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A NEW TRIANGULATED CATEGORY FOR RATIONAL
SURFACE SINGULARITIES

OSAMU IYAMA AND MICHAEL WEMYSS

Abstract. In this paper, we introduce a new triangulated cate-
gory for rational surface singularities which in the non-Gorenstein

case acts as a substitute for the stable category of matrix fac-
torizations. The category is formed as a stable quotient of the

Frobenius category of special CM modules, and we classify the

relatively projective-injective objects and thus describe the AR

quiver of the quotient. Connections to the corresponding recon-
struction algebras are also discussed.

1. Introduction

The theory of almost split sequences first entered the world of quotient
singularities through the work of Auslander [4]. Rather than interpreting the
McKay correspondence for finite subgroups G ≤ SL(2,C) in terms of repre-
sentations of G, he instead viewed the representations as Cohen–Macaulay (=
CM) C[[x, y]]G-modules and showed that the Auslander–Reiten (= AR) quiver
coincides with the McKay quiver, thus linking with the geometry through the
dual graph of the minimal resolution.

There is a benefit to this viewpoint, since considering representations as
modules we may sum them together (without multiplicity) and consider their
endomorphism ring; this is Morita equivalent to the skew group ring C[x,
y]#G. Through projectivization ([3], [5]), the theory of almost split sequences
can be used to gain homological insight into the structure of the endomorphism
ring, and furthermore it can be used to recover the relations on the McKay
quiver which yields a presentation of the algebra [19].
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Recently [23], it was realized that for quotients by groups not inside SL(2,C)
the skew group ring is far too large, and instead we should sum less CM mod-
ules together and consider this endomorphism ring instead. The modules that
we sum are the special CM modules, and the resulting endomorphism ring is
called a reconstruction algebra. These algebras are in fact defined for all ra-
tional surface singularities (not just quotients), are always derived equivalent
to the minimal resolution [23, Section 2 and Lemma 3.2] and have global di-
mension 2 or 3 [14, Theorem 2.10]. However, the main difference between
this new situation and the classical case is that the reconstruction algebra is
very non-symmetrical and so for example writing down the relations is a much
more delicate and difficult task.

We are thus motivated to study SCM(R) (or dually ΩCM(R)), the category
of special CM modules (respectively first syzygies of CM modules), from the
viewpoint of relative AR theory [6] to try and gain an insight into this problem.
This short paper is dedicated to its study, and other related issues.

In this paper, we show that SCM(R) admits a Frobenius structure and
prove that the indecomposable relatively projective objects in SCM(R) are
precisely R together with those special CM modules which correspond to
non-(−2) curves in the dual graph of the minimal resolution. Geometrically
this means that the quotient SCM(R) only ‘sees’ the crepant divisors. Note
that it is certainly possible that all special CM modules are relatively pro-
jective, in which case the quotient category is zero. However, there is still
enough information to prove some results, for example that at all vertices in
a reconstruction algebra corresponding to a (−2) curve in the minimal reso-
lution, there is only one relation which is a cycle at that vertex and further it
is (locally) a preprojective relation.

We remark that our triangulated category is a more manageable version of
the rather large triangulated category of singularities Dsg(R) = Db(modR)/
Kb(projR) which is well known in the Gorenstein case to coincide with CM(R)
[8]. Note that our category is definitely not equivalent to Dsg(R) since the
category Dsg(R) is always nonzero if R is singular, but SCM(R) is zero if there
are no crepant divisors in the minimal resolution. Furthermore, our category
SCM(R) is always Krull–Schmidt, a property not enjoyed by Dsg(R) in the
case when R is not Gorenstein. It would be interesting to see if there are
indeed any connections between the two categories.

2. Conventions and background

Throughout this paper, we let R be a complete local normal domain of
dimension two over an algebraically closed field of characteristic zero which
furthermore is a rational singularity. We denote CM(R) to be the category of
Cohen–Macaulay (= CM) R-modules and by ΩCM(R) the category of first
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syzygies of CM R-modules. There is a duality

(−)∗ := HomR(−,R) : CM(R) → CM(R).

Both CM(R) and ΩCM(R) are Krull–Schmidt categories since R is complete.
We always denote the minimal resolution of SpecR by π : X̃ → SpecR and

the irreducible exceptional curves by {Ei}i∈I . For a sheaf F on X̃ , we denote
F ∨ to be the sheaf H om

X̃
(F ,O

X̃
) and we denote T(F ) to be the torsion

subsheaf of F , i.e. the kernel of the natural map F → F ∨∨. The following
important lemma–definition is due to Esnault.

Lemma 2.1 ([11, Lemma and Definition 2.2]). Let F be a sheaf on X̃ .
There exists a CM R-module M such that F ∼= π∗M/T(π∗M) if and only if
the following conditions are satisfied.
(i) F is locally free.
(ii) F is generated by global sections.
(iii) H1(X̃,F ∨ ⊗ ω

X̃
) = 0 where ω

X̃
is the canonical sheaf.

In this case F ∼= π∗M/T(π∗M) is called a full sheaf. Moreover, for a full
sheaf F ∼= π∗M/T(π∗M) one has π∗(F ) ∼= M and π∗(F ∨) ∼= M ∗.

To ease notation, for any CM module M of R we denote M := π∗M/

T(π∗M) to be the corresponding full sheaf on X̃ . In the following theorem–
definition, if M ∈ modR we denote T(M) to be the torsion submodule of M ,
that is, the kernel of the natural map M → M ∗ ∗.

Theorem 2.2. For M ∈ CM(R), the following conditions are equivalent.
(1) Ext1

X̃
(M,O) = 0,

(2) (M ⊗R ωR)/T(M ⊗R ωR) ∈ CM(R),
(3) Ext2R(TrM,ωR) = 0,
(4) ΩTrM ∈ CM(R),
(5) Ext1R(M,R) = 0,
(6) M ∗ ∈ ΩCM(R),
(7) ΩM ∼= M ∗ up to free summands.
We call such a module M a special CM module. We denote SCM(R) to be
the category of special CM modules.

Proof. (1) ⇐⇒ (2) is due to Wunram [24], the remainder can be found in
[14, Theorems 2.7 and 3.6]. �

The category SCM(R) is Krull–Schmidt since it is a full subcategory of
CM(R), which is Krull–Schmidt. Note that Theorem 2.2 implies that there is
a duality

(−)∗ : SCM(R) → ΩCM(R)
and so these categories are intimately related. Some of our arguments in this
paper rely on geometric notions and results, which we now recall:
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Definition 2.3 ([1]). For exceptional curves {Ei}i∈I , define the fundamen-
tal cycle Zf =

∑
i∈I riEi (with each ri ≥ 1) to be the unique smallest element

such that Zf · Ei ≤ 0 for all i ∈ I .

We remark that OZf
= O

X̃
/mO

X̃
where m is the unique maximal ideal

of R.

Theorem 2.4 ([24, Theorem 1.2]). (a) For every irreducible curve Ei in
the exceptional divisor of the minimal resolution there is exactly one indecom-
posable CM module Mi (up to isomorphism) with

H1
(

M ∨
i

)
= 0

and
c1(Mi) · Ej = δij for all i, j ∈ I.

The rank of Mi equals ri = c1(Mi) · Zf where Zf =
∑

riEi is the fundamental
cycle.

(b) Let N ∈ CM(R) be non-free and indecomposable. Then there exists i ∈ I
such that N ∼= Mi if and only if H1(N ∨) = 0.

Thus, SCM(R) (and dually ΩCM(R)) has only a finite number of inde-
composable objects (i.e., has finite type) since the non-free indecomposable
special CM modules are in one-to-one correspondence with the exceptional
curves in the minimal resolution of SpecR. It is known that CM(R) has finite
type if and only if R is a quotient singularity [4], so by passing to the special
CM modules we can use finite-type algebra in a much broader setting.

Recall that for an additive category C and an object M ∈ C, we denote
addM to be the full subcategory of C consisting of summands of finite direct
sums of copies of M . We say that M is an additive generator of C if C = addM .
Thus SCM(R) has an additive generator R ⊕

⊕
i∈I Mi. One further fact we

will use is that its endomorphism algebra is derived equivalent to the minimal
resolution.

Theorem 2.5. There is an equivalence of triangulated categories

Db(coh X̃) ≈ Db

(
modEndR

(
R ⊕

⊕
i∈I

Mi

))
,

where {Mi}i∈I denotes the set of non-free indecomposable special CM modules
up to isomorphism. We call EndR(R ⊕

⊕
i∈I Mi) the reconstruction algebra.

Proof. This follows by combining the discussion in [23, Section 2] (based
entirely on [22]) together with [23, Lemma 3.2]. �

Since X̃ is smooth it follows that the reconstruction algebra has finite
global dimension, but even although dim X̃ = 2 it is usually the case that the
reconstruction algebra has global dimension three:



TRIANGULATED CATEGORY FOR RATIONAL SINGULARITY 329

Theorem 2.6.

gl.dimEndR

(
R ⊕

⊕
i∈I

Mi

)
=

{
2 if R is Gorenstein,

3 else.

Proof. This is shown in both [14, Theorem 2.10] and [23, Corollary 3.3], but
for the convenience of the reader here we give a different, more direct proof.

Set M := R ⊕
⊕

i∈I Mi and Λ := EndR(M). To show that gl.dimΛ ≤ 3,
by [14, Proposition 2.11] we just need to show that for all X ∈ CM(R) there
exists an exact sequence

0 → M1 → M0 → X → 0

with each Mi ∈ addM such that

0 → HomR(M,M1) → HomR(M,M0) → HomR(M,X) → 0

is exact. To do this, consider the extension

0 → Ra → T → X → 0

corresponding to the minimal number of generators of Ext1R(X,R). Applying
HomR(−,R), we have an exact sequence

HomR

(
Ra,R

)
→ Ext1R(X,R) → Ext1R(T,R) → Ext1R

(
Ra,R

)
= 0

where the left map is surjective from our choice of the extension. Thus, we
have Ext1R(T,R) = 0 and so T ∈ SCM(R) = addM . Further

0 → HomR

(
M,Ra

)
→ HomR(M,T ) → HomR(M,X) → Ext1R

(
M,Ra

)
= 0

since M ∈ SCM(R). Hence, gl.dimΛ ≤ 3. We have gl.dimΛ ≥ 2 by the depth
lemma. Furthermore, gl.dimΛ = 2 if and only if addM = CM(R) (again by
[14, Proposition 2.11]), and addM = CM(R) if and only if R is Gorenstein. �

To summarize and fix notation, {Ei}i∈I denotes the irreducible exceptional
curves in the minimal resolution of SpecR. We denote the non-free indecom-
posable special CM modules by {Mi}i∈I , where Mi corresponds to the curve
Ei. Thus M := R ⊕

⊕
i∈I Mi is an additive generator of SCM(R). The corre-

sponding full sheaves on the minimal resolution will be denoted by {Mi}i∈I .
For any CM R-module N , we often denote the chern class c1(N ) by simply
c1(N).

3. Syzygies and Chern classes

When R is Gorenstein every CM module is special and so the categories
ΩCM(R) and SCM(R) coincide; they both equal CM(R). We begin by de-
termining the intersection of the categories ΩCM(R) and SCM(R) when R is
not Gorenstein.

Proposition 3.1. If R is not Gorenstein, then:
(1) If X ∈ CM(R) such that Exti

R(X,R) = 0 for i = 1,2 then X is free.
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(2) SCM(R) ∩ ΩCM(R) = addR.

Proof. (1) Since Ext1R(X,R) = 0, by Theorem 2.2 we know that X ∈
SCM(R) and so ΩX ∼= X∗. Further 0 = Ext2R(X,R) = Ext1R(ΩX,R) =
Ext1R(X∗,R) and so X∗ ∈ SCM(R). Now applying Theorem 2.2(7) to both X
and X∗ there exist short exact sequences

0 → X∗ → P → X → 0,(3.1)
0 → X → Q → X∗ → 0(3.2)

with P,Q ∈ addR. We want to prove that Extt
R(X,R) = Extt

R(X∗,R) = 0 for
all t ≥ 1 so since we know this holds for t = 1, inductively suppose that it
holds for t − 1. Then by (3.1) we know

Extt
R(X,R) ∼= Extt−1

R

(
X∗,R

)
= 0

and by (3.1) we know

Extt
R

(
X∗,R

) ∼= Extt−1
R (X,R) = 0.

Thus, by induction it follows that Extt
R(X ⊕ X∗,R) = 0 for all t ≥ 1 and hence

by definition X is a totally reflexive module (see [9], [20]). But since R has
only finitely many indecomposable special CM modules it has in particular
only finitely many indecomposable totally reflexive modules. If X is non-free,
then by [20] (see also [9, Theorem 4.3]) it follows that R is Gorenstein. Hence,
X must be free.

(2) It follows from (1) that if X and X∗ are special, then X∗ is free. �
Remark 3.2. An easy conclusion of Proposition 3.1 and Theorem 2.2(7)

is that if M is a non-free special CM module, then Ω2M ∼= Ω(M ∗) is never
isomorphic to M . This is in contrast to the Gorenstein case in which Ω2M is
always isomorphic to M [10].

We already know that the dual of the first syzygy of any CM module is spe-
cial; the following result gives us precise information about the decomposition
into indecomposables.

Theorem 3.3. Let M be a CM R-module. Then

ΩM ∼=
⊕
i∈I

(ΩMi)⊕c1(M)·Ei .

Proof. Since M is CM, by Artin–Verdier [2, Lemma 1.2] we have the fol-
lowing exact sequence

0 → O⊕r → M → OD → 0

where r is the rank of M and D represents the Chern class of M, i.e. c1(M) ·
Ei = D · Ei for all exceptional curves Ei. Let m denote the unique maximal
ideal of R, then the minimal number of generators of the R-module H0(OD) is,
by Nakayama’s Lemma, the dimension of the vector space H0(OD)/
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mH0(OD) = H0(OD/mOD) = H0(OD ⊗OZf
), which is precisely Zf · D. Hence,

choosing such a set of generators yields an exact sequence

0 → K → O⊕Zf ·D → OD → 0.

Exactly as in the proof of [24, Theorem 1.2(a)] (Wunram considered the
case when M is indecomposable, but his proof works in this more general
setting) K ∗ is a full sheaf of rank Zf · D satisfying H1(K ) = 0. Thus, there
exists some special CM R-module N such that K ∗ = N , with c1(N) · Ei =
D · Ei = c1(M) · Ei for all i.

The decomposition of N into indecomposable special CM R-modules

N = R⊕s ⊕
(⊕

i∈I

M ⊕bi
i

)
gives a corresponding decomposition of N . Using Theorem 2.4, we have

bi = c1(N) · Ei = c1(M) · Ei

for each i ∈ I . Thus, we have

N = O⊕s ⊕
(⊕

i∈I

M ⊕c1(M)·Ei

i

)
for some s ∈ N. The fact that s = 0 follows by running the argument in [24,
Theorem 1.2(a)], or alternatively by using [22, Proposition 3.5.3]. Hence, we
have a short exact sequence

0 →
⊕
i∈I

(
M ∗

i

)⊕c1(M)·Ei → O⊕Zf ·D → OD → 0

from which taking the appropriate pullback gives us a diagram

0 0

⊕(
M ∗

i

)⊕c1(M)·Ei ⊕(
M ∗

i

)⊕c1(M)·Ei

0 O⊕r E O⊕Zf ·D 0

0 O⊕r M OD 0

0 0.

Since π : X̃ → SpecR is a resolution of rational singularities H1(O) = Ext1
X̃

(O,

O) = 0 and so the middle horizontal sequence splits, giving E = O⊕r+Zf ·D .
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Now since H1(
⊕

i∈I(M ∗
i )

⊕c1(M)·Ei) = 0 we may push down the middle verti-
cal sequence to obtain the short exact sequence

0 →
⊕
i∈I

M
∗ ⊕c1(M)·Ei

i → R⊕r+Zf ·c1(M) → M → 0.

Since by Theorem 2.2 ΩMi
∼= M ∗

i , the result follows. �

Remark 3.4. The above theorem gives us a global combinatorial method
for computing chern classes of full sheaves in the cases of quotient singulari-
ties that doesn’t resort to calculating with local co-ordinates on the minimal
resolution, since the syzygy of any CM module can be easily calculated by
using a counting argument on the AR (= McKay) quiver. For details, see [14,
Theorem 4.9, Example 4.10].

Remark 3.5. Since the above first syzygy contains no free summands it
follows that any CM module M is minimally generated by rkM + Zf · c1(M)
elements. This gives a new proof of [24, Theorem 2.1].

The following observation will be used in the next section.

Corollary 3.6. (1) We have Ωω ∼=
⊕

i∈I(ΩMi)⊕ −E2
i −2.

(2) If R is not Gorenstein and ω is a special CM R-module, then the ex-
ceptional curve corresponding to ω is a (−3)-curve and all other exceptional
curves are (−2)-curves.

Proof. (1) By Theorem 3.3, Ωω ∼=
⊕

i∈I(ΩMi)⊕Ei ·K
X̃ . Further the adjunc-

tion formula states that −2 = (K
X̃

+ Ei) · Ei and so K
X̃

· Ei = −E2
i − 2.

(2) Immediate from (1). �

4. A Frobenius structure on SCM(R)

In this section, we endow the category SCM(R) with a Frobenius structure
and thus produce a triangulated category SCM(R). We say that an extension
closed subcategory B of an abelian category A is an exact category. (This
is slightly stronger than the formal definition by Quillen [18]. See also [16,
Appendix A].) For example, CM(R) is an exact category.

We start with the following easy observation.

Lemma 4.1. (1) SCM(R) is an extension closed subcategory of CM(R).
(2) SCM(R) forms an exact category.

Proof. (1) is an immediate consequence of Theorem 2.2(5), and (2) is a
consequence of (1). �

Let us recall the definition of Frobenius categories [13], [12]. We say that
an object X ∈ B is relatively projective (respectively, relatively injective) if

Ext1A(X, B) = 0 (respectively, Ext1A(B,X) = 0).
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We say that B has enough relatively projective objects (respectively, injective)
if for any X ∈ B , there exists an exact sequence

0 → Z → Y → X → 0 (respectively, 0 → X → Y → Z → 0)

in A such that Y ∈ B is relatively projective (respectively, injective) and
Z ∈ B . We say that B is Frobenius if it has enough relatively projective and
enough relatively injective objects, and further the relatively projective and
the relatively injective objects coincide. When B is a Frobenius category with
the subcategory P of relatively projective objects, the factor category

B := B/[P ]

is called the stable category of B . The reason why we use the notation B is to
distinguish the stable category SCM(R) (which we will study) from the full
subcategory SCM(R) of CM(R).

Our main result in this section is the following.

Theorem 4.2. (1) SCM(R) is a Frobenius category.
(2) The stable category SCM(R) is a triangulated category.

Let us recall the definition of functorially finite subcategories introduced by
Auslander–Smalø [6]. Let B be an additive category and C a full subcategory
of B . We say that a subcategory C of an additive category B is contravari-
antly finite (respectively, covariantly finite) if for any X ∈ B , there exists a
morphism f : Y → X (respectively, f : X → Y ) with Y ∈ C such that

HomB (C , Y ) → HomB (C ,X) (respectively, HomB (Y, C ) → HomB (X, C ))

is surjective. We say that C is a functorially finite subcategory of B if it is
both contravariantly and covariantly finite.

We need the following rather general observation.

Proposition 4.3. Let B be a Krull–Schmidt exact category with enough
relatively injective (respectively, projective) objects, and C a contravariantly
(respectively, covariantly) finite extension closed subcategory of B . Then C
is an exact category with enough relatively injective (respectively, projective)
objects.

Proof. We prove the statement regarding relatively injective objects; the
proof for relatively projective objects is similar. It is clear that C is also an ex-
act category. Let X be in C and take an exact sequence 0 → X → I → X ′ → 0
with I relatively injective in B . Then we have an exact sequence of func-
tors HomB (−,X ′) → Ext1A(−,X) → 0. Since C is Krull–Schmidt and con-
travariantly finite in B , we can take a projective cover φ : HomC (−, Y ) →
Ext1A(−,X)| C → 0 of C -modules (for the definition of C -modules see, for ex-
ample, [26]). This is induced by an exact sequence 0 → X → Z → Y → 0 with
terms in C .
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We will show that Z is relatively injective. Take any exact sequence 0 →
Z → Z ′ → Z ′ ′ → 0 with terms in C . We will show that this splits. Consider
the following exact commutative diagram:

(4.1)

0 0

0 X Z Y 0

0 X Z ′ Y ′ 0

Z ′ ′ Z ′ ′

0 0.

a

Then Y ′ ∈ C , and we have the commutative diagram

(4.2)

0 HomC (−,X) HomC (−,Z) HomC (−, Y ) Ext1A(−,X)| C 0

0 HomC (−,X) HomC
(

−,Z ′) HomC
(

−, Y ′) Ext1A(−,X)| C

φ

·a

of exact sequences of C -modules. Since φ is a projective cover, we have that
(·a) is a split monomorphism. Thus, a is a split monomorphism. We see that
the sequence 0 → Ext1(Z ′ ′,Z) → Ext1(Z ′ ′, Y ) is exact by evaluating the upper
sequence in (4.2) at Z ′ ′. Under this map, the middle vertical exact sequence in
(4.1) gets sent to the right vertical exact sequence in (4.1), so since this splits it
follows that the middle vertical sequence in (4.1) splits. Hence, Z is relatively
injective, and consequently C has enough relatively injective objects. �

In particular, since CM(R) has enough relatively projective and injective
objects and further SCM(R) is a functorially finite subcategory of CM(R), we
conclude that SCM(R) has enough relatively projective and injective objects.

We need the following observation.

Lemma 4.4. For any X,Y ∈ SCM(R), we have Ext1R(X,Y ) ∼= Ext1R(Y,X).

Proof. It is standard that HomR(ΩX,Y ) ∼= Ext1R(X,Y ). Hence since ΩX ∼=
X∗ and ΩY ∼= Y ∗ by Theorem 2.2, we have

Ext1R(X,Y ) ∼= HomR

(
X∗, Y

) ∼= HomR

(
Y ∗,X

) ∼= Ext1R(Y,X),

where the middle isomorphism is given by the duality (−)∗ : CM(R) → CM(R)
induced from the duality (−)∗ : CM(R) → CM(R). �

Thus in SCM(R), the relatively projective objects and the relatively injec-
tive objects coincide and so consequently SCM(R) is a Frobenius category and
thus SCM(R) is triangulated [12]. This completes the proof of Theorem 4.2.
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The next result gives a precise description of the relatively projective ob-
jects:

Theorem 4.5. Let i ∈ I . Then Mi is relatively projective in SCM(R) if
and only if Ei is not a (−2)-curve.

We divide the proof into Lemmas 4.7 and 4.8. For the first, we require the
following well-known observation.

Lemma 4.6. Let R be a Noetherian ring and M ∈ modR. If R ∈ addM ,
then the functor

HomR(M, −) : modR → modEndR(M)

is fully faithful, restricting to an equivalence

addM → projEndR(M).

Lemma 4.7. If Ei is a (−2)-curve, then Mi is not relatively projective in
SCM(R) and further Ext1R(Mi,Mi) = 0.

Proof. Denote M := R ⊕
⊕

j∈I Mj and let A := EndR(M). We show that
Ext1R(Mi,Mi) = 0 by using the fact that A is derived equivalent to the minimal
resolution (Theorem 2.5). For all j ∈ I denote Sj to be the simple at the vertex
corresponding to Mj in the quiver of A (i.e., Sj is the top of HomR(M,Mj))
and let S� be the simple corresponding to R in the quiver of A (i.e., S� is the
top of HomR(M,R)). Then by inspecting the proof of [23, Theorem 3.1] we see
that Ext3A(Si, Sj) = 0 for all j ∈ I and further Ext3A(Si, S�) = −E2

i − 2. Thus,
since Mi corresponds to a (−2) curve, Ext3A(Si, −) = 0 against all simple
A modules and so proj.dimA Si = 2. Consider now the minimal projective
resolution of the A-module Si, which by Lemma 4.6 has the form

0 → HomR(M,T ) → HomR(M,Y ) → HomR(M,Mi) → Si → 0.

We know that this comes from a non-split exact sequence

0 → T → Y → Mi → 0

with T,Y ∈ addM = SCM(R). Now by [23, Theorem 3.1] we know that
Ext2A(Si, S�) = ((ZK − Zf ) · Ei)− = 0 (since ZK · Ei = 0 and so (ZK − Zf ) · Ei ≥
0), Ext2A(Si, Sj) = 0 if i = j and further Ext2A(Si, Si) = −E2

i − 1 = 1 since Ei

is a (−2)-curve. Consequently, HomR(M,T ) ∼= HomR(M,Mi) and so T ∼= Mi

by Lemma 4.6. Hence, Ext1R(Mi,Mi) = 0, as required. �

Lemma 4.8. If Ei is not a (−2)-curve, then Mi is relatively projective in
SCM(R) and Ext1R(Mi,Mi) = 0.

Proof. Firstly, note that for all X,Y ∈ CM(R), if Ext1R(X,Y ) = 0 then
necessarily Ext1R(τ −1Ω−1Y,X) = 0. To see this, just take the short exact
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sequence 0 → Y → I → Ω−1Y → 0 with I ∈ addω and apply HomR(X, −) to
get

0 → HomR(X,Y ) → HomR(X,I) → HomR

(
X,Ω−1Y

)
→ Ext1R(X,Y ) = 0.

Consequently, every map from X to Ω−1Y factors through an injective object
and hence by AR duality 0 = D HomR(X,Ω−1Y ) = Ext1R(τ −1Ω−1Y,X).

Now if X ∈ SCM(R) then Ext1R(X,R) = 0 and so applying the above with
Y = R we get Ext1R(τ −1Ω−1R,X) = 0. But τ −1Ω−1R = HomR(Ω−1R,ω)∗ =
(Ωω)∗ and so this shows that Ext1R((Ωω)∗, −) = 0 on SCM(R), hence (Ωω)∗

is relatively projective. But now by Corollary 3.6, we know that (Ωω)∗ has
as summands all the indecomposable special CM modules corresponding to
non-(−2) curves and thus all of them are relatively projective. �

This completes the proof of Theorem 4.5.
We now show the following existence theorem of almost split sequences

in SCM(R). The theory of almost split sequences in subcategories was first
developed by Auslander and Smalø [6] for finite dimensional algebras; here
our algebras are not finite dimensional, but the proofs are rather similar.

Below we denote by JCM(R) the Jacobson radical of the category CM(R)
(e.g., [5]), so JCM(R)(X,Y ) consists of non-isomorphic morphisms X → Y for
any indecomposable CM R-modules X and Y .

Proposition 4.9. Let i ∈ I . Then Mi is not relatively projective if and
only if there exists an exact sequence

0 → Mi
g−→ Y

f−→ Mi → 0

such that the sequences

0 → HomR(−,Mi)
·g−→ HomR(−, Y )

·f−→ JCM(R)(−,Mi) → 0,

0 → HomR(Mi, −)
f ·−→ HomR(Y, −)

g·−→ JCM(R)(Mi, −) → 0

are exact on SCM(R).

Proof. Suppose Mi not relatively projective. We firstly show that there
exists an almost split sequence 0 → Z → Y → Mi → 0 in SCM(R). Since
there are only finitely many indecomposable objects in SCM(R), certainly
there exists an exact sequence

0 → Z
g→ Y

f→ Mi → 0

with Y ∈ SCM(R) and f a minimal right almost split map in SCM(R). We
claim that Z ∈ SCM(R) and further g is a minimal left almost split map.

Since Mi is not relatively projective, there exists an exact sequence

0 → Z ′ → Y ′ → Mi → 0
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with Z ′ ∈ SCM(R). Since f is right almost split, we have a commutative
diagram

0 Z ′ Y ′ Mi 0

0 Z Y Mi 0
f

and so taking the mapping cone gives the short exact sequence

0 → Z ′ → Z ⊕ Y ′ → Y → 0.

Since SCM(R) is closed under extensions, we conclude that Z ∈ SCM(R).
The fact g is a minimal left almost split map is now routine (see, e.g., [26,
Lemma 2.14]).

To finish the proof, we must show that Z ∼= Mi. But as in the proof of
Lemma 4.7, the above gives a minimal projective resolution

0 → HomR(M,Z) → HomR(M,Y ) → HomR(M,Mi) → Si → 0

of the simple A-module Si. By [23, Theorem 3.1] we know that Ext2A(Si, S) =
0 for any simple A-module S = Si. Thus, HomR(M,Z) ∼= HomR(M,Mi) and
so by Lemma 4.6 Z ∼= Mi, as required. �

The following property of ‘Auslander algebras’ of triangulated categories is
useful.

Proposition 4.10. Let T be a Hom-finite k-linear triangulated category
T with an additive generator M . Then B := EndT (M) is a self-injective
k-algebra.

Proof. For any X ∈ modB, we can take a projective resolution

HomT (M,M1)
·f−→ HomT (M,M0) → X → 0.

Take a triangle M2
g−→ M1

f−→ M0 → M2[1], then we continue a projective res-
olution

HomT (M,M2)
·g−→ HomT (M,M1)

·f−→ HomT (M,M0) → X → 0.

Applying HomB(−,B) gives the commutative diagram

HomB

(
HomT (M,M0),B

)
HomB

(
HomT (M,M1),B

)
HomB

(
HomT (M,M2),B

)
HomT (M0,M) HomT (M1,M) HomT (M2,M)

f · g·

where all vertical maps are isomorphisms. Since the lower sequence is exact
(by properties of triangles), so is the top. Hence, Ext1B(X,B) = 0 and so B is
self-injective. �

We deduce the following results on our triangulated category SCM(R) and
the stable reconstruction algebra EndSCM(R)(

⊕
i∈I Mi).
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Corollary 4.11. (1) The AR quiver of the category SCM(R) is a disjoint
union of the double of Dynkin diagrams, corresponding to the subconfigurations
of (−2)-curves in the minimal resolution.

(2) The algebra EndSCM(R)(
⊕

i∈I Mi) is a factor algebra of the reconstruc-
tion algebra EndR(R ⊕

⊕
i∈I Mi) by the ideal generated by idempotents corre-

sponding to R and the non-(−2)-curves.
(3) The algebra EndSCM(R)(

⊕
i∈I Mi) is self-injective, and the quiver is a

disjoint union of the double of Dynkin diagrams.

Proof. (1) A subtree of a rational tree is rational (see, e.g., [21, Proposi-
tion 3.2]), thus the remaining (−2)-configurations are all Dynkin diagrams.
Alternatively, it is well-known that the AR quiver of a Hom-finite k-linear
triangulated category of finite type is a disjoint union of Dynkin diagrams
[25].

(2) This is clear.
(3) Immediate from Lemma 4.10 since

⊕
i∈I Mi is an additive generator of

the triangulated category SCM(R). �

The following are examples which illustrate the above results. Note that
the quiver of the reconstruction algebra follows easily from combinatorics on
the dual graph, see [23] for details.

Example 4.12.

Dual Graph Reconstruction Algebra AR quiver of SCMR
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Remark 4.13. Since the non-(−2)-curves (and R) die in the quotient, often
the AR quiver of SCM(R) has components. In fact although the number of
components is always finite, the number of possible components is arbitrarily
large, as can be seen by constructing the following well-known rational tree:
for any graph Γ with vertices Ei add self-intersection numbers as

E2
i :=

⎧⎪⎨⎪⎩
−2 if the number of neighbours of Ei is one,
−(number of neighbours of Ei)

else.

It is easy to check combinatorially that the above is a rational tree by using
a result of Artin [1, Theorem 3] together with Riemann-Roch (see, e.g., [21,
Definition 2.4]). Thus, the above example corresponds to the dual graph of
some rational surface singularity and so in particular

−2 −3

−2

−2 −3

−2

−2 −2 −3

−2

−2

(where in the region . . . we repeat the block on the right hand side) corresponds
to some rational surface singularity. On taking the quotient, there are many
components; increasing the size of the dual graph increases the number of
such components.

Remark 4.14. Note that the above examples also illustrate that in many
cases the category SCM(R) is equivalent to CM(R′) for some Gorenstein
ring R′.

We end by using our results to characterize those rational surfaces for
which the category CM(R) contains an n-cluster tiliting object. Recall that
M ∈ CM(R) is called n-cluster tilting (or maximal (n − 1)-orthogonal) for a
positive integer n [15], [17] if

addM =
{
X ∈ CM(R) : Exti

R(M,X) = 0 (0 < i < n)
}

=
{
X ∈ CM(R) : Exti

R(X,M) = 0 (0 < i < n)
}
.

In this case, we have Exti
R(M,M) = 0 for any 0 < i < n and R ⊕ ω ∈ addM .

Theorem 4.15. (1) CM(R) has a 1-cluster tilting object if and only if R
is a quotient singularity.

(2) CM(R) has a 2-cluster tilting object if and only if R is regular or R ∼=
k[[x, y]]

1
3 (1,1) where 1

3 (1,1) is the cyclic group of order 3 inside GL(2, k) acting
as x �→ εx, y �→ εy, where ε is a cube root of unity.

(3) CM(R) has an n-cluster tilting object for some n > 2 if and only if R
is regular.
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Proof. If R is regular, then CM(R) = addR and so R is an n-cluster tilting
object in CM(R) for any n ≥ 1. Hence, we only need to consider the case
when R is not regular.

(1) By the Krull–Schmidt property, CM(R) has a 1-cluster tilting object
if and only if CM(R) has finite type. By [4], this is equivalent to R being a
quotient singularity.

(2) Let M be a basic 2-cluster tilting object of CM(R). Since R ∈ addM
and Ext1R(M,M) = 0, we have that M is special. Now since ω is a summand
of M , this implies that ω is special. Since Ext1R(M,M) = 0, by Lemma 4.7 any
non-free indecomposable summand of M corresponds to a non-(−2)-curve. In
particular R is not Gorenstein so by Corollary 3.6 the exceptional curve corre-
sponding to ω is a (−3)-curve and all other exceptional curves are (−2)-curves.
This implies M ∼= R ⊕ ω, so by Lemma 4.8 we have that M is relatively pro-
jective in SCM(R). Since Ext1R(M,SCM(R)) = 0, we have SCM(R) = addM .
Thus, the minimal resolution of SpecR consists of only one (−3)-curve, so
R ∼= k[[x, y]]

1
3 (1,1) since quotient singularities are taut [7, Korollar 2.12]. By

inspection, in this case R ⊕ ω is a 2-cluster tilting object.
(3) CM(R) does not have an n-cluster tilting object for n > 2 by Proposi-

tion 3.1(1) in the non-Gorenstein case, and by Lemma 4.7 in the Gorenstein
case. �
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