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EQUIVARIANT PRINCIPAL BUNDLES OVER THE
COMPLEX PROJECTIVE LINE

INDRANIL BISWAS

Abstract. Let G be a connected complex reductive linear alge-
braic group, and let K ⊂ G be a maximal compact subgroup of it.

Let EG be a holomorphic principal G-bundles over the complex

projective line CP
1 and EK ⊂ EG a C∞ reduction of structure

group of EG to K. We consider all pairs (EG,EK) of this type

such that the total space of EK is equipped with a C∞ lift of

the standard action of SU(2) on CP
1 which satisfies the following

two conditions: the actions of K and SU(2) on EK commute,

and for each element g ∈ SU(2), the induced action of g on EG is

holomorphic. We give a classification of the isomorphism classes
of all such objects.

1. Introduction

The projection C
2 \ {0} −→ CP

1 that sends any v to the line in C
2 generated

by v defines a holomorphic principal C
∗-bundle on CP

1. This holomorphic
principal C

∗-bundle will be denoted by E0
C∗ .

Let G be a connected reductive linear algebraic group defined over the
field of complex numbers. A theorem due to Grothendieck shows that all
holomorphic principal G-bundles over CP

1 are constructed from the above
tautological principal C

∗-bundle E0
C∗ . More precisely, given a holomorphic

principal G-bundle EG over CP
1, there is a homomorphism

χ : C
∗ −→ G

such that EG is holomorphically isomorphic to the principal G-bundle ob-
tained by extending the structure group of E0

C∗ using χ.
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Two homomorphisms from C
∗ to G that differ by an inner automorphism

of G produce isomorphic principal G-bundles. Therefore, the above homomor-
phism χ can be assumed to have the property that it factors through a fixed
maximal torus T of G. Consequently, the isomorphism classes of all holo-
morphic principal G-bundles over CP

1 are parametrized by Hom(C∗, T )/W ,
where W is the Weyl group for the maximal torus T (it is the quotient by T
of the normalizer of T in G); see [5, p. 122, Théorème 1.1].

Our aim here is to understand the holomorphic Hermitian principal G-
bundles over CP1 that are SU(2)-equivariant.

Fix a maximal compact subgroup K of E. A holomorphic Hermitian prin-
cipal G-bundle over CP

1 is a holomorphic principal G-bundle EG together
with a C∞ reduction of structure group EK ⊂ EG of EG to K.

A SU(2)-equivariant holomorphic Hermitian principal G-bundle over CP
1

is a triple (EG,EK ;ρ), where (EG,EK) is a holomorphic Hermitian principal
G-bundle as above, and ρ is a smooth action of SU(2) on EK satisfying the
following conditions: it lifts the standard action on CP

1, preserves the prin-
cipal K-bundle structure, and the induced action on EG is by holomorphic
automorphisms.

The unit sphere S3 ⊂ C
2 \ {0} for the standard inner product on C

2 is a
smooth reduction of structure group of the tautological principal C

∗-bundle
E0

C∗ to the subgroup S1 = U(1) ⊂ C
∗. This pair (E0

C∗ , S3) equipped with the
standard action of SU(2) define a SU(2)-equivariant holomorphic Hermitian
principal C

∗-bundle. We will refer to it as the tautological SU(2)-equivariant
holomorphic Hermitian principal C

∗-bundle.
Take any homomorphism

γ : U(1) −→ K.

It extends uniquely to a holomorphic homomorphism γ̃ : C∗ −→ G. Let
(EG,EK ;ρ) be the SU(2)-equivariant holomorphic Hermitian principal G-
bundle over CP

1 obtained by extending the structure group of the tautological
SU(2)-equivariant holomorphic Hermitian principal C

∗-bundle using γ̃. The
Lie algebra g of G will be considered as a U(1)-module using γ and the adjoint
action of G on g. Let ad(EG) denote the adjoint vector bundle for EG.

Fix a point
x ∈ CP

1.

The isotropy subgroup Hx of x for the standard action of SU(2) on CP1 is
identified with U(1) (see Equation (3.2)). The actions of Hx on (T 0,1

x )∗ and
ad(EG)x together induce an action of Hx on (T 0,1

x )∗ ⊗ ad(EG)x. Let

Vγ :=
((

T 0,1
x

)∗ ⊗ ad(EG)x

)Hx ⊂
(
T 0,1

x

)∗ ⊗ ad(EG)x

be the space of invariants for this induced action of Hx.
We prove the following theorem (see Theorem 5.1).



EQUIVARIANT PRINCIPAL BUNDLES 263

Theorem 1.1. Consider all pairs of the form {γ, v}, where

γ : U(1) −→ K

is a homomorphism, and
v ∈ Vγ .

There is a natural map from such pairs to the SU(2)-equivariant holomorphic
Hermitian principal G-bundles on CP

1.
Given any SU(2)-equivariant holomorphic Hermitian principal G-bundle

(EG,EK ;ρ) on CP
1, there is a pair {γ, v} of the above type such that the

corresponding SU(2)-equivariant holomorphic Hermitian principal G-bundle
is isomorphic to (EG,EK ;ρ).

Let {γ, v} (respectively, {γ′, v′ }) be a pair of the above type, and let

(EG,EK ;ρ)
(
respectively,

(
E′

G,E′
K ;ρ′))

be the corresponding SU(2)-equivariant holomorphic Hermitian principal G-
bundle. Then (EG,EK ;ρ) is isomorphic to (E′

G,E′
K ;ρ′) if and only if there is

an element g0 ∈ K that satisfies the following two conditions:
• γ′(g) = g−1

0 γ(g)g0 for all g ∈ SU(1), and
• v′ = (Id(T 0,1

x )∗ ⊗ δg0)(v), where δg0 : ad(EG) −→ ad(E′
G) is the the natural

isomorphism.

The above mentioned isomorphism δg0 is constructed in Equation (5.3).

2. Projective line and principal bundles

2.1. Action on the projective line. Let CP
1 denote the complex projec-

tive line. So CP
1 parametrizes all one-dimensional linear subspaces of C

2. The
group of all holomorphic automorphisms of CP1 will be denoted by Aut(CP1).

The special unitary group SU(2) has the standard action on C
2. This

action clearly induces an action of SU(2) on CP
1. Let

(2.1) f : SU(2) −→ Aut
(
CP

1
)

be the homomorphism giving this action of SU(2) on CP
1. The kernel of f is

±I , which is also the center of SU(2).
Let

(2.2) ψ : C
2 \ {0} −→ CP

1

be the natural projection that sends any nonzero vector to the line generated
by it. Let

ω0 :=
√

−1
2

· dx ∧ dx + dy ∧ dy

|x|2 + |y|2
be the positive (1,1)-form on C

2 \ {0}. Consider the restriction of ω0 to the
direction orthogonal to the radial vector field on C

2 \ {0}. This restriction
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descends, using the projection ψ in Equation (2.2), to a Hermitian (1,1)-form
on CP

1. Let

(2.3) ω ∈ C∞(
CP

1;Ω1,1
CP1

)
be this descended form. Since ω0 is positive, it follows that ω is also positive.
Since dimC CP

1 = 1, the form ω defines a Kähler structure on CP
1. It is easy

to check that ω is the unique Kähler form on CP1 of total volume 2/3 which
is left invariant by the action of SU(2) on CP

1.

2.2. Principal bundles. Let G be a connected reductive linear algebraic
group defined over C. Fix a maximal compact subgroup

(2.4) K ⊂ G.

It is known that any two maximal compact subgroups of G are conjugate [6,
p. 256, Theorem 2.1].

Let EG be a C∞ principal G-bundle on CP
1. A Hermitian structure on

EG is a C∞ reduction of structure group of EG

EK ⊂ EG

to the subgroup K in Equation (2.4). By a holomorphic Hermitian principal
G-bundle on CP1, we will mean a holomorphic principal G-bundle EG on CP1

together with a Hermitian structure EK on EG.
Let (EG,EK) and (E′

G,E′
K) be two holomorphic Hermitian principal G-

bundles on CP
1. Any C∞ isomorphism of principal K-bundles

β : EK −→ E′
K

extends uniquely to a C∞ isomorphism

β̃ : EG −→ E′
G

of principal G-bundles. Indeed, the diffeomorphism

β × IdG : EK × G −→ E′
K × G

descends to the isomorphism β̃ of EG := EK ×K G with E′
G := E′

K ×K G;
we recall that EK ×K G is the quotient of EK × G obtained by identifying
(z, g) ∈ EK × G with (zk, k−1g), where k ∈ K.

The isomorphism β is called a holomorphic isometry if β̃ is holomorphic.
If β is a holomorphic isometry, then β̃ is also called a holomorphic isome-
try. Note that β, being the restriction of β̃, is uniquely determined by β̃.
Therefore, there is no abuse of terminology.

Two holomorphic Hermitian principal G-bundles are called holomorphically
isometric if there exists a holomorphic isometry between them.

Let
τ : CP

1 −→ CP
1
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be a holomorphic map. Given any holomorphic Hermitian principal G-bundle
(EG,EK) on CP

1, its pullback by τ is defined to be the holomorphic Hermitian
principal G-bundle (τ ∗EG, τ ∗EK).

Definition 2.1. A holomorphic Hermitian principal G-bundle (EG,EK)
on CP

1 is called SU(2)-homogeneous if for each U ∈ SU(2), the pulled back
holomorphic Hermitian principal G-bundle (f(U)∗EG, f(U)∗EK) is holomor-
phically isometric to (E,h), where f is the homomorphism in Equation (2.1).

Definition 2.2. A SU(2)-equivariant holomorphic Hermitian principal G-
bundle on CP

1 is a triple (EG,EK ;ρ), where
• (EG,EK) is a holomorphic Hermitian principal G-bundle (EG,EK) on CP

1,
and

• ρ is a smooth action of SU(2) on the total space of EG

(2.5) ρ : SU(2) × EG −→ EG

such that the following four conditions hold:
(1) p ◦ ρ(U,z) = f(U)(p(z)) for all (U,z) ∈ SU(2) × EG, where p is the pro-

jection of EG to CP
1 and f is the homomorphism in Equation (2.1),

(2) the actions of G and SU(2) on EG commute,
(3) ρ(SU(2) × EK) = EK , and
(4) for each U ∈ SU(2), the map EG −→ EG defined by z 	−→ ρ(U,z) is

holomorphic.
Two SU(2)-equivariant holomorphic Hermitian principal G-bundles

(EG,EK ;ρ) and
(
E′

G,E′
K ;ρ′)

are called isomorphic if there is a holomorphic isometry

β̃ : EG −→ E′
G

such that β̃ ◦ ρ = ρ′ ◦ (IdSU(2) × β̃).

We note that for any SU(2)-equivariant holomorphic Hermitian princi-
pal G-bundle (EG,EK ;ρ), the action on EG of each element U ∈ SU(2) is
a holomorphic isometry of the pulled back holomorphic principal G-bundle
(f(U −1)∗EG, f(U −1)∗EK) with (EG,EK).

2.3. SU(2)-homogeneous bundles are SU(2)-equivariant. Comparing
Definition 2.2 with Definition 2.1 it follows immediately that every SU(2)-
equivariant holomorphic Hermitian principal G-bundle on CP

1 is SU(2)-homo-
geneous. A weak converse also holds as shown by the following lemma.

Lemma 2.3. Let (EG,EK) be a SU(2)-homogeneous holomorphic Hermit-
ian principal G-bundle over CP1. Then the principal G-bundle EG admits
a smooth action ρ of SU(2) such that the triple (EG,EK ;ρ) is a SU(2)-
equivariant holomorphic Hermitian principal G-bundle.
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Proof. Consider the homomorphism f in Equation (2.1). For any U ∈
SU(2), let T (U) denote the space of all holomorphic isometries of the holomor-
phic Hermitian principal G-bundle (f(U −1)∗EG, f(U −1)∗EK) with (EG,EK).
Since (EG,EK) is SU(2)-homogeneous, we know that this space of holomor-
phic isometries is nonempty. The union

(2.6) UEG
:=

⋃
U ∈SU(2)

T (U)

has a natural structure of a finite dimensional Lie group. The group operation
is defined as follows: for A1 ∈ T (U1) and A2 ∈ T (U2),

A1A2 =
(
f
(
U −1

1

)∗
A2

)
◦ A1 ∈ T (U1U2)

is simply the composition of the holomorphic isometry

A1 : EG −→ f
(
U −1

1

)∗
EG

with the holomorphic isometry

f
(
U −1

1

)∗
A2 : f

(
U −1

1

)∗
EG −→ f

(
U −1

1

)∗
f
(
U −1

2

)∗
EG = f

(
(U1U2)−1

)∗
EG.

We have a forgetful homomorphism of Lie groups from UE in Equation (2.6)

(2.7) H : UEG
−→ SU(2)

that sends any A ∈ T (U) to U . It was noted above that H is surjective
since (EG,EK) is SU(2)-homogeneous. Consequently, we have a short exact
sequence of groups

(2.8) e −→ Aut(EG,EK) −→ UEG

H−→ SU(2) −→ e,

where Aut(EG,EK) is the group of all holomorphic isometries of the holo-
morphic Hermitian principal G-bundle (EG,EK), and H is constructed in
Equation (2.7).

The Lie algebra of the Lie group UEG
(respectively, Aut(EG,EK)) will be

denoted by g̃ (respectively, g0). Let

(2.9) 0 −→ g0 −→ g̃
h−→ su(2) −→ e

be the short exact sequence of Lie algebras associated to the short exact
sequence of Lie groups in Equation (2.8). The Lie algebra su(2) of SU(2) is
simple. Hence the homomorphism h in Equation (2.9) splits (see [4, p. 91,
Corollaire 3]). In other words, there is a Lie algebra homomorphism

(2.10) h′ : su(2) −→ g̃

such that h ◦ h′ = Idsu(2). Fix a splitting h′ as in Equation (2.10). The Lie
group SU(2) is simply connected. Hence, the homomorphism h′ integrates
into a homomorphism of Lie groups. In other words, there is a unique homo-
morphism of Lie groups

(2.11) ρ′ : SU(2) −→ UEG
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whose differential, at the identity element, is the homomorphism h′ in Equa-
tion (2.10). Since the differential h ◦ h′ of the homomorphism H ◦ ρ′ is the
identity automorphism of su(2), it follows that H ◦ ρ′ = IdSU(2).

Define

(2.12) ρ : SU(2) × EG −→ EG

as follows:
ρ(A,z) = ρ′(A−1

)
(z)

for all (A,z) ∈ SU(2) × EG, where ρ′ is the homomorphism in Equation (2.11).
It is now straight-forward to check that ρ in Equation (2.12) is a smooth
action of SU(2) on the total space of EG that satisfies all the four conditions in
Definition 2.2. In other words, (EG,EK ;ρ) is a SU(2)-equivariant holomorphic
Hermitian principal G-bundle. This completes the proof of the lemma. �

Remark 2.4. A given SU(2)-homogeneous holomorphic Hermitian prin-
cipal G-bundle can have many non-isomorphic SU(2)-equivariant structures.
To explain this, take any homomorphism

β : SU(2) −→ K.

Let EG be the trivial holomorphic principal G-bundle CP1 × G, and let

EK := CP
1 × K ⊂ CP

1 × G = EG

be the natural reduction of structure group to K. The group SU(2) acts
on K as left translations using the homomorphism β. Consider the diagonal
action of SU(2) on EK = CP

1 × K with SU(2) acting on CP
1 using f in Equa-

tion (2.1). This diagonal action will be denoted by ρβ . The triple (EG,EK ;ρβ)
is a SU(2)-equivariant holomorphic Hermitian principal G-bundle.

It is easy to see that for another homomorphism β′ : SU(2) −→ K, the
corresponding SU(2)-equivariant holomorphic Hermitian principal G-bundle
(EG,EK ;ρβ′ ) is isomorphic to (EG,EK ;ρβ) if and only if there is a fixed
element g0 ∈ K such that

β′(g) = g−1
0 β(g)g0

for all g ∈ SU(2). In particular, if the homomorphism β is nontrivial, then
(EG,EK ;ρβ) is not isomorphic to the SU(2)-equivariant holomorphic Hermit-
ian principal G-bundle corresponding to the trivial homomorphism of SU(2)
to K.

3. Action of the isotropy subgroups

Consider the action of SU(2) on CP
1 in Equation (2.1). For any point

x ∈ CP
1, let

(3.1) Hx ⊂ SU(2)
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be the isotropy subgroup of x for this action. Consider the line Lx in C
2

represented by x. Since Hx fixes x, it acts on this line Lx. This action defines
a homomorphism of Lie groups

(3.2) χx : Hx −→ U(1) =
{
λ ∈ C | |λ| = 1

}
.

It is easy to see that this homomorphism χx is an isomorphism. In other
words, χx in Equation (3.2) identifies the isotropy subgroup Hx with U(1).

For a principal G-bundle EG over CP
1, its adjoint bundle will be denoted

by Ad(EG). We recall that

Ad(EG) := EG ×G G

is the fiber bundle over CP
1 associated to EG for the adjoint action of G on

itself.

Remark 3.1. Since the adjoint action of G on itself preserves the group
structure of G, the fibers of Ad(EG) are groups isomorphic to G. More pre-
cisely, for any x ∈ CP

1, there is an isomorphism of G with the fiber Ad(EG)x

over x which is unique up to an inner automorphism of G. Indeed, fixing a
point z ∈ (EG)x we get an isomorphism

(3.3) fz : G −→ Ad(EG)x

that sends any g ∈ G to the image of (z, g) in Ad(EG)x (recall that Ad(EG)x is
a quotient of (EG)x × G). If we replace z by zg0, where g0 ∈ G, then the above
isomorphism G −→ Ad(EG)x gets pre-composed with the inner automorphism
of G that sends any g ∈ G to g0gg−1

0 .

Let (EG,EK ;ρ) be a SU(2)-equivariant holomorphic Hermitian principal
G-bundle over CP

1. The action of SU(2) on EG defined by ρ induces an action
of SU(2) on the total space of Ad(EG) that lifts the action of SU(2) on CP1.

Take any point x ∈ CP
1. Let (EG)x denote the fiber of EG over x. The

isotropy subgroup Hx in Equation (3.1) acts on (EG)x using ρ. The auto-
morphisms of the principal G-bundle (EG)x over x given by this action of Hx

define a homomorphism of groups

(3.4) γx : Hx −→ Ad(EG)x.

Indeed, Ad(EG)x is the group of all diffeomorphisms of (EG)x that commute
with the action of G on (EG)x. Hence, the action of Hx on (EG)x gives a
homomorphism γx as in Equation (3.4).

Remark 3.2. Take two principal G-bundles E1
G and E2

G on CP
1. The

corresponding adjoint bundles will be denoted by Ad(E1
G) and Ad(E2

G), re-
spectively. Fix two points x1 and x2 in CP

1. Both the fibers Ad(E1
G)x1 and

Ad(E2
G)x2 are identified with the group G up to inner automorphisms of G

(this was explained in Remark 3.1). Hence, the class of inner isomorphisms
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between Ad(E1
G)x1 and Ad(E2

G)x2 has a precise meaning. It is an isomorphism
of groups

β : Ad
(
E1

G

)
x1

−→ Ad
(
E2

G

)
x2

such that after fixing isomorphisms of Ad(E1
G)x1 and Ad(E2

G)x2 with G in the
class of natural isomorphisms (which differ by inner automorphisms of G) the
isomorphism β is transported to an inner automorphism of G.

The group Hx is identified with U(1) (see Equation (3.2)). Take any x′ ∈
CP

1. Since the action of SU(2) on CP
1 is transitive, the homomorphism γx

(see Equation (3.4)) is equivalent, in the following sense, to the homomorphism

γx′ : Hx′ = U(1) −→ Ad(EG)x′

constructed as in Equation (3.4) for x′. There is an inner isomorphism of the
group Ad(EG)x with Ad(EG)x′ that transports the homomorphism γx to γx′ ;
see Remark 3.2 for inner isomorphism. To construct such an isomorphism of
Ad(EG)x with Ad(EG)x′ , fix an element A ∈ SU(2) such that f(A)(x) = x′,
where f is the homomorphism in Equation (2.1). The action of A on Ad(EG)
takes the fiber Ad(EG)x to Ad(EG)x′ . This isomorphism of Ad(EG)x with
Ad(EG)x′ given by the action of A intertwines the homomorphisms γx and
γx′ from U(1) to Ad(EG)x and Ad(EG)x′ , respectively.

Remark 3.3. Since γx′ is equivalent to γx, if the image of γx lies in the
center of the group Ad(EG)x, then the image of γx′ also lies in the center of
Ad(EG)x′ .

Corollary 3.4. Let (EG,EK ;ρ) be a SU(2)-equivariant holomorphic Her-
mitian principal G-bundle over CP

1 such that the image of the homomorphism
γx (see Equation (3.4)) lies in the center of the group Ad(EG)x for some
x ∈ X (hence for all x ∈ X by Remark 3.3). Let (E′

G,E′
K ;ρ′) be another

SU(2)-equivariant holomorphic Hermitian principal G-bundle over CP
1 such

that there is an inner isomorphism

Ad(EG)x −→ Ad
(
E′

G

)
x

(see Remark 3.2) that takes the homomorphism γx to the homomorphism

γ′
x : Hx −→ Ad

(
E′

G

)
x

constructed as in Equation (3.4) for (E′
G,E′

K ;ρ′). Then the two SU(2)-
equivariant holomorphic Hermitian principal G-bundles (EG,EK ;ρ) and (E′

G,
E′

K ;ρ′) are isomorphic.
The C∞ principal G-bundle EG equipped with the action ρ of SU(2) does

not admit a different holomorphic structure ÊG satisfying the condition that
(ÊG,EK ;ρ) is also a SU(2)-equivariant holomorphic Hermitian principal G-
bundle.
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Proof. Let

(3.5) Z(G) ⊂ G

be the center, which is a complex Abelian reductive group. Since the right-
translation action of G on itself commutes with the right-translation action
of Z(G) on G, for any g ∈ Z(G), the map

EG −→ EG

defined by

(3.6) z 	−→ zg

is a holomorphic automorphism of the principal G-bundle EG. Therefore, we
have a homomorphism

(3.7) ζ : Z(G) −→ H0
(
CP

1,Ad(EG)
)
,

where H0(CP
1,Ad(EG)) is the group of all holomorphic sections of Ad(EG)

(which is same as the group of all holomorphic global automorphisms of the
principal G-bundle EG). The homomorphism ζ takes any g ∈ Z(G) to the
automorphism of EG defined in Equation (3.6). For any point y ∈ CP

1, the
image

ζ(y)
(
Z(G)

)
⊂ Ad(EG)y

is the center of the group Ad(EG)y .
Fix an element

(3.8) κ ∈ (EK)x

in the fiber of EK over x, and also fix an element

(3.9) κ′ ∈
(
E′

K

)
x
,

where x is the point of CP
1 in the statement of the proposition. Let

(3.10) τx : (EG)x −→
(
E′

G

)
x

be the isomorphism defined by

κg 	−→ κ′g

for all g ∈ G, where κ and κ′ are the points in Equation (3.8) and Equa-
tion (3.9).

From the two conditions in the proposition that the image of the homo-
morphism γx lies in the center of Ad(EG)x, and there is an inner isomorphism

Ad(EG)x −→ Ad
(
E′

G

)
x

that takes γx to γ′
x, it follows immediately that the image of the homomor-

phism γ′
x also lies in the center of Ad(E′

G)x. It is now straight-forward to
check that the map τx in Equation (3.10) intertwines the actions of the group
Hx in Equation (3.1) on (EG)x and (E′

G)x.
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We will show that τx extends uniquely to a C∞ isomorphism of EG with
E′

G that intertwines the actions of SU(2) on EG and E′
G.

Take any point
y ∈ CP

1.

Fix

(3.11) Ay ∈ SU(2)

such that f(Ay)(x) = y, where f is the homomorphism in Equation (2.1). Let

(3.12) τy : (EG)y −→
(
E′

G

)
y

be the isomorphism defined by

(3.13) ρ(Ay, z) 	−→ ρ′(Ay, τx(z)
)

for all z ∈ (EG)x, where τx is defined in Equation (3.10). Since the actions of
Ay on EG defined by ρ sends (EG)x isomorphically to (EG)y , the map τy in
Equation (3.13) is well defined.

Using the fact that τx intertwines the actions of the isotropy subgroup
Hx on (EG)x and (E′

G)x it can be shown that the isomorphism τy in Equa-
tion (3.12) also intertwines the actions of Hy on the fibers (EG)y and (E′

G)y .
Indeed, for any z ∈ (EG)x and any g ∈ Hy , we have

τy

(
ρ
(
g, ρ(Ay, z)

))
= τy

(
ρ
(
AyA−1

y g, ρ(Ay, z)
))

(3.14)

= τy

(
ρ
(
Ay, ρ

(
A−1

y gAy, z
)))

(the second equality follows from the fact that ρ is an action of the group
SU(2)). Now from the definition of τy we have

(3.15) τy

(
ρ
(
Ay, ρ

(
A−1

y gAy, z
)))

= ρ′(Ay, τx

(
ρ
(
A−1

y gAy, z
)))

.

Clearly, A−1
y gAy ∈ Hx, hence τx intertwines the actions of A−1

y gAy on (EG)x

and (E′
G)x. In other words,

(3.16) τx

(
ρ
(
A−1

y gAy, z
))

= ρ′(A−1
y gAy, τx(z)

)
.

Since ρ′ is an action of the group SU(2), from Equation (3.16) and the defi-
nition of τy we have

ρ′(Ay, τx

(
ρ
(
A−1

y gAy, z
)))

= ρ′(Ay, ρ′(A−1
y gAy, τx(z)

))
(3.17)

= ρ′(AyA−1
y g, ρ′(Ay, τx(z)

))
.

Also, ρ′(AyA−1
y g, ρ′(Ay, τx(z))) = ρ′(g, τy(ρ(Ay, z))). Therefore, combining

Equation (3.14), Equation (3.15) and Equation (3.17) we have

τy

(
ρ
(
g, ρ(Ay, z)

))
= ρ′(g, τy

(
ρ(Ay, z)

))
.

In other words, the isomorphism τy intertwines the actions of Hy on the fibers
(EG)y and (E′

G)y .
For any A′

y ∈ SU(2) such that f(A′
y)(x) = y, we have A′

y = gAy , where
g ∈ Hy . Since τx (respectively, τy) intertwines the action of Hx (respectively,
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Hy) on (EG)x and (E′
G)x (respectively, (EG)y and (E′

G)y), the isomorphism
τy is actually independent of the choice of the element Ay in Equation (3.11)
(but of course it depends on the map τx). Also, if x = y, then τy clearly
coincides with τx. Hence, we have a diffeomorphism

(3.18) τ : EG −→ E′
G

defined by
τ(z) = τp(z)(z),

where p : EG −→ CP1 is the natural projection. This map τ clearly inter-
twines the actions of G on EG and E′

G. Hence, τ in Equation (3.18) is a C∞

isomorphism of principal bundles.
It is straight-forward to check that

τ(EK) = E′
K

as well as that τ intertwines the actions of SU(2) on EG and E′
G.

Therefore, to prove that τ is an isomorphism between the two SU(2)-
equivariant holomorphic Hermitian principal G-bundles

(EG,EK ;ρ) and
(
E′

G,E′
K ;ρ′)

it suffices to show that τ is holomorphic.
Pull back to E′

G the holomorphic structure on the principal G-bundle E′
G

using the isomorphism τ in Equation (3.18). Any two holomorphic structures
on the smooth principal G-bundle EG differ by a smooth (0,1)-form with
values in the adjoint vector bundle ad(EG). We recall that ad(EG) = EG ×G g

is the vector bundle over CP
1 associated to the principal G-bundle EG for the

adjoint action of G on its Lie algebra g. Let

(3.19) θ ∈ C∞(
Ω0,1

(
ad(EG)

))
be the (0,1)-form with values in ad(EG) obtained by taking the difference of
the pulled back, by τ , of the holomorphic structure and the original holomor-
phic structure on EG.

Since τ intertwines the actions of SU(2) on EG and E′
G, and SU(2) acts

on EG and E′
G as holomorphic automorphisms, it follows immediately that

the section θ in Equation (3.19) is left invariant by the action of SU(2) on the
C∞ vector bundle

Ω0,1
(
ad(EG)

)
=

(
T 0,1

CP
1
)∗ ⊗ ad(EG).

(The action of SU(2) on (T 0,1
CP

1)∗ ⊗ ad(EG) is the tensor product of its
actions on (T 0,1

CP
1)∗ and ad(EG).) Consider the action of the isotropy sub-

group Hx on the fiber

Ω0,1
(
ad(EG)

)
x

=
(
T 0,1

x

)∗ ⊗ ad(EG)x.

The group Hx = U(1) (see Equation (3.2)) acts on the fiber (T 0,1
x )∗ as follows:

any λ ∈ U(1) acts on (T 0,1
x )∗ as multiplication by 1/λ2. On the other hand,
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since the image of the homomorphism γx (see Equation (3.4)) lies in the center
of the group Ad(EG)x, it follows immediately that Hx acts trivially on the
fiber ad(EG)x (the Lie algebra of the group Ad(EG)x is ad(EG)x, and the
adjoint action on ad(EG)x of the center of Ad(EG)x is trivial). Consequently,
no nonzero element of the fiber Ω0,1(ad(EG))x is preserved by the action
of Hx.

Since θ in Equation (3.19) is left invariant by the action of SU(2) on EG, we
now conclude that θ = 0. In other words, the isomorphism τ in Equation (3.18)
is holomorphic. This completes the proof of the first part of the proposition.

To prove the second statement of the proposition, assume that the C∞

principal G-bundle EG equipped with the action ρ of SU(2) admits another
holomorphic structure ÊG such that (ÊG,EK ;ρ) is also a SU(2)-equivariant
holomorphic Hermitian principal G-bundle. Let

θ ∈ C∞(
Ω0,1

(
ad(EG)

))

be the difference of the two holomorphic structures on the C∞ principal G-
bundle EG. Clearly, θ is left invariant by the action of SU(2) on Ω0,1(ad(EG)).
We have already shown above that such a section must vanish identically.
Hence, the holomorphic structure ÊG actually coincides with the original
holomorphic structure on EG. This completes the proof of the proposition. �

The projection ψ in Equation (2.2) defines a holomorphic principal C
∗-

bundle on CP1. Let

(3.20) ψ : EC∗ −→ CP
1

be the principal C
∗-bundle defined by ψ. We will construct a C∞ reduction

of structure group of EC∗ to the subgroup U(1) ⊂ C
∗.

Take a point

(3.21) x ∈ CP
1,

and also fix a point x̃ = (z1, z2) ∈ C
2 \ {0} such that |z1|2 + |z2|2 = 1, and

ψ(x̃) = x, where ψ is the projection in Equation (2.2). Let

O(x̃) := SU(2)(x̃) ⊂ C
2 \ {0}

be the orbit of x̃ for the standard action of SU(2) on C
2 \ {0}. Note that the

action of SU(2) on C
2 \ {0} is free, hence O(x̃) is identified with SU(2). The

restriction of the projection ψ to O(x̃)

(3.22) ψx : O(x̃) −→ CP
1

is a principal Hx-bundle, where Hx is the isotropy subgroup in Equation (3.1).
We noted earlier that Hx = U(1) (see Equation (3.2)), hence ψx in Equa-
tion (3.22) defines a principal U(1)-bundle. The inclusion map O(x̃) ↪→
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C
2 \ {0} is a C∞ reduction of structure group of EC∗ (see Equation (3.20)) to

U(1). The standard action of SU(2) on C
2 \ {0} makes the pair

(3.23)
(
EC∗ , O(x̃)

)
a SU(2)-equivariant holomorphic Hermitian principal C

∗-bundle over CP
1.

Take a homomorphism of Lie groups

(3.24) γ : U(1) −→ K,

where K is the group in Equation (2.4). Let

(3.25) γ̃ : C
∗ −→ G

be an extension of γ in Equation (3.24) as a holomorphic homomorphism
between complex Lie groups. We note that there is exactly one such extension.

Let (Eγ
G,Eγ

K) be the SU(2)-equivariant holomorphic Hermitian principal
G-bundle over CP

1 obtained by extending the structure group of the SU(2)-
equivariant holomorphic Hermitian principal C

∗-bundle in Equation (3.23)
using the homomorphism γ in Equation (3.24). More precisely, the principal
G-bundle Eγ

G (respectively, the principal K-bundle Eγ
K) is obtained by extend-

ing the structure group of E0
C∗ (respectively, O(x̃)) using the homomorphism γ̃

(respectively, γ) in Equation (3.25) (respectively, Equation (3.24)). Note that
the action of SU(2) on O(x̃) induces an action of SU(2) on Eγ

K = O(x̃) ×U(1)K.
Since Eγ

K is the extension of structure group of the principal U(1)-bundle
O(x̃) in Equation (3.23), we have a map

φ : O(x̃) −→ Eγ
K .

The fiber Ad(Eγ
K)x over the point x in Equation (3.21) is identified with K as

follows: send any g ∈ K to the point in Ad(Eγ
K)x defined by (φ(x̃), g) (recall

that Ad(Eγ
K) is a quotient of Eγ

K × K). This identification of Ad(Eγ
K)x with

K extends to an identification of Ad(Eγ
G)x with G.

Construct the homomorphism γx as in Equation (3.4) for the SU(2)-equi-
variant holomorphic Hermitian principal G-bundle (Eγ

G,Eγ
K) constructed

above from the holomorphic Hermitian principal C
∗-bundle in Equation (3.23).

It is straight-forward to check that γx coincides with the homomorphism γ
in Equation (3.24) after we identify U(1) with Hx using the character χx in
Equation (3.2).

Therefore, we have the following lemma which also complements Proposi-
tion 3.4.

Lemma 3.5. Take a homomorphism γ as in Equation (3.24). Associated
to γ, there is a natural SU(2)-equivariant holomorphic Hermitian principal
G-bundle (EG,EK ;ρ) over CP

1 such that the homomorphism γx (see Equa-
tion (3.4)) coincides with γ after identifying U(1) with Hx using the character
χx in Equation (3.2).
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4. A construction of SU(2)-equivariant holomorphic Hermitian
principal bundles

Let (EG,EK ;ρ) be a SU(2)-equivariant holomorphic Hermitian principal
G-bundle over CP

1. Fix a point x ∈ CP1, and consider the homomorphism
γx constructed in Equation (3.4). The action of SU(2) on EG is induced by
an action on EK , namely ρ, of SU(2). Hence, the image of γx lies inside the
subgroup Ad(EK)x ⊂ Ad(EG)x. Fix a point

z ∈ (EK)x.

Let fz be the isomorphism constructed as in Equation (3.3). Since z ∈ (EK)x,
the isomorphism fz takes the subgroup K ⊂ G to Ad(EK)x ⊂ Ad(EG)x. De-
fine

(4.1) α0 := f −1
z ◦ γx ◦

(
χx

)−1 : U(1) −→ K ⊂ G

to be the homomorphism, where χx is constructed in Equation (3.2).
Now, for any point y ∈ CP

1 \ {x}, consider the homomorphism

γy : Hy −→ Ad(EK)y

constructed as in Equation (3.4). This homomorphism γy is conjugate to the
homomorphism α0 in Equation (4.1) after Hy is identified with U(1) using χy

is constructed as in Equation (3.2). To see this, fix an element g ∈ SU(2) such
that f(g)(x) = y, where f is the homomorphism in Equation (2.1). It is now
straight-forward to check that the isomorphism f −1

ρ(g,z) ◦ γy ◦ (χy)−1 coincides
with α0, where fρ(g,z) is defined in Equation (3.3).

Using the homomorphism α0, we will construct a smooth reduction of
structure group of EK .

Let

(4.2) K0 := C
(
α0

(
U(1)

))
⊂ K

be the centralizer of the subgroup α0(U(1)) of K, where α0 is constructed in
Equation (4.1). This subgroup K0 of K is compact and connected.

Corollary 4.1. Let (EG,EK ;ρ) be a SU(2)-equivariant holomorphic Her-
mitian principal G-bundle over CP

1. The principal K-bundle EK has a nat-
ural smooth reduction of structure group

EK0 ⊂ EK ,

to the subgroup K0 in Equation (4.2), which is left invariant by the action ρ
of SU(2) on EK .

Proof. For any point y ∈ CP
1, and any point z′ ∈ EK , let

δz′ := f −1
z′ ◦ γy ◦

(
χy

)−1 : U(1) −→ K ⊂ G

be the homomorphism, where fz′ : G −→ Ad(EG)y is constructed as in Equa-
tion (3.3), the homomorphism γy is constructed in Equation (3.4) and χy is
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defined as in Equation (3.2). We note that δz = α0, where α0 is constructed
in Equation (4.1). Define

(4.3) (EK0)y :=
{
z′ ∈ (EK)y | δz′ = α0

}
⊂ (EK)y.

Let
EK0 ⊂ EK

be the sub-fiber bundle whose fiber over any point y is (EK0)y defined in
Equation (4.3).

It is straight-forward to check that the subgroup K0 in Equation (4.2) acts
transitively on the fibers of EK0 . Therefore, EK0 is a smooth reduction of
structure group of EK to K0. The action of SU(2) on EK evidently preserves
the submanifold EK0 . This completes the proof of the proposition. �

Let

(4.4) G0 ⊂ G

be the Zariski closure of the subgroup K0 defined in Equation (4.2). The
group G0 is reductive, because K0 is a compact subgroup of G. Since K0 is
connected it also follows that G0 is connected.

Let EG0 be the C∞ principal G0-bundle over CP
1 obtained by extending

the structure group of EK0 constructed in Proposition 4.1 using the inclusion
of K0 in the group G0 in Equation (4.4). We recall that EK0 is a reduction of
structure group of EK to the subgroup K0 ⊂ K. On the other hand, EK is a
reduction of structure group of EG to K. Hence EG0 is also a C∞ reduction
of structure group of EG to G0.

Since the reduction EK0 is preserved by the action ρ of SU(2) on EK0 ,
the principal K0-bundle EK0 gets an induced action. This induced action of
SU(2) on EK0 will be denoted by ρ0. Now, ρ0 induces an action of SU(2) on
EG0 ; this induced action of SU(2) on EG0 will also be denoted by ρ0. We
will show that (EG0 ,EK0 ;ρ0) has a natural structure of a SU(2)-equivariant
holomorphic Hermitian principal G0-bundle.

Take a point x ∈ CP
1. Let

(4.5) γ0
x : Hx −→ Ad(EG0)x

be the homomorphism constructed as in Equation (3.4) for the action ρ0 of
SU(2) on EG0 . Since K0 is centralizer of α0(U(1)) in K (see Equation (4.2)),
the image α0(U(1)) lies inside the center of K0. Therefore, α0(U(1)) lies
inside the center of G0. Now comparing the definitions of α0 and γx (see
Equation (4.1)) we conclude that the image of the homomorphism γ0

x in Equa-
tion (4.5) lies inside the center of Ad(EG0)x.

Since the image of the homomorphism γ0
x lies inside the center of Ad(EG0)x,

from the second part of Proposition 3.4 and Lemma 3.5 we conclude that
there is exactly one holomorphic structure on the principal G0-bundle on EG0
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that makes (EG0 ,EK0 ;ρ0) into a SU(2)-equivariant holomorphic Hermitian
principal G0-bundle.

The holomorphic principal G0-bundle defined by this unique holomorphic
structure on the C∞ principal G0-bundle EG0 will be denoted by ÊG0 . Let ÊG

denote the holomorphic principal G-bundle over CP
1 obtained by extending

the structure group of ÊG0 using the inclusion of G0 in G.
We noted earlier that EG0 is a C∞ reduction of structure group of EG.

Therefore, the C∞ principal G-bundle underlying the holomorphic princi-
pal G-bundle ÊG is identified with that of EG. Therefore, ÊG and EG are
holomorphic structures on the same C∞ principal G-bundle such that both
(ÊG,EK ;ρ) and (EG,EK ;ρ) are SU(2)-equivariant holomorphic Hermitian
principal G-bundles.

We note that the SU(2)-equivariant holomorphic Hermitian principal G-
bundle (ÊG,EK ;ρ) has the following property.

If we set the homomorphism γ in Lemma 3.5 to be α0 defined in Equa-
tion (4.1), then the SU(2)-equivariant holomorphic Hermitian principal G-
bundle in Lemma 3.5 is isomorphic to (ÊG,EK ;ρ). Indeed, this follows from
the above construction of (ÊG,EK ;ρ), and the construction in Lemma 3.5.

The above constructions and observations are put down as the following
lemma.

Lemma 4.2. Given any SU(2)-equivariant holomorphic Hermitian prin-
cipal G-bundle (EG,EK ;ρ) on CP1, there is a natural construction, using
(EG,EK ;ρ), of another SU(2)-equivariant holomorphic Hermitian principal
G-bundle. Only the holomorphic structure of the principal G-bundle of the
new SU(2)-equivariant holomorphic Hermitian principal G-bundle is different
from EG. More precisely, the underlying C∞ principal G-bundle, the reduc-
tion of structure group to K as well as the action of SU(2) on the principal
G-bundle remain unchanged.

The SU(2)-equivariant holomorphic Hermitian principal G-bundle con-
structed from (EG,EK ;ρ) is also one those constructed in Lemma 3.5.

5. Classification of SU(2)-equivariant holomorphic Hermitian
bundles

As before, let G be a connected reductive linear algebraic group defined
over C and K ⊂ G a maximal compact subgroup. The Lie algebra of G will
be denoted by g.

Take any homomorphism

γ : U(1) −→ K

as in Equation (3.24). Let (EG,EK ;ρ) be the SU(2)-equivariant holomorphic
Hermitian principal G-bundle over CP

1 obtained by extending the structure
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group of the SU(2)-equivariant holomorphic Hermitian principal C
∗-bundle

(E0
C∗ , S3) in Equation (3.23) using γ (see also Lemma 3.5).
The Lie algebra g of G will be considered as a U(1)-module using γ and

the adjoint action of G on g.
Fix a point

(5.1) x ∈ CP
1.

We recall that the action of any λ ∈ Hx = U(1) on the line (T 0,1
x )∗ is multipli-

cation by 1/λ2 (see the proof of Proposition 3.4); as before, Hx is identified
with U(1) using χx defined in Equation (3.2). Consider the tensor product
(T 0,1

x )∗ ⊗ ad(EG)x of U(1)-modules. The U(1)-module (T 0,1
x )∗ ⊗ ad(EG)x is

isomorphic to the tensor product C ⊗C g of U(1)-modules, where the action
of any λ ∈ Hx on C is multiplication by 1/λ2. Let

(5.2) Vγ ⊂
(
T 0,1

x

)∗ ⊗ ad(EG)x

be the space of invariants for the action of Hx = U(1) on (T 0,1
x )∗ ⊗ ad(EG)x.

Take any g0 ∈ K. Let
γ′ : U(1) −→ K

be the homomorphism defined by g 	−→ g−1
0 γ(g)g0. Let E′

G be the holomor-
phic principal G-bundle over CP

1 obtained by extending the structure group
of the holomorphic principal C

∗-bundle E0
C∗ in Equation (3.23) using the

(unique) homomorphism C
∗ −→ G that extends γ′ (see Equation (3.25)). Let

Ad(g0) : g −→ g

be the automorphism of the Lie algebra given by the automorphism of G that
sends any g to g−1

0 gg0. This automorphism Ad(g0) of g induces a holomorphic
isomorphism

(5.3) δg0 : ad(EG) −→ ad
(
E′

G

)
of Lie algebra bundles. We note that since the principal G-bundle EG (re-
spectively, E′

G) is the one obtained by extending the structure group of the
principal U(1)-bundle S3 in Equation (3.23) using γ (respectively, γ′), the ad-
joint vector bundles ad(EG) (respectively, ad(E′

G)) is identified with the one
associated to the principal U(1)-bundle S3 for g considered as a U(1)-module
using γ (respectively, γ′).

Theorem 5.1. Consider all pairs of the form {γ, v}, where

γ : U(1) −→ K

is a homomorphism, and
v ∈ Vγ

(see Equation (5.2)). There is a natural map from such pairs to the SU(2)-
equivariant holomorphic Hermitian principal G-bundles on CP

1.
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Given any SU(2)-equivariant holomorphic Hermitian principal G-bundle
(EG,EK ;ρ) on CP

1, there is a pair {γ, v} of the above type such that the
corresponding SU(2)-equivariant holomorphic Hermitian principal G-bundle
is isomorphic to (EG,EK ;ρ).

Let {γ, v} and {γ′, v′ } be two pairs of the above type. Let (EG,EK ;ρ) and
(E′

G,E′
K ;ρ′) be the corresponding SU(2)-equivariant holomorphic Hermitian

principal G-bundles. Then (EG,EK ;ρ) and (E′
G,E′

K ;ρ′) are isomorphic if and
only if there is an element g0 ∈ K that satisfies the following two conditions:
• γ′(g) = g−1

0 γ(g)g0 for all g ∈ SU(1), and
• v′ = (Id(T 0,1

x )∗ ⊗ δg0)(v), where δg0 is the isomorphism in Equation (5.3),
and x is the point in Equation (5.1).

Proof. Take any pair

(5.4) {γ, v}
as in the statement of the theorem. First, using γ, we get a SU(2)-equivariant
holomorphic Hermitian principal G-bundle (Eγ

G,Eγ
K , ρ) (see Lemma 3.5). Us-

ing v, we will construct from (Eγ
G,Eγ

K , ρ) a new SU(2)-equivariant holomor-
phic Hermitian principal G-bundle.

Consider the C∞ principal G-bundle underlying the holomorphic principal
G-bundle Eγ

G; we will denote this C∞ principal G-bundle by E0
G. The Dol-

beault operator defining the holomorphic structure of Eγ
G will be denoted by

∂Eγ
G
.

Consider the C∞ vector bundle Ω0,1(ad(EG)) = (T 0,1
CP

1)∗ ⊗ ad(EG) on
CP1. The actions of SU(2) on CP1 and EG together induce an action of SU(2)
on Ω0,1(ad(EG)) (see the proof of Proposition 3.4).

Since the isotropy group Hx of the point x in Equation (5.1) acts trivially
on v in Equation (5.4), translating v by the action of SU(2) on (T 0,1

CP
1)∗ ⊗

ad(EG) we get a section

(5.5) ṽ ∈ C∞(
CP

1,
(
T 0,1

CP
1
)∗ ⊗ ad(EG)

)
.

Therefore, ṽ is the unique SU(2)-invariant section of (T 0,1
CP

1)∗ ⊗ ad(EG)
such that ṽ(x) = v.

Consider the Dolbeault operator

∂
′
Eγ

G
:= ∂Eγ

G
+ ṽ

on the C∞ principal G-bundle E0
G underlying EG, where ṽ is constructed

in Equation (5.5); recall that ∂Eγ
G

is the Dolbeault operator on EG. Let E′
G

denote the holomorphic principal G-bundle defined by this Dolbeault operator
∂

′
Eγ

G
. Now (E′

G,EK ;ρ) is clearly a SU(2)-equivariant holomorphic Hermitian
principal G-bundle on CP

1. Note that since ṽ is invariant under the action of
SU(2), the Dolbeault operator ∂

′
Eγ

G
is also fixed by the action of SU(2).
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Let F denote the map from the pairs of the type in Equation (5.4) to the
SU(2)-equivariant holomorphic Hermitian principal G-bundles on CP

1 that
sends any {γ, v} to the SU(2)-equivariant holomorphic Hermitian principal
G-bundle (E′

G,EK ;ρ) constructed above from {γ, v}.
We will show that the map F defined above satisfies all the conditions in

the theorem.
Take any SU(2)-equivariant holomorphic Hermitian principal G-bundle

(EG,EK ;ρ) CP1. To show that there is a pair {γ, v} such that F ({γ, v})
is isomorphic to (EG,EK ;ρ), first consider the homomorphism α0 in Equa-
tion (4.1) which is constructed by fixing a point z in the fiber (EK)x. Set γ
to be α0. The SU(2)-equivariant holomorphic Hermitian principal G-bundle
F ({α0,0}) clearly coincides with the SU(2)-equivariant holomorphic Hermit-
ian principal G-bundle

(ÊG,EK ;ρ)

constructed in Lemma 4.2 from (EG,EK ;ρ).
The Dolbeault operator for the holomorphic principal G-bundle EG (re-

spectively, ÊG) will be denoted by ∂EG
(respectively, ∂ÊG

). Set

(5.6) θ := ∂EG
− ∂ÊG

∈ C∞(
Ω0,1

(
ad(EG)

))
.

(Recall that the underlying C∞ principal G-bundle for ÊG is identified with
that for EG, hence θ is a smooth section of Ω0,1(ad(EG)).) Since both the
operators ∂EG

and ∂ÊG
are fixed by the action of SU(2), it follows immediately

that θ is also fixed by the action of SU(2).
Let

(5.7) v := θ(x) ∈ Ω0,1
(
ad(EG)

)
x

be the evaluation at the point x (see Equation (5.1)) of the section θ con-
structed in Equation (5.6). It is now straight-forward to verify that the SU(2)-
equivariant holomorphic Hermitian principal G-bundle F ({γ, v}), where v is
defined in Equation (5.7), is isomorphic to (EG,EK ;ρ).

Take any pair {γ, v} as in Equation (5.4). Fix an element g0 ∈ K. Let

γ′ : U(1) −→ K

be the homomorphism defined by g 	−→ g−1
0 γ(g)g0. Set

v′ := (Id(T 0,1
x )∗ ⊗ δg0)(v) ∈

(
T 0,1

x

)∗ ⊗ ad
(
E′

G

)
x
,

where δg0 is defined in Equation (5.3). We will show that that the SU(2)-
equivariant holomorphic Hermitian principal G-bundle F ({γ, v}) is isomor-
phic to F ({γ′, v′ }), where γ′ and v′ are defined above.

To prove this, first consider the automorphism

S3 × G −→ S3 × G
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defined by (z, g) 	−→ (z, g−1
0 gg0), where S3 is the principal U(1)-bundle in

Equation (3.23). This automorphism descends to an isomorphism of principal
G-bundles

EG := S3 ×γ G −→ S3 ×γ′
G =: E′

G.

Here S3 ×γ G (respectively, S3 ×γ′
G) denotes the quotient of S3 × G that

identifies any (z, g) ∈ S3 × G with (zh−1, γ(h)g) (respectively, (zh−1, γ′(h)g)),
where h ∈ U(1). We now note that EG (respectively, E′

G) is the C∞ princi-
pal G-bundle underlying the SU(2)-equivariant holomorphic Hermitian prin-
cipal G-bundle F ({γ, v}) (respectively, F ({γ′, v′ })). The above isomorphism
EG −→ E′

G is holomorphic with respect to the holomorphic structures under-
lying F ({γ, v}) and F ({γ′, v′ }), and it in fact gives an isomorphism of the
SU(2)-equivariant holomorphic Hermitian principal G-bundle F ({γ, v}) with
F ({γ′, v′ }).

Take two pairs {γ, v} and {γ′, v′ } as in Equation (5.4) such that the SU(2)-
equivariant holomorphic Hermitian principal G-bundle

F
(

{γ, v}
)
=: (EG,EK ;ρ)

is isomorphic to F ({γ′, v′ }) =: (E′
G,E′

K ;ρ′). To complete the proof of the
theorem we need to show that there is an element g0 ∈ K that satisfies the
two conditions in the final part of the theorem.

Let

(5.8) ϕ : EK −→ E′
K

be an isomorphism of principal K-bundles that induces an isomorphism of
the SU(2)-equivariant holomorphic Hermitian principal G-bundle (EG,EK ;ρ)
with (E′

G,E′
K ;ρ′). Fix a point

z ∈ (EK)x

(respectively, z′ ∈ (E′
K)x), in the fiber over the point x in Equation (5.1), such

that γ (respectively, γ′) coincides with the homomorphism constructed as in
Equation (4.1) using z (respectively, z′).

Let g0 ∈ K be the unique element that satisfies the condition

z′ = ϕ(z)g0,

where ϕ is the isomorphism in Equation (5.8). It is now straight-forward to
verify that this element g0 satisfies the two conditions in the final part of the
theorem. This completes the proof of the theorem. �

Remark 5.2. Take a homomorphism γ : U(1) −→ K. Consider the Lie
algebra g as a U(1)-module using γ and the adjoint action of K on g. Let

(5.9) g2 ⊂ g

be the isotypical component of the U(1)-module g on which each element
λ ∈ U(1) acts as multiplication by λ2.
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As before, let (EG,EK ;ρ) be the SU(2)-equivariant holomorphic Hermitian
principal G-bundle over CP

1 obtained by extending the structure group of
the SU(2)-equivariant holomorphic Hermitian principal C

∗-bundle (E0
C∗ , S3)

in Equation (3.23) using γ. The subspace Vγ in Equation (5.2) is isomorphic
to g2 in Equation (5.9). To construct such an isomorphism, fix a nonzero
element

u0 ∈
(
T 0,1

x

)∗
,

and also fix an element z0 in the fiber, over x, of the principal U(1)-bundle
S3 in Equation (3.23). Now we have an isomorphism

g2 −→ Vγ

that sends any v to u0 ⊗ ṽ, where ṽ ∈ ad(EG)x is the image, in ad(EG)x, of
(z0, v).

Fix a maximal torus T ⊂ G such that the (unique) maximal compact sub-
group of T is contained in K.

Take any homomorphism

(5.10) ρ : C
∗ −→ T

ι
↪→ G.

Let Eρ
G denote the holomorphic principal G-bundle over CP

1 obtained by
extending the structure group of the tautological principal C

∗-bundle E0
C∗

(see Equation (3.23)) using the homomorphism ι ◦ ρ.
Let EG be a holomorphic principal G-bundle over CP1. A theorem due to

Grothendieck says that there is a homomorphism ρ as in Equation (5.10) such
that the holomorphic principal G-bundle Eρ

G is holomorphically isomorphic
to EG [5, p. 123, Théorème 1.2].

Since K ∩ T is the maximal compact subgroup of T , we know that

ρ
(
U(1)

)
⊂ K,

where ρ is the homomorphism in Equation (5.10). Let γ denote the restriction
of ρ to U(1) ⊂ C

∗. Let (Eγ
G,Eγ

K ;ργ) denote the SU(2)-equivariant holomor-
phic Hermitian principal G-bundle over CP1 constructed in Lemma 3.5 from
γ = ρ|U(1).

The unique extension of γ to a homomorphism C∗ −→ G (see Equation
(3.25)) clearly coincides with ρ. Therefore, the principal G-bundle EG is
holomorphically isomorphic to Eγ

G. Consequently, any holomorphic principal
G-bundle over CP

1 admits the structure of a SU(2)-equivariant holomorphic
Hermitian principal G-bundle.

6. The case of G = GL(r,C)

To illustrate Theorem 5.1, we consider the special case where

G = GL(r,C),

and K = U(r). This case is already well understood (see [1], [2], [3], [7], [8]).
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Let E be a holomorphic vector bundle of rank r over CP
1. A theorem of

Grothendieck says that E is holomorphically isomorphic to a vector bundle
of the form

⊕r
i=1 OCP1(di) [5]. The action of the group SU(2) on CP

1 has a
canonical lift to the holomorphic line bundle OCP1(1). Therefore, the action
of SU(2) on CP

1 lifts to E. Let h be a Hermitian structure on E, and let ρ
be a C∞ lift of the action of SU(2) to E, such that the following conditions
hold:
(1) The action of SU(2) to E preserves h.
(2) For each U ∈ SU(2), the diffeomorphism of the complex manifold E de-

fined by v 	−→ ρ(U,v) is holomorphic.
Such a triple (E,h, ρ) is called a SU(2)-equivariant holomorphic Hermitian
vector bundle.

We note that a SU(2)-equivariant holomorphic Hermitian vector bundle
(E,h, ρ) is a SU(2)-equivariant holomorphic Hermitian principal GL(r,C),
where r = rank(E).

Take a pair

(6.1)
(

{ Hn}n∈Z, T
)
,

where
(1) each Hn is a finite dimensional Hilbert space, and Hn = 0 for all but

finitely many n, and
(2) T is a linear operator on the direct sum

⊕
n∈Z

Hn satisfying the condition

T (Hn) ⊂ Hn+2

for all n ∈ Z.
We will associate a SU(2)-equivariant holomorphic Hermitian vector bundle
to it.

Consider the C∞ vector bundle

(6.2) E :=
⊕
n∈Z

(
OCP1(n) ⊗C Hn

)
.

The action of SU(2) on the line bundles OCP1(n) and the trivial action of SU(2)
on the vector spaces Hn together define an action of SU(2) on E. The inner
product on the Hilbert spaces Hn and the Hermitian structure on the line
bundles OCP1(n) combine together to produce a SU(2)-invariant Hermitian
structure on E.

The natural holomorphic structures of the line bundles OCP1(n) together
define a SU(2)-invariant holomorphic structure on E. We will construct a
new SU(2)-invariant holomorphic structure on E by altering this holomorphic
structure using the endomorphism T in Equation (6.1).

Using the canonical trivialization of the line
∧2

C
2, we get an identification

of OCP1(2) with the holomorphic tangent bundle TCP
1 −→ CP

1. Contracting
the Kähler form ω in Equation (2.3) with TCP

1, the C∞ line bundle TCP
1
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gets identified with Ω0,1
CP1 . Therefore, we have a C∞ isomorphism of line

bundles
Hom

(
OCP1(n), OCP1(n + 2)

)
= OCP1(2) = Ω0,1

CP1 .

Using this isomorphism, the endomorphism T in Equation (6.1) produces a
C∞ section

T̂ ∈ C∞(
CP

1,Ω0,1
CP1 ⊗ E nd(E)

)
.

If ∂0 is the Dolbeault operator on E defining its standard holomorphic struc-
ture, then

∂T := ∂0 + T̂

is a new holomorphic structure on E. This new holomorphic structure is
SU(2)-invariant because both ∂0 and T̂ are SU(2)-invariant. Therefore, we
have constructed a SU(2)-equivariant holomorphic Hermitian vector bundle
from the pair ({Hn}n∈Z, T ).

The above construction is bijective. More precise, this construction pro-
duces a bijection between the isomorphism classes of SU(2)-equivariant holo-
morphic Hermitian vector bundles on CP

1 and the isomorphism classes of
pairs of the form ({ Hn}n∈Z, T ) as in (6.1).

Note that for any pair ({ Hn}n∈Z, T ) as above, the rank of the corresponding
SU(2)-equivariant holomorphic Hermitian vector bundle is

∑
n dim Hn.

The above bijective correspondence is equivalent to the one in Theorem 5.1
for G = GL(r,C). To see this, take a homomorphism γ : U(1) −→ U(r) and an
element v ∈ Vγ as in Theorem 5.1. The homomorphism γ gives the isotypical
decomposition

(6.3) C
r =

⊕
χ∈U(1)∗

Wχ,

where U(1)∗ = Z is the group of characters of U(1) (the character for n ∈ Z

is z 	−→ zn). This isotypical decomposition is orthogonal, and each subspace
Wχ ∈ C

r is equipped with the induced inner product. For each n ∈ Z, associate
the Hilbert space Wn in Equation (6.3).

Recall the action of SU(2) on CP
1. It was noted in the proof of Proposi-

tion 3.4 that the isotropy group Hx = U1 (see Equation (3.2)) acts on the fiber
(T 0,1

x )∗ as the character −2 ∈ Z = U(1)∗. Therefore, the space of invariants
Vγ in Equation (5.2) is simply

(6.4) Vγ =
⊕
n∈Z

HomC(Wn,Wn+2) =
⊕
n∈Z

W ∗
n ⊗ Wn+2.

Let T ∈
⊕

n∈Z
HomC(Wn,Wn+2) be the element corresponding to the element

v ∈ Vγ . So, the pair (γ, v) gives the pair ({Wn}n∈Z, T ) which satisfies in
conditions in Equation (6.1); note that∑

n∈Z

dimWn = r.
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Conversely, given any pair ({ Hn}n∈Z, T ) as in (6.1), fix a linear isometry⊕
n∈Z

Hn
∼−→ C

r,

where
∑

n∈Z
dim Hn = r, such that the decomposition of C

r is orthogonal.
Let

γ : U(1) −→ U(r)
be the homomorphism such that the action of z ∈ U(1) on the subspace Hn ⊂
C

r is multiplication by zn. Using the isomorphism in Equation (6.4), the
element T defines an element of Vγ .
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[1] L. Álvarez-Cónsul and O. Garćıa-Prada, Dimensional reduction and quiver bundles,
J. Reine Angew. Math. 556 (2003), 1–46. MR 1971137

[2] I. Biswas, Holomorphic Hermitian vector bundles over the Riemann sphere, Bull. Sci.
Math. 132 (2008), 246–356. MR 2406829

[3] A. I. Bondal and M. M. Kapranov, Homogeneous bundles, Helices and vector bundles,
London Math. Soc. Lecture Note Ser., vol. 148, Cambridge Univ. Press, Cambridge,

1990, pp. 45–55. MR 1074782
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