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EXTREMAL PROBLEMS IN BERGMAN SPACES AND AN
EXTENSION OF RYABYKH’S THEOREM

TIMOTHY FERGUSON

Abstract. We study linear extremal problems in the Bergman
space Ap of the unit disc for p an even integer. Given a functional

on the dual space of Ap with representing kernel k ∈ Aq, where

1/p + 1/q = 1, we show that if the Taylor coefficients of k are

sufficiently small, then the extremal function F ∈ H∞. We also
show that if q ≤ q1 < ∞, then F ∈ H(p−1)q1 if and only if k ∈ Hq1 .

An analytic function f in the unit disc D is said to belong to the Bergman
space Ap if

‖f ‖Ap =
{∫

D

∣∣f(z)
∣∣p dσ(z)

}1/p

< ∞.

Here σ denotes normalized area measure, so that σ(D) = 1. For 1 < p < ∞,
each functional φ ∈ (Ap)∗ has a unique representation

φ(f) =
∫

D

fk dσ

for some k ∈ Aq , where q = p/(p − 1) is the conjugate index. The function k
is called the kernel of the functional φ.

In this paper, we study the extremal problem of maximizing Reφ(f) among
all functions f ∈ Ap of unit norm. If 1 < p < ∞, then an extremal function
always exists and is unique. However, to find it explicitly is in general a
difficult problem, and few explicit solutions are known. Here we consider the
problem of determining whether the kernel being “well-behaved” implies that
the extremal function is also “well-behaved.” A known result in this direction
is Ryabykh’s theorem, which states that if the kernel is actually in the Hardy
space Hq , then the extremal function must be in the Hardy space Hp. In [4],
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we gave a proof of Ryabykh’s theorem based on general properties of extremal
functions in uniformly convex spaces.

In this paper, we obtain a sharper version of Ryabykh’s theorem in the
case where p is an even integer. Our results are:

• For q ≤ q1 < ∞, the extremal function F ∈ H(p−1)q1 if and only if the kernel
k ∈ Hq1 .

• If the Taylor coefficients of k are “small enough,” then F ∈ H∞.
• The map sending a kernel k ∈ Hq to its extremal function F ∈ Ap is a

continuous map from Hq \ 0 into Hp.
Our proofs rely heavily on Littlewood–Paley theory, and seem to require

that p be an even integer. It is an open problem whether the results hold
without this assumption.

1. Extremal problems and Ryabykh’s theorem

We begin with some notation. If f is an analytic function, Snf denotes its
nth Taylor polynomial at the origin. Lebesgue area measure is denoted by
dA, and dσ denotes normalized area measure.

If h is a measurable function in the unit disc, the principal value of its
integral is

p.v.

∫
D

hdA = lim
r→1

∫
rD

hdA,

if the limit exists.
We now recall some basic facts about Hardy and Bergman spaces. For

proofs and further information, see [2] and [3]. Suppose that f is analytic in
the unit disc. For 0 < p < ∞ and 0 < r < 1, the integral mean of f is

Mp(f, r) =
{

1
2π

∫ 2π

0

∣∣f(
reiθ

)∣∣p dθ

}1/p

.

If p = ∞, we write
M∞(f, r) = max

0≤θ<2π

∣∣f(
reiθ

)∣∣.
For fixed f and p, the integral means are increasing functions of r. If Mp(f, r)
is bounded we say that f is in the Hardy space Hp. For any function f in
Hp, the radial limit f(eiθ) = limr→1− f(reiθ) exists for almost every θ. An Hp

function is uniquely determined by the values of its boundary function on any
set of positive measure. The space Hp is a Banach space with norm

‖f ‖Hp = sup
r

Mp(f, r) =
∥∥f

(
eiθ

)∥∥
Lp .

It is useful to regard Hp as a subspace of Lp(T), where T denotes the unit
circle. For 0 < p < ∞, if f ∈ Hp, then f(reiθ) converges to f(eiθ) in Lp norm
as r → 1.
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For 1 < p < ∞, the dual space (Hp)∗ is isomorphic to Hq , where 1/p+1/q =
1, with an element k ∈ Hq representing the functional φ defined by

φ(f) =
1
2π

∫ 2π

0

f
(
eiθ

)
k
(
eiθ

)
dθ.

This isomorphism is not an isometry unless p = 2, but it is true that ‖φ‖(Hp)∗ ≤
‖k‖Hq ≤ C‖φ‖(Hp)∗ for some constant C depending only on p. If f ∈ Hp for
1 < p < ∞, then Snf → f in Hp as n → ∞. The Szegő projection S maps
each function f ∈ L1(T) into a function analytic in D defined by

Sf(z) =
1
2π

∫ 2π

0

f(eit)
1 − e−itz

dt.

It leaves H1 functions fixed and maps Lp boundedly onto Hp for 1 < p < ∞.
If f ∈ Lp for 1 < p < ∞ and f(θ) =

∑∞
n=− ∞ aneinθ, then Sf(z) =

∑∞
n=0 anzn.

For 1 < p < ∞, the dual of the Bergman space Ap is isomorphic to Aq ,
where 1/p + 1/q = 1, and k ∈ Aq represents the functional defined by φ(f) =∫

D
f(z)k(z)dσ(z). Note that this isomorphism is actually conjugate-linear. It

is not an isometry unless p = 2, but if the functional φ ∈ (Ap)∗ is represented
by the function k ∈ Aq , then

(1.1) ‖φ‖(Ap)∗ ≤ ‖k‖Aq ≤ Cp‖φ‖(Ap)∗ ,

where Cp is a constant depending only on p. We remark that Hp ⊂ Ap, and in
fact ‖f ‖Ap ≤ ‖f ‖Hp . If f ∈ Ap for 1 < p < ∞, then Snf → f in Ap as n → ∞.

In this paper, the only Bergman spaces we consider are those with 1 < p <
∞. For a given linear functional φ ∈ (Ap)∗ such that φ �= 0, we investigate
the extremal problem of finding a function F ∈ Ap with norm ‖F ‖Ap = 1 for
which

(1.2) Reφ(F ) = sup
‖g‖Ap=1

Reφ(g) = ‖φ‖.

Such a function F is called an extremal function, and we say that F is an
extremal function for a function k ∈ Aq if F solves problem (1.2) for the
functional φ with kernel k. This problem has been studied by Vukotić [10],
Khavinson and Stessin [7], and Ferguson [4], among others. Note that for
p = 2, the extremal function is F = k/‖k‖A2 .

A closely related problem is that of finding f ∈ Ap such that φ(f) = 1 and

(1.3) ‖f ‖Ap = inf
φ(g)=1

‖g‖Ap .

If F solves the problem (1.2), then F
φ(F ) solves the problem (1.3), and if f

solves (1.3), then f
‖f ‖ solves (1.2). When discussing either of these problems,

we always assume that φ is not the zero functional; in other words, that k is
not identically 0.
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The problems (1.2) and (1.3) each have a unique solution when 1 < p < ∞
(see [4], Theorem 1.4). Also, for every function f ∈ Ap such that f is not
identically 0, there is a unique k ∈ Aq such that f solves problem (1.3) for k
(see [4], Theorem 3.3). This implies that for each F ∈ Ap with ‖F ‖Ap = 1,
there is some nonzero k such that F solves problem (1.2) for k. Furthermore,
any two such kernels k are positive multiples of each other.

The Cauchy–Green theorem is an important tool in this paper.

Cauchy–Green Theorem. If Ω is a region in the plane with piecewise
smooth boundary and f ∈ C1(Ω), then

1
2i

∫
∂Ω

f(z)dz =
∫

Ω

∂

∂z
f(z)dA(z),

where ∂Ω denotes the boundary of Ω.

The next result is an important characterization of extremal functions in
Ap for 1 < p < ∞ (see [9], p. 55).

Theorem A. Let 1 < p < ∞ and let φ ∈ (Ap)∗. A function F ∈ Ap with
‖F ‖Ap = 1 satisfies

Reφ(F ) = sup
‖g‖Ap=1

Reφ(g) = ‖φ‖

if and only if ∫
D

h|F |p−1sgnF dσ = 0

for all h ∈ Ap with φ(h) = 0. If F satisfies the above conditions, then∫
D

h|F |p−1sgnF dσ =
φ(h)

‖φ‖
for all h ∈ Ap.

Ryabykh’s theorem relates extremal problems in Bergman spaces to Hardy
spaces. It says that if the kernel for a linear functional is not only in Aq but
also in Hq , then the extremal function is not only in Ap but in Hp as well.

Ryabykh’s Theorem. Let 1 < p < ∞ and let 1/p + 1/q = 1. Suppose that
φ ∈ (Ap)∗ and φ(f) =

∫
D

fk dσ for some k ∈ Hq . Then the solution F to the
extremal problem (1.2) belongs to Hp and satisfies

(1.4) ‖F ‖Hp ≤
{[

max(p − 1,1)
]Cp‖k‖Hq

‖k‖Aq

}1/(p−1)

,

where Cp is the constant in (1.1).

Ryabykh [8] proved that F ∈ Hp. The bound (1.4) was proved in [4], by a
variant of Ryabykh’s proof.

As a corollary Ryabykh’s theorem implies that the solution to the problem
(1.3) is in Hp as well. Note that the constant Cp → ∞ as p → 1 or p → ∞.
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To obtain our results, including a generalization of Ryabykh’s theorem,
we will need the following technical lemmas. Their proofs, which involve
Littlewood–Paley theory, are deferred to the end of the paper.

Lemma 1.1. Let p be an even integer. Let f ∈ Hp and let h be a polynomial.
Then

p.v.

∫
D

|f |p−1sgnff ′hdσ = lim
n→∞

∫
D

|f |p−1sgnf(Snf)′hdσ.

Lemma 1.2. Suppose that 1 < p1 < ∞ and 1 < p2, p3 ≤ ∞, and also that

1 =
1
p1

+
1
p2

+
1
p3

.

Let f1 ∈ Hp1 , f2 ∈ Hp2 , and f3 ∈ Hp3 . Then∣∣∣∣p.v.

∫
D

f1f2f
′
3 dσ

∣∣∣∣ ≤ C‖f1‖Hp1 ‖f2‖Hp2 ‖f3‖Hp3 ,

where C depends only on p1 and p2. (Implicit is the claim that the principal
value exists.) Moreover, if p3 < ∞, then

p.v.

∫
D

f1f2f
′
3 dσ = lim

n→∞

∫
D

f1f2(Snf3)′ dσ.

2. The norm-equality

Let p be an even integer and let q be its conjugate exponent. Let k ∈ Hq

and let F be the extremal function for k over Ap. We will denote by φ the
functional associated with k. Let Fn be the extremal function for k when
the extremal problem is posed over Pn, the space of polynomials of degree at
most n. Also, let

(2.1) K(z) =
1
z

∫ z

0

k(ζ)dζ,

so that (zK)′ = k. During proof of Ryabykh’s theorem in [4], an important
step is to show that

1
2π

∫ 2π

0

∣∣Fn

(
eiθ

)∣∣p dθ =
1

2π‖φ|Pn
‖

∫ 2π

0

Fn

[(
p

2

)
k +

(
1 − p

2

)
K

]
dθ

(see [4], p. 2652). We will now derive a similar result for F :

Theorem 2.1. Let p be an even integer, let k ∈ Hq , and let F ∈ Ap be the
extremal function for k. Then

1
2π

∫ 2π

0

∣∣F (
eiθ

)∣∣ph(
eiθ

)
dθ =

1
2π‖φ‖

∫ 2π

0

F

[(
p

2

)
hk +

(
1 − p

2

)
(zh)′K

]
dθ

for every polynomial h.
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Proof. Since Ryabykh’s theorem says that F ∈ Hp, we have
1
2π

∫ 2π

0

∣∣F (
eiθ

)∣∣ph(
eiθ

)
dθ = lim

r→1

i

2π

∫
∂(rD)

∣∣F (z)
∣∣ph(z)z dz,

where h is any polynomial. Apply the Cauchy–Green theorem to transform
the right-hand side into

p.v.
1
π

∫
D

(
(zh)′F +

p

2
zhF ′

)
|F |p−1sgnF dA(z).

Invoking Lemma 1.1 with zh in place of h shows that this limit equals

lim
n→∞

1
π

∫
D

(
(zh)′F +

p

2
zh(SnF )′

)
|F |p−1sgnF dA(z).

Since (zh)′F + p
2zh(SnF )′ is in Ap, we may apply Theorem A to reduce the

last expression to

(2.2) lim
n→∞

1
π‖φ‖

∫
D

(
(zh)′F +

p

2
zh(SnF )′

)
k dA(z).

Recall that we have defined K(z) = 1
z

∫ z

0
k(ζ)dζ. To prepare for a reverse

application of the Cauchy–Green theorem, we rewrite the integral in (2.2) as

1
π‖φ‖

∫
D

[
∂

∂z

{
(zh)′FzK

}
+

p

2
∂

∂z

{
zhSn(F )k

}
− p

2
∂

∂z

{
(zh)′Sn(F )zK

}]
dA(z).

Now this equals

lim
r→1

1
π‖φ‖

∫
rD

[
∂

∂z

{
(zh)′FzK

}
+

p

2
∂

∂z

{
zhSn(F )k

}
− p

2
∂

∂z

{
(zh)′Sn(F )zK

}]
dA(z).

We apply the Cauchy–Green theorem to show that this equals

lim
r→1

[
1

2πi‖φ‖

∫
∂(rD)

(zh)′FzK dz +
ip

4π‖φ‖

∫
∂(rD)

zhSn(F )k dz

− p

4πi‖φ‖

∫
∂(rD)

(zh)′Sn(F )zK dz

]
.

Since F is in Hp and both k and K are in Hq , the above limit equals
1

2πi‖φ‖

∫
∂D

(zh)′FzK dz +
ip

4π‖φ‖

∫
∂D

zhSn(F )k dz

− p

4πi‖φ‖

∫
∂D

(zh)′Sn(F )zK dz

=
1

2π‖φ‖

∫ 2π

0

(zh)′FK + Sn(F )
(

p

2
hk − p

2
(zh)′K

)
dθ.
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We let n → ∞ in the above expression to reach the desired conclusion. �
Taking h = 1, we have the following corollary, which we call the “norm-

equality.”

Corollary 2.2 (The norm-equality). Let p be an even integer, let k ∈ Hq ,
and let F be the extremal function for k. Then

1
2π

∫ 2π

0

∣∣F (
eiθ

)∣∣p dθ =
1

2π‖φ‖

∫ 2π

0

F

[(
p

2

)
k +

(
1 − p

2

)
K

]
dθ.

The norm-equality is useful mainly because it yields the following theorem.

Theorem 2.3. Let p be an even integer. Let {kn} be a sequence of Hq

functions, and let kn → k in Hq . Let Fn be the Ap extremal function for kn

and let F be the Ap extremal function for k. Then Fn → F in Hp.

Note that Ryabykh’s theorem shows that each Fn ∈ Hp, and that F ∈ Hp.
But because the operator taking a kernel to its extremal function is not linear,
one cannot apply the closed graph theorem to conclude that Fn → F .

To prove Theorem 2.3 we will use the following lemma involving the notion
of uniform convexity. A Banach space X is called uniformly convex if for each
ε > 0, there is a δ > 0 such that for all x, y ∈ X with ‖x‖ = ‖y‖ = 1,∥∥∥∥1

2
(x + y)

∥∥∥∥ > 1 − δ implies ‖x − y‖ < ε.

An equivalent definition is that if {xn} and {yn} are sequences in X such
that ‖xn‖ = ‖yn‖ = 1 for all n and ‖xn + yn‖ → 2 then ‖xn − yn‖ → 0. This
concept was introduced by Clarkson in [1]. See also [4], where it is applied to
extremal problems. To apply the lemma, we use the fact that the space Hp

is uniformly convex for 1 < p < ∞. By xn ⇀ x, we mean that xn approaches
x weakly.

Lemma 2.4. Suppose that X is a uniformly convex Banach space, that x ∈
X, and that {xn} is a sequence of elements of X . If xn ⇀ x and ‖xn‖ → ‖x‖,
then xn → x in X .

This lemma is known. For example, it is contained in Exercise 15.17 in [6].

Proof of Theorem 2.3. We will first show that Fn ⇀ F in Hp (that is, Fn

converges to F weakly in Hp). Next, we will use this fact and the norm-
equality to show that ‖Fn‖Hp → ‖F ‖Hp . By the lemma, it will then follow
that Fn → F in Hp.

To prove that Fn ⇀ F in Hp, note that Ryabykh’s theorem says that
‖Fn‖Hp ≤ C(‖kn‖Hq/‖kn‖Aq )1/(p−1). Let α = infn ‖kn‖Aq and β =
supn ‖kn‖Hq . Here α > 0 because by assumption none of the kn are iden-
tically zero, and they approach k, which is not identically 0. Therefore
‖Fn‖Hp ≤ C(β/α)1/(p−1), and the sequence {Fn} is bounded in Hp norm.
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Now, suppose that Fn �⇀ F. Then there is some ψ ∈ (Hp)∗ such that
ψ(Fn) �⇀ ψ(F ). This implies |ψ(Fnj ) − ψ(F )| ≥ ε for some ε > 0 and some
subsequence {Fnj }. But since the sequence {Fn} is bounded in Hp norm,
the Banach–Alaoglu theorem implies that some subsequence of {Fnj }, which
we will also denote by {Fnj }, converges weakly in Hp to some function F̃ .

Then |ψ(F̃ ) − ψ(F )| ≥ ε. Now kn → k in Aq , and it is proved in [4] that this
implies Fn → F in Ap, which implies Fn(z) → F (z) for all z ∈ D. Since point
evaluation is a bounded linear functional on Hp, we have that Fnj (z) → F̃ (z)
for all z ∈ D, which means that F̃ (z) = F (z) for all z ∈ D. But this contradicts
the assumption that ψ(F̃ ) �= ψ(F ). Hence, Fn ⇀ F .

Let φn be the functional with kernel kn, and let φ be the functional with
kernel k. To show that ‖Fn‖Hp → ‖F ‖Hp , recall that the norm-equality says

1
2π

∫ 2π

0

∣∣Fn

(
eiθ

)∣∣p dθ =
1

2π‖φn‖

∫ 2π

0

Fn

[(
p

2

)
kn +

(
1 − p

2

)
Kn

]
dθ.

But, if h is any function analytic in D and H(z) = (1/z)
∫ z

0
h(ζ)dζ , it can be

shown that ‖H‖Hq ≤ ‖h‖Hq (see [4], proof of Theorem 4.2). Since kn → k
in Hq , it follows that Kn → K in Hq . Also, kn → k in Ap implies that
‖φn‖ → ‖φ‖. In addition, ‖Fn‖Hp ≤ C for some constant C, and Fn ⇀ F, so
the right-hand side of the above equation approaches

1
2π‖φ‖

∫ 2π

0

F

[(
p

2

)
k +

(
1 − p

2

)
K

]
dθ =

1
2π

∫ 2π

0

∣∣F (
eiθ

)∣∣p dθ.

In other words, ‖Fn‖Hp → ‖F ‖Hp , and so by Lemma 2.4 we conclude that
Fn → F in Hp. �

3. Fourier coefficients of |F |p

Theorem 2.1 can also be used to gain information about the Fourier coef-
ficients of |F |p, where F is the extremal function. In particular, it leads to a
criterion for F to be in L∞ in terms of the Taylor coefficients of the kernel k.

Theorem 3.1. Let p be an even integer. Let k ∈ Hq , let F be the Ap

extremal function for k, and define K by equation (2.1). Then for any integer
m ≥ 0,

1
2π

∫ 2π

0

∣∣F (
eiθ

)∣∣peimθ dθ

=
1

2π‖φ‖

∫ 2π

0

Feimθ

[(
p

2

)
k +

(
1 − p

2

)
(m + 1)K

]
dθ.

Proof. Take h(eiθ) = eimθ in Theorem 2.1. �
This last formula can be applied to obtain estimates on the size of the

Fourier coefficients of |F |p.
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Theorem 3.2. Let p be an even integer. Let k ∈ Aq , and let F be the Ap

extremal function for k. Let

bm =
1
2π

∫ 2π

0

∣∣F (
eiθ

)∣∣pe−imθ dθ,

and let

k(z) =
∞∑

n=0

cnzn.

Then, for each m ≥ 0,

|bm| = |b−m| ≤ p

2‖φ‖ ‖F ‖H2

[ ∞∑
n=m

|cn|2
]1/2

.

Proof. The theorem is trivially true if k /∈ H2, so we may assume that
k ∈ A2 ⊂ Aq. Let F (z) =

∑∞
n=0 anzn. Since F ∈ Hp, and p ≥ 2, we have

F ∈ H2. Now, using Theorem 3.1, we find that

b−m =
1
2π

∫ 2π

0

∣∣F (
eiθ

)∣∣peimθ dθ

=
1

2π‖φ‖

∫ 2π

0

(
Feimθ

)[(
p

2

)
k +

(
1 − p

2

)
(m + 1)K

]
dθ

=
1

2π‖φ‖

∫ 2π

0

[ ∞∑
n=0

anei(n+m)θ

]

×
[ ∞∑

j=0

((
p

2

)
cj +

m + 1
j + 1

(
1 − p

2

)
cj

)
e−ijθ

]
dθ

=
1

‖φ‖

∣∣∣∣∣
∞∑

n=0

an

((
p

2

)
cn+m +

m + 1
n + m + 1

(
1 − p

2

)
cn+m

)∣∣∣∣∣.
The Cauchy–Schwarz inequality now gives

|b−m| ≤ 1
‖φ‖

[ ∞∑
n=0

|an|2
]1/2[ ∞∑

n=m

∣∣∣∣(p

2

)
cn +

m + 1
n + 1

(
1 − p

2

)
cn

∣∣∣∣2
]1/2

≤ p

2‖φ‖

[ ∞∑
n=0

|an|2
]1/2[ ∞∑

n=m

|cn|2
]1/2

.

Since [ ∞∑
n=0

|an|2
]1/2

= ‖F ‖H2

the theorem follows. �
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The estimate in Theorem 3.2 can be used to obtain information about the
size of |F |p and F , as in the following corollary.

Corollary 3.3. If cn = O(n−α) for some α > 3/2, then F ∈ H∞.

Proof. First observe that
∞∑

n=m

(
n−α

)2 ≤
∫ ∞

m−1

x−2α dx =
(m − 1)1−2α

2α − 1
.

By hypothesis it follows that[ ∞∑
n=m

|cn|2
]1/2

= O
(
m(1−2α)/2

)
.

Thus, Theorem 3.2 shows that bm = O(m(1−2α)/2). Therefore {bm} ∈ �1 if
α > 3/2. But {bm} ∈ �1 implies |F |p ∈ L∞, which implies F ∈ H∞. �

In fact, {bm} ∈ �1 implies that |F |p is continuous in D, but this does not
necessarily mean F will be continuous in D. There is a result similar to
Corollary 3.3 in [7], where the authors show that if the kernel k is a polynomial,
or even a rational function with no poles in D, then F is Hölder continuous
in D. Their technique relies on deep regularity results for partial differential
equations. Our result only shows that F ∈ H∞, but it applies to a broader
class of kernels.

4. Relations between the size of the kernel and extremal function

In this section, we show that if p is an even integer and q ≤ q1 < ∞, then the
extremal function F ∈ H(p−1)q1 if and only if the kernel k ∈ Hq1 . For q1 = q the
statement reduces to Ryabykh’s theorem and its previously unknown converse.
The following theorem is crucial to the proof.

Theorem 4.1. Let p be an even integer and let q = p/(p − 1) be its conjugate
exponent. Let F ∈ Ap be the extremal function corresponding to the kernel
k ∈ Aq . Suppose that k ∈ Hq1 for some q1 with q ≤ q1 < ∞, and that F ∈ Hp1 ,
for some p1 with p ≤ p1 < ∞. Define p2 by

1
q1

+
1
p1

+
1
p2

= 1.

If p2 < ∞, then for every trigonometric polynomial h we have∣∣∣∣∫ 2π

0

|F |ph
(
eiθ

)
dθ

∣∣∣∣ ≤ C
‖k‖Hq1

‖k‖Aq

‖F ‖Hp1 ‖h‖Lp2 ,

where C is some constant depending only on p, p1, and q1.
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The excluded case p2 = ∞ occurs if and only if q = q1 and p = p1. The
theorem is then a trivial consequence of Ryabykh’s theorem.

Proof of Theorem 4.1. First, let h be an analytic polynomial. In the proof
of Theorem 2.1, we showed that

1
2π

∫ 2π

0

∣∣F (
eiθ

)∣∣ph(
eiθ

)
dθ(4.1)

= lim
n→∞

1
π‖φ‖

∫
D

(
(hz)′F +

p

2
hz(SnF )′

)
k dA(z).

An application of Lemma 1.2 gives

lim
n→∞

∫
D

hz(SnF )′k dA = p.v.

∫
D

hzF ′k dA,

so that the right-hand side of equation (4.1) becomes

1
π‖φ‖ p.v.

∫
D

(
(hz)′F +

p

2
hzF ′

)
k dA(z).

Apply Lemma 1.2 separately to the two parts of the integral to conclude that
its absolute value is bounded by

C
1

‖φ‖ ‖k‖Hq1 ‖f ‖Hp1 ‖h‖Hp2 ,

where C is a constant depending only on p1 and q1. Since
1

‖φ‖ ≤ Cp

‖k‖Aq

by equation (1.1), this gives the desired result for the special case where h is
an analytic polynomial.

Now let h be an arbitrary trigonometric polynomial. Then h = h1 + h2,
where h1 and h2 are analytic polynomials, and h2(0) = 0. Note that the Szegő
projection S is bounded from Lp2 into Hp2 because 1 < p2 < ∞. Thus,

‖h1‖Hp2 =
∥∥S(h)

∥∥
Hp2

≤ C‖h‖Lp2 .

Also,

‖h2‖Hp2 =
∥∥zS

(
e−iθh

)∥∥
Hp2

=
∥∥S

(
e−iθh

)∥∥
Hp2

≤ C
∥∥e−iθh

∥∥
Lp2

= C‖h‖Lp2 ,

and so
‖h1‖Hp2 + ‖h2‖Hp2 ≤ C‖h‖Lp2 .

Therefore, by what we have already shown,∣∣∣∣∫ 2π

0

∣∣f(
eiθ

)∣∣ph(
eiθ

)
dθ

∣∣∣∣ =
∣∣∣∣∫ 2π

0

∣∣f(
eiθ

)∣∣p(h1

(
eiθ

)
+ h2

(
eiθ

))
dθ

∣∣∣∣
≤

∣∣∣∣∫ 2π

0

|f |ph1 dθ

∣∣∣∣ +
∣∣∣∣∫ 2π

0

|f |ph2 dθ

∣∣∣∣
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≤ C
‖k‖Hq1

‖k‖Aq

‖f ‖Hp1

(
‖h1‖Hp2 + ‖h2‖Hp2

)
≤ C

‖k‖Hq1

‖k‖Aq

‖f ‖Hp1 ‖h‖Lp2 . �

For a given q1, we will apply the theorem just proved with p1 chosen as
p1 = pp′

2, where p′
2 is the conjugate exponent to p2. This will allow us to bound

the Hp1 norm of f solely in terms of ‖φ‖ and ‖k‖Hq1 .

Theorem 4.2. Let p be an even integer, and let q be its conjugate exponent.
Let F ∈ Ap be the extremal function for a kernel k ∈ Aq . If, for q1 such that
q ≤ q1 < ∞, the kernel k ∈ Hq1 , then F ∈ Hp1 for p1 = (p − 1)q1. In fact,

‖F ‖Hp1 ≤ C

(
‖k‖Hq1

‖k‖Aq

)1/(p−1)

,

where C depends only on p and q1.

Proof. The case q1 = q is Ryabykh’s theorem, so we assume q1 > q. Set
p1 = (p − 1)q1. Then p1 > p = (p − 1)q. Choose p2 so that

1
q1

+
1
p1

+
1
p2

= 1.

This implies that p2 = p1/(p1 − p), and so its conjugate exponent p′
2 = p1/p.

Note that 1 < p2 < ∞. Let Fn denote the extremal function corresponding
to the kernel Snk, which does not vanish identically if n is chosen sufficiently
large. Since Snk is a polynomial, Fn is in H∞ (and thus Fn ∈ Hp1) by
Corollary 3.3. Hence for any trigonometric polynomial h, Theorem 4.1 yields∣∣∣∣ 1

2π

∫ 2π

0

|Fn|ph
(
eiθ

)
dθ

∣∣∣∣ ≤ C
‖Snk‖Hq1

‖Snk‖Aq

‖Fn‖Hp1 ‖h‖Lp2 .

Since the trigonometric polynomials are dense in Lp2(∂D), taking the supre-
mum over all trigonometric polynomials h with ‖h‖Lp2 ≤ 1 gives∥∥|Fn|p

∥∥
Lp′

2
≤ C

‖Snk‖Hq1

‖Snk‖Aq

‖Fn‖Hp1 ,

which implies

‖Fn‖p
Hp1 =

{
1
2π

∫ 2π

0

(∣∣Fn

(
eiθ

)∣∣p)p′
2 dθ

}1/p′
2

=
∥∥|Fn|p

∥∥
Lp′

2

≤ C
‖Snk‖Hq1

‖Snk‖Aq

‖Fn‖Hp1 ,

since pp′
2 = p1. Because ‖Fn‖Hp1 < ∞, we may divide both sides of the in-

equality by ‖Fn‖Hp1 to obtain

‖Fn‖p−1
Hp1 ≤ C

‖Snk‖Hq1

‖Snk‖Aq

,
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where C depends only on p and q1. In other words,(
1
2π

∫ 2π

0

∣∣Fn

(
reiθ

)∣∣p1
dθ

)(p−1)/p1

≤ C
‖Snk‖Hq1

‖Snk‖Aq

for all r < 1 and for all n sufficiently large. Note that Snk → k in Hq1 and in
Aq . Since Snk → k in Aq, Theorem 3.1 in [4] says that Fn → F in Ap, and
thus Fn → F uniformly on compact subsets of D. Thus, letting n → ∞ in the
last inequality gives(

1
2π

∫ 2π

0

∣∣F (
reiθ

)∣∣p1
dθ

)(p−1)/p1

≤ C
‖k‖Hq1

‖k‖Aq

for all r < 1. In other words,

‖F ‖Hp1 ≤
(

C
‖k‖Hq1

‖k‖Aq

)1/(p−1)

. �

Recall from Section 1 that a function F ∈ Ap with unit norm has a corre-
sponding kernel k ∈ Aq such that F is the extremal function for k, and this
kernel is uniquely determined up to a positive multiple. Theorem 4.2 says
that if p is an even integer and a kernel k belongs not only to the Bergman
space Aq but also to the Hardy space Hq1 for some q1 where q ≤ q1 < ∞,
then the Ap extremal function F associated with it is actually in Hp1 for
p1 = (p − 1)q1 ≥ p. It is natural to ask whether the converse is true. In other
words, if F ∈ Hp1 for some p1 with p ≤ p1 < ∞, must it follow that the cor-
responding kernel belongs to Hq1? The following theorem says that this is
indeed the case.

Theorem 4.3. Suppose p is an even integer and let q be its conjugate
exponent. Let F ∈ Ap with ‖F ‖Ap = 1, and let k be a kernel such that F is
the extremal function for k. If F ∈ Hp1 for some p1 with p ≤ p1 < ∞, then
k ∈ Hq1 for q1 = p1/(p − 1), and

‖k‖Hq1

‖k‖Aq

≤ C‖F ‖p−1
Hp1 ,

where C is a constant depending only on p and p1.

Proof. Let h be a polynomial and let φ be the functional in (Ap)∗ corre-
sponding to k. Then by Theorem A,

1
‖φ‖

∫
D

k(z)
(
zh(z)

)′
dσ =

∫
D

∣∣F (z)
∣∣p−1 sgn

(
F (z)

)(
zh(z)

)′
dσ

=
∫

D

F p/2F (p/2)−1
(
zh(z)

)′
dσ.
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By hypothesis, F p/2 ∈ H(2p1)/p and F (p/2)−1 ∈ H2p1/(p−2). A simple calcula-
tion shows that

1
q′
1

=
q1 − 1

q1
=

p1 − p + 1
p1

and thus
p

2p1
+

p − 2
2p1

+
1
q′
1

= 1.

Now we will apply the first part of Lemma 1.2 with f1 = F p/2 and f2 =
F (p/2)−1 and f3 = zh, and with 2p1/p in place of p1, and 2p1/(p − 2) in place
of p2, and q′

1 in place of p3. Note that this is permitted since 1 < 2p1/p < ∞,
and 1 < q′

1 < ∞, and 1 < 2p1/(p − 2) ≤ ∞. (In fact, we even know that
2p1/(p − 2) < ∞ unless p = 2, which is a trivial case since then F = k/‖k‖A2 .)
With these choices, Lemma 1.2 gives∣∣∣∣∫

D

F p/2F (p/2)−1
(
zh(z)

)′
dσ

∣∣∣∣ ≤ C
∥∥F p/2

∥∥
H2p1/p

∥∥F p/2−1
∥∥

H2p1/(p−2) ‖zh‖
Hq′

1

= C‖F ‖p/2
Hp1 ‖F ‖(p−2)/2

Hp1 ‖h‖
Hq′

1

= C‖F ‖p−1
Hp1 ‖h‖Hq′

1
.

Since ∣∣∣∣∫
D

k(z)
(
zh(z)

)′
dσ

∣∣∣∣ ≤ C‖φ‖ ‖F ‖p−1
Hp1 ‖h‖Hq′

1

for all polynomials h, we may define a continuous linear functional ψ on Hq′
1

such that

ψ(h) =
∫

D

k(z)
(
zh(z)

)′
dσ

for all analytic polynomials h. Then ψ has an associated kernel in Hq1 , which
we will call k̃. Thus, for all h ∈ Hq′

1 , we have

ψ(h) =
1
2π

∫ 2π

0

k̃
(
eiθ

)
h
(
eiθ

)
dθ.

But then the Cauchy–Green theorem gives∫
D

k(z)
(
zh(z)

)′
dσ(4.2)

= ψ(h) =
1
2π

∫
∂D

k̃
(
eiθ

)
h
(
eiθ

)
dθ =

i

2π

∫
∂D

k̃(z)h(z)z dz

= lim
r→1

i

2π

∫
∂(rD)

k̃(z)h(z)z dz = lim
r→1

∫
rD

k̃(z)
(
zh(z)

)′
dσ

=
∫

D

k̃(z)
(
zh(z)

)′
dσ,

where h is any analytic polynomial.
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Now, for any polynomial h(z), define the polynomial H(z) so that

H(z) =
1
z

∫ z

0

h(ζ)dζ.

Then substituting H(z) for h(z) in equation (4.2), and using the fact that
(zH)′ = h, we have ∫

D

k̃(z)h(z)dσ =
∫

D

k(z)h(z)dσ

for every polynomial h. But since the polynomials are dense in Ap, and k and
k̃ are both in Aq, which is isomorphic to the dual space of Ap, we must have
that k = k̃, and thus k ∈ Hq1 .

Now for any polynomial h,

1
2π

∫ 2π

0

k
(
eiθ

)
h
(
eiθ

)
dθ ≤ C‖φ‖ ‖F ‖p−1

Hp1 ‖h‖
Hq′

1
,

and so
1
2π

∫ 2π

0

k
(
eiθ

)
h
(
eiθ

)
dθ ≤ C‖k‖Aq ‖F ‖p−1

Hp1 ‖h‖
Hq′

1

by inequality (1.1). But if h is any trigonometric polynomial,

1
2π

∫ 2π

0

k
(
eiθ

)
h(θ)dθ =

1
2π

∫ 2π

0

k
(
eiθ

)[
S(h)

(
eiθ

)]
dθ

≤ C‖k‖Aq ‖F ‖p−1
Hp1

∥∥S(h)
∥∥

Hq′
1

≤ C‖k‖Aq ‖F ‖p−1
Hp1 ‖h‖

Lq′
1
,

where S denotes the Szegő projection. Taking the supremum over all trigono-
metric polynomials h with ‖h‖

Lq′
1

≤ 1 and dividing both sides of the inequality
by ‖k‖Aq , we arrive at the required bound. �

The main results of this section can be summarized in the following theo-
rem.

Theorem 4.4. Suppose that p is an even integer with conjugate exponent q.
Let k ∈ Aq and let F be the Ap extremal function associated with k. Let p1, q1

be a pair of numbers such that q ≤ q1 < ∞ and

p1 = (p − 1)q1.

Then F ∈ Hp1 if and only if k ∈ Hq1 . More precisely,

C1

(
‖k‖Hq1

‖k‖Aq

)1/(p−1)

≤ ‖F ‖Hp1 ≤ C2

(
‖k‖Hq1

‖k‖Aq

)1/(p−1)

where C1 and C2 are constants that depend only on p and p1.

Note that if p1 = (p − 1)q1, then q ≤ q1 < ∞ is equivalent to p ≤ p1 < ∞.
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5. Proof of the lemmas

We now give the proofs of Lemmas 1.1 and 1.2. These proofs are rather
technical and require applications of maximal functions and Littlewood–Paley
theory.

Definition 5.1. For a function f analytic in the unit disc, the Hardy–
Littlewood maximal function is defined on the unit circle by

f ∗(
eiθ

)
= sup

0≤r<1

∣∣f(
reiθ

)∣∣.
The following is the simplest form of the Hardy–Littlewood maximal the-

orem (see, for instance, [2], p. 12).

Theorem B (Hardy–Littlewood). If f ∈ Hp for 0 < p ≤ ∞, then f ∗ ∈ Lp

and ∥∥f ∗∥∥
Lp ≤ C‖f ‖Hp ,

where C is a constant depending only on p.

Further results of a similar type may be found in [5].

Definition 5.2. For a function f analytic in the unit disc, the Littlewood–
Paley function is

g(θ, f) =
{∫ 1

0

(1 − r)
∣∣f ′(reiθ

)∣∣2 dr

}1/2

.

A key result of Littlewood–Paley theory is that the Littlewood–Paley func-
tion, like the Hardy–Littlewood maximal function, belongs to Lp if and only
if f ∈ Hp. Formally, the result may be stated as follows (see [11], Volume 2,
Chapter 14, Theorems 3.5 and 3.19).

Theorem C (Littlewood–Paley). For 1 < p < ∞, there are constants Cp

and Bp depending only on p so that∥∥g(·, f)
∥∥

Lp ≤ Cp‖f ‖Hp

for all functions f analytic in D, and

‖f ‖Hp ≤ Bp

∥∥g(·, f)
∥∥

Lp

for all functions f analytic in D such that f(0) = 0.

We now apply the Littlewood–Paley theorem to obtain the following result,
from which Lemmas 1.1 and 1.2 will follow.

Theorem 5.3. Suppose 1 < p1, p2 ≤ ∞, and let p be defined by 1/p = 1/p1+
1/p2. Suppose furthermore that 1 < p < ∞. If f1 ∈ Hp1 and f2 ∈ Hp2 , and h
is defined by

h(z) =
∫ z

0

f1(ζ)f ′
2(ζ)dζ,
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then h ∈ Hp and ‖h‖Hp ≤ C‖f1‖Hp1 ‖f2‖Hp2 , where C depends only on p1 and
p2.

Proof. By the definitions of the Littlewood–Paley function and the Hardy–
Littlewood maximal function,

g(θ,h) =
{∫ 1

0

(1 − r)
∣∣f1

(
reiθ

)
f ′
2

(
reiθ

)∣∣2 dr

}1/2

≤ f ∗
1 (θ)

{∫ 1

0

(1 − r)
∣∣f ′

2

(
reiθ

)∣∣2 dr

}1/2

= f ∗
1 (θ)g(θ, f2).

Therefore, since h(0) = 0, Theorem C gives

‖h‖Hp ≤ C
∥∥g(·, h)

∥∥
Lp ≤ C

∥∥f ∗
1 g(·, f2)

∥∥
Lp .

Applying first Hölder’s inequality and then Theorem B, we infer that

‖h‖Hp ≤ C
∥∥f ∗

1

∥∥
Lp1

∥∥g(·, f2)
∥∥

Lp2
≤ C‖f1‖Hp1

∥∥g(·, f2)
∥∥

Lp2
.

If p2 < ∞, Theorem C allows us to conclude that

‖h‖Hp ≤ C‖f1‖Hp1 ‖f2‖Hp2 .

This proves the claim under the assumption that p2 < ∞.
If p2 = ∞, then p1 < ∞ by assumption. Integration by parts gives

h(z) = f1(z)f2(z) − f1(0)f2(0) −
∫ z

0

f2(ζ)f ′
1(ζ)dζ.

The Hp norm of the first term is bounded by ‖f1‖Hp1 ‖f2‖Hp2 , by Hölder’s
inequality. The second term is bounded by C‖f1‖Hp1 ‖f2‖Hp2 for some C,
since point evaluation is a bounded functional on Hardy spaces. The Hp

norm of the last term is bounded by C‖f1‖Hp1 ‖f2‖Hp2 , by what we have
already shown, and thus ‖h‖Hp ≤ C‖f1‖Hp1 ‖f2‖Hp2 . �

Theorem 5.3 will now be used together with the Cauchy–Green theorem to
prove Lemmas 1.2 and 1.1.

Proof of Lemma 1.2. Define

Ir =
∫

rD

f1f2f
′
3 dA and H(z) =

∫ z

0

f2(ζ)f ′
3(ζ)dζ.

Then Theorem 5.3 says that H ∈ Hq and that ‖H‖Hq ≤ C‖f2‖Hp2 ‖f3‖Hp3 ,
where 1

q = 1
p2

+ 1
p3

. By the Cauchy–Green formula,

Ir =
i

2

∫
∂(rD)

f1(z)H(z)dz.
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Since 1/p1 + 1/q = 1, Hölder’s inequality gives

|Ir | =
1
2

∣∣∣∣∫
∂(rD)

f1(z)H(z)dz

∣∣∣∣ ≤ πMp1(f1, r)Mq(H,r).

But since ‖H‖Hq ≤ C‖f2‖Hp2 ‖f3‖Hp3 , this shows that

|Ir | ≤ C‖f1‖Hp1 ‖f2‖Hp2 ‖f3‖Hp3 ,

which bounds the principal value in question, assuming it exists.
To show that it exists, note that for 0 < s < r, the Cauchy–Green formula

gives

2|Ir − Is| =
∣∣∣∣∫

∂(rD−sD)

f1(z)H(z)dz

∣∣∣∣
=

∣∣∣∣∫ 2π

0

[
rf1

(
reiθ

)
H

(
reiθ

)
− sf1

(
seiθ

)
H

(
seiθ

)]
e−iθ dθ

∣∣∣∣
≤

∣∣∣∣∫ 2π

0

f1

(
reiθ

)(
rH

(
reiθ

)
− sH

(
seiθ

))
e−iθ dθ

∣∣∣∣
+

∣∣∣∣∫ 2π

0

s
(
f1

(
reiθ

)
− f1

(
seiθ

))
H

(
seiθ

)
e−iθ dθ

∣∣∣∣.
We let fr(z) = f(rz). Then Hölder’s inequality shows that the expression on
the right of the above inequality is at most

Mp1(f1, r)‖rHr − sHs‖Hq + s
∥∥(f1)r − (f1)s

∥∥
Hp1

Mq(H,r).

Since p1 < ∞ and q < ∞, we know that (f1)r → f1 in Hp1 as r → 1, and
Hr → H in Hq as r → 1 (see [2], p. 21). Thus the above quantity approaches
0 as r, s → 1, which shows that the principal value exists.

For the last part of the lemma, what was already shown gives

p.v.

∫
D

f1f2f
′
3 dσ −

∫
D

f1f2(Snf3)′ dσ = p.v.

∫
D

f1f2(f3 − Snf3)′ dσ

≤ C‖f1‖Hp1 ‖f2‖Hp2

∥∥f3 − Sn(f3)
∥∥

Hp3
.

By assumption p3 > 1. If also p3 < ∞, then the right-hand side approaches 0
as n → ∞, which finishes the proof. �

Proof of Lemma 1.1. We know that fp/2 ∈ H2 and f (p/2)−1 ∈ H2p/(p−2).
Since h is a polynomial, we have f (p/2)−1h ∈ H2p/(p−2). Also,

1
2

+
p − 2
2p

+
1
p

= 1.

Thus, Lemma 1.2 with f1 = fp/2, and f2 = f (p/2)−1h, and f3 = f gives the
result. �

Acknowledgment. Thanks to Peter Duren for his help in editing the man-
uscript.
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