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ALMOST COHEN–MACAULAY ALGEBRAS IN MIXED
CHARACTERISTIC VIA FONTAINE RINGS

KAZUMA SHIMOMOTO

Abstract. In the present paper, it is proved that any complete
local domain of mixed characteristic has a weakly almost Cohen–
Macaulay algebra B in the sense that a system of parameters is

a weakly almost regular sequence in B, which is a notion defined

via a valuation. In fact, the central idea of this result originates

from the main statement obtained by Heitmann to prove the

Monomial Conjecture in dimension 3. A weakly almost Cohen–
Macaulay algebra is constructed over the absolute integral closure

of a complete local domain by applying the methods of Fontaine

rings and Witt vectors. A connection of the main theorem with
the Monomial Conjecture is also discussed.

1. Introduction

Let (R,m) be a local Noetherian ring with a system of parameters x1, . . . ,
xd. We recall that an R-algebra B is called a big Cohen–Macaulay R-algebra
if mB �= B and the sequence x1, . . . , xd is B-regular. There is no finiteness
condition on B. The following conjecture raised by Hochster [7] has been of
central interest in the study of certain homological conjectures.

Conjecture 1 (Hochster). Every local Noetherian ring of mixed charac-
teristic has a big Cohen–Macaulay algebra.

Big Cohen–Macaulay algebras are known to exist for equicharacteristic
local rings (see [7], [11]). In fact, more is true in the equicharacteristic case.
That is, the existence of weakly functorial big Cohen–Macaulay algebras was
established by Hochster and Huneke based upon their main theorem of [11]
together with the reduction of the characteristic zero case to the positive
characteristic case via Artin approximation theorem.
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Suppose that R is a local domain of mixed characteristic and dimR ≤ 3.
Then it was shown by Hochster [9] that R has a big Cohen–Macaulay algebra
by examining Heitmann’s proof of the Monomial Conjecture in dimension 3
[6]. Therefore, the conjecture remains open for local rings in mixed charac-
teristic of dimension at least 4. There has not been much progress on the
existence problem of big Cohen–Macaulay algebras for several years. How-
ever, an approach has been recently found by Roberts [14], [15] aiming at
finding an almost Cohen–Macaulay algebra, whose existence suffices to prove
the Monomial Conjecture in general, and he proves under certain conditions,
that almost Cohen–Macaulay algebras exist in mixed characteristic. The im-
portance of almost Cohen–Macaulay algebras in the sense we need was first
recognized in Heitmann’s theorem quoted above. We also mention that there
is an extensive study on closure operations of ideals of Noetherian rings de-
fined by big Cohen–Macaulay algebras [3].

In this article, we attempt to shed some light on the conjecture of Hochster
in the mixed characteristic case from a different perspective. First, we make
a definition.

Let (R,m) be a complete local domain. Then there is a discrete valuation
v : R → Z ∪ { ∞} such that v is positive on R and strictly positive on m.
Let R+ be the integral closure of R in an algebraic closure of the field of
fractions of R. Then from a general theory on valuations, there is a valuation
vR+ : R+ → Q ∪ {∞}, which is an extension of v from R to R+. For simplicity,
we denote this extended valuation vR+ by v.

Definition 1.1. Let the notation be as above, let B be an R+-algebra, and
let x1, . . . , xd be a system of parameters for R. Then we say that x1, . . . , xd is
weakly almost regular on B, if mB �= B and for any rational ε > 0, there exists
an element b ∈ R+ such that v(b) < ε and

b · (x1, . . . , xi)B :B xi+1

(x1, . . . , xi)B
= 0

for all 0 ≤ i ≤ d − 1. An R+-algebra B is called weakly almost Cohen–
Macaulay, if there is a system of parameters for R that is weakly almost
regular on B.

We may choose any fixed valuation on R+, as long as it proves desired
results. As we noted above, the notion of almost Cohen–Macaulay algebras is
suggested by Roberts [15], where he further assumes that B/mB is not almost
zero in the sense that every element of B/mB is not annihilated by elements
of R+ with arbitrarily small valuations (see [15] for a precise definition of
almost zero modules). An essential difference between Roberts’ definition of
almost Cohen–Macaulay algebras and ours is that it is not obvious from our
version at all, whether B/mB is almost zero, or not (which is why the adverb
“weakly” appears above). We also remark that Roberts’ version leads to a
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proof of the Monomial Conjecture in mixed characteristic, while our version
does not. However, our idea still seems to have some potential force. Here is
our main theorem:

Main Theorem 1. Let (R,m) be a complete local domain of mixed char-
acteristic p > 0. Then there exist a system of parameters p,x2, . . . , xd of R
and a weakly almost Cohen–Macaulay R+-algebra B satisfying the following
conditions:
(1) (p,x2, . . . , xd)B �= B;
(2) x2, . . . , xd forms a regular sequence on B/pB;
(3) p is not nilpotent in B and the ideal (0 :B p) is annihilated by pε for any

rational ε > 0.

We note that for a valuation v on R+, we have v(pε) = ε · v(p). To say that
B is a big Cohen–Macaulay algebra “over R+” causes no confusion at all, since
R+ is the directed union of its module-finite subextensions over R. Therefore,
B is weakly almost Cohen–Macaulay over any module-finite extension domain
of R. The difficult part of the above theorem is to show that the element p is
“almost” regular on B. The proof is to reduce to the positive characteristic
case via Fontaine rings and we construct a certain perfect algebra over it.
Then we lift it to the ring of Witt vectors. We will give a brief review on the
theory of Fontaine rings and Witt vectors for the absolute integral closures of
complete local domains.

2. Preliminaries

In this article, (R,m) will denote a local Noetherian ring. Let us say that
a domain A has mixed characteristic p > 0 if A has characteristic zero, while
A/pA has characteristic p > 0. Let x1, . . . , xn be a sequence in a ring A and
let N be an A-module. Then the sequence x1, . . . , xn is said to be N-regular
if (x1, . . . , xn)N �= N and xk is a nonzero divisor of N/(x1, . . . , xk−1)N for all
1 ≤ k ≤ n.

The absolute integral closure of an integral domain R is defined to be the
integral closure of R in an algebraic closure of its field of fractions and denote
it by R+. The symbol employed in [1] for R+ is different from ours. We will
use the following fact later. Let R be any domain and let P be any prime ideal
of R+. Then we have R+/P � (R/R ∩ P )+. Let A be any ring of positive
characteristic and let C := Ared. Then the perfect closure of A is defined as
the direct limit of the system on the top or bottom defined by the Frobenius
map:

C −−−−→ C1/p −−−−→ C1/p2 −−−−→ · · ·⏐⏐� �
⏐⏐�F �

⏐⏐�F2

C
FC−−−−→ C

FC−−−−→ C
FC−−−−→ · · ·
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in which the first vertical arrow is the identity map and the horizontal arrows
on the top are the natural inclusions. Since the iterates of the Frobenius
map annihilates the nilradical of A, the perfect closure may also be defined as
lim−→FA

A. Furthermore, let I ⊆ A be an ideal. Then let I [pe] denote the ideal

of A generated by xpe

for all x ∈ I .
The following theorem states that there are canonical big Cohen–Macaulay

algebras in positive characteristic. The advantage of working with the absolute
integral closures is that it allows us to extend it to the weakly functorial case,
and they are not too large to deal with.

Theorem 2.1 (Hochster, Huneke [10]; Huneke, Lyubeznik [12]). Let (R,m)
be a local domain of characteristic p > 0. Assume one of the following condi-
tions:

(1) R is an excellent local domain.
(2) R is a homomorphic image of a Gorenstein local ring.

Then every system of parameters for R is a regular sequence on R+.

We need the following simple fact for later use.

Lemma 2.2. Let x be a regular element in a ring R, and let J be an ideal
of R such that R �= xR + J . Suppose that R is x-adically complete and R/xR
is J-adically complete. Then R is complete in the (xR + J)-adic topology.

Proof. We first show that R/xnR is J -adically complete. If n = 1, this is so
by assumption. For any k < n, we assume that R/xkR is J -adically complete.
Since x is regular, we have

xn−1 : R/xR � xn−1R/xnR,

which implies that xn−1R/xnR is J -adically complete. Applying the five-
lemma to the short exact sequence

0 −−−−→ xn−1R/xnR −−−−→ R/xnR −−−−→ R/xn−1R −−−−→ 0,

we deduce that R/xnR is J -adically complete. Finally, we have

lim←−
k∈N

R/(xR + J)k � lim←−
m,n∈N

R/
(
xmR + Jn

)
� lim←−

m∈N

(
lim←−
n∈N

R/
(
xmR + Jn

))

� lim←−
m∈N

R/xmR � R,

which is the required claim. �

3. Algebra modifications and some criteria

Let T be an algebra over a local ring (R,m). We begin with the notion of
algebra modifications due to Hochster.
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Definition 3.1 (Algebra modifications). Let x1, . . . , xk+1 be a sequence in
a local ring (R,m), and let t1, . . . , tk+1 be a sequence in T such that xk+1tk+1 =∑k

i=1 xiti. Let X1, . . . ,Xk be a set of indeterminates over T . Then we say
that

T ′ =
T [X1, . . . ,Xk]

(tk+1 −
∑k

i=1 xiXi)

is an algebra modification of T. We define a sequence of algebra modifications:

T = T0 −−−−→ T1 −−−−→ · · · −−−−→ Ts −−−−→ · · ·

such that every Ti+1 is an algebra modification of Ti.

We will consider the algebra modifications in the case where the sequence
x1, . . . , xd is a system of parameters of R. The point is that if there is a
relation on a system of parameters, one extends the ring to trivialize it. In
order to make the notion effective, we shall need to introduce a more universal
object (see [11] for more details).

Let d = dimR for a local ring (R,m) and let F denote a fixed non-empty
family of sequences of length d, all of which form systems of parameters for R.
Let ST denote the set of all relations of every element of F for an R-algebra
T , whose precise meaning is as follows: Let x1, . . . , xk+1 be an initial segment
of an element of F . Then the relation λ : xk+1tk+1 −

∑k
i=1 xiti = 0 with ti ∈ T

is an object of ST . We refer t(λ) = k as a type of the relation λ. Note that
0 ≤ t(λ) < d. In particular, if t(λ) = 0, then the relation is merely xt = 0.
See [8] for the following definition.

Definition 3.2. Let T be an algebra over a local ring (R,m). Let J (T/R)
be an ideal of the polynomial algebra T [Xλ,j ] = T [Xλ,j ;λ ∈ ST ,1 ≤ j ≤ t(λ)],
generated by all the polynomials (tk+1 −

∑k
i=1 xiXλ,i) associated to the rela-

tion xk+1tk+1 =
∑k

i=1 xiti with ti ∈ T . We set

Mod(T/R) =
T [Xλ,j ]

J (T/R)
.

We define Modn(T/R) recursively: Mod0(T/R) = T and Modn+1(T/R) =
Mod(Modn(T/R)/R). Finally we let

Mod∞(T/R) = lim−→
n∈N

Modn(T/R).

We shall denote by T a single sequence of algebra modifications:

T = T0 −−−−→ T1 −−−−→ · · · −−−−→ Ti −−−−→ · · ·

over the local ring (R,m). We shall say that T is bad if 1 ∈ mTs for some
s ≥ 0.
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Remark 3.3.

(1) The most important case for us is when F consists of a single system
of parameters x1, . . . , xd, in which case one keeps track of the relations
with respect to an initial segment of x1, . . . , xd. The object Mod∞(T/R)
defined above is a possibly improper big Cohen–Macaulay R-algebra with
respect to F meaning that every element of F is a regular sequence
on Mod∞(T/R). So the difficulty with Mod∞(T/R) is in showing that
whether 1 ∈ (x1, . . . , xd)Mod∞(T/R), or not.

(2) If an R-algebra T maps to a possibly improper big Cohen–Macaulay R-
algebra W , then one can map any sequence of algebra modifications of T
to W . By this fact, we see that Mod∞(T/R) �= 0.

Definition 3.4. Let T be an algebra over a local ring (R,m) and let
0 ≤ k < dim(R) be fixed. Let F be a non-empty fixed family of sequences
of R. Then we say that a sequence of algebra modifications with respect to F
is of type ≥ k if every Ti+1 is a modification of Ti with respect to a relation
of type at least k.

In analogy with the construction of Mod(T/R), we define Mod(T/R)≥k as
a polynomial algebra over T modulo an ideal, whose generators come from all
the relations of type ≥ k with respect to sequences in the family F . We may
also define Modi(T/R)≥k and Mod∞(T/R)≥k as well. Suppose that

T = T0 −−−−→ T1 −−−−→ · · · −−−−→ Ts

is a finite sequence of modifications of type ≥ k with respect to F . Then we can
inductively construct the commutative diagram of T -algebra homomorphisms:

Mod0(T/R)≥k −−−−→ Mod1(T/R)≥k −−−−→ · · · −−−−→ Mods(T/R)≥k�⏐⏐ �⏐⏐ �⏐⏐
T0 −−−−→ T1 −−−−→ · · · −−−−→ Ts

Thus, we have the following proposition.

Proposition 3.5. Let T be an algebra over a local ring (R,m) with a
system of parameters x1, . . . , xd, and let 0 ≤ k < dimR be fixed. Then the
following conditions are equivalent:

(1) There exists a T -algebra B such that 1 /∈ (x1, . . . , xd)B and xk+1, . . . , xd

forms a regular sequence on B/(x1, . . . , xk)B.
(2) Suppose that

T = T0 −−−−→ T1 −−−−→ · · · −−−−→ Ts

is any finite sequence of modifications of T of type ≥ k with respect to
x1, . . . , xd. Then we have 1 /∈ (x1, . . . , xd)Ts.
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Proof. (1) ⇒ (2): This will be done as follows. By assumption, the T -
algebra Mod∞(T/R)≥k maps to B and there is a T -algebra homomorphism
from a sequence of modifications T = T0 → T1 → · · · → Ts to Mod∞(T/R)≥k.
Hence, 1 /∈ (x1, . . . , xd)Ts.

(2) ⇒ (1): By the construction of Mod∞(T/R)≥k, it suffices to show that

1 /∈ (x1, . . . , xd)Mod∞(T/R)≥k.

Suppose the contrary. Then we have 1 =
∑d

i=1 xiti for ti ∈ Mods(T/R)≥k

for some s ≥ 0. Since we need only finitely many relations used in the
construction of Mods(T/R)≥k for the presentation of 1, we can construct
a map: Mods−1(T/R)≥k → T ′

s which is just a finite sequence of modifications
of Mods−1(T/R)≥k so as to have 1 ∈ (x1, . . . , xd)T ′

s.
All of these modifications can be described using finitely many elements of

Mods−1(T/R)≥k. All the elements and relations needed will be in a modifica-
tion of Mods−2(T/R)≥k with respect to only finitely many relations. There-
fore, we may keep track of Modi(T/R)≥k backward until we have arrived at
T = Mod0(T/R)≥k. Hence, T ′

s is obtained from T after finitely many steps of
modifications satisfying 1 ∈ (x1, . . . , xd)T ′

s, which is a contradiction. �

4. Fontaine rings of the absolute integral closures and Witt
vectors

In this section, we discuss some structure of Fontaine rings that is not found
in [5], since the idea of Fontaine rings is not prevalent in standard commutative
algebra. In particular, we show that the Fontaine ring of the absolute integral
closure of a complete local domain contains a complete regular local ring,
which is constructed as a projective limit defined by the Frobenius map. We
then lift the Fontaine ring to the ring of Witt vectors. For the Witt vectors,
we refer the reader to Serre’s book [16]. For a complete theory of Fontaine
rings with its relation to Witt vectors that we use, we refer to Gabber and
Ramero [5].

Now assume that (R,m) is a complete regular local ring of mixed character-
istic p > 0 with perfect residue field and assume that p,x2, . . . , xd is a regular
system of parameters of R. We denote by R+ its absolute integral closure.

Definition 4.1 (Fontaine ring). Let the notation be as above. Then we
define

E
(
R+

)
= lim←−

n∈N

An

in which An = R+/pR+ for every n ∈ N and An+1 → An is the Frobenius map.

Any nonzero element of E(R+) is of the form 〈x〉 = (x,x
1
p , x

1
p2 , . . .). This

notation is slightly abused, since there are ambiguities in choosing p-power
elements. However, as we shall discuss the Fontaine rings for the absolute
integral closures exclusively and the special choices of p-power roots are not
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important for us, this will not cause any kind of issues. We define a natural
surjective ring homomorphism:

Φn
R+ : E

(
R+

)
→ R+/pR+

by the rule (a0, a1, a2, . . .) �→ an. We write ΦR+ := Φ0
R+ for simplicity.

Remark 4.2.
(1) It is easy to see from the definition that E(R+) is a perfect ring of char-

acteristic p > 0. If dimR = 1, then it is known that E(R+) is a valuation
ring. In particular, it is a domain ([5], Lemma 5.4.27).

(2) There is an alternate way of defining Fontaine rings (see [4] for the detail).
Let R̂+ be the p-adic completion of R+. Then it is defined as:

E
(
R+

)
�

(
(x0, x1, x2, . . .) | xi ∈ R̂+, xp

i+1 = xi

)
,

in which the multiplicative structure is given by the one on R̂+ and the
additive structure is given by the rule:

(. . . , xm, . . .) + (. . . , ym, . . .) =
(
. . . , lim

n→∞
(xm+n + ym+n)pn

, . . .
)
.

Lemma 4.3. Suppose that A is a normal domain, k > 0 is an integer, and
p is a prime integer. Then we have the following statements:

(1) Suppose that A has mixed characteristic p > 0 and xpk − p = 0 has a root
in A. Then the kth iterated Frobenius map on A/pA induces an injection:
A/p1/pk

A → A/pA.
(2) Let A → B be an integral extension of integral domains and let t ∈ A be

any nonzero element. Then the induced map: A/tA → B/tB is injective.

Proof. (1): We denote by Fk
A : A/pA → A/pA the kth iterated Frobenius

map. Assume that Fk
A(t) = 0 for t ∈ A. Then we have tp

k

= p · θ for some
θ ∈ A and t = p1/pk · θ̃ in K, where K is the algebraic closure of the field
of fractions of A and θ̃ is a root of the equation xpk − θ = 0. But since
θ̃ = t · p−1/pk ∈ A[p−1], we get θ̃ ∈ A by the normality of A. Hence, t ∈ p1/pk

A.
(2): This is an easy exercise using the normality of A. �

This immediately implies the following. Let B be any domain of mixed
characteristic p > 0. Then the Frobenius map B+/pB+ → B+/pB+ induces
a ring isomorphism:

B+/p1/pB+ � B+/pB+.

Recall that R is a complete regular local ring with a regular system of
parameters p,x2, . . . , xd. Then we may define a sequence of module-finite
extensions of regular local rings:

R = R0 −−−−→ R1 −−−−→ R2 −−−−→ · · ·
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such that Rn := R[p1/pn

, x
1/pn

2 , . . . , x
1/pn

d ], and the Frobenius map surjects
Rn+1/pRn+1 onto Rn/pRn, which is naturally the subring of Rn+1/pRn+1.

Definition 4.4 (Small Fontaine ring). Let (R,m) be as above. Then we
define

E(R)× = lim←−
n∈N

An

such that An = Rn/pRn and An+1 → An is the Frobenius map.

Note that there is the following sequence of isomorphisms of local rings
defined by the Frobenius map:

Rk+1/p1/pk

Rk+1 � Rk/p1/pk

Rk � · · · � R/pR,

and thus the sequence 〈p〉, 〈x2〉, . . . , 〈xd〉 is contained in E(R)×. For a sequence
(Rk | k ∈ N) as above, we define a natural ring homomorphism:

Φk
R : E(R)× → Rk/pRk

by the rule (a0, a1, a2, . . .) �→ ak, and this map is surjective for all n ≥ 0. Some
important properties of the (small) Fontaine rings are contained in the fol-
lowing proposition.

Proposition 4.5. Let the notation be as above.

(1) E(R+) is a 〈p〉-adically complete quasilocal algebra and fits into the fol-
lowing short exact sequence:

0 −−−−→ E
(
R+

) 〈p〉−−−−→ E
(
R+

)
−−−−→ R+/pR+ −−−−→ 0.

In particular, 〈p〉 is a nonzero divisor of E(R+).
(2) E(R)× is a complete regular local ring such that 〈p〉, 〈x2〉, . . . , 〈xd〉 is a

regular system of parameters and the residue field of E(R)× is the same
as that of R. Finally, there is a short exact sequence:

0 −−−−→ E(R)× 〈p〉−−−−→ E(R)× −−−−→ R/pR −−−−→ 0.

Proof. (1): This is the content of ([5], Proposition 5.4.33).
(2): First, we show that the sequence

0 −−−−→ E(R)× 〈p〉−−−−→ E(R)× ΦR−−−−→ R/pR −−−−→ 0

is short exact. It only suffices to show that the middle part in the sequence is
exact, since E(R)× is a subring of E(R+). This follows easily by looking into
the following sequence of isomorphisms:

Rk+1/p1/pk+1
Rk+1 � Rk/p1/pk

Rk � · · · � R/pR.
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Next, as discussed in [5], there is the following commutative diagram:

E(R)× 〈p〉pk+1

−−−−−→ E(R)× Φk+1
R−−−−→ Rk+1/pRk+1 −−−−→ 0

〈p〉pk(p−1)

⏐⏐� ∥∥∥ F

⏐⏐�
E(R)× 〈p〉pk

−−−−→ E(R)× Φk
R−−−−→ Rk/pRk −−−−→ 0

where every row is an exact sequence and F is the Frobenius map. Thus, we
deduce the following isomorphism:

lim←−
k∈N

E(R)×/〈p〉pk

E(R)× � E(R)×,

showing that E(R)× is 〈p〉-adically complete and separated. Moreover, we
have

E(R)×/〈p〉E(R)× � R/pR � k[[x2, . . . , xd]]
from the above short exact sequence. Therefore, we find that (〈p〉, 〈x2〉, . . . ,
〈xd〉) is a maximal ideal of E(R)× and dimE(R)× ≥ d. To complete the proof,
it suffices to show that E(R)× is a complete local Noetherian ring. Lemma 2.2
shows that E(R)× is complete and separated in the (〈p〉, 〈x2〉, . . . , 〈xd〉)-adic
topology, which also shows that (〈p〉, 〈x2〉, . . . , 〈xd〉) is the unique maximal
ideal. Now ([13], Theorem 29.4) shows that R is Noetherian, as claimed. �

Henceforth, we will view E(R)× → E(R+) as a structure homomorphism
of the Fontaine ring of R+, which reduces modulo 〈p〉 to an integral extension
R/pR → R+/pR+. By some calculated examples of Roberts [15], the Krull
dimension of a ring A with E(R)× ⊆ A ⊆ E(R+) may be quite large.

Towards the construction of almost Cohen–Macaulay algebras in mixed
characteristic, it is necessary to use the theory of the ring of Witt vectors
to lift rings of positive characteristic to rings of mixed characteristic. Let
W (E(R+)) denote the ring of Witt vectors. Now since E(R+) is a perfect
algebra, it follows that W (E(R+)) is a p-adically complete and separated al-
gebra, there is an isomorphism: W (E(R+))/p · W (E(R+)) � E(R+), and p is
a nonzero divisor of W (E(R+)). Moreover, Lemma 2.2 shows that W (E(R+))
is complete and separated in the (p, 〈p〉)-adic topology. Let R̂+ be the p-adic
completion of R+. For the proof of the following lemma, see ([5], Proposi-
tion 5.4.21).

Lemma 4.6. Keeping the notation as above, there is a commutative dia-
gram:

E
(
R+

) Φ̂R+−−−−→ R̂+∥∥∥ π

⏐⏐�
E

(
R+

) ΦR+−−−−→ R+/pR+
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in which π is the natural projection and Φ̂R+ is uniquely determined such that
Φ̂R+(〈1〉) = 1 and Φ̂R+ is a multiplicative map. In fact, we have Φ̂R+(〈x〉) = x
for any lift 〈x〉 ∈ E(R+) of every element x ∈ R+.

Let θE(R+) : E(R+) → W (E(R+)) be defined by θE(R+)(a) = (a,0, . . . ,0,
. . .). This map is multiplicative and is called the Teichmüller lift. However,
θE(R+) is not additive.

Let now a = (a0, . . . , an, . . .) ∈ W (E(R+)). Since E(R+) is a perfect ring,
for every a ∈ E(R+), we find a unique element x ∈ E(R+) such that xpn

= a.
Denote this element by ap−n

. Then we define the map:

ψ : W
(
E

(
R+

))
→ R̂+

by the rule

ψ(a) =
∞∑

n=0

pn · Φ̂R+

(
ap−n

n

)
,

in which the right-hand side makes sense in R̂+. It is easy to check that
ψ ◦ θE(R+) = Φ̂R+ , where θE(R+) is as above. The next proposition claims
that ψ defines a surjective ring homomorphism (see [5], Proposition 5.4.33).

Proposition 4.7. Under the notation as above, the map ψ : W (E(R+)) →
R̂+ is a ring homomorphism that fits into a short exact sequence:

0 −−−−→ W
(
E

(
R+

)) ϑ−−−−→ W
(
E

(
R+

))
−−−−→ R̂+ −−−−→ 0

for ϑ := θE(R+)(〈p〉) − p. Moreover, ϑ, p forms a regular sequence on
W (E(R+)).

Here is a quite important remark regarding the above proposition. Since
the ring R+ maps to its p-adic completion R̂+, there is a natural ring homo-
morphism:

R+ → R̂+ � W (E(R+))
ϑ · W (E(R+))

,

which is not surjective. In fact, this fact may be regarded as a natural gen-
eralization of the construction of complete discrete valuation rings in mixed
characteristic as the ring of Witt vectors of perfect fields.

5. Statement and proof of the main theorems

In order to prove the main theorem, we need to construct a certain per-
fect algebra over the Fontaine ring. Then its ring of Witt vectors will be a
p-adically complete and separated algebra, in which the natural lift of the se-
quence under consideration that comes from the Fontaine ring forms a weakly
almost regular sequence. The main technique using sequences of modifications
to produce the desired algebra in the theorem is due to Hochster.
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Discussion 5.1. Let (R,m) be a complete regular local ring with a reg-
ular system of parameters p,x2, . . . , xd such that the residue field is perfect.
Then we get from Proposition 4.5 that E(R+)/〈p〉E(R+) � R+/pR+, so that
〈p〉, 〈xi〉 is a regular sequence on E(R+). We can show that every 〈xi〉 is a
nonzero divisor of E(R+) as follows. Suppose that we have 〈xi〉m = 0 for
m ∈ E(R+). Since E(R+) is 〈p〉-adically separated, it suffices to show that
m ∈ 〈p〉tE(R+) for all t > 0. Since 〈xi〉 is regular on E(R+)/〈p〉E(R+), we
have m ∈ 〈p〉E(R+). Suppose that m = 〈p〉t−1m′ for some m′. Then we have
0 = 〈xi〉m = 〈xi〉〈p〉t−1m′, which implies that 〈xi〉m′ = 0. Hence, we have
m′ = 〈p〉m′ ′ for some m′ ′ and m = 〈p〉tm′ ′, which is the claim.

Let E(R+)〈x2〉 · · · 〈xd 〉 be the localization of E(R+) with respect to the
element 〈x2〉 · · · 〈xd〉. Then we find that the element 〈p〉 is a nonzero divisor of
E(R+)〈x2〉··· 〈xd 〉, as follows from the short exact sequence in Proposition 4.5.
Pick any relation

〈xk+1〉ak+1 = 〈p〉a1 +
k∑

i=2

〈xi〉ai

for ai ∈ E(R+)〈x2〉··· 〈xd 〉. Then since 〈xk+1〉 is a unit in E(R+)〈x2〉 · · · 〈xd 〉, the
above relation forces ak+1 ∈ (〈p〉, . . . , 〈xk 〉), that is, 〈p〉, . . . , 〈xd〉 forms an im-
proper regular sequence on E(R+)〈x2〉··· 〈xd 〉. Thus, any sequence of algebra
modifications of E(R+) can be mapped to E(R+)〈x2〉···〈xd 〉. This fact will play
an important role later.

Henceforth, we continue to use the notation E(R+)〈x2〉 · · · 〈xd 〉. Then by ([3],
Lemma 3.5), E(R+)〈x2〉 · · · 〈xd 〉 is a perfect algebra. Before stating the main
theorems, we make a remark regarding the proof of the first main theorem.
In view of Remark 3.3, one might wonder if one could take E(R+)〈p〉··· 〈xd 〉
instead of E(R+)〈x2〉···〈xd 〉. The reason for doing so is that we need that
θE(R+)(〈p〉) − p is not a unit in the Witt ring W (E(R+)〈x2〉···〈xd 〉). In fact,
if T is a p-adically complete and separated ring, any element of the form
p + u ∈ T is a unit, if u is a unit. Based upon the above discussions, we are
ready to prove the following theorem.

Theorem 5.2. Under the notation as above, there exists an E(R+)-algebra
S satisfying the following conditions:
(1) (〈p〉, 〈x2〉, . . . , 〈xd〉)S �= S;
(2) 〈x2〉, . . . , 〈xd〉 forms a regular sequence on S/〈p〉S;
(3) 〈p〉 is not nilpotent and the ideal (0 :S 〈p〉) is annihilated by 〈p〉ε for any

rational ε > 0;
(4) S is a perfect algebra.
Moreover, there is an E(R+)-algebra homomorphism S → E(R+)〈x2〉···〈xd 〉.

Proof. Before we start the proof, we note that 〈p〉ε ∈ E(R+) for any ra-
tional ε > 0. We will construct the E(R+)-algebra S by taking sequences
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of modifications of E(R+), using the relations of type ≥ 1 with respect to
z1 := 〈p〉, z2 := 〈x2〉, . . . , zd := 〈xd〉. We prove the theorem by contradiction.
Suppose that, as in Proposition 3.5, there is a sequence of modifications of
type ≥ 1 with respect to z1, . . . , zd:

T : E
(
R+

)
= T0 −−−−→ T1 −−−−→ · · · −−−−→ Ts

such that 1 ∈ (z1, . . . , zd)Ts. Note that E(R+)/z1E(R+) � R+/pR+ is an
algebra over a complete regular local ring E(R)×/z1E(R)× � R/pR on which
z2, . . . , zd descends to a system of parameters. We keep the same notation for
a system of parameters of R/pR.

After dividing the sequence T out by z1, we show that the induced sequence
maps to a sequence of modifications of R+/pR+. Now let us look at things
more closely. Let

Ti+1 =
Ti[X

(i)
1 , . . . ,X

(i)
k ]

(s(i)
k+1 −

∑k
j=1 zjX

(i)
j )

, s
(i)
k+1 ∈ Ti.

Then we have

Ti+1 ≡ Ti[X
(i)
1 , . . . ,X

(i)
k ]

(s(i)
k+1 −

∑k
j=2 zjX

(i)
j )

mod z1.

We set

T i+1 :=
Ti+1

(z1,X
(0)
1 , . . . ,X

(i)
1 )Ti+1

.

Now it follows that a new sequence:

T : R+/pR+ = T 0 −−−−→ T 1 −−−−→ · · · −−−−→ T s

is a sequence of modifications of R+/pR+ with respect to z2, . . . , zd satisfying
1 ∈ (z2, . . . , zd)T s. Furthermore, if Q is a minimal prime ideal of R+ over
pR+, then R+/Q is the absolute integral closure of R/pR. We then replace
T with T ⊗ (R+/Q) and get a sequence of bad modifications of R+/Q over
R/pR. However, since R+/Q is a big Cohen–Macaulay algebra over R/pR by
Theorem 2.1, we apply a standard technique (see [11], Proposition 3.3, or [8],
Proof of Theorem 11.1) to construct the following commutative diagram:

R+/Q R+/Q · · · R+/Q�⏐⏐ �⏐⏐ �⏐⏐
R+/Q −−−−→ T 1 −−−−→ · · · −−−−→ T s

in which the first vertical arrow is the identity map, and so a contradiction:
(z2, . . . , zd)R+/Q = R+/Q. Hence we have proved (1) and (2).

To show that z1 is not nilpotent in T , we may construct a similar com-
mutative diagram as above. By the preceding discussion, z1, . . . , zd forms an
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improper regular sequence on the localized algebra E(R+)z2...zd
. Suppose that

there is a sequence of modifications of type ≥ 1:

T : E
(
R+

)
= T0 −−−−→ T1 −−−−→ · · · −−−−→ Ts

such that z1 is nilpotent in Ts. Then we may construct a commutative dia-
gram:

E
(
R+

)
z2···zd

E
(
R+

)
z2···zd

. . . E
(
R+

)
z2···zd�⏐⏐ �⏐⏐ �⏐⏐

E
(
R+

)
−−−−→ T1 −−−−→ · · · −−−−→ Ts

However, this diagram clearly contradicts that z1 is nilpotent in Ts. Denote
by C the direct limit of various sequences of algebra modifications of type ≥ 1
over E(R+) with respect to z1, z2, . . . , zd. Then z1 is not nilpotent in C as
well. Hence this proves (3). From the above construction, there is a natural
E(R+)-algebra homomorphism C → E(R+)z2···zd

.
To finish the proof, let us construct the desired algebra S out of C. Since

a perfect ring remains perfect under localization ([3], Lemma 3.5), we take
the perfect closure of the map C → E(R+)z2···zd

and obtain a commutative
diagram of E(R+)-algebra homomorphisms:

C −−−−→ E
(
R+

)
z2···zd⏐⏐� ⏐⏐�

S −−−−→ E
(
R+

)
z2···zd

Since z1 is a nonzero divisor of E(R+)z2···zd
, z1 is not nilpotent in S as well,

and z2, . . . , zd forms a regular sequence on S/z1S. Indeed for the latter asser-
tion, let Jk := (z1, . . . , zk) for 1 ≤ k ≤ d. Then zpe

2 , . . . , zpe

d is a regular sequence
on C/zpe

1 C and for k ≥ 1, S/JkS is identified with the direct limit defined by
the Frobenius map:

C/JkC
F−−−−→ C/J

[p]
k C

F−−−−→ C/J
[p2]
k C

F−−−−→ · · · .

So we get our assertion. It remains to show that zε
1 · (0 :S z1) = 0 for any

rational ε > 0. Let N := (0 :S z1). Since the Frobenius map FS : S → S is
bijective and there is an inclusion N ⊆ F−k

S (N), we may iterate the Frobenius
and get an injective sequence of ideals in S (F0

S is the identity map):

zp−k

1 · N
↪→−−−−→ zp−k

1 · F−k
S (N) ↪→−−−−→ · · · ↪→−−−−→ z1 · N = 0,

and as this holds for arbitrarily large k > 0, we complete the proof of the
theorem. �

We are now ready to prove the main theorem.
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Theorem 5.3. Let (R,m) be a complete local domain of mixed character-
istic p > 0. Then there exist a system of parameters p,x2, . . . , xd of R and a
weakly almost Cohen–Macaulay R+-algebra B satisfying the following condi-
tions:
(1) (p,x2, . . . , xd)B �= B;
(2) x2, . . . , xd forms a regular sequence on B/pB;
(3) p is not nilpotent in B and the ideal (0 :B p) is annihilated by pε for any

rational ε > 0.

Proof. By Cohen’s structure theorem, there exists an unramified complete
regular local ring A for which A → R is module-finite. By enlarging the residue
field of each ring of A → R to its perfect closure, completing, and killing it by
some minimal prime, we get a map A′ → R′ of complete local domains with
perfect residue fields. Then it follows from ([13], Theorem 8.4) that A′ → R′

is module-finite. In other words, we are in the hypotheses of Theorem 5.2, so
that we may choose p,x2, . . . , xd as a regular system of parameters of A′ by
keeping track of the image of the regular system of parameters of A. We fix
the notation as in Theorem 5.2.

Recall that the E(R+)-algebra homomorphism S → E(R+)z2···zd
has been

constructed in the previous theorem. Taking their Witt rings, we have an
W (E(R+))-algebra homomorphism:

W (S) −−−−→ W
(
E

(
R+

)
z2···zd

)
,

in which p is a nonzero divisor, because both S and E(R+)z2···zd
are perfect

algebras. But then Proposition 4.7 together with its following remark provides
us a sequence of R+-algebra homomorphisms:

R+ → R̂+ � W (E(R+))
ϑ · W (E(R+))

→ B :=
W (S)

ϑ · W (S)
→ C :=

W (E(R+)z2···zd
)

ϑ · W (E(R+)z2···zd
)

for ϑ = θE(R+)(〈p〉) − p. To simplify notation, let us write 〈x〉 for θE(R+)(〈x〉).
Then we have ψ(〈xi〉) = xi by Lemma 4.6. Since W (E(R+)z2···zd

) is p-
adically separated, one can easily verify that ϑ, p forms a regular sequence
on W (E(R+)z2···zd

), and thus p is a nonzero divisor of C and p is not nilpo-
tent in B. It is obvious that x2, . . . , xd is a regular sequence on B/pB.

It remains to show that the ideal (0 :B p) is annihilated by pε for any
rational ε > 0. Now assume px = (〈p〉 − p)y for x, y ∈ W (S). Then p(x + y) =
〈p〉y. Since S � W (S)/p · W (S), we have 〈p〉εy = py′ for some y′ ∈ W (S) by
Theorem 5.2 and thus,

〈p〉εp(x + y) = 〈p〉ε〈p〉y.

Then this yields 〈p〉εpx+ p2y′ = 〈p〉py′, or 〈p〉εx+ py′ = 〈p〉y′. Hence, 〈p〉εx =
(〈p〉 − p)y′. On the other hand, p and 〈p〉 become identical after applying
the map ψ : W (E(R+)) → R̂+ from Proposition 4.7. Thus, we conclude that
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pεx = 0 in B, which is our assertion. The desired almost Cohen–Macaulay
R+-algebra B has successfully been constructed. �

6. Concluding remarks

In this final section, we show under some additional assumptions, that the
existence of weakly almost Cohen–Macaulay algebras constructed previously
yields the Monomial Conjecture in mixed characteristic. The Monomial Con-
jecture states that xt

1 · · · xt
d /∈ (xt+1

1 , . . . , xt+1
d ) for all t ∈ N and all systems of

parameters x1, . . . , xd of any local Noetherian ring. For the proof of the fol-
lowing corollary, we use Hochster’s partial algebra modifications. Especially,
we note that the nonzero divisor c ∈ T which appears in ([9], Lemma 5.1) can
be replaced with a non-nilpotent element.

Corollary 6.1. Let the R+-algebra B be the same as in Theorem 5.3 and
assume that

pε /∈ (p,x2, . . . , xd)B
for some rational ε > 0. Then B maps to a big Cohen–Macaulay R+-algebra
as an R+-algebra. In particular, the Monomial Conjecture holds for any ring
T with R ⊆ T ⊆ R+.

Proof. It is a well-known fact that the Monomial Conjecture holds for any
such subring T , if there exists a big Cohen–Macaulay algebra over R+ (see
[7] for example). We need to consider the sequences of modifications over the
R+-algebra B. If we end up with a bad sequence of modifications, there is a
commutative diagram:

B
[
p−1

]
B

[
p−1

]
· · · B

[
p−1

]
�⏐⏐ �⏐⏐ �⏐⏐
B −−−−→ T1 −−−−→ · · · −−−−→ Ts

in which we have, as stated in ([9], Theorem 5.2), that the leftmost verti-
cal arrow is the natural map, and the image of each Ti is contained in the
cyclic module p−εNiB for 0 ≤ i ≤ s, arbitrarily small ε > 0 and some inte-
ger Ni > 0. Now we have 1 ∈ (p,x2, . . . , xd)p−εNB for a fixed integer N > 0.
Then this is just pεN ∈ (p,x2, . . . , xd)B. If we replace ε with εN −1, we have
pε ∈ (p,x2, . . . , xd)B, which is a contradiction to the hypothesis of the corol-
lary. Hence, B maps to a big Cohen–Macaulay R+-algebra. �

We discuss how strong our extra condition that pε /∈ (p,x2, . . . , xd)B would
be. Assume that B is already a big Cohen–Macaulay algebra over (R,m).
Then it is known that the m-adic completion of B is “balanced” in the sense
that every system of parameters for R becomes a regular sequence on it. In
this sense, no matter how huge the algebra B may be, the completed algeba
B̂ satisfies even the stronger condition that 0 =

⋂
n>0(p,x2 . . . , xd)nB̂. So our
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condition is at least necessary, if we require that B maps to a big Cohen–
Macaulay algebra. The above corollary also explains why Roberts assumes
that B/mB is not almost zero. In fact, his condition states that mB does not
contain elements of R+ with arbitrarily small valuations.

For non-finitely generated modules over Noetherian rings, the separated-
ness condition is quite subtle. Here is a simple example.

Example 6.2. Let V be a complete discrete valuation ring, let K be its
field of fractions, and let N := V ⊕ K as a V -module. If t is any nonzero
element in the maximal ideal of V , then it is a nonzero divisor of N , but we
have tnN = tnV ⊕ K, because tnK = K. It follows that the t-adic completion
of N is just V and thus, N is far from being separated.

To end this section, we suggest a possible approach to the separatedness
issue. Recall that Roberts’ condition is that B/mB is not almost zero as an
R+-module. If one looks at B as a module over itself, the trouble with B
is that it may not be a domain, so that one cannot define a valuation on
it directly. However, by finding a “pseudo” valuation on B, one can obtain
the same conclusion as in the above corollary. To make it clear, we use the
convention that ∞ = 0 · ∞. The argument in the next corollary is found by
Asgharzadeh [2].

Corollary 6.3. Let the R+-algebra B be the same as in Theorem 5.3
and assume that there is a function v : B → R ∪ {∞} satisfying the following
conditions:
(1) v(ab) = v(a) + v(b) for all a, b ∈ B;
(2) v(a + b) ≥ min{v(a), v(b)} for all a, b ∈ B;
(3) v(0) = ∞;
(4) v is nonnegative on B and v(b) > 0 for any nonunit element b ∈ B.
Then B maps to a big Cohen–Macaulay R+-algebra as an R+-algebra.

In the proof, we use almost zero modules with respect to v : B → R ∪ { ∞}.
This is found in [2]. But we only need to keep in mind that the definition of
almost zero modules over an algebra (which is not necessarily a domain) is in
the same format as given in [15].

Proof of Corollary 6.3. First, we prove that B/mB is not almost zero with
respect to the function v. For a contradiction, suppose that B/mB is almost
zero. In particular, 1 ∈ B/mB is almost zero. Then for any ε > 0, we can
find b ∈ B such that v(b) < ε and b ∈ mB, which says that mB has elements
with arbitrarily small valuations. For any a ∈ mB, writing a =

∑n
i=1 aizi with

m = (z1, . . . , zn), we find that

v(a) ≥ min
{
v(aizi) | 1 ≤ i ≤ n

}
= min

{
v(ai) + v(zi) | 1 ≤ i ≤ n

}
≥ min

{
v(zi) | 1 ≤ i ≤ n

}
,



124 K. SHIMOMOTO

which implies that v(a) is bounded from below by some positive constant.
But this is a contradiction and so B/mB is not almost zero.

On the other hand, for ε := m
n > 0 with positive integers m,n, we have

v(pε) = ε · v(p) > 0, because p is not a unit in B. This shows that we can-
not have pε /∈ (p,x2, . . . , xd)B. So the conclusion follows from the previous
corollary. �

In addition to the conditions of the corollary, assume that b = 0 ⇐⇒
v(b) = ∞. Then such a map is a valuation on B and thus B is a domain. This
is why we assumed only b = 0 =⇒ v(b) = ∞ in the corollary. Alternatively,
one may formulate both of the above corollaries over the Fontaine ring E(R+)
rather than over R+, so that the conclusion would be to say that the E(R+)-
algebra S in Theorem 5.2 maps to an algebra, in which 〈p〉, 〈x2〉, . . . , 〈xd〉
becomes a regular sequence. As S is obtained as the perfect closure of the
huge direct limit of various algebra modifications over E(R+), one could pos-
sibly pave a way to find a function v : S → R ∪ {∞} satisfying the required
conditions.

We also would like to point out that, although R+ is not Noetherian, it is
m-adically separated [9]. By this fact, it seems that some condition similar
to pε /∈ (p,x2, . . . , xd)B can be satisfied. So finally, let me simply say that our
results strongly uphold the Monomial Conjecture in the mixed characteristic
case.
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