EQUIVARIANT PRINCIPAL BUNDLES OVER THE COMPLEX PROJECTIVE LINE

INDRANIL BISWAS

ABSTRACT. Let G be a connected complex reductive linear algebraic group, and let $K \subset G$ be a maximal compact subgroup of it. Let E_G be a holomorphic principal G-bundles over the complex projective line \mathbb{CP}^1 and $E_K \subset E_G$ a C^∞ reduction of structure group of E_G to K. We consider all pairs (E_G, E_K) of this type such that the total space of E_K is equipped with a C^∞ lift of the standard action of SU(2) on \mathbb{CP}^1 which satisfies the following two conditions: the actions of K and SU(2) on E_K commute, and for each element $g \in SU(2)$, the induced action of g on E_G is holomorphic. We give a classification of the isomorphism classes of all such objects.

1. Introduction

The projection $\mathbb{C}^2 \setminus \{0\} \longrightarrow \mathbb{CP}^1$ that sends any v to the line in \mathbb{C}^2 generated by v defines a holomorphic principal \mathbb{C}^* -bundle on \mathbb{CP}^1 . This holomorphic principal \mathbb{C}^* -bundle will be denoted by $E^0_{\mathbb{C}^*}$.

Let G be a connected reductive linear algebraic group defined over the field of complex numbers. A theorem due to Grothendieck shows that all holomorphic principal G-bundles over \mathbb{CP}^1 are constructed from the above tautological principal \mathbb{C}^* -bundle $E^0_{\mathbb{C}^*}$. More precisely, given a holomorphic principal G-bundle E_G over \mathbb{CP}^1 , there is a homomorphism

$$\chi: \mathbb{C}^* \longrightarrow G$$

such that E_G is holomorphically isomorphic to the principal *G*-bundle obtained by extending the structure group of $E_{\mathbb{C}^*}^0$ using χ .

©2012 University of Illinois

Received July 27, 2009; received in final form November 10, 2010. 2010 Mathematics Subject Classification. 53B35, 14F05.

Two homomorphisms from \mathbb{C}^* to G that differ by an inner automorphism of G produce isomorphic principal G-bundles. Therefore, the above homomorphism χ can be assumed to have the property that it factors through a fixed maximal torus T of G. Consequently, the isomorphism classes of all holomorphic principal G-bundles over \mathbb{CP}^1 are parametrized by $\operatorname{Hom}(\mathbb{C}^*, T)/W$, where W is the Weyl group for the maximal torus T (it is the quotient by Tof the normalizer of T in G); see [5, p. 122, Théorème 1.1].

Our aim here is to understand the holomorphic Hermitian principal Gbundles over \mathbb{CP}^1 that are SU(2)-equivariant.

Fix a maximal compact subgroup K of E. A holomorphic Hermitian principal G-bundle over \mathbb{CP}^1 is a holomorphic principal G-bundle E_G together with a C^{∞} reduction of structure group $E_K \subset E_G$ of E_G to K.

A SU(2)-equivariant holomorphic Hermitian principal G-bundle over \mathbb{CP}^1 is a triple $(E_G, E_K; \rho)$, where (E_G, E_K) is a holomorphic Hermitian principal G-bundle as above, and ρ is a smooth action of SU(2) on E_K satisfying the following conditions: it lifts the standard action on \mathbb{CP}^1 , preserves the principal K-bundle structure, and the induced action on E_G is by holomorphic automorphisms.

The unit sphere $S^3 \subset \mathbb{C}^2 \setminus \{0\}$ for the standard inner product on \mathbb{C}^2 is a smooth reduction of structure group of the tautological principal \mathbb{C}^* -bundle $E^0_{\mathbb{C}^*}$ to the subgroup $S^1 = \mathrm{U}(1) \subset \mathbb{C}^*$. This pair $(E^0_{\mathbb{C}^*}, S^3)$ equipped with the standard action of SU(2) define a SU(2)-equivariant holomorphic Hermitian principal \mathbb{C}^* -bundle. We will refer to it as the tautological SU(2)-equivariant holomorphic Hermitian principal \mathbb{C}^* -bundle.

Take any homomorphism

$$\gamma: \mathrm{U}(1) \longrightarrow K.$$

It extends uniquely to a holomorphic homomorphism $\tilde{\gamma} : \mathbb{C}^* \longrightarrow G$. Let $(E_G, E_K; \rho)$ be the SU(2)-equivariant holomorphic Hermitian principal *G*bundle over \mathbb{CP}^1 obtained by extending the structure group of the tautological SU(2)-equivariant holomorphic Hermitian principal \mathbb{C}^* -bundle using $\tilde{\gamma}$. The Lie algebra \mathfrak{g} of *G* will be considered as a U(1)-module using γ and the adjoint action of *G* on \mathfrak{g} . Let $\mathrm{ad}(E_G)$ denote the adjoint vector bundle for E_G .

Fix a point

$$x \in \mathbb{CP}^1$$
.

The isotropy subgroup H_x of x for the standard action of SU(2) on \mathbb{CP}^1 is identified with U(1) (see Equation (3.2)). The actions of H_x on $(T_x^{0,1})^*$ and $\mathrm{ad}(E_G)_x$ together induce an action of H_x on $(T_x^{0,1})^* \otimes \mathrm{ad}(E_G)_x$. Let

$$\mathcal{V}_{\gamma} := \left(\left(T_x^{0,1} \right)^* \otimes \operatorname{ad}(E_G)_x \right)^{H_x} \subset \left(T_x^{0,1} \right)^* \otimes \operatorname{ad}(E_G)_x$$

be the space of invariants for this induced action of H_x .

We prove the following theorem (see Theorem 5.1).

THEOREM 1.1. Consider all pairs of the form $\{\gamma, v\}$, where

 $\gamma: \mathrm{U}(1) \longrightarrow K$

is a homomorphism, and

 $v \in \mathcal{V}_{\gamma}$.

There is a natural map from such pairs to the SU(2)-equivariant holomorphic Hermitian principal G-bundles on \mathbb{CP}^1 .

Given any SU(2)-equivariant holomorphic Hermitian principal G-bundle $(E_G, E_K; \rho)$ on \mathbb{CP}^1 , there is a pair $\{\gamma, v\}$ of the above type such that the corresponding SU(2)-equivariant holomorphic Hermitian principal G-bundle is isomorphic to $(E_G, E_K; \rho)$.

Let $\{\gamma, v\}$ (respectively, $\{\gamma', v'\}$) be a pair of the above type, and let

 $(E_G, E_K; \rho)$ (respectively, $(E'_G, E'_K; \rho')$)

be the corresponding SU(2)-equivariant holomorphic Hermitian principal Gbundle. Then $(E_G, E_K; \rho)$ is isomorphic to $(E'_G, E'_K; \rho')$ if and only if there is an element $g_0 \in K$ that satisfies the following two conditions:

- $\gamma'(g) = g_0^{-1} \gamma(g) g_0$ for all $g \in \mathrm{SU}(1)$, and $v' = (\mathrm{Id}_{(T_x^{0,1})^*} \otimes \delta_{g_0})(v)$, where $\delta_{g_0} : \mathrm{ad}(E_G) \longrightarrow \mathrm{ad}(E'_G)$ is the the natural isomorphism.

The above mentioned isomorphism δ_{q_0} is constructed in Equation (5.3).

2. Projective line and principal bundles

2.1. Action on the projective line. Let \mathbb{CP}^1 denote the complex projective line. So \mathbb{CP}^1 parametrizes all one-dimensional linear subspaces of \mathbb{C}^2 . The group of all holomorphic automorphisms of \mathbb{CP}^1 will be denoted by $\operatorname{Aut}(\mathbb{CP}^1)$.

The special unitary group SU(2) has the standard action on \mathbb{C}^2 . This action clearly induces an action of SU(2) on \mathbb{CP}^1 . Let

(2.1)
$$f: \operatorname{SU}(2) \longrightarrow \operatorname{Aut}(\mathbb{CP}^1)$$

be the homomorphism giving this action of $\mathrm{SU}(2)$ on \mathbb{CP}^1 . The kernel of f is $\pm I$, which is also the center of SU(2).

Let

(2.2)
$$\psi: \mathbb{C}^2 \setminus \{0\} \longrightarrow \mathbb{CP}^1$$

be the natural projection that sends any nonzero vector to the line generated by it. Let

$$\omega_0 := \frac{\sqrt{-1}}{2} \cdot \frac{\mathrm{d}x \wedge \mathrm{d}\overline{x} + \mathrm{d}y \wedge \mathrm{d}\overline{y}}{|x|^2 + |y|^2}$$

be the positive (1,1)-form on $\mathbb{C}^2 \setminus \{0\}$. Consider the restriction of ω_0 to the direction orthogonal to the radial vector field on $\mathbb{C}^2 \setminus \{0\}$. This restriction descends, using the projection ψ in Equation (2.2), to a Hermitian (1,1)-form on \mathbb{CP}^1 . Let

(2.3)
$$\omega \in C^{\infty} \left(\mathbb{CP}^1; \Omega^{1,1}_{\mathbb{CP}^1} \right)$$

be this descended form. Since ω_0 is positive, it follows that ω is also positive. Since $\dim_{\mathbb{C}} \mathbb{CP}^1 = 1$, the form ω defines a Kähler structure on \mathbb{CP}^1 . It is easy to check that ω is the unique Kähler form on \mathbb{CP}^1 of total volume 2/3 which is left invariant by the action of SU(2) on \mathbb{CP}^1 .

2.2. Principal bundles. Let G be a connected reductive linear algebraic group defined over \mathbb{C} . Fix a maximal compact subgroup

$$(2.4) K \subset G.$$

It is known that any two maximal compact subgroups of G are conjugate [6, p. 256, Theorem 2.1].

Let E_G be a C^{∞} principal *G*-bundle on \mathbb{CP}^1 . A Hermitian structure on E_G is a C^{∞} reduction of structure group of E_G

 $E_K \subset E_G$

to the subgroup K in Equation (2.4). By a holomorphic Hermitian principal G-bundle on \mathbb{CP}^1 , we will mean a holomorphic principal G-bundle E_G on \mathbb{CP}^1 together with a Hermitian structure E_K on E_G .

Let (E_G, E_K) and (E'_G, E'_K) be two holomorphic Hermitian principal *G*bundles on \mathbb{CP}^1 . Any C^{∞} isomorphism of principal *K*-bundles

$$\beta: E_K \longrightarrow E'_K$$

extends uniquely to a C^{∞} isomorphism

$$\widetilde{\beta}: E_G \longrightarrow E'_G$$

of principal G-bundles. Indeed, the diffeomorphism

$$\beta \times \mathrm{Id}_G : E_K \times G \longrightarrow E'_K \times G$$

descends to the isomorphism $\widetilde{\beta}$ of $E_G := E_K \times^K G$ with $E'_G := E'_K \times^K G$; we recall that $E_K \times^K G$ is the quotient of $E_K \times G$ obtained by identifying $(z,g) \in E_K \times G$ with $(zk, k^{-1}g)$, where $k \in K$.

The isomorphism β is called a *holomorphic isometry* if $\tilde{\beta}$ is holomorphic. If β is a holomorphic isometry, then $\tilde{\beta}$ is also called a *holomorphic isometry*. If β , being the restriction of $\tilde{\beta}$, is uniquely determined by $\tilde{\beta}$. Therefore, there is no abuse of terminology.

Two holomorphic Hermitian principal G-bundles are called *holomorphically* isometric if there exists a holomorphic isometry between them.

Let

$$\tau: \mathbb{CP}^1 \longrightarrow \mathbb{CP}^1$$

be a holomorphic map. Given any holomorphic Hermitian principal G-bundle (E_G, E_K) on \mathbb{CP}^1 , its *pullback* by τ is defined to be the holomorphic Hermitian principal G-bundle $(\tau^* E_G, \tau^* E_K)$.

DEFINITION 2.1. A holomorphic Hermitian principal G-bundle (E_G, E_K) on \mathbb{CP}^1 is called SU(2)-homogeneous if for each $U \in SU(2)$, the pulled back holomorphic Hermitian principal G-bundle $(f(U)^* E_G, f(U)^* E_K)$ is holomorphically isometric to (E, h), where f is the homomorphism in Equation (2.1).

DEFINITION 2.2. A SU(2)-equivariant holomorphic Hermitian principal Gbundle on \mathbb{CP}^1 is a triple $(E_G, E_K; \rho)$, where

- (E_G, E_K) is a holomorphic Hermitian principal *G*-bundle (E_G, E_K) on \mathbb{CP}^1 , and
- ρ is a smooth action of SU(2) on the total space of E_G

$$(2.5) \qquad \rho: \, \mathrm{SU}(2) \times E_G \longrightarrow E_G$$

such that the following four conditions hold:

- (1) $p \circ \rho(U, z) = f(U)(p(z))$ for all $(U, z) \in SU(2) \times E_G$, where p is the projection of E_G to \mathbb{CP}^1 and f is the homomorphism in Equation (2.1),
- (2) the actions of G and SU(2) on E_G commute,
- (3) $\rho(\mathrm{SU}(2) \times E_K) = E_K$, and
- (4) for each $U \in SU(2)$, the map $E_G \longrightarrow E_G$ defined by $z \longmapsto \rho(U, z)$ is holomorphic.

Two SU(2)-equivariant holomorphic Hermitian principal G-bundles

$$(E_G, E_K; \rho)$$
 and $(E'_G, E'_K; \rho')$

are called *isomorphic* if there is a holomorphic isometry

$$\widetilde{\beta}: E_G \longrightarrow E'_G$$

such that $\widetilde{\beta} \circ \rho = \rho' \circ (\mathrm{Id}_{\mathrm{SU}(2)} \times \widetilde{\beta}).$

We note that for any SU(2)-equivariant holomorphic Hermitian principal G-bundle $(E_G, E_K; \rho)$, the action on E_G of each element $U \in SU(2)$ is a holomorphic isometry of the pulled back holomorphic principal G-bundle $(f(U^{-1})^*E_G, f(U^{-1})^*E_K)$ with (E_G, E_K) .

2.3. SU(2)-homogeneous bundles are SU(2)-equivariant. Comparing Definition 2.2 with Definition 2.1 it follows immediately that every SU(2)-equivariant holomorphic Hermitian principal *G*-bundle on \mathbb{CP}^1 is SU(2)-homogeneous. A weak converse also holds as shown by the following lemma.

LEMMA 2.3. Let (E_G, E_K) be a SU(2)-homogeneous holomorphic Hermitian principal G-bundle over \mathbb{CP}^1 . Then the principal G-bundle E_G admits a smooth action ρ of SU(2) such that the triple $(E_G, E_K; \rho)$ is a SU(2)equivariant holomorphic Hermitian principal G-bundle. Proof. Consider the homomorphism f in Equation (2.1). For any $U \in$ SU(2), let T(U) denote the space of all holomorphic isometries of the holomorphic Hermitian principal G-bundle $(f(U^{-1})^*E_G, f(U^{-1})^*E_K)$ with (E_G, E_K) . Since (E_G, E_K) is SU(2)-homogeneous, we know that this space of holomorphic isometries is nonempty. The union

$$(2.6) U_{E_G} := \bigcup_{U \in \mathrm{SU}(2)} T(U)$$

has a natural structure of a finite dimensional Lie group. The group operation is defined as follows: for $A_1 \in T(U_1)$ and $A_2 \in T(U_2)$,

$$A_1 A_2 = \left(f \left(U_1^{-1} \right)^* A_2 \right) \circ A_1 \in T(U_1 U_2)$$

is simply the composition of the holomorphic isometry

$$A_1: E_G \longrightarrow f(U_1^{-1})^* E_G$$

with the holomorphic isometry

$$f(U_1^{-1})^* A_2 : f(U_1^{-1})^* E_G \longrightarrow f(U_1^{-1})^* f(U_2^{-1})^* E_G = f((U_1 U_2)^{-1})^* E_G.$$

We have a forgetful homomorphism of Lie groups from U_E in Equation (2.6)

$$(2.7) H: U_{E_G} \longrightarrow SU(2)$$

that sends any $A \in T(U)$ to U. It was noted above that H is surjective since (E_G, E_K) is SU(2)-homogeneous. Consequently, we have a short exact sequence of groups

(2.8)
$$e \longrightarrow \operatorname{Aut}(E_G, E_K) \longrightarrow U_{E_G} \xrightarrow{H} \operatorname{SU}(2) \longrightarrow e,$$

where $\operatorname{Aut}(E_G, E_K)$ is the group of all holomorphic isometries of the holomorphic Hermitian principal *G*-bundle (E_G, E_K) , and *H* is constructed in Equation (2.7).

The Lie algebra of the Lie group U_{E_G} (respectively, $\operatorname{Aut}(E_G, E_K)$) will be denoted by $\tilde{\mathfrak{g}}$ (respectively, \mathfrak{g}_0). Let

(2.9)
$$0 \longrightarrow \mathfrak{g}_0 \longrightarrow \widetilde{\mathfrak{g}} \stackrel{h}{\longrightarrow} \mathrm{su}(2) \longrightarrow e$$

be the short exact sequence of Lie algebras associated to the short exact sequence of Lie groups in Equation (2.8). The Lie algebra su(2) of SU(2) is simple. Hence the homomorphism h in Equation (2.9) splits (see [4, p. 91, Corollaire 3]). In other words, there is a Lie algebra homomorphism

$$(2.10) h': su(2) \longrightarrow \widetilde{\mathfrak{g}}$$

such that $h \circ h' = \text{Id}_{su(2)}$. Fix a splitting h' as in Equation (2.10). The Lie group SU(2) is simply connected. Hence, the homomorphism h' integrates into a homomorphism of Lie groups. In other words, there is a unique homomorphism of Lie groups

(2.11)
$$\rho': \operatorname{SU}(2) \longrightarrow U_{E_G}$$

whose differential, at the identity element, is the homomorphism h' in Equation (2.10). Since the differential $h \circ h'$ of the homomorphism $H \circ \rho'$ is the identity automorphism of su(2), it follows that $H \circ \rho' = \mathrm{Id}_{\mathrm{SU}(2)}$.

Define

$$(2.12) \qquad \rho: \, \mathrm{SU}(2) \times E_G \longrightarrow E_G$$

as follows:

$$\rho(A,z) = \rho'(A^{-1})(z)$$

for all $(A, z) \in SU(2) \times E_G$, where ρ' is the homomorphism in Equation (2.11). It is now straight-forward to check that ρ in Equation (2.12) is a smooth action of SU(2) on the total space of E_G that satisfies all the four conditions in Definition 2.2. In other words, $(E_G, E_K; \rho)$ is a SU(2)-equivariant holomorphic Hermitian principal *G*-bundle. This completes the proof of the lemma. \Box

REMARK 2.4. A given SU(2)-homogeneous holomorphic Hermitian principal *G*-bundle can have many non-isomorphic SU(2)-equivariant structures. To explain this, take any homomorphism

 β : SU(2) $\longrightarrow K$.

Let E_G be the trivial holomorphic principal G-bundle $\mathbb{CP}^1 \times G$, and let

$$E_K := \mathbb{CP}^1 \times K \subset \mathbb{CP}^1 \times G = E_G$$

be the natural reduction of structure group to K. The group SU(2) acts on K as left translations using the homomorphism β . Consider the diagonal action of SU(2) on $E_K = \mathbb{CP}^1 \times K$ with SU(2) acting on \mathbb{CP}^1 using f in Equation (2.1). This diagonal action will be denoted by ρ_β . The triple $(E_G, E_K; \rho_\beta)$ is a SU(2)-equivariant holomorphic Hermitian principal G-bundle.

It is easy to see that for another homomorphism $\beta' : \mathrm{SU}(2) \longrightarrow K$, the corresponding $\mathrm{SU}(2)$ -equivariant holomorphic Hermitian principal *G*-bundle $(E_G, E_K; \rho_{\beta'})$ is isomorphic to $(E_G, E_K; \rho_{\beta})$ if and only if there is a fixed element $g_0 \in K$ such that

$$\beta'(g) = g_0^{-1}\beta(g)g_0$$

for all $g \in SU(2)$. In particular, if the homomorphism β is nontrivial, then $(E_G, E_K; \rho_\beta)$ is not isomorphic to the SU(2)-equivariant holomorphic Hermitian principal *G*-bundle corresponding to the trivial homomorphism of SU(2) to *K*.

3. Action of the isotropy subgroups

Consider the action of SU(2) on \mathbb{CP}^1 in Equation (2.1). For any point $x \in \mathbb{CP}^1$, let

be the isotropy subgroup of x for this action. Consider the line L^x in \mathbb{C}^2 represented by x. Since H_x fixes x, it acts on this line L^x . This action defines a homomorphism of Lie groups

(3.2)
$$\chi^x : H_x \longrightarrow \mathrm{U}(1) = \left\{ \lambda \in \mathbb{C} \mid |\lambda| = 1 \right\}.$$

It is easy to see that this homomorphism χ^x is an isomorphism. In other words, χ^x in Equation (3.2) identifies the isotropy subgroup H_x with U(1).

For a principal G-bundle E_G over \mathbb{CP}^1 , its adjoint bundle will be denoted by $\mathrm{Ad}(E_G)$. We recall that

$$\operatorname{Ad}(E_G) := E_G \times^G G$$

is the fiber bundle over \mathbb{CP}^1 associated to E_G for the adjoint action of G on itself.

REMARK 3.1. Since the adjoint action of G on itself preserves the group structure of G, the fibers of $\operatorname{Ad}(E_G)$ are groups isomorphic to G. More precisely, for any $x \in \mathbb{CP}^1$, there is an isomorphism of G with the fiber $\operatorname{Ad}(E_G)_x$ over x which is unique up to an inner automorphism of G. Indeed, fixing a point $z \in (E_G)_x$ we get an isomorphism

$$(3.3) f_z: G \longrightarrow \operatorname{Ad}(E_G)_x$$

that sends any $g \in G$ to the image of (z,g) in $\operatorname{Ad}(E_G)_x$ (recall that $\operatorname{Ad}(E_G)_x$ is a quotient of $(E_G)_x \times G$). If we replace z by zg_0 , where $g_0 \in G$, then the above isomorphism $G \longrightarrow \operatorname{Ad}(E_G)_x$ gets pre-composed with the inner automorphism of G that sends any $g \in G$ to $g_0 g g_0^{-1}$.

Let $(E_G, E_K; \rho)$ be a SU(2)-equivariant holomorphic Hermitian principal *G*-bundle over \mathbb{CP}^1 . The action of SU(2) on E_G defined by ρ induces an action of SU(2) on the total space of Ad (E_G) that lifts the action of SU(2) on \mathbb{CP}^1 .

Take any point $x \in \mathbb{CP}^1$. Let $(E_G)_x$ denote the fiber of E_G over x. The isotropy subgroup H_x in Equation (3.1) acts on $(E_G)_x$ using ρ . The automorphisms of the principal G-bundle $(E_G)_x$ over x given by this action of H_x define a homomorphism of groups

(3.4)
$$\gamma_x: H_x \longrightarrow \operatorname{Ad}(E_G)_x.$$

Indeed, $\operatorname{Ad}(E_G)_x$ is the group of all diffeomorphisms of $(E_G)_x$ that commute with the action of G on $(E_G)_x$. Hence, the action of H_x on $(E_G)_x$ gives a homomorphism γ_x as in Equation (3.4).

REMARK 3.2. Take two principal *G*-bundles E_G^1 and E_G^2 on \mathbb{CP}^1 . The corresponding adjoint bundles will be denoted by $\mathrm{Ad}(E_G^1)$ and $\mathrm{Ad}(E_G^2)$, respectively. Fix two points x_1 and x_2 in \mathbb{CP}^1 . Both the fibers $\mathrm{Ad}(E_G^1)_{x_1}$ and $\mathrm{Ad}(E_G^2)_{x_2}$ are identified with the group *G* up to inner automorphisms of *G* (this was explained in Remark 3.1). Hence, the class of inner isomorphisms between ${\rm Ad}(E_G^1)_{x_1}$ and ${\rm Ad}(E_G^2)_{x_2}$ has a precise meaning. It is an isomorphism of groups

$$\beta: \operatorname{Ad}(E_G^1)_{x_1} \longrightarrow \operatorname{Ad}(E_G^2)_{x_2}$$

such that after fixing isomorphisms of $\operatorname{Ad}(E_G^1)_{x_1}$ and $\operatorname{Ad}(E_G^2)_{x_2}$ with G in the class of natural isomorphisms (which differ by inner automorphisms of G) the isomorphism β is transported to an inner automorphism of G.

The group H_x is identified with U(1) (see Equation (3.2)). Take any $x' \in \mathbb{CP}^1$. Since the action of SU(2) on \mathbb{CP}^1 is transitive, the homomorphism γ_x (see Equation (3.4)) is equivalent, in the following sense, to the homomorphism

$$\gamma_{x'}: H_{x'} = \mathrm{U}(1) \longrightarrow \mathrm{Ad}(E_G)_{x'}$$

constructed as in Equation (3.4) for x'. There is an inner isomorphism of the group $\operatorname{Ad}(E_G)_x$ with $\operatorname{Ad}(E_G)_{x'}$ that transports the homomorphism γ_x to $\gamma_{x'}$; see Remark 3.2 for inner isomorphism. To construct such an isomorphism of $\operatorname{Ad}(E_G)_x$ with $\operatorname{Ad}(E_G)_{x'}$, fix an element $A \in \operatorname{SU}(2)$ such that f(A)(x) = x', where f is the homomorphism in Equation (2.1). The action of A on $\operatorname{Ad}(E_G)_x$ with $\operatorname{Ad}(E_G)_x$ to $\operatorname{Ad}(E_G)_{x'}$. This isomorphism of $\operatorname{Ad}(E_G)_x$ with $\operatorname{Ad}(E_G)_x$ to $\operatorname{Ad}(E_G)_{x'}$. This isomorphism of $\operatorname{Ad}(E_G)_x$ with $\operatorname{Ad}(E_G)_x$ for A intertwines the homomorphisms γ_x and $\gamma_{x'}$ from U(1) to $\operatorname{Ad}(E_G)_x$ and $\operatorname{Ad}(E_G)_{x'}$, respectively.

REMARK 3.3. Since $\gamma_{x'}$ is equivalent to γ_x , if the image of γ_x lies in the center of the group $\operatorname{Ad}(E_G)_x$, then the image of $\gamma_{x'}$ also lies in the center of $\operatorname{Ad}(E_G)_{x'}$.

COROLLARY 3.4. Let $(E_G, E_K; \rho)$ be a SU(2)-equivariant holomorphic Hermitian principal G-bundle over \mathbb{CP}^1 such that the image of the homomorphism γ_x (see Equation (3.4)) lies in the center of the group $\mathrm{Ad}(E_G)_x$ for some $x \in X$ (hence for all $x \in X$ by Remark 3.3). Let $(E'_G, E'_K; \rho')$ be another SU(2)-equivariant holomorphic Hermitian principal G-bundle over \mathbb{CP}^1 such that there is an inner isomorphism

$$\operatorname{Ad}(E_G)_x \longrightarrow \operatorname{Ad}(E'_G)_x$$

(see Remark 3.2) that takes the homomorphism γ_x to the homomorphism

$$\gamma'_x: H_x \longrightarrow \operatorname{Ad}(E'_G)_x$$

constructed as in Equation (3.4) for $(E'_G, E'_K; \rho')$. Then the two SU(2)equivariant holomorphic Hermitian principal G-bundles $(E_G, E_K; \rho)$ and $(E'_G, E'_K; \rho')$ are isomorphic.

The C^{∞} principal G-bundle E_G equipped with the action ρ of SU(2) does not admit a different holomorphic structure \hat{E}_G satisfying the condition that $(\hat{E}_G, E_K; \rho)$ is also a SU(2)-equivariant holomorphic Hermitian principal Gbundle. Proof. Let

be the center, which is a complex Abelian reductive group. Since the right-translation action of G on itself commutes with the right-translation action of Z(G) on G, for any $g \in Z(G)$, the map

$$E_G \longrightarrow E_G$$

defined by

is a holomorphic automorphism of the principal G-bundle E_G . Therefore, we have a homomorphism

(3.7)
$$\zeta: Z(G) \longrightarrow H^0(\mathbb{CP}^1, \mathrm{Ad}(E_G)),$$

where $H^0(\mathbb{CP}^1, \mathrm{Ad}(E_G))$ is the group of all holomorphic sections of $\mathrm{Ad}(E_G)$ (which is same as the group of all holomorphic global automorphisms of the principal *G*-bundle E_G). The homomorphism ζ takes any $g \in Z(G)$ to the automorphism of E_G defined in Equation (3.6). For any point $y \in \mathbb{CP}^1$, the image

$$\zeta(y)(Z(G)) \subset \operatorname{Ad}(E_G)_y$$

is the center of the group $\operatorname{Ad}(E_G)_y$.

Fix an element

(3.8)
$$\kappa \in (E_K)_x$$

in the fiber of E_K over x, and also fix an element

(3.9)
$$\kappa' \in \left(E'_K\right)_x,$$

where x is the point of \mathbb{CP}^1 in the statement of the proposition. Let

(3.10)
$$\tau_x : (E_G)_x \longrightarrow (E'_G)_x$$

be the isomorphism defined by

$$\kappa g \longmapsto \kappa' g$$

for all $g \in G$, where κ and κ' are the points in Equation (3.8) and Equation (3.9).

From the two conditions in the proposition that the image of the homomorphism γ_x lies in the center of $\operatorname{Ad}(E_G)_x$, and there is an inner isomorphism

$$\operatorname{Ad}(E_G)_x \longrightarrow \operatorname{Ad}(E'_G)_x$$

that takes γ_x to γ'_x , it follows immediately that the image of the homomorphism γ'_x also lies in the center of $\operatorname{Ad}(E'_G)_x$. It is now straight-forward to check that the map τ_x in Equation (3.10) intertwines the actions of the group H_x in Equation (3.1) on $(E_G)_x$ and $(E'_G)_x$.

We will show that τ_x extends uniquely to a C^{∞} isomorphism of E_G with E'_G that intertwines the actions of SU(2) on E_G and E'_G .

Take any point

 $y \in \mathbb{CP}^1$.

Fix

such that $f(A_y)(x) = y$, where f is the homomorphism in Equation (2.1). Let

(3.12)
$$\tau_y: (E_G)_y \longrightarrow (E'_G)_y$$

be the isomorphism defined by

(3.13)
$$\rho(A_y, z) \longmapsto \rho'(A_y, \tau_x(z))$$

for all $z \in (E_G)_x$, where τ_x is defined in Equation (3.10). Since the actions of A_y on E_G defined by ρ sends $(E_G)_x$ isomorphically to $(E_G)_y$, the map τ_y in Equation (3.13) is well defined.

Using the fact that τ_x intertwines the actions of the isotropy subgroup H_x on $(E_G)_x$ and $(E'_G)_x$ it can be shown that the isomorphism τ_y in Equation (3.12) also intertwines the actions of H_y on the fibers $(E_G)_y$ and $(E'_G)_y$. Indeed, for any $z \in (E_G)_x$ and any $g \in H_y$, we have

(3.14)
$$\tau_y \left(\rho \left(g, \rho(A_y, z) \right) \right) = \tau_y \left(\rho \left(A_y A_y^{-1} g, \rho(A_y, z) \right) \right) \\ = \tau_y \left(\rho \left(A_y, \rho \left(A_y^{-1} g A_y, z \right) \right) \right)$$

(the second equality follows from the fact that ρ is an action of the group SU(2)). Now from the definition of τ_y we have

(3.15)
$$\tau_y \left(\rho \left(A_y, \rho \left(A_y^{-1} g A_y, z \right) \right) \right) = \rho' \left(A_y, \tau_x \left(\rho \left(A_y^{-1} g A_y, z \right) \right) \right).$$

Clearly, $A_y^{-1}gA_y \in H_x$, hence τ_x intertwines the actions of $A_y^{-1}gA_y$ on $(E_G)_x$ and $(E'_G)_x$. In other words,

(3.16)
$$\tau_x \left(\rho \left(A_y^{-1} g A_y, z \right) \right) = \rho' \left(A_y^{-1} g A_y, \tau_x(z) \right).$$

Since ρ' is an action of the group SU(2), from Equation (3.16) and the definition of τ_y we have

(3.17)
$$\rho'(A_y, \tau_x(\rho(A_y^{-1}gA_y, z))) = \rho'(A_y, \rho'(A_y^{-1}gA_y, \tau_x(z))) = \rho'(A_yA_y^{-1}g, \rho'(A_y, \tau_x(z)))$$

Also, $\rho'(A_y A_y^{-1}g, \rho'(A_y, \tau_x(z))) = \rho'(g, \tau_y(\rho(A_y, z)))$. Therefore, combining Equation (3.14), Equation (3.15) and Equation (3.17) we have

$$\tau_y(\rho(g,\rho(A_y,z))) = \rho'(g,\tau_y(\rho(A_y,z))).$$

In other words, the isomorphism τ_y intertwines the actions of H_y on the fibers $(E_G)_y$ and $(E'_G)_y$.

For any $A'_y \in SU(2)$ such that $f(A'_y)(x) = y$, we have $A'_y = gA_y$, where $g \in H_y$. Since τ_x (respectively, τ_y) intertwines the action of H_x (respectively,

 H_y) on $(E_G)_x$ and $(E'_G)_x$ (respectively, $(E_G)_y$ and $(E'_G)_y$), the isomorphism τ_y is actually independent of the choice of the element A_y in Equation (3.11) (but of course it depends on the map τ_x). Also, if x = y, then τ_y clearly coincides with τ_x . Hence, we have a diffeomorphism

(3.18) $\tau: E_G \longrightarrow E'_G$

defined by

$$\tau(z) = \tau_{p(z)}(z),$$

where $p: E_G \longrightarrow \mathbb{CP}^1$ is the natural projection. This map τ clearly intertwines the actions of G on E_G and E'_G . Hence, τ in Equation (3.18) is a C^{∞} isomorphism of principal bundles.

It is straight-forward to check that

$$\tau(E_K) = E'_K$$

as well as that τ intertwines the actions of SU(2) on E_G and E'_G .

Therefore, to prove that τ is an isomorphism between the two SU(2)equivariant holomorphic Hermitian principal *G*-bundles

$$(E_G, E_K; \rho)$$
 and $(E'_G, E'_K; \rho')$

it suffices to show that τ is holomorphic.

Pull back to E'_G the holomorphic structure on the principal G-bundle E'_G using the isomorphism τ in Equation (3.18). Any two holomorphic structures on the smooth principal G-bundle E_G differ by a smooth (0,1)-form with values in the adjoint vector bundle $\operatorname{ad}(E_G)$. We recall that $\operatorname{ad}(E_G) = E_G \times^G \mathfrak{g}$ is the vector bundle over \mathbb{CP}^1 associated to the principal G-bundle E_G for the adjoint action of G on its Lie algebra \mathfrak{g} . Let

(3.19)
$$\theta \in C^{\infty} \left(\Omega^{0,1} \left(\operatorname{ad}(E_G) \right) \right)$$

be the (0,1)-form with values in $ad(E_G)$ obtained by taking the difference of the pulled back, by τ , of the holomorphic structure and the original holomorphic structure on E_G .

Since τ intertwines the actions of SU(2) on E_G and E'_G , and SU(2) acts on E_G and E'_G as holomorphic automorphisms, it follows immediately that the section θ in Equation (3.19) is left invariant by the action of SU(2) on the C^{∞} vector bundle

$$\Omega^{0,1}(\mathrm{ad}(E_G)) = (T^{0,1}\mathbb{CP}^1)^* \otimes \mathrm{ad}(E_G).$$

(The action of SU(2) on $(T^{0,1}\mathbb{CP}^1)^* \otimes \mathrm{ad}(E_G)$ is the tensor product of its actions on $(T^{0,1}\mathbb{CP}^1)^*$ and $\mathrm{ad}(E_G)$.) Consider the action of the isotropy subgroup H_x on the fiber

$$\Omega^{0,1}\left(\mathrm{ad}(E_G)\right)_x = \left(T_x^{0,1}\right)^* \otimes \mathrm{ad}(E_G)_x.$$

The group $H_x = U(1)$ (see Equation (3.2)) acts on the fiber $(T_x^{0,1})^*$ as follows: any $\lambda \in U(1)$ acts on $(T_x^{0,1})^*$ as multiplication by $1/\lambda^2$. On the other hand, since the image of the homomorphism γ_x (see Equation (3.4)) lies in the center of the group $\operatorname{Ad}(E_G)_x$, it follows immediately that H_x acts trivially on the fiber $\operatorname{ad}(E_G)_x$ (the Lie algebra of the group $\operatorname{Ad}(E_G)_x$ is $\operatorname{ad}(E_G)_x$, and the adjoint action on $\operatorname{ad}(E_G)_x$ of the center of $\operatorname{Ad}(E_G)_x$ is trivial). Consequently, no nonzero element of the fiber $\Omega^{0,1}(\operatorname{ad}(E_G))_x$ is preserved by the action of H_x .

Since θ in Equation (3.19) is left invariant by the action of SU(2) on E_G , we now conclude that $\theta = 0$. In other words, the isomorphism τ in Equation (3.18) is holomorphic. This completes the proof of the first part of the proposition.

To prove the second statement of the proposition, assume that the C^{∞} principal *G*-bundle E_G equipped with the action ρ of SU(2) admits another holomorphic structure \hat{E}_G such that $(\hat{E}_G, E_K; \rho)$ is also a SU(2)-equivariant holomorphic Hermitian principal *G*-bundle. Let

$$\theta \in C^{\infty}(\Omega^{0,1}(\mathrm{ad}(E_G)))$$

be the difference of the two holomorphic structures on the C^{∞} principal *G*bundle E_G . Clearly, θ is left invariant by the action of SU(2) on $\Omega^{0,1}(\mathrm{ad}(E_G))$. We have already shown above that such a section must vanish identically. Hence, the holomorphic structure \widehat{E}_G actually coincides with the original holomorphic structure on E_G . This completes the proof of the proposition. \Box

The projection ψ in Equation (2.2) defines a holomorphic principal \mathbb{C}^* bundle on \mathbb{CP}^1 . Let

$$(3.20) \qquad \qquad \psi: E_{\mathbb{C}^*} \longrightarrow \mathbb{CP}^1$$

be the principal \mathbb{C}^* -bundle defined by ψ . We will construct a C^{∞} reduction of structure group of $E_{\mathbb{C}^*}$ to the subgroup $\mathrm{U}(1) \subset \mathbb{C}^*$.

Take a point

$$(3.21) x \in \mathbb{CP}^1$$

and also fix a point $\tilde{x} = (z_1, z_2) \in \mathbb{C}^2 \setminus \{0\}$ such that $|z_1|^2 + |z_2|^2 = 1$, and $\psi(\tilde{x}) = x$, where ψ is the projection in Equation (2.2). Let

$$\mathcal{O}(\widetilde{x}) := \mathrm{SU}(2)(\widetilde{x}) \subset \mathbb{C}^2 \setminus \{0\}$$

be the orbit of \widetilde{x} for the standard action of SU(2) on $\mathbb{C}^2 \setminus \{0\}$. Note that the action of SU(2) on $\mathbb{C}^2 \setminus \{0\}$ is free, hence $\mathcal{O}(\widetilde{x})$ is identified with SU(2). The restriction of the projection ψ to $\mathcal{O}(\widetilde{x})$

(3.22)
$$\psi_x : \mathcal{O}(\widetilde{x}) \longrightarrow \mathbb{CP}^1$$

is a principal H_x -bundle, where H_x is the isotropy subgroup in Equation (3.1). We noted earlier that $H_x = U(1)$ (see Equation (3.2)), hence ψ_x in Equation (3.22) defines a principal U(1)-bundle. The inclusion map $\mathcal{O}(\tilde{x}) \hookrightarrow$ $\mathbb{C}^2 \setminus \{0\}$ is a C^{∞} reduction of structure group of $E_{\mathbb{C}^*}$ (see Equation (3.20)) to U(1). The standard action of SU(2) on $\mathbb{C}^2 \setminus \{0\}$ makes the pair

$$(3.23) \qquad \qquad \left(E_{\mathbb{C}^*}, \mathcal{O}(\widetilde{x})\right)$$

a SU(2)-equivariant holomorphic Hermitian principal \mathbb{C}^* -bundle over \mathbb{CP}^1 . Take a homomorphism of Lie groups

$$(3.24) \qquad \qquad \gamma: \mathbf{U}(1) \longrightarrow K,$$

where K is the group in Equation (2.4). Let

$$(3.25) \qquad \qquad \widetilde{\gamma}: \mathbb{C}^* \longrightarrow G$$

be an extension of γ in Equation (3.24) as a holomorphic homomorphism between complex Lie groups. We note that there is exactly one such extension.

Let $(E_G^{\gamma}, E_K^{\gamma})$ be the SU(2)-equivariant holomorphic Hermitian principal *G*-bundle over \mathbb{CP}^1 obtained by extending the structure group of the SU(2)equivariant holomorphic Hermitian principal \mathbb{C}^* -bundle in Equation (3.23) using the homomorphism γ in Equation (3.24). More precisely, the principal *G*-bundle E_G^{γ} (respectively, the principal *K*-bundle E_K^{γ}) is obtained by extending the structure group of $E_{\mathbb{C}^*}^0$ (respectively, $\mathcal{O}(\tilde{x})$) using the homomorphism $\tilde{\gamma}$ (respectively, γ) in Equation (3.25) (respectively, Equation (3.24)). Note that the action of SU(2) on $\mathcal{O}(\tilde{x})$ induces an action of SU(2) on $E_K^{\gamma} = \mathcal{O}(\tilde{x}) \times^{\mathrm{U}(1)} K$.

Since E_K^{γ} is the extension of structure group of the principal U(1)-bundle $\mathcal{O}(\tilde{x})$ in Equation (3.23), we have a map

$$\phi: \mathcal{O}(\widetilde{x}) \longrightarrow E_K^{\gamma}.$$

The fiber $\operatorname{Ad}(E_K^{\gamma})_x$ over the point x in Equation (3.21) is identified with K as follows: send any $g \in K$ to the point in $\operatorname{Ad}(E_K^{\gamma})_x$ defined by $(\phi(\widetilde{x}), g)$ (recall that $\operatorname{Ad}(E_K^{\gamma})$ is a quotient of $E_K^{\gamma} \times K$). This identification of $\operatorname{Ad}(E_K^{\gamma})_x$ with K extends to an identification of $\operatorname{Ad}(E_G^{\gamma})_x$ with G.

Construct the homomorphism γ_x as in Equation (3.4) for the SU(2)-equivariant holomorphic Hermitian principal *G*-bundle $(E_G^{\gamma}, E_K^{\gamma})$ constructed above from the holomorphic Hermitian principal \mathbb{C}^* -bundle in Equation (3.23). It is straight-forward to check that γ_x coincides with the homomorphism γ in Equation (3.24) after we identify U(1) with H_x using the character χ^x in Equation (3.2).

Therefore, we have the following lemma which also complements Proposition 3.4.

LEMMA 3.5. Take a homomorphism γ as in Equation (3.24). Associated to γ , there is a natural SU(2)-equivariant holomorphic Hermitian principal G-bundle ($E_G, E_K; \rho$) over \mathbb{CP}^1 such that the homomorphism γ_x (see Equation (3.4)) coincides with γ after identifying U(1) with H_x using the character χ^x in Equation (3.2).

4. A construction of SU(2)-equivariant holomorphic Hermitian principal bundles

Let $(E_G, E_K; \rho)$ be a SU(2)-equivariant holomorphic Hermitian principal *G*-bundle over \mathbb{CP}^1 . Fix a point $x \in \mathbb{CP}^1$, and consider the homomorphism γ_x constructed in Equation (3.4). The action of SU(2) on E_G is induced by an action on E_K , namely ρ , of SU(2). Hence, the image of γ_x lies inside the subgroup $\mathrm{Ad}(E_K)_x \subset \mathrm{Ad}(E_G)_x$. Fix a point

$$z \in (E_K)_x$$

Let f_z be the isomorphism constructed as in Equation (3.3). Since $z \in (E_K)_x$, the isomorphism f_z takes the subgroup $K \subset G$ to $\operatorname{Ad}(E_K)_x \subset \operatorname{Ad}(E_G)_x$. Define

(4.1)
$$\alpha_0 := f_z^{-1} \circ \gamma_x \circ \left(\chi^x\right)^{-1} : \operatorname{U}(1) \longrightarrow K \subset G$$

to be the homomorphism, where χ^x is constructed in Equation (3.2).

Now, for any point $y \in \mathbb{CP}^1 \setminus \{x\}$, consider the homomorphism

$$\gamma_y: H_y \longrightarrow \operatorname{Ad}(E_K)_y$$

constructed as in Equation (3.4). This homomorphism γ_y is conjugate to the homomorphism α_0 in Equation (4.1) after H_y is identified with U(1) using χ^y is constructed as in Equation (3.2). To see this, fix an element $g \in SU(2)$ such that f(g)(x) = y, where f is the homomorphism in Equation (2.1). It is now straight-forward to check that the isomorphism $f_{\rho(g,z)}^{-1} \circ \gamma_y \circ (\chi^y)^{-1}$ coincides with α_0 , where $f_{\rho(g,z)}$ is defined in Equation (3.3).

Using the homomorphism α_0 , we will construct a smooth reduction of structure group of E_K .

Let

(4.2)
$$K_0 := C(\alpha_0(\mathbf{U}(1))) \subset K$$

be the centralizer of the subgroup $\alpha_0(U(1))$ of K, where α_0 is constructed in Equation (4.1). This subgroup K_0 of K is compact and connected.

COROLLARY 4.1. Let $(E_G, E_K; \rho)$ be a SU(2)-equivariant holomorphic Hermitian principal G-bundle over \mathbb{CP}^1 . The principal K-bundle E_K has a natural smooth reduction of structure group

$$E_{K_0} \subset E_K,$$

to the subgroup K_0 in Equation (4.2), which is left invariant by the action ρ of SU(2) on E_K .

Proof. For any point $y \in \mathbb{CP}^1$, and any point $z' \in E_K$, let

$$\delta_{z'} := f_{z'}^{-1} \circ \gamma_y \circ \left(\chi^y\right)^{-1} : \operatorname{U}(1) \longrightarrow K \subset G$$

be the homomorphism, where $f_{z'}: G \longrightarrow \operatorname{Ad}(E_G)_y$ is constructed as in Equation (3.3), the homomorphism γ_y is constructed in Equation (3.4) and χ^y is defined as in Equation (3.2). We note that $\delta_z = \alpha_0$, where α_0 is constructed in Equation (4.1). Define

(4.3)
$$(E_{K_0})_y := \{ z' \in (E_K)_y \mid \delta_{z'} = \alpha_0 \} \subset (E_K)_y.$$

Let

 $E_{K_0} \subset E_K$

be the sub-fiber bundle whose fiber over any point y is $(E_{K_0})_y$ defined in Equation (4.3).

It is straight-forward to check that the subgroup K_0 in Equation (4.2) acts transitively on the fibers of E_{K_0} . Therefore, E_{K_0} is a smooth reduction of structure group of E_K to K_0 . The action of SU(2) on E_K evidently preserves the submanifold E_{K_0} . This completes the proof of the proposition. \Box

Let

$$(4.4) G_0 \subset G$$

be the Zariski closure of the subgroup K_0 defined in Equation (4.2). The group G_0 is reductive, because K_0 is a compact subgroup of G. Since K_0 is connected it also follows that G_0 is connected.

Let E_{G_0} be the C^{∞} principal G_0 -bundle over \mathbb{CP}^1 obtained by extending the structure group of E_{K_0} constructed in Proposition 4.1 using the inclusion of K_0 in the group G_0 in Equation (4.4). We recall that E_{K_0} is a reduction of structure group of E_K to the subgroup $K_0 \subset K$. On the other hand, E_K is a reduction of structure group of E_G to K. Hence E_{G_0} is also a C^{∞} reduction of structure group of E_G to G_0 .

Since the reduction E_{K_0} is preserved by the action ρ of SU(2) on E_{K_0} , the principal K_0 -bundle E_{K_0} gets an induced action. This induced action of SU(2) on E_{K_0} will be denoted by ρ_0 . Now, ρ_0 induces an action of SU(2) on E_{G_0} ; this induced action of SU(2) on E_{G_0} will also be denoted by ρ_0 . We will show that $(E_{G_0}, E_{K_0}; \rho_0)$ has a natural structure of a SU(2)-equivariant holomorphic Hermitian principal G_0 -bundle.

Take a point $x \in \mathbb{CP}^1$. Let

(4.5)
$$\gamma_x^0: H_x \longrightarrow \operatorname{Ad}(E_{G_0})_x$$

be the homomorphism constructed as in Equation (3.4) for the action ρ_0 of SU(2) on E_{G_0} . Since K_0 is centralizer of $\alpha_0(U(1))$ in K (see Equation (4.2)), the image $\alpha_0(U(1))$ lies inside the center of K_0 . Therefore, $\alpha_0(U(1))$ lies inside the center of α_0 and γ_x (see Equation (4.1)) we conclude that the image of the homomorphism γ_x^0 in Equation (4.5) lies inside the center of $Ad(E_{G_0})_x$.

Since the image of the homomorphism γ_x^0 lies inside the center of $\operatorname{Ad}(E_{G_0})_x$, from the second part of Proposition 3.4 and Lemma 3.5 we conclude that there is exactly one holomorphic structure on the principal G_0 -bundle on E_{G_0} that makes $(E_{G_0}, E_{K_0}; \rho_0)$ into a SU(2)-equivariant holomorphic Hermitian principal G_0 -bundle.

The holomorphic principal G_0 -bundle defined by this unique holomorphic structure on the C^{∞} principal G_0 -bundle E_{G_0} will be denoted by \widehat{E}_{G_0} . Let \widehat{E}_G denote the holomorphic principal G-bundle over \mathbb{CP}^1 obtained by extending the structure group of \widehat{E}_{G_0} using the inclusion of G_0 in G.

We noted earlier that E_{G_0} is a C^{∞} reduction of structure group of E_G . Therefore, the C^{∞} principal *G*-bundle underlying the holomorphic principal *G*-bundle \hat{E}_G is identified with that of E_G . Therefore, \hat{E}_G and E_G are holomorphic structures on the same C^{∞} principal *G*-bundle such that both $(\hat{E}_G, E_K; \rho)$ and $(E_G, E_K; \rho)$ are SU(2)-equivariant holomorphic Hermitian principal *G*-bundles.

We note that the SU(2)-equivariant holomorphic Hermitian principal Gbundle $(\hat{E}_G, E_K; \rho)$ has the following property.

If we set the homomorphism γ in Lemma 3.5 to be α_0 defined in Equation (4.1), then the SU(2)-equivariant holomorphic Hermitian principal *G*bundle in Lemma 3.5 is isomorphic to $(\hat{E}_G, E_K; \rho)$. Indeed, this follows from the above construction of $(\hat{E}_G, E_K; \rho)$, and the construction in Lemma 3.5.

The above constructions and observations are put down as the following lemma.

LEMMA 4.2. Given any SU(2)-equivariant holomorphic Hermitian principal G-bundle $(E_G, E_K; \rho)$ on \mathbb{CP}^1 , there is a natural construction, using $(E_G, E_K; \rho)$, of another SU(2)-equivariant holomorphic Hermitian principal G-bundle. Only the holomorphic structure of the principal G-bundle of the new SU(2)-equivariant holomorphic Hermitian principal G-bundle is different from E_G . More precisely, the underlying C^{∞} principal G-bundle, the reduction of structure group to K as well as the action of SU(2) on the principal G-bundle remain unchanged.

The SU(2)-equivariant holomorphic Hermitian principal G-bundle constructed from $(E_G, E_K; \rho)$ is also one those constructed in Lemma 3.5.

5. Classification of SU(2)-equivariant holomorphic Hermitian bundles

As before, let G be a connected reductive linear algebraic group defined over \mathbb{C} and $K \subset G$ a maximal compact subgroup. The Lie algebra of G will be denoted by \mathfrak{g} .

Take any homomorphism

$$\gamma: \mathrm{U}(1) \longrightarrow K$$

as in Equation (3.24). Let $(E_G, E_K; \rho)$ be the SU(2)-equivariant holomorphic Hermitian principal G-bundle over \mathbb{CP}^1 obtained by extending the structure group of the SU(2)-equivariant holomorphic Hermitian principal \mathbb{C}^* -bundle $(E^0_{\mathbb{C}^*}, S^3)$ in Equation (3.23) using γ (see also Lemma 3.5).

The Lie algebra \mathfrak{g} of G will be considered as a U(1)-module using γ and the adjoint action of G on \mathfrak{g} .

Fix a point

$$(5.1) x \in \mathbb{CP}^1.$$

We recall that the action of any $\lambda \in H_x = \mathrm{U}(1)$ on the line $(T_x^{0,1})^*$ is multiplication by $1/\lambda^2$ (see the proof of Proposition 3.4); as before, H_x is identified with U(1) using χ^x defined in Equation (3.2). Consider the tensor product $(T_x^{0,1})^* \otimes \mathrm{ad}(E_G)_x$ of U(1)-modules. The U(1)-module $(T_x^{0,1})^* \otimes \mathrm{ad}(E_G)_x$ is isomorphic to the tensor product $\mathbb{C} \otimes_{\mathbb{C}} \mathfrak{g}$ of U(1)-modules, where the action of any $\lambda \in H_x$ on \mathbb{C} is multiplication by $1/\lambda^2$. Let

(5.2)
$$\mathcal{V}_{\gamma} \subset \left(T_x^{0,1}\right)^* \otimes \mathrm{ad}(E_G)_x$$

be the space of invariants for the action of $H_x = U(1)$ on $(T_x^{0,1})^* \otimes \operatorname{ad}(E_G)_x$. Take any $g_0 \in K$. Let

 $\gamma': \mathrm{U}(1) \longrightarrow K$

be the homomorphism defined by $g \mapsto g_0^{-1}\gamma(g)g_0$. Let E'_G be the holomorphic principal *G*-bundle over \mathbb{CP}^1 obtained by extending the structure group of the holomorphic principal \mathbb{C}^* -bundle $E^0_{\mathbb{C}^*}$ in Equation (3.23) using the (unique) homomorphism $\mathbb{C}^* \longrightarrow G$ that extends γ' (see Equation (3.25)). Let

 $\operatorname{Ad}(g_0): \mathfrak{g} \longrightarrow \mathfrak{g}$

be the automorphism of the Lie algebra given by the automorphism of G that sends any g to $g_0^{-1}gg_0$. This automorphism $\operatorname{Ad}(g_0)$ of \mathfrak{g} induces a holomorphic isomorphism

(5.3)
$$\delta_{g_0} : \operatorname{ad}(E_G) \longrightarrow \operatorname{ad}(E'_G)$$

of Lie algebra bundles. We note that since the principal G-bundle E_G (respectively, E'_G) is the one obtained by extending the structure group of the principal U(1)-bundle S^3 in Equation (3.23) using γ (respectively, γ'), the adjoint vector bundles $\operatorname{ad}(E_G)$ (respectively, $\operatorname{ad}(E'_G)$) is identified with the one associated to the principal U(1)-bundle S^3 for \mathfrak{g} considered as a U(1)-module using γ (respectively, γ').

THEOREM 5.1. Consider all pairs of the form $\{\gamma, v\}$, where

$$\gamma: \mathrm{U}(1) \longrightarrow K$$

is a homomorphism, and

$$v \in \mathcal{V}_{\gamma}$$

(see Equation (5.2)). There is a natural map from such pairs to the SU(2)equivariant holomorphic Hermitian principal G-bundles on \mathbb{CP}^1 . Given any SU(2)-equivariant holomorphic Hermitian principal G-bundle $(E_G, E_K; \rho)$ on \mathbb{CP}^1 , there is a pair $\{\gamma, v\}$ of the above type such that the corresponding SU(2)-equivariant holomorphic Hermitian principal G-bundle is isomorphic to $(E_G, E_K; \rho)$.

Let $\{\gamma, v\}$ and $\{\gamma', v'\}$ be two pairs of the above type. Let $(E_G, E_K; \rho)$ and $(E'_G, E'_K; \rho')$ be the corresponding SU(2)-equivariant holomorphic Hermitian principal G-bundles. Then $(E_G, E_K; \rho)$ and $(E'_G, E'_K; \rho')$ are isomorphic if and only if there is an element $g_0 \in K$ that satisfies the following two conditions:

- $\gamma'(g) = g_0^{-1} \gamma(g) g_0$ for all $g \in \mathrm{SU}(1)$, and
- $v' = (\mathrm{Id}_{(T_x^{0,1})^*} \otimes \delta_{g_0})(v)$, where δ_{g_0} is the isomorphism in Equation (5.3), and x is the point in Equation (5.1).

Proof. Take any pair

$$(5.4) \qquad \qquad \{\gamma, v\}$$

as in the statement of the theorem. First, using γ , we get a SU(2)-equivariant holomorphic Hermitian principal *G*-bundle $(E_G^{\gamma}, E_K^{\gamma}, \rho)$ (see Lemma 3.5). Using v, we will construct from $(E_G^{\gamma}, E_K^{\gamma}, \rho)$ a new SU(2)-equivariant holomorphic Hermitian principal *G*-bundle.

Consider the C^{∞} principal *G*-bundle underlying the holomorphic principal *G*-bundle E_G^{γ} ; we will denote this C^{∞} principal *G*-bundle by E_G^0 . The Dolbeault operator defining the holomorphic structure of E_G^{γ} will be denoted by $\overline{\partial}_{E_C^{\gamma}}$.

Consider the C^{∞} vector bundle $\Omega^{0,1}(\mathrm{ad}(E_G)) = (T^{0,1}\mathbb{CP}^1)^* \otimes \mathrm{ad}(E_G)$ on \mathbb{CP}^1 . The actions of SU(2) on \mathbb{CP}^1 and E_G together induce an action of SU(2) on $\Omega^{0,1}(\mathrm{ad}(E_G))$ (see the proof of Proposition 3.4).

Since the isotropy group H_x of the point x in Equation (5.1) acts trivially on v in Equation (5.4), translating v by the action of SU(2) on $(T^{0,1}\mathbb{CP}^1)^* \otimes$ $\mathrm{ad}(E_G)$ we get a section

(5.5)
$$\widetilde{v} \in C^{\infty} \left(\mathbb{CP}^1, \left(T^{0,1} \mathbb{CP}^1 \right)^* \otimes \operatorname{ad}(E_G) \right).$$

Therefore, \tilde{v} is the unique SU(2)-invariant section of $(T^{0,1}\mathbb{CP}^1)^* \otimes \mathrm{ad}(E_G)$ such that $\tilde{v}(x) = v$.

Consider the Dolbeault operator

$$\overline{\partial}_{E_G^{\gamma}}' := \overline{\partial}_{E_G^{\gamma}} + \widetilde{v}$$

on the C^{∞} principal *G*-bundle E_G^0 underlying E_G , where \tilde{v} is constructed in Equation (5.5); recall that $\overline{\partial}_{E_G^{\gamma}}$ is the Dolbeault operator on E_G . Let E'_G denote the holomorphic principal *G*-bundle defined by this Dolbeault operator $\overline{\partial}'_{E_G^{\gamma}}$. Now $(E'_G, E_K; \rho)$ is clearly a SU(2)-equivariant holomorphic Hermitian principal *G*-bundle on \mathbb{CP}^1 . Note that since \tilde{v} is invariant under the action of SU(2), the Dolbeault operator $\overline{\partial}'_{E_G^{\gamma}}$ is also fixed by the action of SU(2). Let F denote the map from the pairs of the type in Equation (5.4) to the SU(2)-equivariant holomorphic Hermitian principal G-bundles on \mathbb{CP}^1 that sends any $\{\gamma, v\}$ to the SU(2)-equivariant holomorphic Hermitian principal G-bundle $(E'_G, E_K; \rho)$ constructed above from $\{\gamma, v\}$.

We will show that the map F defined above satisfies all the conditions in the theorem.

Take any SU(2)-equivariant holomorphic Hermitian principal *G*-bundle $(E_G, E_K; \rho) \mathbb{CP}^1$. To show that there is a pair $\{\gamma, v\}$ such that $F(\{\gamma, v\})$ is isomorphic to $(E_G, E_K; \rho)$, first consider the homomorphism α_0 in Equation (4.1) which is constructed by fixing a point z in the fiber $(E_K)_x$. Set γ to be α_0 . The SU(2)-equivariant holomorphic Hermitian principal *G*-bundle $F(\{\alpha_0, 0\})$ clearly coincides with the SU(2)-equivariant holomorphic Hermitian principal *G*-bundle

$$(\widehat{E}_G, E_K; \rho)$$

constructed in Lemma 4.2 from $(E_G, E_K; \rho)$.

The Dolbeault operator for the holomorphic principal G-bundle E_G (respectively, \hat{E}_G) will be denoted by $\overline{\partial}_{E_G}$ (respectively, $\overline{\partial}_{\hat{E}_G}$). Set

(5.6)
$$\theta := \overline{\partial}_{E_G} - \overline{\partial}_{\widehat{E}_G} \in C^{\infty} \big(\Omega^{0,1} \big(\mathrm{ad}(E_G) \big) \big).$$

(Recall that the underlying C^{∞} principal *G*-bundle for \widehat{E}_G is identified with that for E_G , hence θ is a smooth section of $\Omega^{0,1}(\mathrm{ad}(E_G))$.) Since both the operators $\overline{\partial}_{E_G}$ and $\overline{\partial}_{\widehat{E}_G}$ are fixed by the action of SU(2), it follows immediately that θ is also fixed by the action of SU(2).

Let

(5.7)
$$v := \theta(x) \in \Omega^{0,1} \left(\operatorname{ad}(E_G) \right)_x$$

be the evaluation at the point x (see Equation (5.1)) of the section θ constructed in Equation (5.6). It is now straight-forward to verify that the SU(2)equivariant holomorphic Hermitian principal *G*-bundle $F(\{\gamma, v\})$, where v is defined in Equation (5.7), is isomorphic to $(E_G, E_K; \rho)$.

Take any pair $\{\gamma, v\}$ as in Equation (5.4). Fix an element $g_0 \in K$. Let

 $\gamma': \mathrm{U}(1) \longrightarrow K$

be the homomorphism defined by $g \longmapsto g_0^{-1} \gamma(g) g_0$. Set

$$v' := (\mathrm{Id}_{(T_x^{0,1})^*} \otimes \delta_{g_0})(v) \in (T_x^{0,1})^* \otimes \mathrm{ad}(E'_G)_x,$$

where δ_{g_0} is defined in Equation (5.3). We will show that that the SU(2)equivariant holomorphic Hermitian principal *G*-bundle $F(\{\gamma, v\})$ is isomorphic to $F(\{\gamma', v'\})$, where γ' and v' are defined above.

To prove this, first consider the automorphism

$$S^3 \times G \longrightarrow S^3 \times G$$

defined by $(z,g) \mapsto (z,g_0^{-1}gg_0)$, where S^3 is the principal U(1)-bundle in Equation (3.23). This automorphism descends to an isomorphism of principal G-bundles

$$E_G := S^3 \times^{\gamma} G \longrightarrow S^3 \times^{\gamma'} G =: E'_G.$$

Here $S^3 \times^{\gamma} G$ (respectively, $S^3 \times^{\gamma'} G$) denotes the quotient of $S^3 \times G$ that identifies any $(z,g) \in S^3 \times G$ with $(zh^{-1}, \gamma(h)g)$ (respectively, $(zh^{-1}, \gamma'(h)g)$), where $h \in U(1)$. We now note that E_G (respectively, E'_G) is the C^{∞} principal *G*-bundle underlying the SU(2)-equivariant holomorphic Hermitian principal *G*-bundle $F(\{\gamma, v\})$ (respectively, $F(\{\gamma', v'\})$). The above isomorphism $E_G \longrightarrow E'_G$ is holomorphic with respect to the holomorphic structures underlying $F(\{\gamma, v\})$ and $F(\{\gamma', v'\})$, and it in fact gives an isomorphism of the SU(2)-equivariant holomorphic Hermitian principal *G*-bundle $F(\{\gamma, v\})$ with $F(\{\gamma', v'\})$.

Take two pairs $\{\gamma, v\}$ and $\{\gamma', v'\}$ as in Equation (5.4) such that the SU(2)equivariant holomorphic Hermitian principal *G*-bundle

$$F(\{\gamma, v\}) =: (E_G, E_K; \rho)$$

is isomorphic to $F(\{\gamma', v'\}) =: (E'_G, E'_K; \rho')$. To complete the proof of the theorem we need to show that there is an element $g_0 \in K$ that satisfies the two conditions in the final part of the theorem.

Let

(5.8)
$$\varphi: E_K \longrightarrow E'_K$$

be an isomorphism of principal K-bundles that induces an isomorphism of the SU(2)-equivariant holomorphic Hermitian principal G-bundle $(E_G, E_K; \rho)$ with $(E'_G, E'_K; \rho')$. Fix a point

$$z \in (E_K)_x$$

(respectively, $z' \in (E'_K)_x$), in the fiber over the point x in Equation (5.1), such that γ (respectively, γ') coincides with the homomorphism constructed as in Equation (4.1) using z (respectively, z').

Let $g_0 \in K$ be the unique element that satisfies the condition

$$z' = \varphi(z)g_0,$$

where φ is the isomorphism in Equation (5.8). It is now straight-forward to verify that this element g_0 satisfies the two conditions in the final part of the theorem. This completes the proof of the theorem.

REMARK 5.2. Take a homomorphism $\gamma : U(1) \longrightarrow K$. Consider the Lie algebra \mathfrak{g} as a U(1)-module using γ and the adjoint action of K on \mathfrak{g} . Let

be the isotypical component of the U(1)-module \mathfrak{g} on which each element $\lambda \in U(1)$ acts as multiplication by λ^2 .

As before, let $(E_G, E_K; \rho)$ be the SU(2)-equivariant holomorphic Hermitian principal *G*-bundle over \mathbb{CP}^1 obtained by extending the structure group of the SU(2)-equivariant holomorphic Hermitian principal \mathbb{C}^* -bundle $(E^0_{\mathbb{C}^*}, S^3)$ in Equation (3.23) using γ . The subspace \mathcal{V}_{γ} in Equation (5.2) is isomorphic to \mathfrak{g}_2 in Equation (5.9). To construct such an isomorphism, fix a nonzero element

$$u_0 \in \left(T_x^{0,1}\right)^*,$$

and also fix an element z_0 in the fiber, over x, of the principal U(1)-bundle S^3 in Equation (3.23). Now we have an isomorphism

$$\mathfrak{g}_2 \longrightarrow \mathcal{V}_\gamma$$

that sends any v to $u_0 \otimes \tilde{v}$, where $\tilde{v} \in \mathrm{ad}(E_G)_x$ is the image, in $\mathrm{ad}(E_G)_x$, of (z_0, v) .

Fix a maximal torus $T \subset G$ such that the (unique) maximal compact subgroup of T is contained in K.

Take any homomorphism

(5.10)
$$\rho: \mathbb{C}^* \longrightarrow T \stackrel{\iota}{\hookrightarrow} G.$$

Let E_G^{ρ} denote the holomorphic principal *G*-bundle over \mathbb{CP}^1 obtained by extending the structure group of the tautological principal \mathbb{C}^* -bundle $E_{\mathbb{C}^*}^0$ (see Equation (3.23)) using the homomorphism $\iota \circ \rho$.

Let E_G be a holomorphic principal *G*-bundle over \mathbb{CP}^1 . A theorem due to Grothendieck says that there is a homomorphism ρ as in Equation (5.10) such that the holomorphic principal *G*-bundle E_G^{ρ} is holomorphically isomorphic to E_G [5, p. 123, Théorème 1.2].

Since $K \cap T$ is the maximal compact subgroup of T, we know that

$$\rho(\mathbf{U}(1)) \subset K,$$

where ρ is the homomorphism in Equation (5.10). Let γ denote the restriction of ρ to U(1) $\subset \mathbb{C}^*$. Let $(E_G^{\gamma}, E_K^{\gamma}; \rho^{\gamma})$ denote the SU(2)-equivariant holomorphic Hermitian principal *G*-bundle over \mathbb{CP}^1 constructed in Lemma 3.5 from $\gamma = \rho|_{U(1)}$.

The unique extension of γ to a homomorphism $\mathbb{C}^* \longrightarrow G$ (see Equation (3.25)) clearly coincides with ρ . Therefore, the principal *G*-bundle E_G is holomorphically isomorphic to E_G^{γ} . Consequently, any holomorphic principal *G*-bundle over \mathbb{CP}^1 admits the structure of a SU(2)-equivariant holomorphic Hermitian principal *G*-bundle.

6. The case of $G = \operatorname{GL}(r, \mathbb{C})$

To illustrate Theorem 5.1, we consider the special case where

$$G = \mathrm{GL}(r, \mathbb{C}),$$

and K = U(r). This case is already well understood (see [1], [2], [3], [7], [8]).

Let E be a holomorphic vector bundle of rank r over \mathbb{CP}^1 . A theorem of Grothendieck says that E is holomorphically isomorphic to a vector bundle of the form $\bigoplus_{i=1}^{r} \mathcal{O}_{\mathbb{CP}^1}(d_i)$ [5]. The action of the group SU(2) on \mathbb{CP}^1 has a canonical lift to the holomorphic line bundle $\mathcal{O}_{\mathbb{CP}^1}(1)$. Therefore, the action of SU(2) on \mathbb{CP}^1 lifts to E. Let h be a Hermitian structure on E, and let ρ be a C^{∞} lift of the action of SU(2) to E, such that the following conditions hold:

- (1) The action of SU(2) to E preserves h.
- (2) For each $U \in SU(2)$, the diffeomorphism of the complex manifold E defined by $v \mapsto \rho(U, v)$ is holomorphic.

Such a triple (E, h, ρ) is called a SU(2)-equivariant holomorphic Hermitian vector bundle.

We note that a SU(2)-equivariant holomorphic Hermitian vector bundle (E, h, ρ) is a SU(2)-equivariant holomorphic Hermitian principal $GL(r, \mathbb{C})$, where $r = \operatorname{rank}(E)$.

Take a pair

(6.1)
$$({\mathcal{H}}_n)_{n\in\mathbb{Z}},T),$$

where

- (1) each \mathcal{H}_n is a finite dimensional Hilbert space, and $\mathcal{H}_n = 0$ for all but finitely many n, and
- (2) T is a linear operator on the direct sum $\bigoplus_{n \in \mathbb{Z}} \mathcal{H}_n$ satisfying the condition

$$T(\mathcal{H}_n) \subset \mathcal{H}_{n+2}$$

for all $n \in \mathbb{Z}$.

We will associate a SU(2)-equivariant holomorphic Hermitian vector bundle to it.

Consider the C^{∞} vector bundle

(6.2)
$$E := \bigoplus_{n \in \mathbb{Z}} (\mathcal{O}_{\mathbb{CP}^1}(n) \otimes_{\mathbb{C}} \mathcal{H}_n).$$

The action of SU(2) on the line bundles $\mathcal{O}_{\mathbb{CP}^1}(n)$ and the trivial action of SU(2) on the vector spaces \mathcal{H}_n together define an action of SU(2) on E. The inner product on the Hilbert spaces \mathcal{H}_n and the Hermitian structure on the line bundles $\mathcal{O}_{\mathbb{CP}^1}(n)$ combine together to produce a SU(2)-invariant Hermitian structure on E.

The natural holomorphic structures of the line bundles $\mathcal{O}_{\mathbb{CP}^1}(n)$ together define a SU(2)-invariant holomorphic structure on E. We will construct a new SU(2)-invariant holomorphic structure on E by altering this holomorphic structure using the endomorphism T in Equation (6.1).

Using the canonical trivialization of the line $\bigwedge^2 \mathbb{C}^2$, we get an identification of $\mathcal{O}_{\mathbb{CP}^1}(2)$ with the holomorphic tangent bundle $T\mathbb{CP}^1 \longrightarrow \mathbb{CP}^1$. Contracting the Kähler form ω in Equation (2.3) with $T\mathbb{CP}^1$, the C^{∞} line bundle $T\mathbb{CP}^1$ gets identified with $\Omega^{0,1}_{\mathbb{CP}^1}$. Therefore, we have a C^{∞} isomorphism of line bundles

$$\mathcal{H}om\big(\mathcal{O}_{\mathbb{CP}^1}(n),\mathcal{O}_{\mathbb{CP}^1}(n+2)\big)=\mathcal{O}_{\mathbb{CP}^1}(2)=\Omega^{0,1}_{\mathbb{CP}^1}$$

Using this isomorphism, the endomorphism T in Equation (6.1) produces a C^{∞} section

$$\widehat{T} \in C^{\infty} \big(\mathbb{CP}^1, \Omega^{0,1}_{\mathbb{CP}^1} \otimes \mathcal{E}nd(E) \big).$$

If $\overline{\partial}_0$ is the Dolbeault operator on E defining its standard holomorphic structure, then

$$\overline{\partial}_T := \overline{\partial}_0 + \widehat{T}$$

is a new holomorphic structure on E. This new holomorphic structure is SU(2)-invariant because both $\overline{\partial}_0$ and \widehat{T} are SU(2)-invariant. Therefore, we have constructed a SU(2)-equivariant holomorphic Hermitian vector bundle from the pair $(\{\mathcal{H}_n\}_{n\in\mathbb{Z}},T)$.

The above construction is bijective. More precise, this construction produces a bijection between the isomorphism classes of SU(2)-equivariant holomorphic Hermitian vector bundles on \mathbb{CP}^1 and the isomorphism classes of pairs of the form $(\{\mathcal{H}_n\}_{n\in\mathbb{Z}}, T)$ as in (6.1).

Note that for any pair $({\mathcal{H}_n}_{n\in\mathbb{Z}}, T)$ as above, the rank of the corresponding SU(2)-equivariant holomorphic Hermitian vector bundle is $\sum_n \dim \mathcal{H}_n$.

The above bijective correspondence is equivalent to the one in Theorem 5.1 for $G = \operatorname{GL}(r, \mathbb{C})$. To see this, take a homomorphism $\gamma : \operatorname{U}(1) \longrightarrow \operatorname{U}(r)$ and an element $v \in \mathcal{V}_{\gamma}$ as in Theorem 5.1. The homomorphism γ gives the isotypical decomposition

(6.3)
$$\mathbb{C}^r = \bigoplus_{\chi \in \mathrm{U}(1)^*} W_{\chi},$$

where $U(1)^* = \mathbb{Z}$ is the group of characters of U(1) (the character for $n \in \mathbb{Z}$ is $z \mapsto z^n$). This isotypical decomposition is orthogonal, and each subspace $W_{\chi} \in \mathbb{C}^r$ is equipped with the induced inner product. For each $n \in \mathbb{Z}$, associate the Hilbert space W_n in Equation (6.3).

Recall the action of SU(2) on \mathbb{CP}^1 . It was noted in the proof of Proposition 3.4 that the isotropy group $H_x = U^1$ (see Equation (3.2)) acts on the fiber $(T_x^{0,1})^*$ as the character $-2 \in \mathbb{Z} = U(1)^*$. Therefore, the space of invariants \mathcal{V}_{γ} in Equation (5.2) is simply

(6.4)
$$\mathcal{V}_{\gamma} = \bigoplus_{n \in \mathbb{Z}} \operatorname{Hom}_{\mathbb{C}}(W_n, W_{n+2}) = \bigoplus_{n \in \mathbb{Z}} W_n^* \otimes W_{n+2}.$$

Let $T \in \bigoplus_{n \in \mathbb{Z}} \operatorname{Hom}_{\mathbb{C}}(W_n, W_{n+2})$ be the element corresponding to the element $v \in \mathcal{V}_{\gamma}$. So, the pair (γ, v) gives the pair $(\{W_n\}_{n \in \mathbb{Z}}, T)$ which satisfies in conditions in Equation (6.1); note that

$$\sum_{n\in\mathbb{Z}}\dim W_n=r.$$

Conversely, given any pair $({\mathcal{H}_n}_{n\in\mathbb{Z}},T)$ as in (6.1), fix a linear isometry

$$\bigoplus_{n\in\mathbb{Z}}\mathcal{H}_n\xrightarrow{\sim}\mathbb{C}^r,$$

where $\sum_{n \in \mathbb{Z}} \dim \mathcal{H}_n = r$, such that the decomposition of \mathbb{C}^r is orthogonal. Let

$$\gamma: \mathrm{U}(1) \longrightarrow \mathrm{U}(r)$$

be the homomorphism such that the action of $z \in U(1)$ on the subspace $\mathcal{H}_n \subset \mathbb{C}^r$ is multiplication by z^n . Using the isomorphism in Equation (6.4), the element T defines an element of \mathcal{V}_{γ} .

References

- L. Álvarez-Cónsul and O. García-Prada, Dimensional reduction and quiver bundles, J. Reine Angew. Math. 556 (2003), 1–46. MR 1971137
- [2] I. Biswas, Holomorphic Hermitian vector bundles over the Riemann sphere, Bull. Sci. Math. 132 (2008), 246–356. MR 2406829
- [3] A. I. Bondal and M. M. Kapranov, *Homogeneous bundles*, Helices and vector bundles, London Math. Soc. Lecture Note Ser., vol. 148, Cambridge Univ. Press, Cambridge, 1990, pp. 45–55. MR 1074782
- [4] N. Bourbaki, Éléments de mathématique. XXVI. Groupes et algèbres de Lie. Chapitre 1: Algèbres de Lie, Actualités Sci. Ind. No. 1285, Hermann, Paris, 1960. MR 0132805
- [5] A. Grothendieck, Sur la classification des fibrés holomorphes sur la sphère de Riemann, Amer. J. Math. 79 (1957), 121–138. MR 0087176
- [6] S. Helgason, Differential geometry, lie groups, and symmetric spaces, Graduate Studies in Mathematics, vol. 34. American Mathematical Society, Providence, RI, 2001. MR 1834454
- [7] L. Hille, Homogeneous vector bundles and Koszul algebras, Math. Nachr. 191 (1998), 189–195. MR 1621314
- [8] G. Ottaviani and E. Rubei, Quivers and the cohomology of homogeneous vector bundles, Duke Math. J. 132 (2006), 459–508. MR 2219264

INDRANIL BISWAS, SCHOOL OF MATHEMATICS, TATA INSTITUTE OF FUNDAMENTAL RE-SEARCH, HOMI BHABHA ROAD, BOMBAY 400005, INDIA

E-mail address: indranil@math.tifr.res.in