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MULTIPLE OPERATOR INTEGRALS AND SPECTRAL SHIFT

ANNA SKRIPKA

Abstract. Multiple scalar integral representations for traces of
operator derivatives are obtained and applied in the proof of ex-
istence of the higher order spectral shift functions.

1. Introduction

For a large class of admissible functions f : R �→ C, the operator derivatives
dj

dxj f(H0 + xV ), where H0 and V are self-adjoint operators on a separable
Hilbert space H, exist and can be represented as multiple operator integrals
[1], [14]. We explore properties of operator derivatives inside a semi-finite
normal faithful trace τ given on a semi-finite von Neumann algebra M acting
on H.

For H0 = H∗
0 affiliated with M and V = V ∗ in the τ -Hilbert–Schmidt class

L2(M, τ) (that is, V ∈ M and τ(|V |2) < ∞), we represent the traces of the
derivatives τ [ dj

dxj f(H0 + xV )] as multiple scalar integrals, and, subsequently,
as a distribution on f (j), which is essentially a derivative of an L∞-function
(see Theorem 3.12 and Corollary 3.14). We also obtain that the order of an
operator derivative inside the trace can be decreased, which costs the increase
of the order of a scalar derivative; more precisely,

τ

[
dj

dxj
f(H0 + xV )

]
= τ

[
V

dj−1

dxj−1
f ′(H0 + xV )

]

(see Corollary 3.15). The obtained representations for τ [ dj

dxj f(H0 + xV )] are
applied in derivation of explicit formulas for the remainders of noncommuta-
tive Taylor-type approximations (described below) in Section 4.
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306 A. SKRIPKA

Let Rp(f) ≡ Rp,H0,V (f) denote the remainder of the Taylor-type approxi-
mation

f(H0 + V ) −
p−1∑
j=0

1
j!

dj

dxj

∣∣∣∣
x=0

f(H0 + xV )

of the value of f(H0 + V ) at the perturbed operator H0 + V by data de-
termined by the initial operator H0. Let Wp(R) denote the set of functions
f ∈ Cp(R) such that for each j = 0, . . . , p, the derivative f (j) equals the Fourier
transform

∫
R

eitλ dμf(j)(λ) of a finite Borel measure μf(j) . There exist func-
tions ξ ≡ ξH0+V,H0 and η ≡ ηH0,H0+V , called Krein’s and Koplienko’s spectral
shift functions, respectively, such that when τ(|V |) < ∞,

τ
[
R1(f)

]
=

∫
R

f ′(t)ξ(t)dt(1.1)

for f ∈ W1(R) [8] (see also [2], [4], [9], [12]), and when τ(|V |2) < ∞,

τ
[
R2(f)

]
=

∫
R

f ′ ′(t)η(t)dt(1.2)

for f ∈ W2(R) [7] (see also [6], [10], [13], [15]).
It was conjectured in [7] that for V in the Schatten p-class, p ≥ 3, and

M = B(H) (the algebra of bounded operators on H), there exists a real Borel
measure νp ≡ νp,H0,V , with the total variation bounded by τ(|V |p)

p! , such that

τ
[
Rp(f)

]
=

∫
R

f (p)(t)dνp(t)(1.3)

for bounded rational functions f . A proof of (1.3) was also suggested in [7],
but, unfortunately, it contained a mistake (see [6] for details).

It was proved in [6, Theorem 5.1] that (1.3) holds for f ∈ Wp(R) when V
is in the Hilbert–Schmidt class and M = B(H), with νp a real Borel measure

whose total variation is bounded by τ(|V |2)p/2

p! . It was shown in [6] and [16] that
νp is absolutely continuous for a bounded and unbounded H0, respectively.
Moreover, an explicit formula for the density of νp, called the spectral shift
function of order p, was derived in [6], [16] (see, e.g., (4.3) of Theorem 4.1).
The trace formula (1.3) was also obtained in the case of M a general semi-
finite von Neumann algebra and p = 3 [6, Theorem 5.2], with ν3 absolutely
continuous when H0 is bounded. When H0 is unbounded, the trace formula
(1.3) with an absolutely continuous measure ν3 was established in [16] for a
set of functions f disjoint from the one assured by the part of [6, Theorem 5.2]
for an unbounded H0 (this discrepancy is explained in Remark 4.4).

The proof of existence of the measure νp in [6] relied on iterated operator
integration techniques, while the proofs of the absolute continuity of νp in
[6], [16] on analytic function theory techniques. By utilizing the results on
operator derivatives and divided differences of Sections 3 and 2, respectively,
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we obtain a simple proof of positivity of ν2 (see Section 3), a more direct,
unified, proof of the established trace formula (1.3) and the absolute continuity
of νp (see Section 4). We also obtain a new representation for the density of
νp (see (4.2) of Theorem 4.1) and, in the case of a general M and unbounded
H0, extend (1.3) with an absolutely continuous measure ν3 to a larger (as
compared to [16]) set of functions f (see Theorem 4.3). The “spectral shift”
meaning of the density of νp is demonstrated on an example of commuting
operators in a finite von Neumann algebra in Section 4.

2. Divided differences and splines

In this section, we collect facts on divided differences and splines to be used
in the sequel.

Definition 2.1. The divided difference of order p is an operation on func-
tions f of one (real) variable, which we will usually call λ, defined recursively
as follows:

Δ(0)
λ1

(f) := f(λ1),

Δ(p)
λ1,...,λp+1

(f) :=

⎧⎨
⎩

Δ
(p−1)
λ1,...,λp−1,λp

(f)−Δ
(p−1)
λ1,...,λp−1,λp+1

(f)

λp −λp+1
if λp �= λp+1,

∂
∂t |t=λpΔ(p−1)

λ1,...,λp−1,t(f) if λp = λp+1.

The following facts are well known.

Proposition 2.2.
(1) (See [5, Section 4.7(a)].) Δ(p)

λ1,...,λp+1
(f) is symmetric in λ1, λ2, . . . , λp+1.

(2) (See [5, Section 4.7].) For f a sufficiently smooth function,

Δ(p)
λ1,...,λp+1

(f) =
∑
i∈I

m(λi)−1∑
j=0

cij(λ1, . . . , λp+1)f (j)(λi).

Here I is the set of indices i for which λi are distinct, m(λi) is the
multiplicity of λi, and cij(λ1, . . . , λp+1) ∈ C.

In particular, if all points λ1, . . . , λp+1 are distinct, then

Δ(p)
λ1,...,λp+1

(f) =
p+1∑
j=1

f(λj)∏
k∈{1,...,p+1} \ {j}(λj − λk)

.

(3) (See [5, Section 4.7].)

Δ(p)
λ1,...,λp+1

(
apλ

p +ap−1λ
p−1 + · · · +a1λ+a0

)
= ap, where a0, a1, . . . , ap ∈ C.

(4) (See [5, Theorem 6.2 and Theorem 6.3].) For f ∈ Cp[a, b], the function

[a, b]p+1 	 (λ1, . . . , λp+1) �→ Δ(p)
λ1,...,λp+1

(f)

is continuous.
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We will need a more specific version of Proposition 2.2(2).

Lemma 2.3. Let f ∈ C1[a, b] and λ1, . . . , λp be distinct points in [a, b]. Then
for any i ∈ {1, . . . , p},

Δ(p)
λ1,...,λp,λi

(f) =
f ′(λi)∏

k∈{1,...,p} \ {i}(λi − λk)

+
∑

j∈{1,...,p} \ {i}

1
(λi − λj)2

(
f(λj)∏

k∈{1,...,p} \ {i,j}(λj − λk)

− f(λi)∏
k∈{1,...,p} \ {i,j}(λi − λk)

)
.

Proof. Without loss of generality, we may assume that λi = λp. By Propo-
sition 2.2(2),

Δ(p−1)
λ1,...,λp−1,s(f) =

p−1∑
j=1

f(λj)∏
k∈{1,...,p−1} \ {j}(λj − λk)(λj − s)

+
f(s)∏

k∈{1,...,p−1}(s − λk)
.

Next,

Δ(p)
λ1,...,λp−1,λp,λp

(f) =
∂

∂s

(
Δ(p−1)

λ1,...,λp−1,s(f)
)∣∣∣∣

s=λp

=
p−1∑
j=1

f(λj)∏
k∈{1,...,p−1} \ {j}(λj − λk)(λp − λj)2

+
f ′(λp)∏

k∈{1,...,p−1}(λp − λk)

− f(λp)
p−1∑
j=1

1∏
k∈{1,...,p−1} \ {j}(λp − λk)(λp − λj)2

,

which coincides (upon regrouping the terms) with the expression in the state-
ment of the lemma. �

In the case of repeated knots, the order of the divided difference can be
reduced, as it is done in the next lemma.

Lemma 2.4. Let f ∈ Cp[a, b] and λ1, . . . , λp ∈ [a, b]. Then,
p∑

i=1

Δ(p)
λ1,...,λp,λi

(f) = Δ(p−1)
λ1,...,λp

(
f ′).
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Proof. In view of Proposition 2.2(4), it is enough to prove the lemma only
in the case when all λ1, . . . , λp are distinct. Applying Lemma 2.3(4) ensures

p∑
i=1

Δ(p)
λ1,...,λp,λi

(f)(2.1)

=
p∑

i=1

f ′(λi)∏
k∈{1,...,p} \ {i}(λi − λk)

+
p∑

i=1

∑
j∈{1,...,p} \ {i}

1
(λi − λj)2

(
f(λj)∏

k∈{1,...,p} \ {i,j}(λj − λk)

− f(λi)∏
k∈{1,...,p} \ {i,j}(λi − λk)

)
.

By Proposition 2.2(2), the first summand in (2.1) equals Δ(p−1)
λ1,...,λp

(f ′). The
second summand in (2.1) with double summation sign equals zero; to see it,
we group and cancel the terms with indices (i, j) = (i1, i2) and (i, j) = (i2, i1),
where i1 �= i2 ∈ {1, . . . , p}. �

Remark 2.5. Depending on the number of repeated knots of the divided
difference in Proposition 2.2(4) and, subsequently, in Lemma 2.4, the smooth-
ness assumption on f can be relaxed; see for details [5, Theorem 6.2 and
Theorem 6.3].

The divided difference of a function in Wp(R) admits a useful representation
as an integral of products of exponentials, each depending on only one knot
of the divided difference.

Proposition 2.6 (See [1, Lemma 2.3]). For f ∈ Wp(R),

Δ(p)
λ1,...,λp+1

(f) =
∫

Π(p)
ei(s0−s1)λ1 · · · ei(sp−1−sp)λpeispλp+1 dσ

(p)
f (s0, . . . , sp).

Here

Π(p) =
{
(s0, s1, . . . , sp) ∈ R

p+1 : |sp| ≤ · · · ≤ |s1| ≤ |s0|,
sign(s0) = · · · = sign(sp)

}
and

dσ
(p)
f (s0, s1, . . . , sp) = ipμf (ds0)ds1 · · · dsp,

where f(t) = 1√
2π

∫
R

eitλ dμf (λ).

Below, we list properties of piecewise polynomials, which will appear in
representations for the higher order spectral shift functions, and include a
representation of the divided difference in terms of its Peano kernel.
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Proposition 2.7.
(1) (See [5, Section 5.2(2.3) and (2.6)].) The basic spline with the break points

λ1, . . . , λp+1, where at least two of the values are distinct, is defined by

t �→
{

1
|λ2−λ1| χ(min{λ1,λ2},max{λ1,λ2})(t) if p = 1,

Δ(p)
λ1,...,λp+1

(
(λ − t)p−1

+

)
if p > 1.

Here the truncated power is defined by

xk
+ =

{
xk if x ≥ 0,

0 if x < 0,
for k ∈ N.

The basic spline is nonnegative, supported in[
min{λ1, . . . , λp+1},max{λ1, . . . , λp+1}

]
and integrable with the integral equal to 1/p. (Often the basic spline is
normalized so that its integral equals 1.)

(2) (See [5, Section 5.2, (2.2) and Section 4.7(c)].) Let [a, b] ⊇ [min{λ1, . . . ,
λp+1},max{λ1, . . . , λp+1}]. For f ∈ Cp[a, b],

Δ(p)
λ1,...,λp+1

(f)(2.2)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
(p−1)!

∫ b

a
f (p)(t)Δ(p)

λ1,...,λp+1

(
(λ − t)p−1

+

)
dt

if ∃i1, i2 such that λi1 �= λi2 ,
1
p!f

(p)(λ1)
if λ1 = λ2 = · · · = λp+1.

The first equality in (2.2) also holds for f ∈ Cp−1[a, b], with f (p−1) abso-
lutely continuous and f (p) integrable on [a, b].

Properties of an antiderivative of the basic spline are written below.

Proposition 2.8 (See [16, Lemma 3.1]).
(i) If λ1 = · · · = λp+1 ∈ R, with p ≥ 0, then

Δ(p)
λ1,...,λp+1

(
(λ − t)p

+

)
= χ(− ∞,λ1)(t).(2.3)

(ii) If not all λ1, . . . , λp+1 ∈ R coincide, let I be the set of indices i for which
λi are distinct and let m(λi) be the multiplicity of λi. Assume that p ≥ 1
and M = maxi∈I m(λi) ≤ p. Then, t �→ Δ(p)

λ1,...,λp+1
((λ − t)p

+) ∈ Cp−M (R)
and

Δ(p)
λ1,...,λp+1

(
(λ − t)p

+

)
= p

∫ ∞

t

Δ(p)
λ1,...,λp+1

(
(λ − s)p−1

+

)
ds.(2.4)

Proposition 2.9 (See [16, Lemma 3.2]). Let (λ1, . . . , λp+1) ∈ R
p+1. Then

the function Δ(p)
λ1,...,λp+1

((λ − t)p
+) is decreasing; it is equal to 1 when t <

min1≤k≤p+1 λk and equal to 0 when t ≥ max1≤k≤p+1 λk.
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We will need a representation of the divided difference in terms of an an-
tiderivative of the corresponding basic spline (2.4).

Lemma 2.10. Let [a, b] ⊇ [min{λ1, . . . , λp+1},max{λ1, . . . , λp+1}]. For f ∈
Cp+1[a, b],

Δ(p)
λ1,...,λp+1

(f) =
1
p!

f (p)(a) +
1
p!

∫ b

a

f (p+1)(t)Δ(p)
λ1,...,λp+1

(
(λ − t)p

+

)
dt.(2.5)

Proof. Assume first that not all λ1, . . . , λp+1 coincide. Applying Propo-
sition 2.7(2) and then integrating by parts and applying the representation
(2.4) of Proposition 2.8 provide

Δ(p)
λ1,...,λp+1

(f)

=
1

(p − 1)!

∫ b

a

f (p)(t)Δ(p)
λ1,...,λp+1

(
(λ − t)p−1

+

)
dt

= − 1
p!

(
f (p)(t)Δ(p)

λ1,...,λp+1

(
(λ − t)p

+

))∣∣∣∣
b

a

+
1
p!

∫ b

a

f (p+1)(t)Δ(p)
λ1,...,λp+1

(
(λ − t)p

+

)
dt.

By Proposition 2.9, the latter reduces to (2.5). If λ1 = · · · = λp+1, then by
Proposition 2.7(2),

Δ(p)
λ1,...,λ1

(f) =
1
p!

f (p)(λ1) =
1
p!

f (p)(a) +
1
p!

∫ λ1

a

f (p+1)(t)dt.

With use of the representation (2.3) of Proposition 2.8, the latter can be
rewritten as (2.5). �

3. Traces of multiple operator integrals

In this section, we represent traces of certain multiple operator integrals as
multiple scalar integrals. In particular, we obtain useful formulas for the traces
of the Gâteaux derivatives τ [ dp

dxp f(H0 + xV )], where V = V ∗ is a Hilbert–
Schmidt perturbation of a self-adjoint operator H0 and f ∈ Wp(R).

3.1. Multiple spectral measures. We will need the facts that certain
multi-measures extend to finite countably additive measures.

Proposition 3.1. Let 2 ≤ p ∈ N and let E1,E2, . . . ,Ep be projection-valued
Borel measures from R to M. Suppose that V1, . . . , Vp belong to L2(M, τ).
Assume that either M = B(H) or p = 2. Then there is a unique (com-
plex) Borel measure m on R

p with total variation not exceeding the product
‖V1‖2‖V2‖2 · · · ‖Vp‖2, whose value on rectangles is given by

m(A1 × A2 × · · · × Ap) = τ
[
E1(A1)V1E2(A2)V2 · · · Vp−1Ep(Ap)Vp

]
for all Borel subsets A1,A2, . . . ,Ap of R.
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Remark 3.2. In the case of M = B(H) and V a Hilbert–Schmidt operator,
Proposition 3.1 was obtained in [3], [11]. For a general M and V ∈ L2(M, τ),
the set function m is known to be of bounded variation only if p = 2 (see [6,
Section 4] for a positive result and a counterexample).

Proposition 3.3 (See [6, Corollary 4.3]). Under the assumptions of Propo-
sition 3.1, there is a unique (complex) Borel measure m1 on R

p with total
variation not exceeding the product ‖V1‖2‖V2‖2 · · · ‖Vp‖2, whose value on rect-
angles is given by

m1(A1 × A2 × · · · × Ap × Ap+1)

= τ
[
E1(A1)V1E2(A2)V2 · · · Vp−1Ep(Ap)VpE1(Ap+1)

]
for all Borel subsets A1,A2, . . . ,Ap,Ap+1 of R.

In the sequel, we will work with the set functions

mp,H0,V (A1 × A2 × · · · × Ap) = τ
[
EH0(A1)V EH0(A2)V · · · V EH0(Ap)V

]
,

m
(1)
p,H0,V (A1 × A2 × · · · × Ap+1)

= τ
[
EH0(A1)V EH0(A2)V · · · V EH0(Ap)V EH0(Ap+1)

]
and their countably-additive extensions (when they exist), called multiple
spectral measures. Here Aj , 1 ≤ j ≤ p, are measurable subsets of R, H0 = H∗

0

is affiliated with M, EH0 is the spectral measure of H0, and V = V ∗ ∈
L2(M, τ). Clearly, the measures mp,H0,V and m

(1)
p,H0,V are particular rep-

resentatives of the measures m and m1, respectively.
Proposition 3.4 (See [6, Theorem 4.5]). Let τ be a finite trace normalized

by τ(I) = 1 and let H0 = H∗
0 be affiliated with M and V = V ∗ ∈ M. Assume

that (zI − H0)−1 and V are free. Then the set functions mp,H0,V and m
(1)
p,H0,V

extend to countably additive measures of bounded variation.

Upon evaluating a trace, some iterated operator integrals can be written
as Lebesgue integrals with respect to “multiple spectral measures”.

Proposition 3.5 (See [6, Lemma 4.9]). Assume the hypothesis of Propo-
sition 3.1. Assume that the spectral measures E1,E2, . . . ,Ep correspond to
self-adjoint operators H0,H1, . . . ,Hp affiliated with M, respectively, and that
V1, V2, . . . , Vp ∈ L2(M, τ). Let f1, f2, . . . , fp be functions in Cb(R) (continuous
bounded). Then

τ
[
f1(H1)V1f2(H2)V2 · · · fp(Hp)Vp

]
=

∫
Rp

f1(λ1)f2(λ2) · · · fp(λp)dm(λ1, λ2, . . . , λp),

with m as in Proposition 3.1.
Remark 3.6. A completely analogous result with m replaced by m1,

mp,H0,V or m
(1)
p,H0,V holds under the hypothesis of Proposition 3.1 or Propo-

sition 3.4.
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3.2. Reduction of traces of multiple operator integrals to scalar
integrals.

Definition 3.7 ([1, Definition 4.1]; see also [14]). Let Hk = H∗
k and Vk =

V ∗
k , with k = 1, . . . , p + 1, be operators defined in H. Assume that Vk, k =

1, . . . , p + 1, are bounded. Let φ be a function representable in the form

φ(λ1, λ2, . . . , λp, λp+1)(3.1)

=
∫

S

α1(λ1, s)α2(λ2, s) · · · αp(λp, s)αp+1(λp+1, s)dσ(s),

where (S,σ) is a finite measure space and α1, . . . , αp+1 are bounded Borel
functions on R × S. Then the multiple operator integral∫

Rp+1
φ(λ1, λ2, . . . , λp, λp+1)dEH1(λ1)V1 dEH2(λ2)V2 · · ·

dEHp(λp)Vp dEHp+1(λp+1)

is defined as the Bochner integral∫
S

α1(H1, s)V1α2(H2, s)V2 · · · αp(Hp, s)Vpαp+1(Hp+1, s)dσ(s).

When the set functions m and m1 admit extensions to finite countably
additive measures, a trace of a multiple operator integral can be represented
as a multiple scalar integral.

Lemma 3.8. Let H1, . . . ,Hp+1 be self-adjoint operators affiliated with M
and V1, . . . , Vp self-adjoint operators in L2(M, τ). Let Ek = EHk

, for k =
1, . . . , p+1, and let φ be a bounded Borel function admitting the representation
(3.1). Then, the following representations hold.

(1) For m1 the measure provided by Proposition 3.3 or Proposition 3.4,

τ

[∫
Rp+1

φ(λ1, . . . , λp, λp+1)dEH1(λ1)V1 · · · dEHp(λp)Vp dEHp+1(λp+1)
]

=
∫

Rp+1
φ(λ1, . . . , λp, λp+1)dm1(λ1, . . . , λp, λp+1).

(2) In the case Hp+1 = H1, for m the measure provided by Proposition 3.1 or
Proposition 3.4,

τ

[∫
Rp+1

φ(λ1, λ2, . . . , λp, λp+1)dEH1(λ1)V1 dEH2(λ2)V2 · · ·

dEHp(λp)Vp dEH1(λp+1)
]

=
∫

Rp

φ(λ1, λ2, . . . , λp, λ1)dm(λ1, λ2, . . . , λp).
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(3) For m the measure provided by Proposition 3.1 or Proposition 3.4,

τ

[
Vp+1

∫
Rp+1

φ(λ1, . . . , λp, λp+1)dEH1(λ1)V1 · · · dEHp(λp)Vp dEHp+1(λp+1)
]

=
∫

Rp

φ(λ1, . . . , λp, λp+1)dm(λ1, . . . , λp, λp+1).

Proof. (1) By [1, Lemma 3.10 and Remark 4.2],

τ

[∫
S

α1(H1, s)V1 · · · αp(Hp, s)Vpαp+1(Hp+1, s)dσ(s)
]

=
∫

S

τ
[
α1(H1, s)V1 · · · αp(Hp, s)Vpαp+1(Hp+1, s)

]
dσ(s).

By Remark 3.6, the latter integral equals∫
S

∫
Rp+1

α1(λ1, s) · · · αp(λp, s)αp+1(λp+1, s)dm1(λ1, . . . , λp, λp+1)dσ(s),

which by Fubini’s theorem converts to∫
Rp+1

∫
S

α1(λ1, s) · · · αp(λp, s)αp+1(λp+1, s)dσ(s)dm1(λ1, . . . , λp, λp+1)

=
∫

Rp+1
φ(λ1, . . . , λp, λp+1)dm1(λ1, . . . , λp, λp+1).

(2) By [1, Lemma 3.10 and Remark 4.2] and cyclicity of the trace,

τ

[∫
S

α1(H1, s)V1α2(H2, s) · · · Vpαp+1(Hp+1, s)dσ(s)
]

=
∫

S

τ
[
αp+1(H1, s)α1(H1, s)V1α2(H2, s) · · · Vp

]
dσ(s).

By Proposition 3.5, the latter integral equals∫
S

∫
Rp

αp+1(λ1, s)α1(λ1, s)α2(λ2, s) · · · αp(λp, s)dm(λ1, λ2, . . . , λp)dσ(s),

which by Fubini’s theorem converts to∫
Rp

∫
S

α1(λ1, s)α2(λ2, s) · · · αp(λp, s)αp+1(λ1, s)dσ(s)dm(λ1, λ2, . . . , λp)

=
∫

Rp

φ(λ1, λ2, . . . , λp, λ1)dm(λ1, λ2, . . . , λp).

(3) By [1, Lemma 3.7]

τ

[
Vp+1

∫
Rp+1

φ(λ1, . . . , λp, λp+1)dEH1(λ1)V1 · · · dEHp(λp)Vp dEHp+1(λp+1)
]

= τ

[∫
S

Vp+1α1(H1, s)V1 · · · αp(Hp, s)Vpαp+1(Hp+1, s)dσ(s)
]
.
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By following the lines of the proof of (1), we obtain that the latter equals∫
S

τ
[
Vp+1α1(H1, s)V1 · · · αp(Hp, s)Vpαp+1(Hp+1, s)

]
dσ(s)

=
∫

Rp

φ(λ1, . . . , λp, λp+1)dm(λ1, . . . , λp, λp+1). �

Remark 3.9. If in the statement of Lemma 3.8(2), we change the assump-
tion V1, . . . , Vp ∈ L2(M, τ) to V1, . . . , Vp ∈ Lp(M, τ), then we obtain

τ

[∫
Rp+1

φ(λ1, λ2, . . . , λp, λp+1)dEH1(λ1)V1 dEH2(λ2)V2 · · ·

dEHp(λp)Vp dEH1(λp+1)
]

= τ

[∫
Rp

φ(λ1, λ2, . . . , λp, λ1)dEH1(λ1)V1 dEH2(λ2)V2 · · · dEHp(λp)Vp

]
.

We have the following representation for the derivative dp

dxp f(H0 + xV ).

Proposition 3.10 ([14, Theorem 5.6]; see also [1, Theorem 5.7]). Let
H0 = H∗

0 be an operator affiliated with M and V = V ∗ an operator in M.
Then for every f in Wp(R),

dp

dxp

∣∣∣∣
x=0

f(H0 + xV ) = p!
∫

Rp+1
Δ(p)

λ1,...,λp+1
(f)dEH0(λ1)V · · · V dEH0(λp+1).

The main assumptions of the following results are collected in the format
of a hypothesis.

Hypothesis 3.11. Let H0 = H∗
0 be affiliated with M and V = V ∗ ∈ L2(M,

τ). Assume that one of the following three conditions is satisfied:
(1) M = B(H), p ≥ 2,
(2) 2 ≤ p ≤ 3,
(3) M is finite, p ≥ 2, and (zI − H0)−1 and V are free in (M, τ).

In the multiple operator integral representation for the derivative
dp

dxp f(H0 + xV ) provided by Proposition 3.10, the order of the divided dif-
ference can be reduced upon evaluating the trace.

Theorem 3.12. Assume Hypothesis 3.11. Then for f ∈ Wp(R),

τ

[
dp

dxp

∣∣∣∣
x=0

f(H0 + xV )
]

(3.2)
= p!

∫
Rp+1

Δ(p)
λ1,...,λp+1

(f)dm
(1)
p,H0,V (λ1, . . . , λp+1)

= (p − 1)!
∫

Rp

Δ(p−1)
λ1,...,λp

(
f ′)dmp,H0,V (λ1, . . . , λp).(3.3)
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Proof. By Proposition 2.6, the function φ(λ1, . . . , λp+1) = Δ(p)
λ1,...,λp+1

(f)
admits the representation (3.1), where α1(λ1, s) = ei(s0−s1)λ1 , . . . , αp(λp, s) =
ei(sp−1−sp)λp , and αp+1(λp+1, s) = eispλp+1 . It follows from Proposition 3.10
and Lemma 3.8 that

τ

[
dp

dxp

∣∣∣∣
x=0

f(H0 + xV )
]

= τ

[∫
Rp+1

Δ(p)
λ1,λ2,...,λp,λp+1

(f)dEH0(λ1)V dEH0(λ2)V · · · V dEH0(λp+1)
]

=
∫

Rp+1
Δ(p)

λ1,λ2,...,λp,λp+1
(f)dm

(1)
p,H0,V (λ1, λ2, . . . , λp, λp+1)(3.4)

=
∫

Rp

Δ(p)
λ1,λ2,...,λp,λ1

(f)dmp,H0,V (λ1, λ2, . . . , λp).(3.5)

Proposition 3.10 and the representation (3.4) imply (3.2).
To prove that the expressions in (3.2) and (3.3) are equal, we note first

that a trivial renumbering of the variables of integration gives∫
Rp

Δ(p)
λ1,λ2,...,λp,λ1

(f)dmp,H0,V (λ1, λ2, . . . , λp)(3.6)

=
∫

Rp

Δ(p)
λi,λi+1,...,λp,λ1,...,λi−1,λi

(f)dmp,H0,V (λi, λi+1, . . . ,

λp, λ1, . . . , λi−1).

Cyclicity of the trace τ ensures cyclicity of the measure mp,H0,V , that is,

dmp,H0,V (λi, λi+1, . . . , λp, λ1, . . . , λi−1)(3.7)

= dmp,H0,V (λ1, . . . , λi−1, λi, λi+1, . . . , λp).

Symmetry of the divided difference (see Proposition 2.2(1)) along with (3.6)
and (3.7) ensures the equality∫

Rp

Δ(p)
λ1,λ2,...,λp,λ1

(f)dmp,H0,V (λ1, λ2, . . . , λp)(3.8)

=
∫

Rp

Δ(p)
λ1,λ2,...,λp,λi

(f)dmp,H0,V (λ1, λ2, . . . , λp).

It follows from (3.8) and Lemma 2.4 that

p

∫
Rp

Δ(p)
λ1,λ2,...,λp,λ1

(f)dmp,H0,V (λ1, λ2, . . . , λp)(3.9)

=
p∑

i=1

∫
Rp

Δ(p)
λ1,λ2,...,λp,λi

(f)dmp,H0,V (λ1, λ2, . . . , λp)

=
∫

Rp

Δ(p−1)
λ1,...,λp

(
f ′)dmp,H0,V (λ1, . . . , λp).
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Combination of (3.5) and (3.9) completes the proof of the theorem. �

As an application of Theorem 3.12, we obtain positivity of Koplienko’s
spectral shift function in the von Neumann algebra setting. In the B(H)
setting, positivity of η = η2 was obtained in [7] and in the extended setting
for V ∈ L1(M, τ) in [15].

Corollary 3.13. Let H0 = H∗
0 be affiliated with M and V = V ∗ ∈ L2(M,

τ). Then η2 ≥ 0.

Proof. Due to Koplienko’s trace formula (1.2), it is enough to show that

τ

[
f(H1) − f(H0) − d

dx

∣∣∣∣
x=0

f(H0 + xV )
]

≥ 0

for every f ∈ C3
c (R) ⊂ W2(R), with f ′ ′ ≥ 0. We have the integral representa-

tion

τ

[
f(H1) − f(H0) − d

dx

∣∣∣∣
x=0

f(H0 + xV )
]

(3.10)

=
∫ 1

0

(1 − x)τ
[

d2

dx2
f(H0 + xV )

]
dx

(see, e.g., [6, Theorem 11 and Lemma 3.11]). Further, by (3.3) of Theorem 3.12
with p = 2, for every f ∈ W2(R),

τ

[
d2

dx2
f(H0 + xV )

]
=

∫
R2

Δ(1)
λ0,λ1

(
f ′)dm2,H0+xV,V (λ0, λ1).(3.11)

It is easy to derive that the measure m2,H0+xV,V is nonnegative, for every
x ∈ [0,1] (see, e.g., [6, Lemma 4.7]). If f ′ ′ ≥ 0, then f ′ is increasing and
Δ(1)

λ0,λ1
(f ′) ≥ 0 for all λ0, λ1. (The latter follows, for instance, from Propo-

sition 2.7.) Thus, if f ′ ′ ≥ 0, then the expressions in (3.11) and (3.10) are
nonnegative, which completes the proof. �

Corollary 3.14. Assume Hypothesis 3.11. Assume, in addition, that H0

is bounded. Let [a, b] be a segment containing σ(H0) ∪ σ(H0 + V ). Then for
f ∈ Wp(R) ∩ Cp+1(R),

τ

[
dp

dxp

∣∣∣∣
x=0

f(H0 + xV )
]

− τ
(
V p

)
f (p)(a)

=
∫ b

a

f (p+1)(t)
∫

[a,b]p+1
Δ(p)

λ1,...,λp+1

(
(λ − t)p

+

)
dm

(1)
p,H0,V (λ1, . . . , λp+1)dt(3.12)

=
∫ b

a

f (p+1)(t)
∫

[a,b]p
Δ(p−1)

λ1,...,λp

(
(λ − t)p−1

+

)
dmp,H0,V (λ1, . . . , λp)dt.(3.13)
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Proof. First, note that the measure mp,H0,V is supported in [a, b]p. Ex-
panding the integrands in (3.2) and (3.3) according to (2.5) of Lemma 2.10
and then using Fubini’s theorem (the functions f (p+1)(·), Δ(p)

λ1,...,λp+1
((λ − ·)p

+),

and Δ(p−1)
λ1,...,λp

((λ − ·)p−1
+ ) are bounded and the measures m

(1)
p,H0,V and mp,H0,V

are finite) provide the representations (3.12) and (3.13). Here we used the fact
that m

(1)
p,H0,V (Rp+1) = mp,H0,V (Rp) = τ(V p). �

The order of an operator derivative inside a trace can be decreased by
means of increasing the order of a scalar derivative.

Corollary 3.15. Assume Hypothesis 3.11. Then for f ∈ Wp(R),

τ

[
dp

dxp

∣∣∣∣
x=0

f(H0 + xV )
]

= τ

[
V

dp−1

dxp−1

∣∣∣∣
x=0

f ′(H0 + xV )
]
.

Proof. By Lemma 3.8(3) and Proposition 3.10,

(p − 1)!
∫

Rp

Δ(p−1)
λ1,...,λp

(
f ′)dmp,H0,V (λ1, . . . , λp)

= τ

[
V

dp−1

dxp−1

∣∣∣∣
x=0

f ′(H0 + xV )
]
,

which along with Theorem 3.12 completes the proof. �
Remark 3.16. The assertions of Corollaries 3.14 and 3.15 remain true if

p = 1, provided V ∈ L1(M, τ).

4. Properties of the spectral shift measure

In this section, we prove existence of the higher order spectral shift func-
tions and derive some of their properties by implementing a multiple operator
integral approach.

Theorem 4.1. Assume Hypothesis 3.11. Assume, in addition, that H0 is
bounded.
(1) There exists a unique finite real-valued absolutely continuous measure νp

such that the trace formula

(4.1) τ
[
Rp(f)

]
=

∫
R

f (p)(t)dνp(t)

holds for f ∈ Wp(R) ∪ R, where R denotes the set of rational functions
on R with nonreal poles.

(2) The density of νp is given by the formulas

ηp(t) =
τ(V p−1)
(p − 1)!

− νp−1

(
(−∞, t)

)
− 1

(p − 1)!

∫
Rp

Δ(p−1)
λ1,...,λp

(
(λ − t)p−1

+

)
dm

(1)
p−1,H0,V (λ1, . . . , λp)(4.2)
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=
τ(V p−1)
(p − 1)!

− νp−1

(
(−∞, t)

)
− 1

(p − 1)!

∫
Rp−1

Δ(p−2)
λ1,...,λp−1

(
(λ − t)p−2

+

)
dmp−1,H0,V (λ1, . . . , λp−1).(4.3)

(3) The measure νp is supported in the convex hull of the set σ(H0) ∪ σ(H0 +
V ) and νp(R) = τ(V p)

p! .

Remark 4.2. Theorem 4.1, except for the representation (4.2), was origi-
nally proved in [6, Theorem 5.1, Theorem 5.2, and Theorem 5.6]. We provide
a shorter proof.

Proof of Theorem 4.1. The proof can be accomplished by induction. The
result is known to hold for p = 2 (see [6], [7]). Assume that the theorem holds
when p is replaced with p − 1. Let [a, b] be a segment containing σ(H0) ∪
σ(H0 + V ). Then ηp−1 is supported in [a, b]. Clearly,

τ
[
Rp(f)

]
= τ

[
Rp−1(f)

]
− 1

(p − 1)!
τ

[
dp−1

dxp−1

∣∣∣∣
x=0

f(H0 + xV )
]
.(4.4)

Let f ∈ Wp(R). By the induction hypothesis and the representation (3.12)
of Corollary 3.14, the expression in (4.4) equals∫ b

a

f (p−1)(t)ηp−1(t)dt − τ(V p−1)
(p − 1)!

f (p−1)(a)(4.5)

− 1
(p − 1)!

×
∫ b

a

f (p)(t)
∫

[a,b]p
Δ(p−1)

λ1,...,λp

(
(λ − t)p−1

+

)
dm

(1)
p−1,H0,V (λ1, . . . , λp)dt.

Integrating by parts in the first integral in (4.5) gives∫
[a,b]

f (p−1)(t)ηp−1(t)dt(4.6)

=
(

f (p−1)(t)
∫ t

a

ηp−1(s)ds

)∣∣∣∣
b

a

−
∫ b

a

f (p)(t)
(∫ t

a

ηp−1(s)ds

)
dt

= f (p−1)(b)
τ(V p−1)
(p − 1)!

−
∫ b

a

f (p)(t)
(∫ t

a

ηp−1(s)ds

)
dt.

Combining (4.4)–(4.6) implies

τ
[
Rp(f)

]
=

(
f (p−1)(b) − f (p−1)(a)

)τ(V p−1)
(p − 1)!

−
∫ b

a

f (p)(t)
∫ t

a

ηp−1(s)dsdt

−
∫ b

a

f (p)(t)
1

(p − 1)!
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×
∫

[a,b]p
Δ(p−1)

λ1,...,λp

(
(λ − t)p−1

+

)
dm

(1)
p−1,H0,V (λ1, . . . , λp)dt

=
∫ b

a

f (p)(t)
(

τ(V p−1)
(p − 1)!

− νp−1

(
(a, t)

)
− 1

(p − 1)!

∫
Rp

Δ(p−1)
λ1,...,λp

(
(λ − t)p−1

+

)
dm

(1)
p−1,H0,V (λ1, . . . , λp)

)
dt,

from what the trace formula (4.1) follows for f ∈ Wp(R), with

ηp(t) =
τ(V p−1)
(p − 1)!

− νp−1

(
(a, t)

)
− 1

(p − 1)!

∫
Rp

Δ(p−1)
λ1,...,λp

(
(λ − t)p−1

+

)
dm

(1)
p−1,H0,V (λ1, . . . , λp).

Let [c, d] denote the convex hull of σ(H0) ∪ σ(H0 + V ). By the induction
hypothesis, νp−1((−∞, c)) = νp−1((d, ∞)) = 0 and νp−1([c, d]) = τ(V p−1)

(p−1)! . By
Proposition 2.9,∫

Rp

Δ(p−1)
λ1,...,λp

(
(λ − t)p−1

+

)
dm

(1)
p−1,H0,V (λ1, . . . , λp)

=

{
m

(1)
p−1,H0,V

(
R

p
)

= τ(V p−1)
(p−1)! if t < c,

0 if t > d.

Therefore, (4.2) holds and the measure νp is supported in [c, d]. To extend the
trace formula (4.1) to f a polynomial, we apply (4.1) to a function g ∈ Wp(R),
which coincides with f on a segment containing

⋃
x∈[−1,1] σ(H0 + xV ), and

get

τ
[
Rp(f)

]
= τ

[
Rp(g)

]
=

∫
R

g(p) dνp(t)

=
∫

R

f (p)(t)dνp(t).

To obtain the equality νp(R) = τ(V p)
p! , we apply (4.1) to f(t) = tp. The mea-

sure νp is finite since it is compactly supported and its density is bounded.
The proof of (4.3) is completely analogous to the proof of (4.2), where the

only difference consists in applying (3.13) (instead of (3.12)) to the second
summand in (4.4). �

The techniques used in the proof of Theorem 4.1 also work in the case of
an unbounded operator H0, provided f (p) ∈ L1(R) and νp−1 is known to be
finite.

Theorem 4.3. Let H0 = H∗
0 be an operator affiliated with M, V = V ∗ an

operator in L2(M, τ) and p = 3. Then for f ∈ Cp
c (R) ∪ Rb, where Rb is the

subset of bounded functions in R, the representations (4.1)–(4.3) hold.
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Proof. The proof is very similar to the one of Theorem 4.1, so we provide
only a brief sketch. Clearly,

0 = lim
a→ − ∞,b→∞

(
f (p−1)(b) − f (p−1)(a)

)τ(V p−1)
(p − 1)!

(4.7)

=
∫

R

f (p)(t)
τ(V p−1)
(p − 1)!

dt.

By letting a → −∞ and b → ∞ in (4.6), we obtain∫
R

f (p−1)(t)ηp−1(t)dt = −
∫

R

f (p)(t)
(∫ t

− ∞
ηp−1(s)ds

)
dt.(4.8)

By letting a → −∞ and b → ∞ in (2.5), we obtain

Δ(p−1)
λ1,...,λp

(f) =
1

(p − 1)!

∫
R

f (p)(t)Δ(p−1)
λ1,...,λp

(
(λ − t)p−1

+

)
dt

and, subsequently,

τ

[
dp−1

dxp−1

∣∣∣∣
x=0

f(H0 + xV )
]

=
∫

R

f (p)(t)
∫

Rp

Δ(p−1)
λ1,...,λp

(
(λ − t)p−1

+

)
dm

(1)
p−1,H0,V (λ1, . . . , λp)dt(4.9)

=
∫

R

f (p)(t)
∫

Rp−1
Δ(p−2)

λ1,...,λp−1

(
(λ − t)p−2

+

)
dmp−1,H0,V (λ1, . . . , λp−1)dt(4.10)

(see the proof of Corollary 3.14).
We note that the integral

∫ t

− ∞ ηp−1(s)ds is well defined since ηp−1 = η2 is
integrable (see, e.g., discussion in the introductory section of [16]). Combining
(4.7)–(4.10), as it was done in the case of a bounded H0, completes the proof.

�

Remark 4.4. The trace formula (4.1) for f ∈ C∞
c (R) (in fact, f ∈ Cp+1

c (R)
also works) was obtained in [6, Theorem 5.2], without establishing the absolute
continuity of the measure ν3 when H0 is unbounded. The trace formula

τ
[
R3(f)

]
=

∫
R

f ′ ′ ′(t)η3(t)dt,(4.11)

for an unbounded H0, with η3 given by (4.3), was proved in [16, Theorem 4.1]
only for f ∈ Rb. The results of Theorem 3.12 have allowed to obtain (4.11)
for both f ∈ Cp

c (R) and f ∈ Rb. The same approach proves existence of the
spectral shift function of order p ≥ 3 for an unbounded H0, when M = B(H)
(the original proofs in [6], [16] were based on the analysis of the Cauchy
transform of the measure νp). A substantial obstacle in establishing (4.1)
for τ(|V |p) < ∞, with p > 2 (unless τ(|V |2) < ∞), is nonextendibility of the
set function mp,H0,V to a finite countably additive measure on R

p (see a
counterexample in [6, Section 4]). An analogous problem has caused a delay
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in establishing (4.11) in the von Neumann algebra setting; the set function
m3,H0,V can fail to extend to a finite measure even if τ is finite (and dim(H) =
∞) [6, Section 4]. That is why the approach of [6], [16] working for every
Hilbert–Schmidt V = V ∗ ∈ M = B(H) was not so successful in the general
von Neumann algebra setting.

Below we provide an example, which demonstrates that the density ηp,
with p > 3, reflects information about the shift of the spectrum of an operator
H0 under a perturbation V , similarly to the known case of p = 2.

Example. Assume that τ is finite. Let H0 = H∗
0 and V = V ∗ be commut-

ing operators in M. Then we have the trace formula (4.1) with an absolutely
continuous measure νp ≡ νp,H0,V , whose density is given by

ηp(t) =
1

(p − 1)!
τ
[
(H0 + V − tI)p−1

(
EH0(t) − EH0+V (t)

)]
(4.12)

=
1

(p − 1)!
τ
[
(H0 + V − tI)p−1

(
EH0(t)EH0+V (t)⊥

(4.13)
− EH0(t)

⊥EH0+V (t)
)]

.

Here EH0(t) denotes the spectral projection EH0((−∞, t)). If H0 and H0 +V
are two commuting finite dimensional matrices with the eigenvalues t◦

k and tk,
respectively, and τ is the standard trace, then (4.13) computes the net sum
of signed powers of distances from t to those eigenvalues tk, which happen to
be on the opposite side of t with the eigenvalues t◦

k; the precise formula is

ηp(t) =
1

(p − 1)!

∑
k∈{k : (t◦

k −t)(tk −t)≤0}

(
sign(tk − t)

)
(tk − t)p−1.

The representation (4.13) follows directly from (4.12) (see [15, Lemma 2.6]).
One can prove existence of an absolutely continuous measure νp satisfying
(4.1), with the density given by (4.12), by induction on p. In the case of
p = 1 and M the algebra of matrices on a finite dimensional Hilbert space,
the formula (4.12) is well-known and goes back to [9] and, in the case of a
general finite M, it is discussed in [2]. The formula in the case of p = 2 is due
to [15, Lemma 5.2]. To prove (4.1) and (4.12) for p > 3, firstly we note that
for φ representable in the form (3.1),∫

Rp+1
φ(λ1, λ2, . . . , λp, λp+1)dEH1(λ1)V dEH2(λ2)V · · ·

dEHp(λp)V dEHp+1(λp+1)

= V p

∫
S

α1(H1, s)α2(H2, s) · · · αp(Hp, s)αp+1(Hp+1, s)dσ(s).
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Therefore, the formula (3.2) for the trace of an operator derivative rewrites
as

τ

[
dp

dxp

∣∣∣∣
x=0

f(H0 + xV )
]

=
∫

R

f (p)(λ)dτ
[
V pEH0(λ)

]
= τ

[
V pf (p)(H0)

]
,

for f ∈ Wp(R) ∪ R, and hence,

τ
[
Rp+1(f)

]
= τ

[
Rp(f)

]
− 1

p!
τ
[
V pf (p)(H0)

]
.(4.14)

We suppose that (4.1) holds with dνp(t) = ηp(t)dt, where ηp is given by (4.12),
and derive

τ
[
Rp+1(f)

]
=

∫
R

f (p+1)(t)ηp+1(t)dt.

Let H = H0 + V . By the binomial theorem we obtain
1
p!

τ
[
V pf (p)(H0)

]
(4.15)

=
1
p!

τ
[
(H − H0)pf (p)(H0) − (H − H)pf (p)(H)

]

=
1
p!

p∑
k=0

(
p
k

)
(−1)kτ

[
Hp−kHk

0 f (p)(H0) − Hp−kHkf (p)(H)
]
,

which by the spectral theorem can be written as

1
p!

p∑
k=0

(
p
k

)
(−1)kτ

[
Hp−k

∫
R

tkf (p)(t)d
(
EH0(t) − EH(t)

)]
(4.16)

=
1
p!

p∑
k=0

(
p
k

)
(−1)k

∫
R

tkf (p)(t)dτ
[
Hp−k

(
EH0(t) − EH(t)

)]
.

Integrating by parts in (4.16) gives

1
p!

p∑
k=1

(
p
k

)
(−1)k+1k

∫
R

tk−1f (p)(t)τ
[
Hp−k

(
EH0(t) − EH(t)

)]
dt(4.17)

+
1
p!

p∑
k=0

(
p
k

)
(−1)k+1

∫
R

tkf (p+1)(t)τ
[
Hp−k

(
EH0(t) − EH(t)

)]
dt,

which by the binomial theorem can be written as∫
R

f (p)(t)
1

(p − 1)!
τ
[
(H − tI)p−1

(
EH0(t) − EH(t)

)]
dt(4.18)

−
∫

R

f (p+1)(t)
1
p!

dτ
[
(H − tI)p

(
EH0(t) − EH(t)

)]
dt.

By the induction hypothesis, the first summand in (4.18) equals τ [Rp(f)].
Thus, combining (4.14)–(4.18) completes the proof of (4.12).
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