EQUIVARIANT PRINCIPAL BUNDLES OVER THE COMPLEX PROJECTIVE LINE

INDRANIL BISWAS

Abstract

Let G be a connected complex reductive linear algebraic group, and let $K \subset G$ be a maximal compact subgroup of it. Let E_{G} be a holomorphic principal G-bundles over the complex projective line $\mathbb{C P}^{1}$ and $E_{K} \subset E_{G}$ a C^{∞} reduction of structure group of E_{G} to K. We consider all pairs $\left(E_{G}, E_{K}\right)$ of this type such that the total space of E_{K} is equipped with a C^{∞} lift of the standard action of $\mathrm{SU}(2)$ on $\mathbb{C P}^{1}$ which satisfies the following two conditions: the actions of K and $\mathrm{SU}(2)$ on E_{K} commute, and for each element $g \in \mathrm{SU}(2)$, the induced action of g on E_{G} is holomorphic. We give a classification of the isomorphism classes of all such objects.

1. Introduction

The projection $\mathbb{C}^{2} \backslash\{0\} \longrightarrow \mathbb{C P}^{1}$ that sends any v to the line in \mathbb{C}^{2} generated by v defines a holomorphic principal \mathbb{C}^{*}-bundle on $\mathbb{C P}^{1}$. This holomorphic principal \mathbb{C}^{*}-bundle will be denoted by $E_{\mathbb{C}^{*}}^{0}$.

Let G be a connected reductive linear algebraic group defined over the field of complex numbers. A theorem due to Grothendieck shows that all holomorphic principal G-bundles over $\mathbb{C P}^{1}$ are constructed from the above tautological principal \mathbb{C}^{*}-bundle $E_{\mathbb{C}^{*}}^{0}$. More precisely, given a holomorphic principal G-bundle E_{G} over $\mathbb{C P}^{1}$, there is a homomorphism

$$
\chi: \mathbb{C}^{*} \longrightarrow G
$$

such that E_{G} is holomorphically isomorphic to the principal G-bundle obtained by extending the structure group of $E_{\mathbb{C}^{*}}^{0}$ using χ.

Two homomorphisms from \mathbb{C}^{*} to G that differ by an inner automorphism of G produce isomorphic principal G-bundles. Therefore, the above homomorphism χ can be assumed to have the property that it factors through a fixed maximal torus T of G. Consequently, the isomorphism classes of all holomorphic principal G-bundles over $\mathbb{C P}^{1}$ are parametrized by $\operatorname{Hom}\left(\mathbb{C}^{*}, T\right) / W$, where W is the Weyl group for the maximal torus T (it is the quotient by T of the normalizer of T in G); see [5, p. 122, Théorème 1.1].

Our aim here is to understand the holomorphic Hermitian principal G bundles over $\mathbb{C P}^{1}$ that are $\mathrm{SU}(2)$-equivariant.

Fix a maximal compact subgroup K of E. A holomorphic Hermitian principal G-bundle over $\mathbb{C P}^{1}$ is a holomorphic principal G-bundle E_{G} together with a C^{∞} reduction of structure group $E_{K} \subset E_{G}$ of E_{G} to K.

A $\mathrm{SU}(2)$-equivariant holomorphic Hermitian principal G-bundle over $\mathbb{C P}^{1}$ is a triple $\left(E_{G}, E_{K} ; \rho\right)$, where $\left(E_{G}, E_{K}\right)$ is a holomorphic Hermitian principal G-bundle as above, and ρ is a smooth action of $\mathrm{SU}(2)$ on E_{K} satisfying the following conditions: it lifts the standard action on $\mathbb{C P}^{1}$, preserves the principal K-bundle structure, and the induced action on E_{G} is by holomorphic automorphisms.

The unit sphere $S^{3} \subset \mathbb{C}^{2} \backslash\{0\}$ for the standard inner product on \mathbb{C}^{2} is a smooth reduction of structure group of the tautological principal \mathbb{C}^{*}-bundle $E_{\mathbb{C}^{*}}^{0}$ to the subgroup $S^{1}=\mathrm{U}(1) \subset \mathbb{C}^{*}$. This pair $\left(E_{\mathbb{C}^{*}}^{0}, S^{3}\right)$ equipped with the standard action of $\mathrm{SU}(2)$ define a $\mathrm{SU}(2)$-equivariant holomorphic Hermitian principal \mathbb{C}^{*}-bundle. We will refer to it as the tautological $\mathrm{SU}(2)$-equivariant holomorphic Hermitian principal \mathbb{C}^{*}-bundle.

Take any homomorphism

$$
\gamma: \mathrm{U}(1) \longrightarrow K
$$

It extends uniquely to a holomorphic homomorphism $\widetilde{\gamma}: \mathbb{C}^{*} \longrightarrow G$. Let $\left(E_{G}, E_{K} ; \rho\right)$ be the $\mathrm{SU}(2)$-equivariant holomorphic Hermitian principal G bundle over $\mathbb{C P}^{1}$ obtained by extending the structure group of the tautological $\mathrm{SU}(2)$-equivariant holomorphic Hermitian principal \mathbb{C}^{*}-bundle using $\widetilde{\gamma}$. The Lie algebra \mathfrak{g} of G will be considered as a $\mathrm{U}(1)$-module using γ and the adjoint action of G on \mathfrak{g}. Let $\operatorname{ad}\left(E_{G}\right)$ denote the adjoint vector bundle for E_{G}.

Fix a point

$$
x \in \mathbb{C P}^{1}
$$

The isotropy subgroup H_{x} of x for the standard action of $\mathrm{SU}(2)$ on $\mathbb{C P}^{1}$ is identified with $\mathrm{U}(1)$ (see Equation (3.2)). The actions of H_{x} on $\left(T_{x}^{0,1}\right)^{*}$ and $\operatorname{ad}\left(E_{G}\right)_{x}$ together induce an action of H_{x} on $\left(T_{x}^{0,1}\right)^{*} \otimes \operatorname{ad}\left(E_{G}\right)_{x}$. Let

$$
\mathcal{V}_{\gamma}:=\left(\left(T_{x}^{0,1}\right)^{*} \otimes \operatorname{ad}\left(E_{G}\right)_{x}\right)^{H_{x}} \subset\left(T_{x}^{0,1}\right)^{*} \otimes \operatorname{ad}\left(E_{G}\right)_{x}
$$

be the space of invariants for this induced action of H_{x}.
We prove the following theorem (see Theorem 5.1).

Theorem 1.1. Consider all pairs of the form $\{\gamma, v\}$, where

$$
\gamma: \mathrm{U}(1) \longrightarrow K
$$

is a homomorphism, and

$$
v \in \mathcal{V}_{\gamma}
$$

There is a natural map from such pairs to the $\mathrm{SU}(2)$-equivariant holomorphic Hermitian principal G-bundles on $\mathbb{C P}^{1}$.

Given any $\mathrm{SU}(2)$-equivariant holomorphic Hermitian principal G-bundle $\left(E_{G}, E_{K} ; \rho\right)$ on $\mathbb{C P}^{1}$, there is a pair $\{\gamma, v\}$ of the above type such that the corresponding $\mathrm{SU}(2)$-equivariant holomorphic Hermitian principal G-bundle is isomorphic to $\left(E_{G}, E_{K} ; \rho\right)$.

Let $\{\gamma, v\}$ (respectively, $\left\{\gamma^{\prime}, v^{\prime}\right\}$) be a pair of the above type, and let

$$
\left(E_{G}, E_{K} ; \rho\right) \quad\left(\text { respectively, }\left(E_{G}^{\prime}, E_{K}^{\prime} ; \rho^{\prime}\right)\right)
$$

be the corresponding $\mathrm{SU}(2)$-equivariant holomorphic Hermitian principal G bundle. Then $\left(E_{G}, E_{K} ; \rho\right)$ is isomorphic to $\left(E_{G}^{\prime}, E_{K}^{\prime} ; \rho^{\prime}\right)$ if and only if there is an element $g_{0} \in K$ that satisfies the following two conditions:

- $\gamma^{\prime}(g)=g_{0}^{-1} \gamma(g) g_{0}$ for all $g \in \mathrm{SU}(1)$, and
- $v^{\prime}=\left(\operatorname{Id}_{\left(T_{x}^{0,1}\right)^{*}} \otimes \delta_{g_{0}}\right)(v)$, where $\delta_{g_{0}}: \operatorname{ad}\left(E_{G}\right) \longrightarrow \operatorname{ad}\left(E_{G}^{\prime}\right)$ is the the natural isomorphism.

The above mentioned isomorphism $\delta_{g_{0}}$ is constructed in Equation (5.3).

2. Projective line and principal bundles

2.1. Action on the projective line. Let $\mathbb{C P}^{1}$ denote the complex projective line. So $\mathbb{C P}{ }^{1}$ parametrizes all one-dimensional linear subspaces of \mathbb{C}^{2}. The group of all holomorphic automorphisms of $\mathbb{C P}{ }^{1}$ will be denoted by Aut $\left(\mathbb{C P}^{1}\right)$.

The special unitary group $S U(2)$ has the standard action on \mathbb{C}^{2}. This action clearly induces an action of $\mathrm{SU}(2)$ on $\mathbb{C P}^{1}$. Let

$$
\begin{equation*}
f: \mathrm{SU}(2) \longrightarrow \operatorname{Aut}\left(\mathbb{C P}^{1}\right) \tag{2.1}
\end{equation*}
$$

be the homomorphism giving this action of $\mathrm{SU}(2)$ on $\mathbb{C P}^{1}$. The kernel of f is $\pm I$, which is also the center of $\mathrm{SU}(2)$.

Let

$$
\begin{equation*}
\psi: \mathbb{C}^{2} \backslash\{0\} \longrightarrow \mathbb{C P}^{1} \tag{2.2}
\end{equation*}
$$

be the natural projection that sends any nonzero vector to the line generated by it. Let

$$
\omega_{0}:=\frac{\sqrt{-1}}{2} \cdot \frac{\mathrm{~d} x \wedge \mathrm{~d} \bar{x}+\mathrm{d} y \wedge \mathrm{~d} \bar{y}}{|x|^{2}+|y|^{2}}
$$

be the positive $(1,1)$-form on $\mathbb{C}^{2} \backslash\{0\}$. Consider the restriction of ω_{0} to the direction orthogonal to the radial vector field on $\mathbb{C}^{2} \backslash\{0\}$. This restriction
descends, using the projection ψ in Equation (2.2), to a Hermitian (1, 1)-form on $\mathbb{C P}^{1}$. Let

$$
\begin{equation*}
\omega \in C^{\infty}\left(\mathbb{C P}^{1} ; \Omega_{\mathbb{C P}^{1}}^{1,1}\right) \tag{2.3}
\end{equation*}
$$

be this descended form. Since ω_{0} is positive, it follows that ω is also positive. Since $\operatorname{dim}_{\mathbb{C}} \mathbb{C P}^{1}=1$, the form ω defines a Kähler structure on $\mathbb{C P}^{1}$. It is easy to check that ω is the unique Kähler form on $\mathbb{C P}^{1}$ of total volume $2 / 3$ which is left invariant by the action of $\mathrm{SU}(2)$ on $\mathbb{C P}^{1}$.
2.2. Principal bundles. Let G be a connected reductive linear algebraic group defined over \mathbb{C}. Fix a maximal compact subgroup

$$
\begin{equation*}
K \subset G \tag{2.4}
\end{equation*}
$$

It is known that any two maximal compact subgroups of G are conjugate $[6$, p. 256, Theorem 2.1].

Let E_{G} be a C^{∞} principal G-bundle on $\mathbb{C P}^{1}$. A Hermitian structure on E_{G} is a C^{∞} reduction of structure group of E_{G}

$$
E_{K} \subset E_{G}
$$

to the subgroup K in Equation (2.4). By a holomorphic Hermitian principal G-bundle on $\mathbb{C P}^{1}$, we will mean a holomorphic principal G-bundle E_{G} on $\mathbb{C P}^{1}$ together with a Hermitian structure E_{K} on E_{G}.

Let $\left(E_{G}, E_{K}\right)$ and $\left(E_{G}^{\prime}, E_{K}^{\prime}\right)$ be two holomorphic Hermitian principal G bundles on $\mathbb{C P}^{1}$. Any C^{∞} isomorphism of principal K-bundles

$$
\beta: E_{K} \longrightarrow E_{K}^{\prime}
$$

extends uniquely to a C^{∞} isomorphism

$$
\widetilde{\beta}: E_{G} \longrightarrow E_{G}^{\prime}
$$

of principal G-bundles. Indeed, the diffeomorphism

$$
\beta \times \operatorname{Id}_{G}: E_{K} \times G \longrightarrow E_{K}^{\prime} \times G
$$

descends to the isomorphism $\widetilde{\beta}$ of $E_{G}:=E_{K} \times{ }^{K} G$ with $E_{G}^{\prime}:=E_{K}^{\prime} \times{ }^{K} G$; we recall that $E_{K} \times{ }^{K} G$ is the quotient of $E_{K} \times G$ obtained by identifying $(z, g) \in E_{K} \times G$ with $\left(z k, k^{-1} g\right)$, where $k \in K$.

The isomorphism β is called a holomorphic isometry if $\widetilde{\beta}$ is holomorphic. If β is a holomorphic isometry, then $\widetilde{\beta}$ is also called a holomorphic isometry. Note that β, being the restriction of $\widetilde{\beta}$, is uniquely determined by $\widetilde{\beta}$. Therefore, there is no abuse of terminology.

Two holomorphic Hermitian principal G-bundles are called holomorphically isometric if there exists a holomorphic isometry between them.

Let

$$
\tau: \mathbb{C P}^{1} \longrightarrow \mathbb{C P}^{1}
$$

be a holomorphic map. Given any holomorphic Hermitian principal G-bundle $\left(E_{G}, E_{K}\right)$ on $\mathbb{C P}^{1}$, its pullback by τ is defined to be the holomorphic Hermitian principal G-bundle $\left(\tau^{*} E_{G}, \tau^{*} E_{K}\right)$.

Definition 2.1. A holomorphic Hermitian principal G-bundle $\left(E_{G}, E_{K}\right)$ on $\mathbb{C P}^{1}$ is called $\mathrm{SU}(2)$-homogeneous if for each $U \in \mathrm{SU}(2)$, the pulled back holomorphic Hermitian principal G-bundle $\left(f(U)^{*} E_{G}, f(U)^{*} E_{K}\right)$ is holomorphically isometric to (E, h), where f is the homomorphism in Equation (2.1).

Definition 2.2. A $\mathrm{SU}(2)$-equivariant holomorphic Hermitian principal G bundle on $\mathbb{C P}^{1}$ is a triple $\left(E_{G}, E_{K} ; \rho\right)$, where

- $\left(E_{G}, E_{K}\right)$ is a holomorphic Hermitian principal G-bundle $\left(E_{G}, E_{K}\right)$ on $\mathbb{C P}^{1}$, and
- ρ is a smooth action of $\mathrm{SU}(2)$ on the total space of E_{G}

$$
\begin{equation*}
\rho: \mathrm{SU}(2) \times E_{G} \longrightarrow E_{G} \tag{2.5}
\end{equation*}
$$

such that the following four conditions hold:
(1) $p \circ \rho(U, z)=f(U)(p(z))$ for all $(U, z) \in \mathrm{SU}(2) \times E_{G}$, where p is the projection of E_{G} to $\mathbb{C P}^{1}$ and f is the homomorphism in Equation (2.1),
(2) the actions of G and $\mathrm{SU}(2)$ on E_{G} commute,
(3) $\rho\left(\mathrm{SU}(2) \times E_{K}\right)=E_{K}$, and
(4) for each $U \in \mathrm{SU}(2)$, the map $E_{G} \longrightarrow E_{G}$ defined by $z \longmapsto \rho(U, z)$ is holomorphic.
Two $\operatorname{SU}(2)$-equivariant holomorphic Hermitian principal G-bundles

$$
\left(E_{G}, E_{K} ; \rho\right) \quad \text { and } \quad\left(E_{G}^{\prime}, E_{K}^{\prime} ; \rho^{\prime}\right)
$$

are called isomorphic if there is a holomorphic isometry

$$
\widetilde{\beta}: E_{G} \longrightarrow E_{G}^{\prime}
$$

such that $\widetilde{\beta} \circ \rho=\rho^{\prime} \circ\left(\operatorname{Id}_{\mathrm{SU}(2)} \times \widetilde{\beta}\right)$.
We note that for any $\mathrm{SU}(2)$-equivariant holomorphic Hermitian principal G-bundle $\left(E_{G}, E_{K} ; \rho\right)$, the action on E_{G} of each element $U \in \operatorname{SU}(2)$ is a holomorphic isometry of the pulled back holomorphic principal G-bundle $\left(f\left(U^{-1}\right)^{*} E_{G}, f\left(U^{-1}\right)^{*} E_{K}\right)$ with $\left(E_{G}, E_{K}\right)$.
2.3. $\mathrm{SU}(2)$-homogeneous bundles are $\mathrm{SU}(2)$-equivariant. Comparing Definition 2.2 with Definition 2.1 it follows immediately that every $\mathrm{SU}(2)$ equivariant holomorphic Hermitian principal G-bundle on $\mathbb{C P}^{1}$ is $\mathrm{SU}(2)$-homogeneous. A weak converse also holds as shown by the following lemma.

Lemma 2.3. Let $\left(E_{G}, E_{K}\right)$ be a $\mathrm{SU}(2)$-homogeneous holomorphic Hermitian principal G-bundle over $\mathbb{C P}^{1}$. Then the principal G-bundle E_{G} admits a smooth action ρ of $\mathrm{SU}(2)$ such that the triple $\left(E_{G}, E_{K} ; \rho\right)$ is a $\mathrm{SU}(2)$ equivariant holomorphic Hermitian principal G-bundle.

Proof. Consider the homomorphism f in Equation (2.1). For any $U \in$ $\mathrm{SU}(2)$, let $T(U)$ denote the space of all holomorphic isometries of the holomorphic Hermitian principal G-bundle $\left(f\left(U^{-1}\right)^{*} E_{G}, f\left(U^{-1}\right)^{*} E_{K}\right)$ with $\left(E_{G}, E_{K}\right)$. Since $\left(E_{G}, E_{K}\right)$ is $\mathrm{SU}(2)$-homogeneous, we know that this space of holomorphic isometries is nonempty. The union

$$
\begin{equation*}
U_{E_{G}}:=\bigcup_{U \in \operatorname{SU}(2)} T(U) \tag{2.6}
\end{equation*}
$$

has a natural structure of a finite dimensional Lie group. The group operation is defined as follows: for $A_{1} \in T\left(U_{1}\right)$ and $A_{2} \in T\left(U_{2}\right)$,

$$
A_{1} A_{2}=\left(f\left(U_{1}^{-1}\right)^{*} A_{2}\right) \circ A_{1} \in T\left(U_{1} U_{2}\right)
$$

is simply the composition of the holomorphic isometry

$$
A_{1}: E_{G} \longrightarrow f\left(U_{1}^{-1}\right)^{*} E_{G}
$$

with the holomorphic isometry

$$
f\left(U_{1}^{-1}\right)^{*} A_{2}: f\left(U_{1}^{-1}\right)^{*} E_{G} \longrightarrow f\left(U_{1}^{-1}\right)^{*} f\left(U_{2}^{-1}\right)^{*} E_{G}=f\left(\left(U_{1} U_{2}\right)^{-1}\right)^{*} E_{G} .
$$

We have a forgetful homomorphism of Lie groups from U_{E} in Equation (2.6)

$$
\begin{equation*}
H: U_{E_{G}} \longrightarrow \mathrm{SU}(2) \tag{2.7}
\end{equation*}
$$

that sends any $A \in T(U)$ to U. It was noted above that H is surjective since $\left(E_{G}, E_{K}\right)$ is $\mathrm{SU}(2)$-homogeneous. Consequently, we have a short exact sequence of groups

$$
\begin{equation*}
e \longrightarrow \operatorname{Aut}\left(E_{G}, E_{K}\right) \longrightarrow U_{E_{G}} \xrightarrow{H} \mathrm{SU}(2) \longrightarrow e, \tag{2.8}
\end{equation*}
$$

where $\operatorname{Aut}\left(E_{G}, E_{K}\right)$ is the group of all holomorphic isometries of the holomorphic Hermitian principal G-bundle $\left(E_{G}, E_{K}\right)$, and H is constructed in Equation (2.7).

The Lie algebra of the Lie group $U_{E_{G}}$ (respectively, $\left.\operatorname{Aut}\left(E_{G}, E_{K}\right)\right)$ will be denoted by $\widetilde{\mathfrak{g}}$ (respectively, \mathfrak{g}_{0}). Let

$$
\begin{equation*}
0 \longrightarrow \mathfrak{g}_{0} \longrightarrow \tilde{\mathfrak{g}} \xrightarrow{h} \operatorname{su}(2) \longrightarrow e \tag{2.9}
\end{equation*}
$$

be the short exact sequence of Lie algebras associated to the short exact sequence of Lie groups in Equation (2.8). The Lie algebra $\operatorname{su}(2)$ of $\mathrm{SU}(2)$ is simple. Hence the homomorphism h in Equation (2.9) splits (see [4, p. 91, Corollaire 3]). In other words, there is a Lie algebra homomorphism

$$
\begin{equation*}
h^{\prime}: \operatorname{su}(2) \longrightarrow \tilde{\mathfrak{g}} \tag{2.10}
\end{equation*}
$$

such that $h \circ h^{\prime}=\operatorname{Id}_{\mathrm{su}(2)}$. Fix a splitting h^{\prime} as in Equation (2.10). The Lie group $\mathrm{SU}(2)$ is simply connected. Hence, the homomorphism h^{\prime} integrates into a homomorphism of Lie groups. In other words, there is a unique homomorphism of Lie groups

$$
\begin{equation*}
\rho^{\prime}: \mathrm{SU}(2) \longrightarrow U_{E_{G}} \tag{2.11}
\end{equation*}
$$

whose differential, at the identity element, is the homomorphism h^{\prime} in Equation (2.10). Since the differential $h \circ h^{\prime}$ of the homomorphism $H \circ \rho^{\prime}$ is the identity automorphism of $\operatorname{su}(2)$, it follows that $H \circ \rho^{\prime}=\operatorname{Id}_{\mathrm{SU}(2)}$.

Define

$$
\begin{equation*}
\rho: \mathrm{SU}(2) \times E_{G} \longrightarrow E_{G} \tag{2.12}
\end{equation*}
$$

as follows:

$$
\rho(A, z)=\rho^{\prime}\left(A^{-1}\right)(z)
$$

for all $(A, z) \in \mathrm{SU}(2) \times E_{G}$, where ρ^{\prime} is the homomorphism in Equation (2.11). It is now straight-forward to check that ρ in Equation (2.12) is a smooth action of $\mathrm{SU}(2)$ on the total space of E_{G} that satisfies all the four conditions in Definition 2.2. In other words, $\left(E_{G}, E_{K} ; \rho\right)$ is a $\mathrm{SU}(2)$-equivariant holomorphic Hermitian principal G-bundle. This completes the proof of the lemma.

Remark 2.4. A given $\mathrm{SU}(2)$-homogeneous holomorphic Hermitian principal G-bundle can have many non-isomorphic $\mathrm{SU}(2)$-equivariant structures. To explain this, take any homomorphism

$$
\beta: \mathrm{SU}(2) \longrightarrow K
$$

Let E_{G} be the trivial holomorphic principal G-bundle $\mathbb{C P}^{1} \times G$, and let

$$
E_{K}:=\mathbb{C P} \mathbb{P}^{1} \times K \subset \mathbb{C P}^{1} \times G=E_{G}
$$

be the natural reduction of structure group to K. The group $\mathrm{SU}(2)$ acts on K as left translations using the homomorphism β. Consider the diagonal action of $\mathrm{SU}(2)$ on $E_{K}=\mathbb{C P}^{1} \times K$ with $\mathrm{SU}(2)$ acting on $\mathbb{C P}^{1}$ using f in Equation (2.1). This diagonal action will be denoted by ρ_{β}. The triple ($\left.E_{G}, E_{K} ; \rho_{\beta}\right)$ is a $\mathrm{SU}(2)$-equivariant holomorphic Hermitian principal G-bundle.

It is easy to see that for another homomorphism $\beta^{\prime}: \mathrm{SU}(2) \longrightarrow K$, the corresponding $\mathrm{SU}(2)$-equivariant holomorphic Hermitian principal G-bundle $\left(E_{G}, E_{K} ; \rho_{\beta^{\prime}}\right)$ is isomorphic to ($E_{G}, E_{K} ; \rho_{\beta}$) if and only if there is a fixed element $g_{0} \in K$ such that

$$
\beta^{\prime}(g)=g_{0}^{-1} \beta(g) g_{0}
$$

for all $g \in \mathrm{SU}(2)$. In particular, if the homomorphism β is nontrivial, then $\left(E_{G}, E_{K} ; \rho_{\beta}\right)$ is not isomorphic to the $\mathrm{SU}(2)$-equivariant holomorphic Hermitian principal G-bundle corresponding to the trivial homomorphism of $\mathrm{SU}(2)$ to K.

3. Action of the isotropy subgroups

Consider the action of $\mathrm{SU}(2)$ on $\mathbb{C P}^{1}$ in Equation (2.1). For any point $x \in \mathbb{C P}^{1}$, let

$$
\begin{equation*}
H_{x} \subset \mathrm{SU}(2) \tag{3.1}
\end{equation*}
$$

be the isotropy subgroup of x for this action. Consider the line L^{x} in \mathbb{C}^{2} represented by x. Since H_{x} fixes x, it acts on this line L^{x}. This action defines a homomorphism of Lie groups

$$
\begin{equation*}
\chi^{x}: H_{x} \longrightarrow \mathrm{U}(1)=\{\lambda \in \mathbb{C}| | \lambda \mid=1\} . \tag{3.2}
\end{equation*}
$$

It is easy to see that this homomorphism χ^{x} is an isomorphism. In other words, χ^{x} in Equation (3.2) identifies the isotropy subgroup H_{x} with $\mathrm{U}(1)$.

For a principal G-bundle E_{G} over $\mathbb{C P}^{1}$, its adjoint bundle will be denoted by $\operatorname{Ad}\left(E_{G}\right)$. We recall that

$$
\operatorname{Ad}\left(E_{G}\right):=E_{G} \times{ }^{G} G
$$

is the fiber bundle over $\mathbb{C P}^{1}$ associated to E_{G} for the adjoint action of G on itself.

Remark 3.1. Since the adjoint action of G on itself preserves the group structure of G, the fibers of $\operatorname{Ad}\left(E_{G}\right)$ are groups isomorphic to G. More precisely, for any $x \in \mathbb{C P}^{1}$, there is an isomorphism of G with the fiber $\operatorname{Ad}\left(E_{G}\right)_{x}$ over x which is unique up to an inner automorphism of G. Indeed, fixing a point $z \in\left(E_{G}\right)_{x}$ we get an isomorphism

$$
\begin{equation*}
f_{z}: G \longrightarrow \operatorname{Ad}\left(E_{G}\right)_{x} \tag{3.3}
\end{equation*}
$$

that sends any $g \in G$ to the image of (z, g) in $\operatorname{Ad}\left(E_{G}\right)_{x}$ (recall that $\operatorname{Ad}\left(E_{G}\right)_{x}$ is a quotient of $\left.\left(E_{G}\right)_{x} \times G\right)$. If we replace z by $z g_{0}$, where $g_{0} \in G$, then the above isomorphism $G \longrightarrow \operatorname{Ad}\left(E_{G}\right)_{x}$ gets pre-composed with the inner automorphism of G that sends any $g \in G$ to $g_{0} g g_{0}^{-1}$.

Let $\left(E_{G}, E_{K} ; \rho\right)$ be a $\mathrm{SU}(2)$-equivariant holomorphic Hermitian principal G-bundle over $\mathbb{C P}^{1}$. The action of $\mathrm{SU}(2)$ on E_{G} defined by ρ induces an action of $\mathrm{SU}(2)$ on the total space of $\operatorname{Ad}\left(E_{G}\right)$ that lifts the action of $\mathrm{SU}(2)$ on $\mathbb{C P}^{1}$.

Take any point $x \in \mathbb{C P}^{1}$. Let $\left(E_{G}\right)_{x}$ denote the fiber of E_{G} over x. The isotropy subgroup H_{x} in Equation (3.1) acts on $\left(E_{G}\right)_{x}$ using ρ. The automorphisms of the principal G-bundle $\left(E_{G}\right)_{x}$ over x given by this action of H_{x} define a homomorphism of groups

$$
\begin{equation*}
\gamma_{x}: H_{x} \longrightarrow \operatorname{Ad}\left(E_{G}\right)_{x} \tag{3.4}
\end{equation*}
$$

Indeed, $\operatorname{Ad}\left(E_{G}\right)_{x}$ is the group of all diffeomorphisms of $\left(E_{G}\right)_{x}$ that commute with the action of G on $\left(E_{G}\right)_{x}$. Hence, the action of H_{x} on $\left(E_{G}\right)_{x}$ gives a homomorphism γ_{x} as in Equation (3.4).

Remark 3.2. Take two principal G-bundles E_{G}^{1} and E_{G}^{2} on $\mathbb{C P}^{1}$. The corresponding adjoint bundles will be denoted by $\operatorname{Ad}\left(E_{G}^{1}\right)$ and $\operatorname{Ad}\left(E_{G}^{2}\right)$, respectively. Fix two points x_{1} and x_{2} in $\mathbb{C P}^{1}$. Both the fibers $\operatorname{Ad}\left(E_{G}^{1}\right)_{x_{1}}$ and $\operatorname{Ad}\left(E_{G}^{2}\right)_{x_{2}}$ are identified with the group G up to inner automorphisms of G (this was explained in Remark 3.1). Hence, the class of inner isomorphisms
between $\operatorname{Ad}\left(E_{G}^{1}\right)_{x_{1}}$ and $\operatorname{Ad}\left(E_{G}^{2}\right)_{x_{2}}$ has a precise meaning. It is an isomorphism of groups

$$
\beta: \operatorname{Ad}\left(E_{G}^{1}\right)_{x_{1}} \longrightarrow \operatorname{Ad}\left(E_{G}^{2}\right)_{x_{2}}
$$

such that after fixing isomorphisms of $\operatorname{Ad}\left(E_{G}^{1}\right)_{x_{1}}$ and $\operatorname{Ad}\left(E_{G}^{2}\right)_{x_{2}}$ with G in the class of natural isomorphisms (which differ by inner automorphisms of G) the isomorphism β is transported to an inner automorphism of G.

The group H_{x} is identified with $\mathrm{U}(1)$ (see Equation (3.2)). Take any $x^{\prime} \in$ $\mathbb{C P}^{1}$. Since the action of $\mathrm{SU}(2)$ on $\mathbb{C P}^{1}$ is transitive, the homomorphism γ_{x} (see Equation (3.4)) is equivalent, in the following sense, to the homomorphism

$$
\gamma_{x^{\prime}}: H_{x^{\prime}}=\mathrm{U}(1) \longrightarrow \operatorname{Ad}\left(E_{G}\right)_{x^{\prime}}
$$

constructed as in Equation (3.4) for x^{\prime}. There is an inner isomorphism of the group $\operatorname{Ad}\left(E_{G}\right)_{x}$ with $\operatorname{Ad}\left(E_{G}\right)_{x^{\prime}}$ that transports the homomorphism γ_{x} to $\gamma_{x^{\prime}} ;$ see Remark 3.2 for inner isomorphism. To construct such an isomorphism of $\operatorname{Ad}\left(E_{G}\right)_{x}$ with $\operatorname{Ad}\left(E_{G}\right)_{x^{\prime}}$, fix an element $A \in \mathrm{SU}(2)$ such that $f(A)(x)=x^{\prime}$, where f is the homomorphism in Equation (2.1). The action of A on $\operatorname{Ad}\left(E_{G}\right)$ takes the fiber $\operatorname{Ad}\left(E_{G}\right)_{x}$ to $\operatorname{Ad}\left(E_{G}\right)_{x^{\prime}}$. This isomorphism of $\operatorname{Ad}\left(E_{G}\right)_{x}$ with $\operatorname{Ad}\left(E_{G}\right)_{x^{\prime}}$ given by the action of A intertwines the homomorphisms γ_{x} and $\gamma_{x^{\prime}}$ from $\mathrm{U}(1)$ to $\operatorname{Ad}\left(E_{G}\right)_{x}$ and $\operatorname{Ad}\left(E_{G}\right)_{x^{\prime}}$, respectively.

Remark 3.3. Since $\gamma_{x^{\prime}}$ is equivalent to γ_{x}, if the image of γ_{x} lies in the center of the group $\operatorname{Ad}\left(E_{G}\right)_{x}$, then the image of $\gamma_{x^{\prime}}$ also lies in the center of $\operatorname{Ad}\left(E_{G}\right)_{x^{\prime}}$.

Corollary 3.4. Let $\left(E_{G}, E_{K} ; \rho\right)$ be a $\mathrm{SU}(2)$-equivariant holomorphic Hermitian principal G-bundle over $\mathbb{C P}^{1}$ such that the image of the homomorphism γ_{x} (see Equation (3.4)) lies in the center of the group $\operatorname{Ad}\left(E_{G}\right)_{x}$ for some $x \in X$ (hence for all $x \in X$ by Remark 3.3). Let $\left(E_{G}^{\prime}, E_{K}^{\prime} ; \rho^{\prime}\right)$ be another $\mathrm{SU}(2)$-equivariant holomorphic Hermitian principal G-bundle over $\mathbb{C P}^{1}$ such that there is an inner isomorphism

$$
\operatorname{Ad}\left(E_{G}\right)_{x} \longrightarrow \operatorname{Ad}\left(E_{G}^{\prime}\right)_{x}
$$

(see Remark 3.2) that takes the homomorphism γ_{x} to the homomorphism

$$
\gamma_{x}^{\prime}: H_{x} \longrightarrow \operatorname{Ad}\left(E_{G}^{\prime}\right)_{x}
$$

constructed as in Equation (3.4) for $\left(E_{G}^{\prime}, E_{K}^{\prime} ; \rho^{\prime}\right)$. Then the two $\mathrm{SU}(2)$ equivariant holomorphic Hermitian principal G-bundles $\left(E_{G}, E_{K} ; \rho\right)$ and $\left(E_{G}^{\prime}\right.$, $\left.E_{K}^{\prime} ; \rho^{\prime}\right)$ are isomorphic.

The C^{∞} principal G-bundle E_{G} equipped with the action ρ of $\mathrm{SU}(2)$ does not admit a different holomorphic structure \widehat{E}_{G} satisfying the condition that $\left(\widehat{E}_{G}, E_{K} ; \rho\right)$ is also a $\mathrm{SU}(2)$-equivariant holomorphic Hermitian principal G bundle.

Proof. Let

$$
\begin{equation*}
Z(G) \subset G \tag{3.5}
\end{equation*}
$$

be the center, which is a complex Abelian reductive group. Since the righttranslation action of G on itself commutes with the right-translation action of $Z(G)$ on G, for any $g \in Z(G)$, the map

$$
E_{G} \longrightarrow E_{G}
$$

defined by

$$
\begin{equation*}
z \longmapsto z g \tag{3.6}
\end{equation*}
$$

is a holomorphic automorphism of the principal G-bundle E_{G}. Therefore, we have a homomorphism

$$
\begin{equation*}
\zeta: Z(G) \longrightarrow H^{0}\left(\mathbb{C P}^{1}, \operatorname{Ad}\left(E_{G}\right)\right) \tag{3.7}
\end{equation*}
$$

where $H^{0}\left(\mathbb{C P}^{1}, \operatorname{Ad}\left(E_{G}\right)\right)$ is the group of all holomorphic sections of $\operatorname{Ad}\left(E_{G}\right)$ (which is same as the group of all holomorphic global automorphisms of the principal G-bundle E_{G}). The homomorphism ζ takes any $g \in Z(G)$ to the automorphism of E_{G} defined in Equation (3.6). For any point $y \in \mathbb{C P}^{1}$, the image

$$
\zeta(y)(Z(G)) \subset \operatorname{Ad}\left(E_{G}\right)_{y}
$$

is the center of the group $\operatorname{Ad}\left(E_{G}\right)_{y}$.
Fix an element

$$
\begin{equation*}
\kappa \in\left(E_{K}\right)_{x} \tag{3.8}
\end{equation*}
$$

in the fiber of E_{K} over x, and also fix an element

$$
\begin{equation*}
\kappa^{\prime} \in\left(E_{K}^{\prime}\right)_{x} \tag{3.9}
\end{equation*}
$$

where x is the point of $\mathbb{C P}^{1}$ in the statement of the proposition. Let

$$
\begin{equation*}
\tau_{x}:\left(E_{G}\right)_{x} \longrightarrow\left(E_{G}^{\prime}\right)_{x} \tag{3.10}
\end{equation*}
$$

be the isomorphism defined by

$$
\kappa g \longmapsto \kappa^{\prime} g
$$

for all $g \in G$, where κ and κ^{\prime} are the points in Equation (3.8) and Equation (3.9).

From the two conditions in the proposition that the image of the homomorphism γ_{x} lies in the center of $\operatorname{Ad}\left(E_{G}\right)_{x}$, and there is an inner isomorphism

$$
\operatorname{Ad}\left(E_{G}\right)_{x} \longrightarrow \operatorname{Ad}\left(E_{G}^{\prime}\right)_{x}
$$

that takes γ_{x} to γ_{x}^{\prime}, it follows immediately that the image of the homomorphism γ_{x}^{\prime} also lies in the center of $\operatorname{Ad}\left(E_{G}^{\prime}\right)_{x}$. It is now straight-forward to check that the map τ_{x} in Equation (3.10) intertwines the actions of the group H_{x} in Equation (3.1) on $\left(E_{G}\right)_{x}$ and $\left(E_{G}^{\prime}\right)_{x}$.

We will show that τ_{x} extends uniquely to a C^{∞} isomorphism of E_{G} with E_{G}^{\prime} that intertwines the actions of $\mathrm{SU}(2)$ on E_{G} and E_{G}^{\prime}.

Take any point

$$
y \in \mathbb{C P}^{1}
$$

Fix

$$
\begin{equation*}
A_{y} \in \mathrm{SU}(2) \tag{3.11}
\end{equation*}
$$

such that $f\left(A_{y}\right)(x)=y$, where f is the homomorphism in Equation (2.1). Let

$$
\begin{equation*}
\tau_{y}:\left(E_{G}\right)_{y} \longrightarrow\left(E_{G}^{\prime}\right)_{y} \tag{3.12}
\end{equation*}
$$

be the isomorphism defined by

$$
\begin{equation*}
\rho\left(A_{y}, z\right) \longmapsto \rho^{\prime}\left(A_{y}, \tau_{x}(z)\right) \tag{3.13}
\end{equation*}
$$

for all $z \in\left(E_{G}\right)_{x}$, where τ_{x} is defined in Equation (3.10). Since the actions of A_{y} on E_{G} defined by ρ sends $\left(E_{G}\right)_{x}$ isomorphically to $\left(E_{G}\right)_{y}$, the map τ_{y} in Equation (3.13) is well defined.

Using the fact that τ_{x} intertwines the actions of the isotropy subgroup H_{x} on $\left(E_{G}\right)_{x}$ and $\left(E_{G}^{\prime}\right)_{x}$ it can be shown that the isomorphism τ_{y} in Equation (3.12) also intertwines the actions of H_{y} on the fibers $\left(E_{G}\right)_{y}$ and $\left(E_{G}^{\prime}\right)_{y}$. Indeed, for any $z \in\left(E_{G}\right)_{x}$ and any $g \in H_{y}$, we have

$$
\begin{align*}
\tau_{y}\left(\rho\left(g, \rho\left(A_{y}, z\right)\right)\right) & =\tau_{y}\left(\rho\left(A_{y} A_{y}^{-1} g, \rho\left(A_{y}, z\right)\right)\right) \tag{3.14}\\
& =\tau_{y}\left(\rho\left(A_{y}, \rho\left(A_{y}^{-1} g A_{y}, z\right)\right)\right)
\end{align*}
$$

(the second equality follows from the fact that ρ is an action of the group $\mathrm{SU}(2))$. Now from the definition of τ_{y} we have

$$
\begin{equation*}
\tau_{y}\left(\rho\left(A_{y}, \rho\left(A_{y}^{-1} g A_{y}, z\right)\right)\right)=\rho^{\prime}\left(A_{y}, \tau_{x}\left(\rho\left(A_{y}^{-1} g A_{y}, z\right)\right)\right) \tag{3.15}
\end{equation*}
$$

Clearly, $A_{y}^{-1} g A_{y} \in H_{x}$, hence τ_{x} intertwines the actions of $A_{y}^{-1} g A_{y}$ on $\left(E_{G}\right)_{x}$ and $\left(E_{G}^{\prime}\right)_{x}$. In other words,

$$
\begin{equation*}
\tau_{x}\left(\rho\left(A_{y}^{-1} g A_{y}, z\right)\right)=\rho^{\prime}\left(A_{y}^{-1} g A_{y}, \tau_{x}(z)\right) \tag{3.16}
\end{equation*}
$$

Since ρ^{\prime} is an action of the group $\mathrm{SU}(2)$, from Equation (3.16) and the definition of τ_{y} we have

$$
\begin{align*}
\rho^{\prime}\left(A_{y}, \tau_{x}\left(\rho\left(A_{y}^{-1} g A_{y}, z\right)\right)\right) & =\rho^{\prime}\left(A_{y}, \rho^{\prime}\left(A_{y}^{-1} g A_{y}, \tau_{x}(z)\right)\right) \tag{3.17}\\
& =\rho^{\prime}\left(A_{y} A_{y}^{-1} g, \rho^{\prime}\left(A_{y}, \tau_{x}(z)\right)\right)
\end{align*}
$$

Also, $\rho^{\prime}\left(A_{y} A_{y}^{-1} g, \rho^{\prime}\left(A_{y}, \tau_{x}(z)\right)\right)=\rho^{\prime}\left(g, \tau_{y}\left(\rho\left(A_{y}, z\right)\right)\right)$. Therefore, combining Equation (3.14), Equation (3.15) and Equation (3.17) we have

$$
\tau_{y}\left(\rho\left(g, \rho\left(A_{y}, z\right)\right)\right)=\rho^{\prime}\left(g, \tau_{y}\left(\rho\left(A_{y}, z\right)\right)\right)
$$

In other words, the isomorphism τ_{y} intertwines the actions of H_{y} on the fibers $\left(E_{G}\right)_{y}$ and $\left(E_{G}^{\prime}\right)_{y}$.

For any $A_{y}^{\prime} \in \mathrm{SU}(2)$ such that $f\left(A_{y}^{\prime}\right)(x)=y$, we have $A_{y}^{\prime}=g A_{y}$, where $g \in H_{y}$. Since τ_{x} (respectively, τ_{y}) intertwines the action of H_{x} (respectively,
$\left.H_{y}\right)$ on $\left(E_{G}\right)_{x}$ and $\left(E_{G}^{\prime}\right)_{x}$ (respectively, $\left(E_{G}\right)_{y}$ and $\left.\left(E_{G}^{\prime}\right)_{y}\right)$, the isomorphism τ_{y} is actually independent of the choice of the element A_{y} in Equation (3.11) (but of course it depends on the map τ_{x}). Also, if $x=y$, then τ_{y} clearly coincides with τ_{x}. Hence, we have a diffeomorphism

$$
\begin{equation*}
\tau: E_{G} \longrightarrow E_{G}^{\prime} \tag{3.18}
\end{equation*}
$$

defined by

$$
\tau(z)=\tau_{p(z)}(z)
$$

where $p: E_{G} \longrightarrow \mathbb{C P}^{1}$ is the natural projection. This map τ clearly intertwines the actions of G on E_{G} and E_{G}^{\prime}. Hence, τ in Equation (3.18) is a C^{∞} isomorphism of principal bundles.

It is straight-forward to check that

$$
\tau\left(E_{K}\right)=E_{K}^{\prime}
$$

as well as that τ intertwines the actions of $\mathrm{SU}(2)$ on E_{G} and E_{G}^{\prime}.
Therefore, to prove that τ is an isomorphism between the two $\mathrm{SU}(2)$ equivariant holomorphic Hermitian principal G-bundles

$$
\left(E_{G}, E_{K} ; \rho\right) \quad \text { and } \quad\left(E_{G}^{\prime}, E_{K}^{\prime} ; \rho^{\prime}\right)
$$

it suffices to show that τ is holomorphic.
Pull back to E_{G}^{\prime} the holomorphic structure on the principal G-bundle E_{G}^{\prime} using the isomorphism τ in Equation (3.18). Any two holomorphic structures on the smooth principal G-bundle E_{G} differ by a smooth $(0,1)$-form with values in the adjoint vector bundle $\operatorname{ad}\left(E_{G}\right)$. We recall that $\operatorname{ad}\left(E_{G}\right)=E_{G} \times{ }^{G} \mathfrak{g}$ is the vector bundle over $\mathbb{C P}^{1}$ associated to the principal G-bundle E_{G} for the adjoint action of G on its Lie algebra \mathfrak{g}. Let

$$
\begin{equation*}
\theta \in C^{\infty}\left(\Omega^{0,1}\left(\operatorname{ad}\left(E_{G}\right)\right)\right) \tag{3.19}
\end{equation*}
$$

be the $(0,1)$-form with values in $\operatorname{ad}\left(E_{G}\right)$ obtained by taking the difference of the pulled back, by τ, of the holomorphic structure and the original holomorphic structure on E_{G}.

Since τ intertwines the actions of $\mathrm{SU}(2)$ on E_{G} and E_{G}^{\prime}, and $\mathrm{SU}(2)$ acts on E_{G} and E_{G}^{\prime} as holomorphic automorphisms, it follows immediately that the section θ in Equation (3.19) is left invariant by the action of $\mathrm{SU}(2)$ on the C^{∞} vector bundle

$$
\Omega^{0,1}\left(\operatorname{ad}\left(E_{G}\right)\right)=\left(T^{0,1} \mathbb{C P}^{1}\right)^{*} \otimes \operatorname{ad}\left(E_{G}\right)
$$

(The action of $\mathrm{SU}(2)$ on $\left(T^{0,1} \mathbb{C P}^{1}\right)^{*} \otimes \operatorname{ad}\left(E_{G}\right)$ is the tensor product of its actions on $\left(T^{0,1} \mathbb{C P}^{1}\right)^{*}$ and $\operatorname{ad}\left(E_{G}\right)$.) Consider the action of the isotropy subgroup H_{x} on the fiber

$$
\Omega^{0,1}\left(\operatorname{ad}\left(E_{G}\right)\right)_{x}=\left(T_{x}^{0,1}\right)^{*} \otimes \operatorname{ad}\left(E_{G}\right)_{x}
$$

The group $H_{x}=\mathrm{U}(1)$ (see Equation (3.2)) acts on the fiber $\left(T_{x}^{0,1}\right)^{*}$ as follows: any $\lambda \in \mathrm{U}(1)$ acts on $\left(T_{x}^{0,1}\right)^{*}$ as multiplication by $1 / \lambda^{2}$. On the other hand,
since the image of the homomorphism γ_{x} (see Equation (3.4)) lies in the center of the group $\operatorname{Ad}\left(E_{G}\right)_{x}$, it follows immediately that H_{x} acts trivially on the fiber $\operatorname{ad}\left(E_{G}\right)_{x}$ (the Lie algebra of the group $\operatorname{Ad}\left(E_{G}\right)_{x}$ is $\operatorname{ad}\left(E_{G}\right)_{x}$, and the adjoint action on $\operatorname{ad}\left(E_{G}\right)_{x}$ of the center of $\operatorname{Ad}\left(E_{G}\right)_{x}$ is trivial). Consequently, no nonzero element of the fiber $\Omega^{0,1}\left(\operatorname{ad}\left(E_{G}\right)\right)_{x}$ is preserved by the action of H_{x}.

Since θ in Equation (3.19) is left invariant by the action of $\mathrm{SU}(2)$ on E_{G}, we now conclude that $\theta=0$. In other words, the isomorphism τ in Equation (3.18) is holomorphic. This completes the proof of the first part of the proposition.

To prove the second statement of the proposition, assume that the C^{∞} principal G-bundle E_{G} equipped with the action ρ of $\mathrm{SU}(2)$ admits another holomorphic structure \widehat{E}_{G} such that $\left(\widehat{E}_{G}, E_{K} ; \rho\right)$ is also a $\mathrm{SU}(2)$-equivariant holomorphic Hermitian principal G-bundle. Let

$$
\theta \in C^{\infty}\left(\Omega^{0,1}\left(\operatorname{ad}\left(E_{G}\right)\right)\right)
$$

be the difference of the two holomorphic structures on the C^{∞} principal G bundle E_{G}. Clearly, θ is left invariant by the action of $\mathrm{SU}(2)$ on $\Omega^{0,1}\left(\operatorname{ad}\left(E_{G}\right)\right)$. We have already shown above that such a section must vanish identically. Hence, the holomorphic structure \widehat{E}_{G} actually coincides with the original holomorphic structure on E_{G}. This completes the proof of the proposition.

The projection ψ in Equation (2.2) defines a holomorphic principal \mathbb{C}^{*} bundle on $\mathbb{C P}^{1}$. Let

$$
\begin{equation*}
\psi: E_{\mathbb{C}^{*}} \longrightarrow \mathbb{C P}^{1} \tag{3.20}
\end{equation*}
$$

be the principal \mathbb{C}^{*}-bundle defined by ψ. We will construct a C^{∞} reduction of structure group of $E_{\mathbb{C}^{*}}$ to the subgroup $\mathrm{U}(1) \subset \mathbb{C}^{*}$.

Take a point

$$
\begin{equation*}
x \in \mathbb{C P}^{1} \tag{3.21}
\end{equation*}
$$

and also fix a point $\widetilde{x}=\left(z_{1}, z_{2}\right) \in \mathbb{C}^{2} \backslash\{0\}$ such that $\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}=1$, and $\psi(\widetilde{x})=x$, where ψ is the projection in Equation (2.2). Let

$$
\mathcal{O}(\widetilde{x}):=\mathrm{SU}(2)(\widetilde{x}) \subset \mathbb{C}^{2} \backslash\{0\}
$$

be the orbit of \widetilde{x} for the standard action of $\mathrm{SU}(2)$ on $\mathbb{C}^{2} \backslash\{0\}$. Note that the action of $\mathrm{SU}(2)$ on $\mathbb{C}^{2} \backslash\{0\}$ is free, hence $\mathcal{O}(\widetilde{x})$ is identified with $\mathrm{SU}(2)$. The restriction of the projection ψ to $\mathcal{O}(\widetilde{x})$

$$
\begin{equation*}
\psi_{x}: \mathcal{O}(\widetilde{x}) \longrightarrow \mathbb{C P}^{1} \tag{3.22}
\end{equation*}
$$

is a principal H_{x}-bundle, where H_{x} is the isotropy subgroup in Equation (3.1). We noted earlier that $H_{x}=\mathrm{U}(1)$ (see Equation (3.2)), hence ψ_{x} in Equation (3.22) defines a principal $\mathrm{U}(1)$-bundle. The inclusion map $\mathcal{O}(\widetilde{x}) \hookrightarrow$
$\mathbb{C}^{2} \backslash\{0\}$ is a C^{∞} reduction of structure group of $E_{\mathbb{C}^{*}}$ (see Equation (3.20)) to $\mathrm{U}(1)$. The standard action of $\mathrm{SU}(2)$ on $\mathbb{C}^{2} \backslash\{0\}$ makes the pair

$$
\begin{equation*}
\left(E_{\mathbb{C}^{*}}, \mathcal{O}(\widetilde{x})\right) \tag{3.23}
\end{equation*}
$$

a $\mathrm{SU}(2)$-equivariant holomorphic Hermitian principal \mathbb{C}^{*}-bundle over $\mathbb{C P}^{1}$.
Take a homomorphism of Lie groups

$$
\begin{equation*}
\gamma: \mathrm{U}(1) \longrightarrow K \tag{3.24}
\end{equation*}
$$

where K is the group in Equation (2.4). Let

$$
\begin{equation*}
\widetilde{\gamma}: \mathbb{C}^{*} \longrightarrow G \tag{3.25}
\end{equation*}
$$

be an extension of γ in Equation (3.24) as a holomorphic homomorphism between complex Lie groups. We note that there is exactly one such extension.

Let $\left(E_{G}^{\gamma}, E_{K}^{\gamma}\right)$ be the $\mathrm{SU}(2)$-equivariant holomorphic Hermitian principal G-bundle over $\mathbb{C P}^{1}$ obtained by extending the structure group of the $\mathrm{SU}(2)$ equivariant holomorphic Hermitian principal \mathbb{C}^{*}-bundle in Equation (3.23) using the homomorphism γ in Equation (3.24). More precisely, the principal G-bundle E_{G}^{γ} (respectively, the principal K-bundle E_{K}^{γ}) is obtained by extending the structure group of $E_{\mathbb{C}^{*}}^{0}$ (respectively, $\left.\mathcal{O}(\widetilde{x})\right)$ using the homomorphism $\widetilde{\gamma}$ (respectively, γ) in Equation (3.25) (respectively, Equation (3.24)). Note that the action of $\mathrm{SU}(2)$ on $\mathcal{O}(\widetilde{x})$ induces an action of $\mathrm{SU}(2)$ on $E_{K}^{\gamma}=\mathcal{O}(\widetilde{x}) \times{ }^{\mathrm{U}(1)} K$.

Since E_{K}^{γ} is the extension of structure group of the principal $\mathrm{U}(1)$-bundle $\mathcal{O}(\widetilde{x})$ in Equation (3.23), we have a map

$$
\phi: \mathcal{O}(\widetilde{x}) \longrightarrow E_{K}^{\gamma} .
$$

The fiber $\operatorname{Ad}\left(E_{K}^{\gamma}\right)_{x}$ over the point x in Equation (3.21) is identified with K as follows: send any $g \in K$ to the point in $\operatorname{Ad}\left(E_{K}^{\gamma}\right)_{x}$ defined by $(\phi(\widetilde{x}), g)$ (recall that $\operatorname{Ad}\left(E_{K}^{\gamma}\right)$ is a quotient of $\left.E_{K}^{\gamma} \times K\right)$. This identification of $\operatorname{Ad}\left(E_{K}^{\gamma}\right)_{x}$ with K extends to an identification of $\operatorname{Ad}\left(E_{G}^{\gamma}\right)_{x}$ with G.

Construct the homomorphism γ_{x} as in Equation (3.4) for the $\mathrm{SU}(2)$-equivariant holomorphic Hermitian principal G-bundle $\left(E_{G}^{\gamma}, E_{K}^{\gamma}\right)$ constructed above from the holomorphic Hermitian principal \mathbb{C}^{*}-bundle in Equation (3.23). It is straight-forward to check that γ_{x} coincides with the homomorphism γ in Equation (3.24) after we identify $\mathrm{U}(1)$ with H_{x} using the character χ^{x} in Equation (3.2).

Therefore, we have the following lemma which also complements Proposition 3.4.

Lemma 3.5. Take a homomorphism γ as in Equation (3.24). Associated to γ, there is a natural $\mathrm{SU}(2)$-equivariant holomorphic Hermitian principal G-bundle $\left(E_{G}, E_{K} ; \rho\right)$ over $\mathbb{C P} \mathbb{P}^{1}$ such that the homomorphism γ_{x} (see Equation (3.4)) coincides with γ after identifying $\mathrm{U}(1)$ with H_{x} using the character χ^{x} in Equation (3.2).

4. A construction of $\mathrm{SU}(2)$-equivariant holomorphic Hermitian principal bundles

Let $\left(E_{G}, E_{K} ; \rho\right)$ be a $\mathrm{SU}(2)$-equivariant holomorphic Hermitian principal G-bundle over $\mathbb{C P}^{1}$. Fix a point $x \in \mathbb{C P}^{1}$, and consider the homomorphism γ_{x} constructed in Equation (3.4). The action of $\mathrm{SU}(2)$ on E_{G} is induced by an action on E_{K}, namely ρ, of $\mathrm{SU}(2)$. Hence, the image of γ_{x} lies inside the subgroup $\operatorname{Ad}\left(E_{K}\right)_{x} \subset \operatorname{Ad}\left(E_{G}\right)_{x}$. Fix a point

$$
z \in\left(E_{K}\right)_{x}
$$

Let f_{z} be the isomorphism constructed as in Equation (3.3). Since $z \in\left(E_{K}\right)_{x}$, the isomorphism f_{z} takes the subgroup $K \subset G$ to $\operatorname{Ad}\left(E_{K}\right)_{x} \subset \operatorname{Ad}\left(E_{G}\right)_{x}$. Define

$$
\begin{equation*}
\alpha_{0}:=f_{z}^{-1} \circ \gamma_{x} \circ\left(\chi^{x}\right)^{-1}: \mathrm{U}(1) \longrightarrow K \subset G \tag{4.1}
\end{equation*}
$$

to be the homomorphism, where χ^{x} is constructed in Equation (3.2).
Now, for any point $y \in \mathbb{C P}^{1} \backslash\{x\}$, consider the homomorphism

$$
\gamma_{y}: H_{y} \longrightarrow \operatorname{Ad}\left(E_{K}\right)_{y}
$$

constructed as in Equation (3.4). This homomorphism γ_{y} is conjugate to the homomorphism α_{0} in Equation (4.1) after H_{y} is identified with $\mathrm{U}(1)$ using χ^{y} is constructed as in Equation (3.2). To see this, fix an element $g \in \mathrm{SU}(2)$ such that $f(g)(x)=y$, where f is the homomorphism in Equation (2.1). It is now straight-forward to check that the isomorphism $f_{\rho(g, z)}^{-1} \circ \gamma_{y} \circ\left(\chi^{y}\right)^{-1}$ coincides with α_{0}, where $f_{\rho(g, z)}$ is defined in Equation (3.3).

Using the homomorphism α_{0}, we will construct a smooth reduction of structure group of E_{K}.

Let

$$
\begin{equation*}
K_{0}:=C\left(\alpha_{0}(\mathrm{U}(1))\right) \subset K \tag{4.2}
\end{equation*}
$$

be the centralizer of the subgroup $\alpha_{0}(\mathrm{U}(1))$ of K, where α_{0} is constructed in Equation (4.1). This subgroup K_{0} of K is compact and connected.

Corollary 4.1. Let $\left(E_{G}, E_{K} ; \rho\right)$ be a $\mathrm{SU}(2)$-equivariant holomorphic Hermitian principal G-bundle over $\mathbb{C P}^{1}$. The principal K-bundle E_{K} has a natural smooth reduction of structure group

$$
E_{K_{0}} \subset E_{K}
$$

to the subgroup K_{0} in Equation (4.2), which is left invariant by the action ρ of $\mathrm{SU}(2)$ on E_{K}.

Proof. For any point $y \in \mathbb{C P}^{1}$, and any point $z^{\prime} \in E_{K}$, let

$$
\delta_{z^{\prime}}:=f_{z^{\prime}}^{-1} \circ \gamma_{y} \circ\left(\chi^{y}\right)^{-1}: \mathrm{U}(1) \longrightarrow K \subset G
$$

be the homomorphism, where $f_{z^{\prime}}: G \longrightarrow \operatorname{Ad}\left(E_{G}\right)_{y}$ is constructed as in Equation (3.3), the homomorphism γ_{y} is constructed in Equation (3.4) and χ^{y} is
defined as in Equation (3.2). We note that $\delta_{z}=\alpha_{0}$, where α_{0} is constructed in Equation (4.1). Define

$$
\begin{equation*}
\left(E_{K_{0}}\right)_{y}:=\left\{z^{\prime} \in\left(E_{K}\right)_{y} \mid \delta_{z^{\prime}}=\alpha_{0}\right\} \subset\left(E_{K}\right)_{y} \tag{4.3}
\end{equation*}
$$

Let

$$
E_{K_{0}} \subset E_{K}
$$

be the sub-fiber bundle whose fiber over any point y is $\left(E_{K_{0}}\right)_{y}$ defined in Equation (4.3).

It is straight-forward to check that the subgroup K_{0} in Equation (4.2) acts transitively on the fibers of $E_{K_{0}}$. Therefore, $E_{K_{0}}$ is a smooth reduction of structure group of E_{K} to K_{0}. The action of $\mathrm{SU}(2)$ on E_{K} evidently preserves the submanifold $E_{K_{0}}$. This completes the proof of the proposition.

Let

$$
\begin{equation*}
G_{0} \subset G \tag{4.4}
\end{equation*}
$$

be the Zariski closure of the subgroup K_{0} defined in Equation (4.2). The group G_{0} is reductive, because K_{0} is a compact subgroup of G. Since K_{0} is connected it also follows that G_{0} is connected.

Let $E_{G_{0}}$ be the C^{∞} principal G_{0}-bundle over $\mathbb{C P}^{1}$ obtained by extending the structure group of $E_{K_{0}}$ constructed in Proposition 4.1 using the inclusion of K_{0} in the group G_{0} in Equation (4.4). We recall that $E_{K_{0}}$ is a reduction of structure group of E_{K} to the subgroup $K_{0} \subset K$. On the other hand, E_{K} is a reduction of structure group of E_{G} to K. Hence $E_{G_{0}}$ is also a C^{∞} reduction of structure group of E_{G} to G_{0}.

Since the reduction $E_{K_{0}}$ is preserved by the action ρ of $\mathrm{SU}(2)$ on $E_{K_{0}}$, the principal K_{0}-bundle $E_{K_{0}}$ gets an induced action. This induced action of $\mathrm{SU}(2)$ on $E_{K_{0}}$ will be denoted by ρ_{0}. Now, ρ_{0} induces an action of $\mathrm{SU}(2)$ on $E_{G_{0}}$; this induced action of $\mathrm{SU}(2)$ on $E_{G_{0}}$ will also be denoted by ρ_{0}. We will show that $\left(E_{G_{0}}, E_{K_{0}} ; \rho_{0}\right)$ has a natural structure of a $\mathrm{SU}(2)$-equivariant holomorphic Hermitian principal G_{0}-bundle.

Take a point $x \in \mathbb{C P}^{1}$. Let

$$
\begin{equation*}
\gamma_{x}^{0}: H_{x} \longrightarrow \operatorname{Ad}\left(E_{G_{0}}\right)_{x} \tag{4.5}
\end{equation*}
$$

be the homomorphism constructed as in Equation (3.4) for the action ρ_{0} of $\mathrm{SU}(2)$ on $E_{G_{0}}$. Since K_{0} is centralizer of $\alpha_{0}(\mathrm{U}(1))$ in K (see Equation (4.2)), the image $\alpha_{0}(\mathrm{U}(1))$ lies inside the center of K_{0}. Therefore, $\alpha_{0}(\mathrm{U}(1))$ lies inside the center of G_{0}. Now comparing the definitions of α_{0} and γ_{x} (see Equation (4.1)) we conclude that the image of the homomorphism γ_{x}^{0} in Equation (4.5) lies inside the center of $\operatorname{Ad}\left(E_{G_{0}}\right)_{x}$.

Since the image of the homomorphism γ_{x}^{0} lies inside the center of $\operatorname{Ad}\left(E_{G_{0}}\right)_{x}$, from the second part of Proposition 3.4 and Lemma 3.5 we conclude that there is exactly one holomorphic structure on the principal G_{0}-bundle on $E_{G_{0}}$
that makes $\left(E_{G_{0}}, E_{K_{0}} ; \rho_{0}\right)$ into a $\mathrm{SU}(2)$-equivariant holomorphic Hermitian principal G_{0}-bundle.

The holomorphic principal G_{0}-bundle defined by this unique holomorphic structure on the C^{∞} principal G_{0}-bundle $E_{G_{0}}$ will be denoted by $\widehat{E}_{G_{0}}$. Let \widehat{E}_{G} denote the holomorphic principal G-bundle over $\mathbb{C P}^{1}$ obtained by extending the structure group of $\widehat{E}_{G_{0}}$ using the inclusion of G_{0} in G.

We noted earlier that $E_{G_{0}}$ is a C^{∞} reduction of structure group of E_{G}. Therefore, the C^{∞} principal G-bundle underlying the holomorphic principal G-bundle \widehat{E}_{G} is identified with that of E_{G}. Therefore, \widehat{E}_{G} and E_{G} are holomorphic structures on the same C^{∞} principal G-bundle such that both $\left(\widehat{E}_{G}, E_{K} ; \rho\right)$ and $\left(E_{G}, E_{K} ; \rho\right)$ are $\mathrm{SU}(2)$-equivariant holomorphic Hermitian principal G-bundles.

We note that the $\mathrm{SU}(2)$-equivariant holomorphic Hermitian principal G bundle ($\widehat{E}_{G}, E_{K} ; \rho$) has the following property.

If we set the homomorphism γ in Lemma 3.5 to be α_{0} defined in Equation (4.1), then the $\mathrm{SU}(2)$-equivariant holomorphic Hermitian principal G bundle in Lemma 3.5 is isomorphic to $\left(\widehat{E}_{G}, E_{K} ; \rho\right)$. Indeed, this follows from the above construction of $\left(\widehat{E}_{G}, E_{K} ; \rho\right)$, and the construction in Lemma 3.5.

The above constructions and observations are put down as the following lemma.

Lemma 4.2. Given any $\mathrm{SU}(2)$-equivariant holomorphic Hermitian principal G-bundle $\left(E_{G}, E_{K} ; \rho\right)$ on $\mathbb{C P}^{1}$, there is a natural construction, using $\left(E_{G}, E_{K} ; \rho\right)$, of another $\mathrm{SU}(2)$-equivariant holomorphic Hermitian principal G-bundle. Only the holomorphic structure of the principal G-bundle of the new $\mathrm{SU}(2)$-equivariant holomorphic Hermitian principal G-bundle is different from E_{G}. More precisely, the underlying C^{∞} principal G-bundle, the reduction of structure group to K as well as the action of $\mathrm{SU}(2)$ on the principal G-bundle remain unchanged.

The $\mathrm{SU}(2)$-equivariant holomorphic Hermitian principal G-bundle constructed from $\left(E_{G}, E_{K} ; \rho\right)$ is also one those constructed in Lemma 3.5.

5. Classification of $\mathrm{SU}(2)$-equivariant holomorphic Hermitian bundles

As before, let G be a connected reductive linear algebraic group defined over \mathbb{C} and $K \subset G$ a maximal compact subgroup. The Lie algebra of G will be denoted by \mathfrak{g}.

Take any homomorphism

$$
\gamma: \mathrm{U}(1) \longrightarrow K
$$

as in Equation (3.24). Let $\left(E_{G}, E_{K} ; \rho\right)$ be the $\mathrm{SU}(2)$-equivariant holomorphic Hermitian principal G-bundle over $\mathbb{C P}^{1}$ obtained by extending the structure
group of the $\mathrm{SU}(2)$-equivariant holomorphic Hermitian principal \mathbb{C}^{*}-bundle $\left(E_{\mathbb{C}^{*}}^{0}, S^{3}\right)$ in Equation (3.23) using γ (see also Lemma 3.5).

The Lie algebra \mathfrak{g} of G will be considered as a $\mathrm{U}(1)$-module using γ and the adjoint action of G on \mathfrak{g}.

Fix a point

$$
\begin{equation*}
x \in \mathbb{C P}^{1} \tag{5.1}
\end{equation*}
$$

We recall that the action of any $\lambda \in H_{x}=\mathrm{U}(1)$ on the line $\left(T_{x}^{0,1}\right)^{*}$ is multiplication by $1 / \lambda^{2}$ (see the proof of Proposition 3.4); as before, H_{x} is identified with $\mathrm{U}(1)$ using χ^{x} defined in Equation (3.2). Consider the tensor product $\left(T_{x}^{0,1}\right)^{*} \otimes \operatorname{ad}\left(E_{G}\right)_{x}$ of $\mathrm{U}(1)$-modules. The $\mathrm{U}(1)$-module $\left(T_{x}^{0,1}\right)^{*} \otimes \operatorname{ad}\left(E_{G}\right)_{x}$ is isomorphic to the tensor product $\mathbb{C} \otimes_{\mathbb{C}} \mathfrak{g}$ of $\mathrm{U}(1)$-modules, where the action of any $\lambda \in H_{x}$ on \mathbb{C} is multiplication by $1 / \lambda^{2}$. Let

$$
\begin{equation*}
\mathcal{V}_{\gamma} \subset\left(T_{x}^{0,1}\right)^{*} \otimes \operatorname{ad}\left(E_{G}\right)_{x} \tag{5.2}
\end{equation*}
$$

be the space of invariants for the action of $H_{x}=\mathrm{U}(1)$ on $\left(T_{x}^{0,1}\right)^{*} \otimes \operatorname{ad}\left(E_{G}\right)_{x}$.
Take any $g_{0} \in K$. Let

$$
\gamma^{\prime}: \mathrm{U}(1) \longrightarrow K
$$

be the homomorphism defined by $g \longmapsto g_{0}^{-1} \gamma(g) g_{0}$. Let E_{G}^{\prime} be the holomorphic principal G-bundle over $\mathbb{C P}^{1}$ obtained by extending the structure group of the holomorphic principal \mathbb{C}^{*}-bundle $E_{\mathbb{C}^{*}}^{0}$ in Equation (3.23) using the (unique) homomorphism $\mathbb{C}^{*} \longrightarrow G$ that extends γ^{\prime} (see Equation (3.25)). Let

$$
\operatorname{Ad}\left(g_{0}\right): \mathfrak{g} \longrightarrow \mathfrak{g}
$$

be the automorphism of the Lie algebra given by the automorphism of G that sends any g to $g_{0}^{-1} g g_{0}$. This automorphism $\operatorname{Ad}\left(g_{0}\right)$ of \mathfrak{g} induces a holomorphic isomorphism

$$
\begin{equation*}
\delta_{g_{0}}: \operatorname{ad}\left(E_{G}\right) \longrightarrow \operatorname{ad}\left(E_{G}^{\prime}\right) \tag{5.3}
\end{equation*}
$$

of Lie algebra bundles. We note that since the principal G-bundle E_{G} (respectively, $\left.E_{G}^{\prime}\right)$ is the one obtained by extending the structure group of the principal $\mathrm{U}(1)$-bundle S^{3} in Equation (3.23) using γ (respectively, γ^{\prime}), the adjoint vector bundles $\operatorname{ad}\left(E_{G}\right)$ (respectively, $\operatorname{ad}\left(E_{G}^{\prime}\right)$) is identified with the one associated to the principal $\mathrm{U}(1)$-bundle S^{3} for \mathfrak{g} considered as a $\mathrm{U}(1)$-module using γ (respectively, γ^{\prime}).

Theorem 5.1. Consider all pairs of the form $\{\gamma, v\}$, where

$$
\gamma: \mathrm{U}(1) \longrightarrow K
$$

is a homomorphism, and

$$
v \in \mathcal{V}_{\gamma}
$$

(see Equation (5.2)). There is a natural map from such pairs to the $\mathrm{SU}(2)$ equivariant holomorphic Hermitian principal G-bundles on $\mathbb{C P}^{1}$.

Given any $\mathrm{SU}(2)$-equivariant holomorphic Hermitian principal G-bundle $\left(E_{G}, E_{K} ; \rho\right)$ on $\mathbb{C P}^{1}$, there is a pair $\{\gamma, v\}$ of the above type such that the corresponding $\mathrm{SU}(2)$-equivariant holomorphic Hermitian principal G-bundle is isomorphic to $\left(E_{G}, E_{K} ; \rho\right)$.

Let $\{\gamma, v\}$ and $\left\{\gamma^{\prime}, v^{\prime}\right\}$ be two pairs of the above type. Let $\left(E_{G}, E_{K} ; \rho\right)$ and $\left(E_{G}^{\prime}, E_{K}^{\prime} ; \rho^{\prime}\right)$ be the corresponding $\mathrm{SU}(2)$-equivariant holomorphic Hermitian principal G-bundles. Then $\left(E_{G}, E_{K} ; \rho\right)$ and $\left(E_{G}^{\prime}, E_{K}^{\prime} ; \rho^{\prime}\right)$ are isomorphic if and only if there is an element $g_{0} \in K$ that satisfies the following two conditions:

- $\gamma^{\prime}(g)=g_{0}^{-1} \gamma(g) g_{0}$ for all $g \in \operatorname{SU}(1)$, and
- $v^{\prime}=\left(\operatorname{Id}_{\left(T_{x}^{0,1}\right)^{*}} \otimes \delta_{g_{0}}\right)(v)$, where $\delta_{g_{0}}$ is the isomorphism in Equation (5.3), and x is the point in Equation (5.1).

Proof. Take any pair

$$
\begin{equation*}
\{\gamma, v\} \tag{5.4}
\end{equation*}
$$

as in the statement of the theorem. First, using γ, we get a $\mathrm{SU}(2)$-equivariant holomorphic Hermitian principal G-bundle ($E_{G}^{\gamma}, E_{K}^{\gamma}, \rho$) (see Lemma 3.5). Using v, we will construct from $\left(E_{G}^{\gamma}, E_{K}^{\gamma}, \rho\right)$ a new $\mathrm{SU}(2)$-equivariant holomorphic Hermitian principal G-bundle.

Consider the C^{∞} principal G-bundle underlying the holomorphic principal G-bundle E_{G}^{γ}; we will denote this C^{∞} principal G-bundle by E_{G}^{0}. The Dolbeault operator defining the holomorphic structure of E_{G}^{γ} will be denoted by $\bar{\partial}_{E_{G}^{\gamma}}$.

Consider the C^{∞} vector bundle $\Omega^{0,1}\left(\operatorname{ad}\left(E_{G}\right)\right)=\left(T^{0,1} \mathbb{C P}^{1}\right)^{*} \otimes \operatorname{ad}\left(E_{G}\right)$ on $\mathbb{C P}^{1}$. The actions of $\mathrm{SU}(2)$ on $\mathbb{C P}^{1}$ and E_{G} together induce an action of $\mathrm{SU}(2)$ on $\Omega^{0,1}\left(\operatorname{ad}\left(E_{G}\right)\right)$ (see the proof of Proposition 3.4).

Since the isotropy group H_{x} of the point x in Equation (5.1) acts trivially on v in Equation (5.4), translating v by the action of $\mathrm{SU}(2)$ on $\left(T^{0,1} \mathbb{C P}^{1}\right)^{*} \otimes$ $\operatorname{ad}\left(E_{G}\right)$ we get a section

$$
\begin{equation*}
\widetilde{v} \in C^{\infty}\left(\mathbb{C P}^{1},\left(T^{0,1} \mathbb{C P}^{1}\right)^{*} \otimes \operatorname{ad}\left(E_{G}\right)\right) \tag{5.5}
\end{equation*}
$$

Therefore, \widetilde{v} is the unique $\mathrm{SU}(2)$-invariant section of $\left(T^{0,1} \mathbb{C P}^{1}\right)^{*} \otimes \operatorname{ad}\left(E_{G}\right)$ such that $\widetilde{v}(x)=v$.

Consider the Dolbeault operator

$$
\bar{\partial}_{E_{G}^{\gamma}}^{\prime}:=\bar{\partial}_{E_{G}^{\gamma}}+\widetilde{v}
$$

on the C^{∞} principal G-bundle E_{G}^{0} underlying E_{G}, where \widetilde{v} is constructed in Equation (5.5); recall that $\bar{\partial}_{E_{G}^{\gamma}}$ is the Dolbeault operator on E_{G}. Let E_{G}^{\prime} denote the holomorphic principal G-bundle defined by this Dolbeault operator $\bar{\partial}_{E_{G}^{\gamma}}^{\prime}$. Now $\left(E_{G}^{\prime}, E_{K} ; \rho\right)$ is clearly a $\mathrm{SU}(2)$-equivariant holomorphic Hermitian principal G-bundle on $\mathbb{C P}^{1}$. Note that since \widetilde{v} is invariant under the action of $\mathrm{SU}(2)$, the Dolbeault operator $\bar{\partial}_{E_{G}^{\gamma}}^{\prime}$ is also fixed by the action of $\mathrm{SU}(2)$.

Let F denote the map from the pairs of the type in Equation (5.4) to the $\mathrm{SU}(2)$-equivariant holomorphic Hermitian principal G-bundles on $\mathbb{C P}^{1}$ that sends any $\{\gamma, v\}$ to the $\mathrm{SU}(2)$-equivariant holomorphic Hermitian principal G-bundle $\left(E_{G}^{\prime}, E_{K} ; \rho\right)$ constructed above from $\{\gamma, v\}$.

We will show that the map F defined above satisfies all the conditions in the theorem.

Take any $\mathrm{SU}(2)$-equivariant holomorphic Hermitian principal G-bundle $\left(E_{G}, E_{K} ; \rho\right) \mathbb{C P}^{1}$. To show that there is a pair $\{\gamma, v\}$ such that $F(\{\gamma, v\})$ is isomorphic to $\left(E_{G}, E_{K} ; \rho\right)$, first consider the homomorphism α_{0} in Equation (4.1) which is constructed by fixing a point z in the fiber $\left(E_{K}\right)_{x}$. Set γ to be α_{0}. The $\mathrm{SU}(2)$-equivariant holomorphic Hermitian principal G-bundle $F\left(\left\{\alpha_{0}, 0\right\}\right)$ clearly coincides with the $\mathrm{SU}(2)$-equivariant holomorphic Hermitian principal G-bundle

$$
\left(\widehat{E}_{G}, E_{K} ; \rho\right)
$$

constructed in Lemma 4.2 from $\left(E_{G}, E_{K} ; \rho\right)$.
The Dolbeault operator for the holomorphic principal G-bundle E_{G} (respectively, \widehat{E}_{G}) will be denoted by $\bar{\partial}_{E_{G}}$ (respectively, $\bar{\partial}_{\widehat{E}_{G}}$). Set

$$
\begin{equation*}
\theta:=\bar{\partial}_{E_{G}}-\bar{\partial}_{\widehat{E}_{G}} \in C^{\infty}\left(\Omega^{0,1}\left(\operatorname{ad}\left(E_{G}\right)\right)\right) \tag{5.6}
\end{equation*}
$$

(Recall that the underlying C^{∞} principal G-bundle for \widehat{E}_{G} is identified with that for E_{G}, hence θ is a smooth section of $\Omega^{0,1}\left(\operatorname{ad}\left(E_{G}\right)\right)$.) Since both the operators $\bar{\partial}_{E_{G}}$ and $\bar{\partial}_{\widehat{E}_{G}}$ are fixed by the action of $\mathrm{SU}(2)$, it follows immediately that θ is also fixed by the action of $\mathrm{SU}(2)$.

Let

$$
\begin{equation*}
v:=\theta(x) \in \Omega^{0,1}\left(\operatorname{ad}\left(E_{G}\right)\right)_{x} \tag{5.7}
\end{equation*}
$$

be the evaluation at the point x (see Equation (5.1)) of the section θ constructed in Equation (5.6). It is now straight-forward to verify that the $\mathrm{SU}(2)$ equivariant holomorphic Hermitian principal G-bundle $F(\{\gamma, v\})$, where v is defined in Equation (5.7), is isomorphic to ($E_{G}, E_{K} ; \rho$).

Take any pair $\{\gamma, v\}$ as in Equation (5.4). Fix an element $g_{0} \in K$. Let

$$
\gamma^{\prime}: \mathrm{U}(1) \longrightarrow K
$$

be the homomorphism defined by $g \longmapsto g_{0}^{-1} \gamma(g) g_{0}$. Set

$$
v^{\prime}:=\left(\operatorname{Id}_{\left(T_{x}^{0,1}\right)^{*}} \otimes \delta_{g_{0}}\right)(v) \in\left(T_{x}^{0,1}\right)^{*} \otimes \operatorname{ad}\left(E_{G}^{\prime}\right)_{x}
$$

where $\delta_{g_{0}}$ is defined in Equation (5.3). We will show that that the $\mathrm{SU}(2)$ equivariant holomorphic Hermitian principal G-bundle $F(\{\gamma, v\})$ is isomorphic to $F\left(\left\{\gamma^{\prime}, v^{\prime}\right\}\right)$, where γ^{\prime} and v^{\prime} are defined above.

To prove this, first consider the automorphism

$$
S^{3} \times G \longrightarrow S^{3} \times G
$$

defined by $(z, g) \longmapsto\left(z, g_{0}^{-1} g g_{0}\right)$, where S^{3} is the principal $\mathrm{U}(1)$-bundle in Equation (3.23). This automorphism descends to an isomorphism of principal G-bundles

$$
E_{G}:=S^{3} \times^{\gamma} G \longrightarrow S^{3} \times^{\gamma^{\prime}} G=: E_{G}^{\prime} .
$$

Here $S^{3} \times{ }^{\gamma} G$ (respectively, $S^{3} \times{ }^{\gamma^{\prime}} G$) denotes the quotient of $S^{3} \times G$ that identifies any $(z, g) \in S^{3} \times G$ with $\left(z h^{-1}, \gamma(h) g\right)$ (respectively, $\left(z h^{-1}, \gamma^{\prime}(h) g\right)$), where $h \in \mathrm{U}(1)$. We now note that E_{G} (respectively, E_{G}^{\prime}) is the C^{∞} principal G-bundle underlying the $\mathrm{SU}(2)$-equivariant holomorphic Hermitian principal G-bundle $F\left(\{\gamma, v\}\right.$) (respectively, $F\left(\left\{\gamma^{\prime}, v^{\prime}\right\}\right)$). The above isomorphism $E_{G} \longrightarrow E_{G}^{\prime}$ is holomorphic with respect to the holomorphic structures underlying $F(\{\gamma, v\})$ and $F\left(\left\{\gamma^{\prime}, v^{\prime}\right\}\right)$, and it in fact gives an isomorphism of the $\mathrm{SU}(2)$-equivariant holomorphic Hermitian principal G-bundle $F(\{\gamma, v\})$ with $F\left(\left\{\gamma^{\prime}, v^{\prime}\right\}\right)$.

Take two pairs $\{\gamma, v\}$ and $\left\{\gamma^{\prime}, v^{\prime}\right\}$ as in Equation (5.4) such that the $\mathrm{SU}(2)$ equivariant holomorphic Hermitian principal G-bundle

$$
F(\{\gamma, v\})=:\left(E_{G}, E_{K} ; \rho\right)
$$

is isomorphic to $F\left(\left\{\gamma^{\prime}, v^{\prime}\right\}\right)=:\left(E_{G}^{\prime}, E_{K}^{\prime} ; \rho^{\prime}\right)$. To complete the proof of the theorem we need to show that there is an element $g_{0} \in K$ that satisfies the two conditions in the final part of the theorem.

Let

$$
\begin{equation*}
\varphi: E_{K} \longrightarrow E_{K}^{\prime} \tag{5.8}
\end{equation*}
$$

be an isomorphism of principal K-bundles that induces an isomorphism of the $\mathrm{SU}(2)$-equivariant holomorphic Hermitian principal G-bundle $\left(E_{G}, E_{K} ; \rho\right.$) with $\left(E_{G}^{\prime}, E_{K}^{\prime} ; \rho^{\prime}\right)$. Fix a point

$$
z \in\left(E_{K}\right)_{x}
$$

(respectively, $z^{\prime} \in\left(E_{K}^{\prime}\right)_{x}$), in the fiber over the point x in Equation (5.1), such that γ (respectively, γ^{\prime}) coincides with the homomorphism constructed as in Equation (4.1) using z (respectively, z^{\prime}).

Let $g_{0} \in K$ be the unique element that satisfies the condition

$$
z^{\prime}=\varphi(z) g_{0}
$$

where φ is the isomorphism in Equation (5.8). It is now straight-forward to verify that this element g_{0} satisfies the two conditions in the final part of the theorem. This completes the proof of the theorem.

Remark 5.2. Take a homomorphism $\gamma: \mathrm{U}(1) \longrightarrow K$. Consider the Lie algebra \mathfrak{g} as a $\mathrm{U}(1)$-module using γ and the adjoint action of K on \mathfrak{g}. Let

$$
\begin{equation*}
\mathfrak{g}_{2} \subset \mathfrak{g} \tag{5.9}
\end{equation*}
$$

be the isotypical component of the $\mathrm{U}(1)$-module \mathfrak{g} on which each element $\lambda \in \mathrm{U}(1)$ acts as multiplication by λ^{2}.

As before, let $\left(E_{G}, E_{K} ; \rho\right)$ be the $\mathrm{SU}(2)$-equivariant holomorphic Hermitian principal G-bundle over $\mathbb{C P}^{1}$ obtained by extending the structure group of the $\mathrm{SU}(2)$-equivariant holomorphic Hermitian principal \mathbb{C}^{*}-bundle $\left(E_{\mathbb{C}^{*}}^{0}, S^{3}\right)$ in Equation (3.23) using γ. The subspace \mathcal{V}_{γ} in Equation (5.2) is isomorphic to \mathfrak{g}_{2} in Equation (5.9). To construct such an isomorphism, fix a nonzero element

$$
u_{0} \in\left(T_{x}^{0,1}\right)^{*}
$$

and also fix an element z_{0} in the fiber, over x, of the principal $\mathrm{U}(1)$-bundle S^{3} in Equation (3.23). Now we have an isomorphism

$$
\mathfrak{g}_{2} \longrightarrow \mathcal{V}_{\gamma}
$$

that sends any v to $u_{0} \otimes \widetilde{v}$, where $\widetilde{v} \in \operatorname{ad}\left(E_{G}\right)_{x}$ is the image, in $\operatorname{ad}\left(E_{G}\right)_{x}$, of $\left(z_{0}, v\right)$.

Fix a maximal torus $T \subset G$ such that the (unique) maximal compact subgroup of T is contained in K.

Take any homomorphism

$$
\begin{equation*}
\rho: \mathbb{C}^{*} \longrightarrow T \stackrel{\iota}{\hookrightarrow} G . \tag{5.10}
\end{equation*}
$$

Let E_{G}^{ρ} denote the holomorphic principal G-bundle over $\mathbb{C P}^{1}$ obtained by extending the structure group of the tautological principal \mathbb{C}^{*}-bundle $E_{\mathbb{C}^{*}}^{0}$ (see Equation (3.23)) using the homomorphism $\iota \circ \rho$.

Let E_{G} be a holomorphic principal G-bundle over $\mathbb{C P}^{1}$. A theorem due to Grothendieck says that there is a homomorphism ρ as in Equation (5.10) such that the holomorphic principal G-bundle E_{G}^{ρ} is holomorphically isomorphic to $E_{G}[5$, p. 123, Théorème 1.2].

Since $K \cap T$ is the maximal compact subgroup of T, we know that

$$
\rho(\mathrm{U}(1)) \subset K
$$

where ρ is the homomorphism in Equation (5.10). Let γ denote the restriction of ρ to $\mathrm{U}(1) \subset \mathbb{C}^{*}$. Let $\left(E_{G}^{\gamma}, E_{K}^{\gamma} ; \rho^{\gamma}\right)$ denote the $\mathrm{SU}(2)$-equivariant holomorphic Hermitian principal G-bundle over $\mathbb{C P}^{1}$ constructed in Lemma 3.5 from $\gamma=\left.\rho\right|_{\mathrm{U}(1)}$.

The unique extension of γ to a homomorphism $\mathbb{C}^{*} \longrightarrow G$ (see Equation (3.25)) clearly coincides with ρ. Therefore, the principal G-bundle E_{G} is holomorphically isomorphic to E_{G}^{γ}. Consequently, any holomorphic principal G-bundle over $\mathbb{C P}^{1}$ admits the structure of a $\mathrm{SU}(2)$-equivariant holomorphic Hermitian principal G-bundle.

6. The case of $G=\operatorname{GL}(r, \mathbb{C})$

To illustrate Theorem 5.1, we consider the special case where

$$
G=\mathrm{GL}(r, \mathbb{C})
$$

and $K=\mathrm{U}(r)$. This case is already well understood (see [1], [2], [3], [7], [8]).

Let E be a holomorphic vector bundle of rank r over $\mathbb{C P}^{1}$. A theorem of Grothendieck says that E is holomorphically isomorphic to a vector bundle of the form $\bigoplus_{i=1}^{r} \mathcal{O}_{\mathbb{C P}^{1}}\left(d_{i}\right)$ [5]. The action of the group $\mathrm{SU}(2)$ on $\mathbb{C P}^{1}$ has a canonical lift to the holomorphic line bundle $\mathcal{O}_{\mathbb{C P}^{1}}(1)$. Therefore, the action of $\mathrm{SU}(2)$ on $\mathbb{C P}^{1}$ lifts to E. Let h be a Hermitian structure on E, and let ρ be a C^{∞} lift of the action of $\mathrm{SU}(2)$ to E, such that the following conditions hold:
(1) The action of $\mathrm{SU}(2)$ to E preserves h.
(2) For each $U \in \mathrm{SU}(2)$, the diffeomorphism of the complex manifold E defined by $v \longmapsto \rho(U, v)$ is holomorphic.
Such a triple (E, h, ρ) is called a $\mathrm{SU}(2)$-equivariant holomorphic Hermitian vector bundle.

We note that a $\mathrm{SU}(2)$-equivariant holomorphic Hermitian vector bundle (E, h, ρ) is a $\mathrm{SU}(2)$-equivariant holomorphic Hermitian principal $\mathrm{GL}(r, \mathbb{C})$, where $r=\operatorname{rank}(E)$.

Take a pair

$$
\begin{equation*}
\left(\left\{\mathcal{H}_{n}\right\}_{n \in \mathbb{Z}}, T\right) \tag{6.1}
\end{equation*}
$$

where
(1) each \mathcal{H}_{n} is a finite dimensional Hilbert space, and $\mathcal{H}_{n}=0$ for all but finitely many n, and
(2) T is a linear operator on the direct sum $\bigoplus_{n \in \mathbb{Z}} \mathcal{H}_{n}$ satisfying the condition

$$
T\left(\mathcal{H}_{n}\right) \subset \mathcal{H}_{n+2}
$$

for all $n \in \mathbb{Z}$.
We will associate a $\mathrm{SU}(2)$-equivariant holomorphic Hermitian vector bundle to it.

Consider the C^{∞} vector bundle

$$
\begin{equation*}
E:=\bigoplus_{n \in \mathbb{Z}}\left(\mathcal{O}_{\mathbb{C P}^{1}}(n) \otimes_{\mathbb{C}} \mathcal{H}_{n}\right) \tag{6.2}
\end{equation*}
$$

The action of $\mathrm{SU}(2)$ on the line bundles $\mathcal{O}_{\mathbb{C P}^{1}}(n)$ and the trivial action of $\mathrm{SU}(2)$ on the vector spaces \mathcal{H}_{n} together define an action of $\mathrm{SU}(2)$ on E. The inner product on the Hilbert spaces \mathcal{H}_{n} and the Hermitian structure on the line bundles $\mathcal{O}_{\mathbb{C P}^{1}}(n)$ combine together to produce a $\mathrm{SU}(2)$-invariant Hermitian structure on E.

The natural holomorphic structures of the line bundles $\mathcal{O}_{\mathbb{C P}^{1}}(n)$ together define a $\mathrm{SU}(2)$-invariant holomorphic structure on E. We will construct a new $\mathrm{SU}(2)$-invariant holomorphic structure on E by altering this holomorphic structure using the endomorphism T in Equation (6.1).

Using the canonical trivialization of the line $\Lambda^{2} \mathbb{C}^{2}$, we get an identification of $\mathcal{O}_{\mathbb{C P}^{1}}(2)$ with the holomorphic tangent bundle $T \mathbb{C P}^{1} \longrightarrow \mathbb{C P}^{1}$. Contracting the Kähler form ω in Equation (2.3) with $T \mathbb{C P}^{1}$, the C^{∞} line bundle $T \mathbb{C P}^{1}$
gets identified with $\Omega_{\mathbb{C P}^{1}}^{0,1}$. Therefore, we have a C^{∞} isomorphism of line bundles

$$
\mathcal{H o m}\left(\mathcal{O}_{\mathbb{C P}^{1}}(n), \mathcal{O}_{\mathbb{C P}^{1}}(n+2)\right)=\mathcal{O}_{\mathbb{C P}^{1}}(2)=\Omega_{\mathbb{C P}^{1}}^{0,1}
$$

Using this isomorphism, the endomorphism T in Equation (6.1) produces a C^{∞} section

$$
\widehat{T} \in C^{\infty}\left(\mathbb{C P}^{1}, \Omega_{\mathbb{C P}^{1}}^{0,1} \otimes \mathcal{E} n d(E)\right)
$$

If $\bar{\partial}_{0}$ is the Dolbeault operator on E defining its standard holomorphic structure, then

$$
\bar{\partial}_{T}:=\bar{\partial}_{0}+\widehat{T}
$$

is a new holomorphic structure on E. This new holomorphic structure is $\mathrm{SU}(2)$-invariant because both $\bar{\partial}_{0}$ and \widehat{T} are $\mathrm{SU}(2)$-invariant. Therefore, we have constructed a $\mathrm{SU}(2)$-equivariant holomorphic Hermitian vector bundle from the pair $\left(\left\{\mathcal{H}_{n}\right\}_{n \in \mathbb{Z}}, T\right)$.

The above construction is bijective. More precise, this construction produces a bijection between the isomorphism classes of $\mathrm{SU}(2)$-equivariant holomorphic Hermitian vector bundles on $\mathbb{C P}^{1}$ and the isomorphism classes of pairs of the form $\left(\left\{\mathcal{H}_{n}\right\}_{n \in \mathbb{Z}}, T\right)$ as in (6.1).

Note that for any pair $\left(\left\{\mathcal{H}_{n}\right\}_{n \in \mathbb{Z}}, T\right)$ as above, the rank of the corresponding $\mathrm{SU}(2)$-equivariant holomorphic Hermitian vector bundle is $\sum_{n} \operatorname{dim} \mathcal{H}_{n}$.

The above bijective correspondence is equivalent to the one in Theorem 5.1 for $G=\mathrm{GL}(r, \mathbb{C})$. To see this, take a homomorphism $\gamma: \mathrm{U}(1) \longrightarrow \mathrm{U}(r)$ and an element $v \in \mathcal{V}_{\gamma}$ as in Theorem 5.1. The homomorphism γ gives the isotypical decomposition

$$
\begin{equation*}
\mathbb{C}^{r}=\bigoplus_{\chi \in \mathrm{U}(1)^{*}} W_{\chi}, \tag{6.3}
\end{equation*}
$$

where $\mathrm{U}(1)^{*}=\mathbb{Z}$ is the group of characters of $\mathrm{U}(1)$ (the character for $n \in \mathbb{Z}$ is $\left.z \longmapsto z^{n}\right)$. This isotypical decomposition is orthogonal, and each subspace $W_{\chi} \in \mathbb{C}^{r}$ is equipped with the induced inner product. For each $n \in \mathbb{Z}$, associate the Hilbert space W_{n} in Equation (6.3).

Recall the action of $\mathrm{SU}(2)$ on $\mathbb{C P}{ }^{1}$. It was noted in the proof of Proposition 3.4 that the isotropy group $H_{x}=\mathrm{U}^{1}$ (see Equation (3.2)) acts on the fiber $\left(T_{x}^{0,1}\right)^{*}$ as the character $-2 \in \mathbb{Z}=\mathrm{U}(1)^{*}$. Therefore, the space of invariants \mathcal{V}_{γ} in Equation (5.2) is simply

$$
\begin{equation*}
\mathcal{V}_{\gamma}=\bigoplus_{n \in \mathbb{Z}} \operatorname{Hom}_{\mathbb{C}}\left(W_{n}, W_{n+2}\right)=\bigoplus_{n \in \mathbb{Z}} W_{n}^{*} \otimes W_{n+2} \tag{6.4}
\end{equation*}
$$

Let $T \in \bigoplus_{n \in \mathbb{Z}} \operatorname{Hom}_{\mathbb{C}}\left(W_{n}, W_{n+2}\right)$ be the element corresponding to the element $v \in \mathcal{V}_{\gamma}$. So, the pair (γ, v) gives the pair $\left(\left\{W_{n}\right\}_{n \in \mathbb{Z}}, T\right)$ which satisfies in conditions in Equation (6.1); note that

$$
\sum_{n \in \mathbb{Z}} \operatorname{dim} W_{n}=r
$$

Conversely, given any pair $\left(\left\{\mathcal{H}_{n}\right\}_{n \in \mathbb{Z}}, T\right)$ as in (6.1), fix a linear isometry

$$
\bigoplus_{n \in \mathbb{Z}} \mathcal{H}_{n} \xrightarrow{\sim} \mathbb{C}^{r}
$$

where $\sum_{n \in \mathbb{Z}} \operatorname{dim} \mathcal{H}_{n}=r$, such that the decomposition of \mathbb{C}^{r} is orthogonal. Let

$$
\gamma: \mathrm{U}(1) \longrightarrow \mathrm{U}(r)
$$

be the homomorphism such that the action of $z \in \mathrm{U}(1)$ on the subspace $\mathcal{H}_{n} \subset$ \mathbb{C}^{r} is multiplication by z^{n}. Using the isomorphism in Equation (6.4), the element T defines an element of \mathcal{V}_{γ}.

References

[1] L. Álvarez-Cónsul and O. García-Prada, Dimensional reduction and quiver bundles, J. Reine Angew. Math. 556 (2003), 1-46. MR 1971137
[2] I. Biswas, Holomorphic Hermitian vector bundles over the Riemann sphere, Bull. Sci. Math. 132 (2008), 246-356. MR 2406829
[3] A. I. Bondal and M. M. Kapranov, Homogeneous bundles, Helices and vector bundles, London Math. Soc. Lecture Note Ser., vol. 148, Cambridge Univ. Press, Cambridge, 1990, pp. 45-55. MR 1074782
[4] N. Bourbaki, Éléments de mathématique. XXVI. Groupes et algèbres de Lie. Chapitre 1: Algèbres de Lie, Actualités Sci. Ind. No. 1285, Hermann, Paris, 1960. MR 0132805
[5] A. Grothendieck, Sur la classification des fibrés holomorphes sur la sphère de Riemann, Amer. J. Math. 79 (1957), 121-138. MR 0087176
[6] S. Helgason, Differential geometry, lie groups, and symmetric spaces, Graduate Studies in Mathematics, vol. 34. American Mathematical Society, Providence, RI, 2001. MR 1834454
[7] L. Hille, Homogeneous vector bundles and Koszul algebras, Math. Nachr. 191 (1998), 189-195. MR 1621314
[8] G. Ottaviani and E. Rubei, Quivers and the cohomology of homogeneous vector bundles, Duke Math. J. 132 (2006), 459-508. MR 2219264
Indranil Biswas, School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Bombay 400005, India

E-mail address: indranil@math.tifr.res.in

