} / p$. Note that $1<p_{2}<\infty$. Let F_{n} denote the extremal function corresponding to the kernel $S_{n} k$, which does not vanish identically if n is chosen sufficiently large. Since $S_{n} k$ is a polynomial, F_{n} is in H^{∞} (and thus $F_{n} \in H^{p_{1}}$) by Corollary 3.3. Hence for any trigonometric polynomial h, Theorem 4.1 yields

$$
\left.\left|\frac{1}{2 \pi} \int_{0}^{2 \pi}\right| F_{n}\right|^{p} h\left(e^{i \theta}\right) d \theta \left\lvert\, \leq C \frac{\left\|S_{n} k\right\|_{H^{q_{1}}}}{\left\|S_{n} k\right\|_{A^{q}}}\left\|F_{n}\right\|_{H^{p_{1}}}\|h\|_{L^{p_{2}}} .\right.
$$

Since the trigonometric polynomials are dense in $L^{p_{2}}(\partial \mathbb{D})$, taking the supremum over all trigonometric polynomials h with $\|h\|_{L^{p_{2}}} \leq 1$ gives

$$
\left\|\left|F_{n}\right|^{p}\right\|_{L^{p_{2}^{\prime}}} \leq C \frac{\left\|S_{n} k\right\|_{H^{q_{1}}}}{\left\|S_{n} k\right\|_{A^{q}}}\left\|F_{n}\right\|_{H^{p_{1}}}
$$

which implies

$$
\begin{aligned}
\left\|F_{n}\right\|_{H^{p_{1}}}^{p} & =\left\{\frac{1}{2 \pi} \int_{0}^{2 \pi}\left(\left|F_{n}\left(e^{i \theta}\right)\right|^{p}\right)^{p_{2}^{\prime}} d \theta\right\}^{1 / p_{2}^{\prime}}=\left\|\left|F_{n}\right|^{p}\right\|_{L^{p_{2}^{\prime}}} \\
& \leq C \frac{\left\|S_{n} k\right\|_{H^{q_{1}}}}{\left\|S_{n} k\right\|_{A^{q}}}\left\|F_{n}\right\|_{H^{p_{1}}}
\end{aligned}
$$

since $p p_{2}^{\prime}=p_{1}$. Because $\left\|F_{n}\right\|_{H^{p_{1}}}<\infty$, we may divide both sides of the inequality by $\left\|F_{n}\right\|_{H^{p_{1}}}$ to obtain

$$
\left\|F_{n}\right\|_{H^{p_{1}}}^{p-1} \leq C \frac{\left\|S_{n} k\right\|_{H^{q_{1}}}}{\left\|S_{n} k\right\|_{A^{q}}}
$$

where C depends only on p and q_{1}. In other words,

$$
\left(\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|F_{n}\left(r e^{i \theta}\right)\right|^{p_{1}} d \theta\right)^{(p-1) / p_{1}} \leq C \frac{\left\|S_{n} k\right\|_{H^{q_{1}}}}{\left\|S_{n} k\right\|_{A^{q}}}
$$

for all $r<1$ and for all n sufficiently large. Note that $S_{n} k \rightarrow k$ in $H^{q_{1}}$ and in A^{q}. Since $S_{n} k \rightarrow k$ in A^{q}, Theorem 3.1 in [4] says that $F_{n} \rightarrow F$ in A^{p}, and thus $F_{n} \rightarrow F$ uniformly on compact subsets of \mathbb{D}. Thus, letting $n \rightarrow \infty$ in the last inequality gives

$$
\left(\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|F\left(r e^{i \theta}\right)\right|^{p_{1}} d \theta\right)^{(p-1) / p_{1}} \leq C \frac{\|k\|_{H^{q_{1}}}}{\|k\|_{A^{q}}}
$$

for all $r<1$. In other words,

$$
\|F\|_{H^{p_{1}}} \leq\left(C \frac{\|k\|_{H^{q_{1}}}}{\|k\|_{A^{q}}}\right)^{1 /(p-1)}
$$

Recall from Section 1 that a function $F \in A^{p}$ with unit norm has a corresponding kernel $k \in A^{q}$ such that F is the extremal function for k, and this kernel is uniquely determined up to a positive multiple. Theorem 4.2 says that if p is an even integer and a kernel k belongs not only to the Bergman space A^{q} but also to the Hardy space $H^{q_{1}}$ for some q_{1} where $q \leq q_{1}<\infty$, then the A^{p} extremal function F associated with it is actually in $H^{p_{1}}$ for $p_{1}=(p-1) q_{1} \geq p$. It is natural to ask whether the converse is true. In other words, if $F \in H^{p_{1}}$ for some p_{1} with $p \leq p_{1}<\infty$, must it follow that the corresponding kernel belongs to $H^{q_{1}}$? The following theorem says that this is indeed the case.

Theorem 4.3. Suppose p is an even integer and let q be its conjugate exponent. Let $F \in A^{p}$ with $\|F\|_{A^{p}}=1$, and let k be a kernel such that F is the extremal function for k. If $F \in H^{p_{1}}$ for some p_{1} with $p \leq p_{1}<\infty$, then $k \in H^{q_{1}}$ for $q_{1}=p_{1} /(p-1)$, and

$$
\frac{\|k\|_{H^{q_{1}}}}{\|k\|_{A^{q}}} \leq C\|F\|_{H^{p_{1}}}^{p-1}
$$

where C is a constant depending only on p and p_{1}.
Proof. Let h be a polynomial and let ϕ be the functional in $\left(A^{p}\right)^{*}$ corresponding to k. Then by Theorem A,

$$
\begin{aligned}
\frac{1}{\|\phi\|} \int_{\mathbb{D}} \overline{k(z)}(z h(z))^{\prime} d \sigma & =\int_{\mathbb{D}}|F(z)|^{p-1} \operatorname{sgn}(\overline{F(z)})(z h(z))^{\prime} d \sigma \\
& =\int_{\mathbb{D}} \overline{F^{p / 2}} F^{(p / 2)-1}(z h(z))^{\prime} d \sigma
\end{aligned}
$$

By hypothesis, $F^{p / 2} \in H^{\left(2 p_{1}\right) / p}$ and $F^{(p / 2)-1} \in H^{2 p_{1} /(p-2)}$. A simple calculation shows that

$$
\frac{1}{q_{1}^{\prime}}=\frac{q_{1}-1}{q_{1}}=\frac{p_{1}-p+1}{p_{1}}
$$

and thus

$$
\frac{p}{2 p_{1}}+\frac{p-2}{2 p_{1}}+\frac{1}{q_{1}^{\prime}}=1
$$

Now we will apply the first part of Lemma 1.2 with $f_{1}=F^{p / 2}$ and $f_{2}=$ $F^{(p / 2)-1}$ and $f_{3}=z h$, and with $2 p_{1} / p$ in place of p_{1}, and $2 p_{1} /(p-2)$ in place of p_{2}, and q_{1}^{\prime} in place of p_{3}. Note that this is permitted since $1<2 p_{1} / p<\infty$, and $1<q_{1}^{\prime}<\infty$, and $1<2 p_{1} /(p-2) \leq \infty$. (In fact, we even know that $2 p_{1} /(p-2)<\infty$ unless $p=2$, which is a trivial case since then $F=k /\|k\|_{A^{2}}$.) With these choices, Lemma 1.2 gives

$$
\begin{aligned}
\left|\int_{\mathbb{D}} \overline{F^{p / 2}} F^{(p / 2)-1}(z h(z))^{\prime} d \sigma\right| & \leq C\left\|F^{p / 2}\right\|_{H^{2 p_{1} / p}}\left\|F^{p / 2-1}\right\|_{H^{2 p_{1} /(p-2)}}\|z h\|_{H^{q_{1}^{\prime}}} \\
& =C\|F\|_{H^{p_{1}}}^{p / 2}\|F\|_{H^{p_{1}}}^{(p-2) / 2}\|h\|_{H^{q_{1}^{\prime}}} \\
& =C\|F\|_{H^{p_{1}}}^{p-1}\|h\|_{H_{q_{1}^{\prime}}} .
\end{aligned}
$$

Since

$$
\left|\int_{\mathbb{D}} \overline{k(z)}(z h(z))^{\prime} d \sigma\right| \leq C\|\phi\|\|F\|_{H^{p_{1}}}^{p-1}\|h\|_{H_{q_{1}^{\prime}}}
$$

for all polynomials h, we may define a continuous linear functional ψ on $H^{q_{1}^{\prime}}$ such that

$$
\psi(h)=\int_{\mathbb{D}} \overline{k(z)}(z h(z))^{\prime} d \sigma
$$

for all analytic polynomials h. Then ψ has an associated kernel in $H^{q_{1}}$, which we will call \widetilde{k}. Thus, for all $h \in H^{q_{1}^{\prime}}$, we have

$$
\psi(h)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \overline{\widetilde{k}\left(e^{i \theta}\right)} h\left(e^{i \theta}\right) d \theta
$$

But then the Cauchy-Green theorem gives

$$
\begin{align*}
& \int_{\mathbb{D}} \overline{k(z)}(z h(z))^{\prime} d \sigma \tag{4.2}\\
& \quad=\psi(h)=\frac{1}{2 \pi} \int_{\partial \mathbb{D}} \widetilde{\widetilde{k}\left(e^{i \theta}\right)} h\left(e^{i \theta}\right) d \theta=\frac{i}{2 \pi} \int_{\partial \mathbb{D}} \overline{\widetilde{k}(z)} h(z) z d \bar{z} \\
& \quad=\lim _{r \rightarrow 1} \frac{i}{2 \pi} \int_{\partial(r \mathbb{D})} \widetilde{\widetilde{k}(z)} h(z) z d \bar{z}=\lim _{r \rightarrow 1} \int_{r \mathbb{D}} \widetilde{\widetilde{k}(z)}(z h(z))^{\prime} d \sigma \\
& \quad=\int_{\mathbb{D}} \overline{\widetilde{k}(z)}(z h(z))^{\prime} d \sigma,
\end{align*}
$$

where h is any analytic polynomial.

Now, for any polynomial $h(z)$, define the polynomial $H(z)$ so that

$$
H(z)=\frac{1}{z} \int_{0}^{z} h(\zeta) d \zeta
$$

Then substituting $H(z)$ for $h(z)$ in equation (4.2), and using the fact that $(z H)^{\prime}=h$, we have

$$
\int_{\mathbb{D}} \widetilde{\widetilde{k}(z)} h(z) d \sigma=\int_{\mathbb{D}} \overline{k(z)} h(z) d \sigma
$$

for every polynomial h. But since the polynomials are dense in A^{p}, and k and \widetilde{k} are both in A^{q}, which is isomorphic to the dual space of A^{p}, we must have that $k=\widetilde{k}$, and thus $k \in H^{q_{1}}$.

Now for any polynomial h,

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} \overline{k\left(e^{i \theta}\right)} h\left(e^{i \theta}\right) d \theta \leq C\|\phi\|\|F\|_{H^{p_{1}}}^{p-1}\|h\|_{H^{q_{1}^{\prime}}}
$$

and so

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} \overline{k\left(e^{i \theta}\right)} h\left(e^{i \theta}\right) d \theta \leq C\|k\|_{A^{q}}\|F\|_{H^{p_{1}}}^{p-1}\|h\|_{H^{q_{1}^{\prime}}}
$$

by inequality (1.1). But if h is any trigonometric polynomial,

$$
\begin{aligned}
\frac{1}{2 \pi} \int_{0}^{2 \pi} \overline{k\left(e^{i \theta}\right)} h(\theta) d \theta & =\frac{1}{2 \pi} \int_{0}^{2 \pi} \overline{k\left(e^{i \theta}\right)}\left[S(h)\left(e^{i \theta}\right)\right] d \theta \\
& \leq C\|k\|_{A^{q}}\|F\|_{H^{p_{1}}}^{p-1}\|S(h)\|_{H^{q_{1}^{\prime}}} \\
& \leq C\|k\|_{A^{q}}\|F\|_{H^{p_{1}}}^{p-1}\|h\|_{L^{q_{1}^{\prime}}}
\end{aligned}
$$

where S denotes the Szegő projection. Taking the supremum over all trigonometric polynomials h with $\|h\|_{L^{q_{1}^{\prime}}} \leq 1$ and dividing both sides of the inequality by $\|k\|_{A^{q}}$, we arrive at the required bound.

The main results of this section can be summarized in the following theorem.

ThEOREM 4.4. Suppose that p is an even integer with conjugate exponent q. Let $k \in A^{q}$ and let F be the A^{p} extremal function associated with k. Let p_{1}, q_{1} be a pair of numbers such that $q \leq q_{1}<\infty$ and

$$
p_{1}=(p-1) q_{1} .
$$

Then $F \in H^{p_{1}}$ if and only if $k \in H^{q_{1}}$. More precisely,

$$
C_{1}\left(\frac{\|k\|_{H^{q_{1}}}}{\|k\|_{A^{q}}}\right)^{1 /(p-1)} \leq\|F\|_{H^{p_{1}}} \leq C_{2}\left(\frac{\|k\|_{H^{q_{1}}}}{\|k\|_{A^{q}}}\right)^{1 /(p-1)}
$$

where C_{1} and C_{2} are constants that depend only on p and p_{1}.
Note that if $p_{1}=(p-1) q_{1}$, then $q \leq q_{1}<\infty$ is equivalent to $p \leq p_{1}<\infty$.

5. Proof of the lemmas

We now give the proofs of Lemmas 1.1 and 1.2. These proofs are rather technical and require applications of maximal functions and Littlewood-Paley theory.

Definition 5.1. For a function f analytic in the unit disc, the HardyLittlewood maximal function is defined on the unit circle by

$$
f^{*}\left(e^{i \theta}\right)=\sup _{0 \leq r<1}\left|f\left(r e^{i \theta}\right)\right|
$$

The following is the simplest form of the Hardy-Littlewood maximal theorem (see, for instance, [2], p. 12).

Theorem B (Hardy-Littlewood). If $f \in H^{p}$ for $0<p \leq \infty$, then $f^{*} \in L^{p}$ and

$$
\left\|f^{*}\right\|_{L^{p}} \leq C\|f\|_{H^{p}}
$$

where C is a constant depending only on p.
Further results of a similar type may be found in [5].
Definition 5.2. For a function f analytic in the unit disc, the LittlewoodPaley function is

$$
g(\theta, f)=\left\{\int_{0}^{1}(1-r)\left|f^{\prime}\left(r e^{i \theta}\right)\right|^{2} d r\right\}^{1 / 2}
$$

A key result of Littlewood-Paley theory is that the Littlewood-Paley function, like the Hardy-Littlewood maximal function, belongs to L^{p} if and only if $f \in H^{p}$. Formally, the result may be stated as follows (see [11], Volume 2, Chapter 14, Theorems 3.5 and 3.19).

Theorem C (Littlewood-Paley). For $1<p<\infty$, there are constants C_{p} and B_{p} depending only on p so that

$$
\|g(\cdot, f)\|_{L^{p}} \leq C_{p}\|f\|_{H^{p}}
$$

for all functions f analytic in \mathbb{D}, and

$$
\|f\|_{H^{p}} \leq B_{p}\|g(\cdot, f)\|_{L^{p}}
$$

for all functions f analytic in \mathbb{D} such that $f(0)=0$.
We now apply the Littlewood-Paley theorem to obtain the following result, from which Lemmas 1.1 and 1.2 will follow.

Theorem 5.3. Suppose $1<p_{1}, p_{2} \leq \infty$, and let p be defined by $1 / p=1 / p_{1}+$ $1 / p_{2}$. Suppose furthermore that $1<p<\infty$. If $f_{1} \in H^{p_{1}}$ and $f_{2} \in H^{p_{2}}$, and h is defined by

$$
h(z)=\int_{0}^{z} f_{1}(\zeta) f_{2}^{\prime}(\zeta) d \zeta
$$

then $h \in H^{p}$ and $\|h\|_{H^{p}} \leq C\left\|f_{1}\right\|_{H^{p_{1}}}\left\|f_{2}\right\|_{H^{p_{2}}}$, where C depends only on p_{1} and p_{2}.

Proof. By the definitions of the Littlewood-Paley function and the HardyLittlewood maximal function,

$$
\begin{aligned}
g(\theta, h) & =\left\{\int_{0}^{1}(1-r)\left|f_{1}\left(r e^{i \theta}\right) f_{2}^{\prime}\left(r e^{i \theta}\right)\right|^{2} d r\right\}^{1 / 2} \\
& \leq f_{1}^{*}(\theta)\left\{\int_{0}^{1}(1-r)\left|f_{2}^{\prime}\left(r e^{i \theta}\right)\right|^{2} d r\right\}^{1 / 2} \\
& =f_{1}^{*}(\theta) g\left(\theta, f_{2}\right) .
\end{aligned}
$$

Therefore, since $h(0)=0$, Theorem C gives

$$
\|h\|_{H^{p}} \leq C\|g(\cdot, h)\|_{L^{p}} \leq C\left\|f_{1}^{*} g\left(\cdot, f_{2}\right)\right\|_{L^{p}} .
$$

Applying first Hölder's inequality and then Theorem B, we infer that

$$
\|h\|_{H^{p}} \leq C\left\|f_{1}^{*}\right\|_{L^{p_{1}}}\left\|g\left(\cdot, f_{2}\right)\right\|_{L^{p_{2}}} \leq C\left\|f_{1}\right\|_{H^{p_{1}}}\left\|g\left(\cdot, f_{2}\right)\right\|_{L^{p_{2}}}
$$

If $p_{2}<\infty$, Theorem C allows us to conclude that

$$
\|h\|_{H^{p}} \leq C\left\|f_{1}\right\|_{H^{p_{1}}}\left\|f_{2}\right\|_{H^{p_{2}}} .
$$

This proves the claim under the assumption that $p_{2}<\infty$.
If $p_{2}=\infty$, then $p_{1}<\infty$ by assumption. Integration by parts gives

$$
h(z)=f_{1}(z) f_{2}(z)-f_{1}(0) f_{2}(0)-\int_{0}^{z} f_{2}(\zeta) f_{1}^{\prime}(\zeta) d \zeta .
$$

The H^{p} norm of the first term is bounded by $\left\|f_{1}\right\|_{H^{p_{1}}}\left\|f_{2}\right\|_{H^{p_{2}}}$, by Hölder's inequality. The second term is bounded by $C\left\|f_{1}\right\|_{H^{p_{1}}}\left\|f_{2}\right\|_{H^{p_{2}}}$ for some C, since point evaluation is a bounded functional on Hardy spaces. The H^{p} norm of the last term is bounded by $C\left\|f_{1}\right\|_{H^{p_{1}}}\left\|f_{2}\right\|_{H^{p_{2}}}$, by what we have already shown, and thus $\|h\|_{H^{p}} \leq C\left\|f_{1}\right\|_{H^{p_{1}}}\left\|f_{2}\right\|_{H^{p_{2}}}$.

Theorem 5.3 will now be used together with the Cauchy-Green theorem to prove Lemmas 1.2 and 1.1.

Proof of Lemma 1.2. Define

$$
I_{r}=\int_{r \mathbb{D}} \overline{f_{1}} f_{2} f_{3}^{\prime} d A \quad \text { and } \quad H(z)=\int_{0}^{z} f_{2}(\zeta) f_{3}^{\prime}(\zeta) d \zeta .
$$

Then Theorem 5.3 says that $H \in H^{q}$ and that $\|H\|_{H^{q}} \leq C\left\|f_{2}\right\|_{H^{p_{2}}}\left\|f_{3}\right\|_{H^{p_{3}}}$, where $\frac{1}{q}=\frac{1}{p_{2}}+\frac{1}{p_{3}}$. By the Cauchy-Green formula,

$$
I_{r}=\frac{i}{2} \int_{\partial(r \mathbb{D})} \overline{f_{1}(z)} H(z) d \bar{z}
$$

Since $1 / p_{1}+1 / q=1$, Hölder's inequality gives

$$
\left|I_{r}\right|=\frac{1}{2}\left|\int_{\partial(r \mathbb{D})} \overline{f_{1}(z)} H(z) d \bar{z}\right| \leq \pi M_{p_{1}}\left(f_{1}, r\right) M_{q}(H, r)
$$

But since $\|H\|_{H^{q}} \leq C\left\|f_{2}\right\|_{H^{p_{2}}}\left\|f_{3}\right\|_{H^{p_{3}}}$, this shows that

$$
\left|I_{r}\right| \leq C\left\|f_{1}\right\|_{H^{p_{1}}}\left\|f_{2}\right\|_{H^{p_{2}}}\left\|f_{3}\right\|_{H^{p_{3}}}
$$

which bounds the principal value in question, assuming it exists.
To show that it exists, note that for $0<s<r$, the Cauchy-Green formula gives

$$
\begin{aligned}
2\left|I_{r}-I_{s}\right|= & \left|\int_{\partial(r \mathbb{D}-s \mathbb{D})} \overline{f_{1}(z)} H(z) d \bar{z}\right| \\
= & \left|\int_{0}^{2 \pi}\left[r \overline{f_{1}\left(r e^{i \theta}\right)} H\left(r e^{i \theta}\right)-s \overline{f_{1}\left(s e^{i \theta}\right)} H\left(s e^{i \theta}\right)\right] e^{-i \theta} d \theta\right| \\
\leq & \left|\int_{0}^{2 \pi} \overline{f_{1}\left(r e^{i \theta}\right)}\left(r H\left(r e^{i \theta}\right)-s H\left(s e^{i \theta}\right)\right) e^{-i \theta} d \theta\right| \\
& +\left|\int_{0}^{2 \pi} s\left(\overline{f_{1}\left(r e^{i \theta}\right)}-\overline{f_{1}\left(s e^{i \theta}\right)}\right) H\left(s e^{i \theta}\right) e^{-i \theta} d \theta\right|
\end{aligned}
$$

We let $f_{r}(z)=f(r z)$. Then Hölder's inequality shows that the expression on the right of the above inequality is at most

$$
M_{p_{1}}\left(f_{1}, r\right)\left\|r H_{r}-s H_{s}\right\|_{H^{q}}+s\left\|\left(f_{1}\right)_{r}-\left(f_{1}\right)_{s}\right\|_{H^{p_{1}}} M_{q}(H, r)
$$

Since $p_{1}<\infty$ and $q<\infty$, we know that $\left(f_{1}\right)_{r} \rightarrow f_{1}$ in $H^{p_{1}}$ as $r \rightarrow 1$, and $H_{r} \rightarrow H$ in H^{q} as $r \rightarrow 1$ (see [2], p. 21). Thus the above quantity approaches 0 as $r, s \rightarrow 1$, which shows that the principal value exists.

For the last part of the lemma, what was already shown gives

$$
\begin{aligned}
\text { p.v. } \int_{\mathbb{D}} \overline{f_{1}} f_{2} f_{3}^{\prime} d \sigma-\int_{\mathbb{D}} \overline{f_{1}} f_{2}\left(S_{n} f_{3}\right)^{\prime} d \sigma & =\text { p.v. } \int_{\mathbb{D}} \overline{f_{1}} f_{2}\left(f_{3}-S_{n} f_{3}\right)^{\prime} d \sigma \\
& \leq C\left\|f_{1}\right\|_{H^{p_{1}}}\left\|f_{2}\right\|_{H^{p_{2}}}\left\|f_{3}-S_{n}\left(f_{3}\right)\right\|_{H^{p_{3}}}
\end{aligned}
$$

By assumption $p_{3}>1$. If also $p_{3}<\infty$, then the right-hand side approaches 0 as $n \rightarrow \infty$, which finishes the proof.

Proof of Lemma 1.1. We know that $f^{p / 2} \in H^{2}$ and $f^{(p / 2)-1} \in H^{2 p /(p-2)}$. Since h is a polynomial, we have $f^{(p / 2)-1} h \in H^{2 p /(p-2)}$. Also,

$$
\frac{1}{2}+\frac{p-2}{2 p}+\frac{1}{p}=1
$$

Thus, Lemma 1.2 with $f_{1}=f^{p / 2}$, and $f_{2}=f^{(p / 2)-1} h$, and $f_{3}=f$ gives the result.

Acknowledgment. Thanks to Peter Duren for his help in editing the manuscript.

References

[1] J. A. Clarkson, Uniformly convex spaces, Trans. Amer. Math. Soc. 40 (1936), 396-414. MR 1501880
[2] P. Duren, Theory of H^{p} spaces, Dover, New York, 1970.
[3] P. Duren and A. Schuster, Bergman spaces, Mathematical Surveys and Monographs, vol. 100, American Mathematical Society, Providence, RI, 2004. MR 2033762
[4] T. Ferguson, Continuity of extremal elements in uniformly convex spaces, Proc. Amer. Math. Soc. 137 (2009), 2645-2653. MR 2497477
[5] J. B. Garnett, Bounded analytic functions, Pure and Applied Mathematics, vol. 96, Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New York, 1981. MR 0628971
[6] E. Hewitt and K. Stromberg, Real and abstract analysis, 3rd printing, Graduate Texts in Mathematics, vol. 25, Springer-Verlag, New York, 1975. MR 0367121
[7] D. Khavinson and M. Stessin, Certain linear extremal problems in Bergman spaces of analytic functions, Indiana Univ. Math. J. 46 (1997), 933-974. MR 1488342
[8] V. G. Ryabykh, Extremal problems for summable analytic functions, Sibirsk. Mat. Zh. 27 (1986), 212-217, 226. MR 0853902
[9] H. S. Shapiro, Topics in approximation theory, Lecture Notes in Math., vol. 187, Springer-Verlag, Berlin, 1971. MR 0437981
[10] D. Vukotić, Linear extremal problems for Bergman spaces, Expo. Math. 14 (1996), 313-352. MR 1418027
[11] A. Zygmund, Trigonometric series: Vols. I, II, 2nd ed., Cambridge University Press, London, 1968. MR 0236587
Timothy Ferguson, University of Michigan, Department of Mathematics, 2074
East Hall, 530 Church Street, Ann Arbor, MI 48109-1043, USA
E-mail address: tjferg@umich.edu

