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HIGHER ORDER RIESZ TRANSFORMS FOR LAGUERRE
EXPANSIONS

JORGE J. BETANCOR, JUAN C. FARIÑA,

LOURDES RODRÍGUEZ-MESA AND ALEJANDRO SANABRIA-GARCÍA

Abstract. In this paper, we investigate Lp-boundedness proper-
ties for the one-dimensional higher order Riesz transforms associ-
ated with Laguerre operators. We also prove that the k-th Riesz

transform is a principal value singular integral operator (modulus

a constant times of the function when k is even). To establish our

results, we exploit a new estimate connecting Riesz transforms in
the Hermite and Laguerre settings in dimension one.

1. Introduction

The aim of this paper is to investigate higher order Riesz transforms as-
sociated with Laguerre function expansions in the one-dimensional case. To
achieve our goal, we use a procedure that will be described below and that
was developed for the first time by the authors and Torrea in [4]. Our results
complete in some senses the ones obtained by Nowak and Stempak [22] about
higher order Riesz transforms for Laguerre expansions.

For every α > −1, we consider the Laguerre differential operator

Lα =
1
2

(
− d2

dx2
+ x2 +

1
x2

(
α2 − 1

4

))
, x ∈ (0, ∞).

This operator can be factorized as follows

(1.1) Lα =
1
2
D∗

αDα + α + 1,

where Dαf = (− α+1/2
x + x + d

dx )f = xα+ 1
2 d

dx (x−α− 1
2 f) + xf , and D∗

α denotes
the formal adjoint of Dα in L2((0, ∞), dx).
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The factorization (1.1) for Lα suggests to define (formally), for every k ∈
N \ {0}, the k-th Riesz transform R

(k)
α associated with Lα by

R(k)
α = Dk

αL
− k

2
α .

Here, L−β
α , β > 0, denotes the −β power of the operator Lα (see (1.2)).

Before establishing the main result of this paper, we give a strict definition
of the Riesz transform R

(k)
α .

For every n ∈ N, we have that Lαϕα
n = (2n + α + 1)ϕα

n , where

ϕα
n(x) =

(
2Γ(n + 1)

Γ(n + α + 1)

) 1
2

e− x2
2 xα+ 1

2 Lα
n

(
x2

)
, x ∈ (0, ∞),

and Lα
n denotes the n-th Laguerre polynomial of type α ([30, p. 100] and [31,

p. 7]). The system {ϕα
n }n∈N of Laguerre functions is an orthonormal basis

for L2((0, ∞), dx).
We define, for every β > 0, the −β power of the operator Lα as follows

(1.2) L−β
α f =

∞∑
n=0

cα
n(f)

(2n + α + 1)β
ϕα

n, f ∈ L2
(
(0, ∞), dx

)
.

Here, cα
n(f) =

∫ ∞
0

ϕα
n(x)f(x)dx, for every n ∈ N and f ∈ L2((0, ∞), dx). If

β > 0, the operator L−β
α is bounded from L2((0, ∞), dx) into itself. This

kind of operators, that can be seen as fractional integrals associated with the
Laguerre operator Lα, has been investigated by several authors ([11], [12], [16]
and [26]).

Let k ∈ N \ {0}. The precise definition of R
(k)
α f for f ∈ L2((0, ∞), dx) is

the following

(1.3) R(k)
α (f) =

∞∑
n=0

cα
n(f)

(2n + α + 1)
k
2
Dk

αϕα
n.

Since ϕα
n(x) = xα+ 1

2 �α
n(x), n ∈ N, and Dα = xα+ 1

2 δx−α− 1
2 , where δ = d

dx + x
and �α

n , n ∈ N, are understood as in [22] (see (1.4)), according to [22, Propo-
sition 3.5] (see also the comment after the proof of [22, Proposition 3.5]),
we have that the series in (1.3) converges in L2((0, ∞), dx), for every f ∈
L2((0, ∞), dx), and the operator R

(k)
α defined by (1.3) is bounded from L2((0,

∞), dx) into itself.
Moreover, if f ∈ C∞

c (0, ∞), the space of C∞-functions on (0, ∞) that have
compact support on (0, ∞), for every m ∈ N there exists Cm > 0 such that∣∣cα

n(f)
∣∣ ≤ Cm(1 + n)−m, n ∈ N.

Then, according to [22, (2.8) and Proposition 3.5], we can see that the series
in (1.2) and in (1.3) converge uniformly in every compact subset of (0, ∞),
and they define C∞-functions on (0, ∞), for every f ∈ C∞

c (0, ∞).
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Assume that f ∈ C∞
c (0, ∞). We define the C∞-function Φα

k (f) on (0, ∞)
by

Φα
k (f)(x) =

∞∑
n=0

cα
n(f)

(2n + α + 1)
k
2
ϕα

n(x), x ∈ (0, ∞).

Then, we can write L
− k

2
α f = Φα

k (f) as L2((0, ∞), dx)-functions. Also, we have
R

(k)
α (f) = Dk

αΦα
k (f) as L2((0, ∞), dx)-functions, where the differential oper-

ators in the right-hand side of the equality are understood in the classical
sense.

In order to represent the k-th Riesz transform R
(k)
α as a principal value

integral operator, we need to use the kernel of the heat semigroup {Wα
t }t≥0

associated with the system {ϕα
n }n∈N. For every t ≥ 0, the operator Wα

t is
defined by

Wα
t (f) =

∞∑
n=0

e−t(2n+α+1)cα
n(f)ϕα

n, f ∈ L2
(
(0, ∞), dx

)
.

We can also write

Wα
t (f)(x) =

∫ ∞

0

Wα
t (x, y)f(y)dy, f ∈ L2

(
(0, ∞), dx

)
and t > 0,

where (see Mehler’s formula [31, p. 8])

Wα
t (x, y) =

∞∑
n=0

e−t(2n+α+1)ϕα
n(x)ϕα

n(y)

= (sinh t)−1(xy)
1
2 Iα

(
xy

sinh t

)
exp

(
− 1

2
(
x2 + y2

)
coth t

)
,

t, x, y ∈ (0, ∞). Here, Iα represents the modified Bessel function of the first
kind and order α.

We can now establish the main result of this paper.

Theorem 1.1. Let α > −1 and k ∈ N \ {0}. For every f ∈ C∞
c (0, ∞) it

holds

R(k)
α f(x) = wkf(x) + lim

ε→0+

∫ ∞

0,|x−y|>ε

R(k)
α (x, y)f(y)dy, a.e. x ∈ (0, ∞),

where

R(k)
α (x, y) =

1
Γ(k

2 )

∫ ∞

0

t
k
2 −1Dk

αWα
t (x, y)dt, x, y ∈ (0, ∞), x �= y,

and wk = 0, when k is odd and wk = −2
k
2 , when k is even.

The operator R
(k)
α can be extended, defining it by

R(k)
α f(x) = wkf(x) + lim

ε→0+

∫ ∞

0,|x−y|>ε

R(k)
α (x, y)f(y)dy, a.e. x ∈ (0, ∞),
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as a bounded operator from Lp((0, ∞), xδ dx) into itself, for 1 < p < ∞ and
(a) −(α + 3

2 )p − 1 < δ < (α + 3
2 )p − 1, when k is odd;

(b) −(α + 1
2 )p − 1 < δ < (α + 3

2 )p − 1, when k is even;

and as a bounded operator from L1((0, ∞), xδ dx) into L1,∞((0, ∞), xδ dx)
when

(c) −α − 5
2 ≤ δ ≤ α + 1

2 , when k is odd;
(d) −α − 3

2 ≤ δ ≤ α + 1
2 , for α �= − 1

2 , and −1 < δ ≤ 0, for α = − 1
2 , when k

is even.

In Section 3, where Theorem 1.1 is proved, we show that the maximal
operator R

(k),∗
α defined by

R(k),∗
α (f) = sup

ε>0

∣∣∣∣
∫ ∞

0,|x−y|>ε

R(k)
α (x, y)f(y)dy

∣∣∣∣
is bounded from Lp((0, ∞), xδ dx) into itself, for 1 < p < ∞ and

(a) −(α + 3
2 )p − 1 < δ < (α + 3

2 )p − 1, when k is odd;
(b) −(α + 1

2 )p − 1 < δ < (α + 3
2 )p − 1, when k is even;

and bounded from L1((0, ∞), xδ dx) into L1,∞((0, ∞), xδ dx) when
(c) −α − 5

2 ≤ δ ≤ α + 1
2 , when k is odd;

(d) −α − 3
2 ≤ δ ≤ α + 1

2 , for α �= − 1
2 , and −1 < δ ≤ 0, for α = − 1

2 , when k
is even.

Therefore, the operator R
(k)
α defined by

R
(k)
α (f)(x) = wkf(x) + lim

ε→0+

∫ ∞

0,|x−y|>ε

R(k)
α (x, y)f(y)dy

has also those Lp-boundedness properties. In particular, R
(k)
α is bounded

from L2((0, ∞), dx) into itself. Hence, since R
(k)
α = R

(k)
α on C∞

c (0, ∞) and
C∞

c (0, ∞) is dense in L2((0, ∞), dx), R
(k)
α = R

(k)
α on L2((0, ∞), dx).

We also get the corresponding principal value property in the Hermite
context (see Proposition 2.1) which completes, in the one dimensional case,
the results in [28] about the higher order Riesz transform associated with the
Hermite operator.

First order Riesz transforms in the Lα-setting were studied in [21] for α ≥
−1/2 and in [1] for α > −1. Also, the procedure developed in [15] can be
used to investigate strong, weak and restricted weak type with respect to the
measure xδ dx on (0, ∞) for the Riesz transforms R

(1)
α .

As it was mentioned, we establish boundedness properties for R
(k)
α in

Lp((0, ∞), xδ dx) (Theorem 1.1).
In the multidimensional Laguerre-function setting when α ∈ [−1/2, ∞)d,

Nowak and Stempak in [22] studied weighted Lp-boundedness properties of
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the higher order Riesz transforms. They used the Calderón–Zygmund theory
on certain homogeneous type spaces (in the sense of Coifman and Weiss [7]).

Our procedure here is completely different from the one used in [12] and
[22]. In a first step, we split the operator R

(k)
α into two parts, namely: a

local operator and a global one. These operators are integral operators de-
fined by kernels supported close to and far from the diagonal, respectively.
The global operator is upper bounded by Hardy type operators. The novelty
of our method is the way followed to study the local part. We establish a
pointwise estimate connecting the kernel of R

(k)
α with the corresponding one

to the k-th Riesz transform associated with the Hermite operator in one di-
mension, for every α > −1 (see Proposition 3.3(iii)). By using this identity,
we transfer boundedness and convergence results from the k-th Riesz trans-
form for Hermite operator in one dimension to the k-th Riesz transform in
the Lα-setting.

In the literature (see, for instance [6], [21] and [26]), we can find other
systems of Laguerre functions different from {ϕα

n }n∈N. In particular, from
the Laguerre polynomials {Lα

n }n∈N we can also derive the system {�α
n }n∈N,

where, for every n ∈ N,

(1.4) �α
n(x) =

(
2Γ(n + 1)

Γ(n + α + 1)

) 1
2

e− x2
2 Lα

n

(
x2

)
, x ∈ (0, ∞),

{�α
n }n∈N is an orthonormal basis in L2((0, ∞), x2α+1 dx).
As it is shown in [1], harmonic analysis operators associated with {�α

n }n∈N

is closely connected with the corresponding operators related to the family
{ϕα

n }n∈N. The connection is given by a multiplication operator defined by
Mβf = xβf , for certain β ∈ R. From the strong type results for R

(k)
α estab-

lished in Theorem 1.1, the corresponding results for the k-th Riesz transform
in the {�α

n }n∈N setting can be deduced. Moreover, the weak type results for
the k-th Riesz transform associated with {�α

n }n∈N can be obtained by pro-
ceeding as in the {ϕα

n }n∈N case in Theorem 1.1. In particular, our results in
Theorem 1.1 lead to, when the dimension is one, that the higher order Riesz
operator Rα

k , associated with {�α
n }n∈N and considered in [22], can be extended

to Lp((0, ∞), xδ dx) as a bounded operator from Lp((0, ∞), xδ dx) into itself
provided that 1 < p < ∞, α > −1, k is odd and −p − 1 < δ < (2α + 2)p − 1
or when k is even and −1 < δ < (2α + 2)p − 1, and from L1((0, ∞), xδ dx)
into L1,∞((0, ∞), xδ dx) when α > −1, k is odd and −2 ≤ δ ≤ 2α + 1 or when
α �= −1/2, k is even and −1 ≤ δ ≤ 2α + 1. From [22, Theorem 3.8], it can
be inferred for power weights only that Rα

k is bounded in Lp((0, ∞), xδ dx)
when 1 < p < ∞, α ≥ −1/2, k ∈ N and −1 < δ < (2α + 2)p − 1, and that Rα

k

is bounded from L1((0, ∞), xδ dx) into L1,∞((0, ∞), xδ dx), when α ≥ −1/2,
k ∈ N and −1 < δ ≤ 0.
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The organization of the paper is the following. Section 2 contains some
basic facts needed in the sequel. Section 3 is devoted to prove the main
result of this paper (Theorem 1.1) where we establish that the higher order
Riesz transforms are principal value singular integral operators (modulus a
constant times of the function, when k is even) and we show Lp((0, ∞), xδ dx)-
boundedness properties for them.

Throughout this paper, C∞
c (I) denotes the space of functions in C∞(I)

having compact support on I . By C and c we always represent positive
constants that can change from one line to the other one, and E[r], r ∈ R,
stands for the integer part of r.

2. Preliminaries

In this section, we recall some definitions and properties that will be useful
in the sequel. By H , we denote the Hermite differential operator

H =
1
2

(
− d2

dx2
+ x2

)
(2.1)

= − 1
4

[(
d

dx
+ x

)(
d

dx
− x

)
+

(
d

dx
− x

)(
d

dx
+ x

)]
.

Note that d
dx + x and − d

dx + x are formal adjoint operators in L2(R, dx).
Moreover, if n ∈ N, Hn represents the n-th Hermite polynomial [30, p. 104]
and hn is the Hermite function given by hn(x) = (

√
π2nn!)− 1

2 e− x2
2 Hn(x),

x ∈ R, then it follows that

Hhn =
(

n +
1
2

)
hn, n ∈ N.

Moreover, the system {hn}n∈N is an orthonormal basis in L2(R, dx).
The investigations of harmonic analysis in the Hermite setting were begun

by Muckenhoupt [18]. This author considered Hermite polynomial expansions
instead of Hermite function expansions. In the last decades several authors
have studied harmonic analysis operators in the Hermite (polynomial or func-
tion) context (see, for instance, [8], [9], [10], [13], [14], [23], [25], [27], [28] and
[32]).

The heat semigroup {Wt}t>0 associated with the family {hn}n∈N is defined
by

Wt(f) =
∞∑

n=0

e−(n+ 1
2 )tcn(f)hn, f ∈ L2(R, dx) and t > 0,

where cn(f) =
∫ +∞

− ∞ hn(x)f(x)dx, n ∈ N and f ∈ L2(R, dx).
For every t > 0, the operator Wt can be described by the integral

Wt(f)(x) =
∫ +∞

− ∞
Wt(x, y)f(y)dy, f ∈ L2(R, dx),



HIGHER ORDER RIESZ TRANSFORMS 33

where, according to Mehler’s formula we have that (see [29, (1.4)]), for each
x, y ∈ R and t > 0,

Wt(x, y) =
∞∑

n=0

e−(n+ 1
2 )thn(x)hn(y)

= (2π sinh t)− 1
2 exp

[
− 1

4

(
tanh

(
t

2

)
(x + y)2 + coth

(
t

2

)
(x − y)2

)]

(see [29, (1.4)]).
Let β > 0. The negative power H−β of H is given by

(2.2) H−βf =
∞∑

n=0

cn(f)
(n + 1

2 )β
hn, f ∈ L2(R, dx).

Thus, H−β is a bounded operator from L2(R, dx) into itself.
We also define the operators Tβ and Sβ as follows:

(2.3) Tβ(f)(x) =
1

Γ(β)

∫ ∞

0

tβ−1Wt(f)(x)dt, f ∈ L2(R, dx),

and

(2.4) Sβ(f)(x) =
∫ +∞

− ∞
K2β(x, y)f(y)dy, f ∈ L2(R, dx),

where, for every γ > 0,

Kγ(x, y) =
1

Γ(γ
2 )

∫ ∞

0

t
γ
2 −1Wt(x, y)dt, x, y ∈ R, x �= y.

We have that Tβ = Sβ = H−β on L2(R, dx) (see Proposition 3.1).
Suppose now that f ∈ C∞

c (R). Then, according to [27, (2.1)] the series in
(2.2) converges uniformly in R and it defines the function

Ψβ(f)(x) =
∞∑

n=0

cn(f)
(n + 1

2 )β
hn(x), x ∈ R,

that is continuous on R. Moreover, the function Λβ defined by

Λβ(f)(x) =
∫ +∞

− ∞
f(y)K2β(x, y)dy, x ∈ R,

is also continuous on R (see Proposition 3.1). Hence, Ψβ(f)(x) = Λβ(f)(x),
x ∈ R.

The factorization in (2.1) suggests to define formally the Riesz transform
R associated with H by

R =
(

d

dx
+ x

)
H− 1

2 .
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Since ( d
dx +x)hn =

√
2nhn−1, n ∈ N (here, h−1 = 0), as in [27, (3.3)], we define

the Riesz transform R on L2(R, dx) by

Rf =
∞∑

n=0

(
2n

n + 1
2

) 1
2

cn(f)hn−1, f ∈ L2(R, dx).

Lp-boundedness properties of the Riesz transform (even in the n-dimensional
case) were established in [27].

In [28], higher order Riesz transforms in the Hermite function setting on
R

n were investigated. Assume that k ∈ N \ {0}. The k-th Riesz transform
R(k) associated with H is defined formally by

R(k) =
(

d

dx
+ x

)k

H− k
2 .

On L2((0, ∞), dx) the Riesz transform R(k) is defined in a precise way as
follows

(2.5) R(k)f =
∞∑

n=k

2
k
2 (n(n − 1) · · · (n − k + 1))

1
2

(n + 1
2 )

k
2

cn(f)hn−k, f ∈ L2(R, dx).

It is clear that R(k) is a bounded operator from L2(R, dx) into itself. Moreover,
R(k) admits the integral representation

R(k)f(x) =
∫ +∞

− ∞
R(k)(x, y)f(y)dy, x ∈ R \ suppf, f ∈ L2(R, dx),

where

R(k)(x, y) =
1

Γ(k
2 )

∫ ∞

0

t
k
2 −1

(
∂

∂x
+ x

)k

Wt(x, y)dt, x, y ∈ R, x �= y.

Lp-boundedness properties of the Riesz transform R(k) were established in
[28, Theorem 2.3] by invoking the Calderón–Zygmund singular integral the-
ory. For every k ∈ N \ {0}, R(k) can be extended to Lp(R, dx) as a bounded
operator from Lp(R, dx) into itself, when 1 < p < ∞, and from L1(R, dx) into
L1,∞(R, dx). It is remarkable to note that the Lp-mapping properties for the
higher order Riesz transform in the Hermite polynomial setting are essentially
different to the corresponding ones in the Hermite function context ([9] and
[10]).

Assume now f ∈ C∞
c (0, ∞). According to [27, Lemma 1.2], for every m ∈ N

there exists Cm > 0 such that∣∣cn(f)
∣∣ ≤ Cm(1 + n)−m, n ∈ N.
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Hence, from [27, (2.2)] we deduce that the series in (2.2) and (2.5) converge
also uniformly in R. By defining as above the function Ψ k

2
(f) on R by

Ψ k
2
(f)(x) =

∞∑
n=0

cn(f)

(n + 1
2 )

k
2
hn(x), x ∈ R,

Ψ k
2
(f) = H− k

2 f as L2(R, dx)-functions. Moreover, by [27, (2.2), (3.2) and
Lemma 1.2], Ψ k

2
(f) is a C∞-function on R, the series in (2.5) converges uni-

formly in R, and for x ∈ R,(
d

dx
+ x

)k

Ψ k
2
(f)(x) =

∞∑
n=k

2
k
2 (n(n − 1) · · · (n − k + 1))

1
2

(n + 1
2 )

k
2

cn(f)hn−k(x).

We have also that ( d
dx + x)kΨ k

2
(f)(x) = R(k)f as L2(R, dx)-functions.

In order to investigate the higher order Riesz transforms associated with
the Laguerre operator, as it was mentioned, we shall exploit a connection
between higher order Riesz transforms in the Hermite and Laguerre settings.

The following new property that will be proved in Section 3 is needed in
the proof of Theorem 1.1. It states that the higher order Riesz transform for
the Hermite operator is actually a principal value integral operator.

Proposition 2.1. Let k ∈ N \ {0}. Then, for every f ∈ C∞
c (R), 1 ≤ p < ∞,

(2.6) R(k)f(x) = wkf(x) + lim
ε→0+

∫
|x−y|>ε

R(k)(x, y)f(y)dy, a.e. x ∈ R,

where

R(k)(x, y) =
1

Γ(k
2 )

∫ ∞

0

t
k
2 −1

(
∂

∂x
+ x

)k

Wt(x, y)dt, x, y ∈ R, x �= y,

and wk = 0, when k is odd, and wk = −2
k
2 , when k is even.

Since R(k)(x, y), x, y ∈ R, is a Calderón–Zygmund kernel [28] by using stan-
dard density arguments we deduce, from Proposition 2.1, that the operator
R(k) can be extended by (2.6) to Lp(R, dx), 1 ≤ p < ∞, as a bounded operator
from Lp(R, dx) into itself, 1 < p < ∞, and from L1(R, dx) into L1,∞(R, dx).

As it was indicated, the modified Bessel function Iα of the first kind and
order α appears in the kernel of the heat semigroup associated to the system

{ϕα
n }n∈N. The following properties of the function Iα will be repeatedly used

in the sequel (see [17] and [33]):
(P1) Iα(z) ∼ zα, z → 0.
(P2)

√
zIα(z) = ez

√
2π

(
∑n

r=0(−1)r[α, r](2z)−r + O(z−n−1)), n = 0,1,2, . . . ,
where [α,0] = 1 and

[α, r] =
(4α2 − 1)(4α2 − 32) · · · (4α2 − (2r − 1)2)

22rΓ(r + 1)
, r = 1,2, . . . .
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(P3) d
dz (z−αIα(z)) = z−αIα+1(z), z ∈ (0, ∞).

On the other hand, in our study of the global part of the operators involved,
it will be useful to consider the Hardy type operators defined by

Hη
0 (f)(x) = x−η−1

∫ x

0

yηf(y)dy, x ∈ (0, ∞),

and

Hη
∞(f)(x) = xη

∫ ∞

x

y−η−1f(y)dy, x ∈ (0, ∞),

where η > −1. Lp-boundedness properties of the operators Hη
0 and Hη

∞ were
established by Muckenhoupt [19] and Andersen and Muckenhoupt [2]. In
particular, mappings properties for Hη

0 and Hη
∞ on Lp((0, ∞), xδ dx) can be

encountered in [6, Lemmas 3.1 and 3.2].
The following formula established in [12, Lemma 4.3, (4.6)] will be fre-

quently used in the paper. For every N ∈ N, and a sufficiently smooth function
g : (0, ∞) −→ R, it holds

(2.7)
dN

dxN

[
g
(
x2

)]
=

E[ N
2 ]∑

l=0

EN,lx
N −2l

(
dN −l

dxN −l
g

)(
x2

)
,

where

EN,l = 2N −2l N !
l!(N − 2l)!

, 0 ≤ l ≤ E

[
N

2

]
.

We finish this section establishing the following technical lemma that is
needed in the proof of Proposition 3.3.

Lemma 2.1. Let α > −1 and j ∈ N \ {0}. For every m = 0,1, . . . ,E[ j
2 ], we

have

(2.8)
m∑

n=0

j∑
l=2n

(−1)l+n

(
j

l

)
El,n

2l−2n
[α + l − n,m − n] = 0.

Proof. For every s = 0, . . . , j we denote by Aj,s the values

Aj,s =
j∑

l=0

(−1)l

(
j

l

)
ls,

where we take the convention 00 = 1.
In [3, (43)], it was established that

(2.9) Aj,s = 0, s = 0,1, . . . , j − 1.

On the other hand, since
(
m
n

)
= m

n

(
m−1
n−1

)
, for m ≥ n ≥ 1, by using (2.9) we

obtain that Aj,j = −jAj−1,j−1, j ∈ N, j ≥ 1 and so Aj,j = (−1)jj!, j ∈ N.
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Consider m = 0,1, . . . ,E[ j
2 ] and n = 0,1, . . . ,m. We can write

j∑
l=2n

(−1)l

(
j

l

)
El,n

2l−2n
[α + l − n,m − n]

=
j−2n∑
s=0

(−1)s

(
j

s + 2n

)
Es+2n,n

2s
[α + s + n,m − n]

=
j!
n!

j−2n∑
s=0

(−1)s

s!(j − 2n − s)!
[α + s + n,m − n]

=
j!

n!(j − 2n)!

j−2n∑
s=0

(−1)s

(
j − 2n

s

)
[α + s + n,m − n].

We observe that [α + s + n,m − n] is a polynomial in s which has degree
2(m − n). Besides, if j is odd, 2(m − n) ≤ j − 2n − 1. Hence, (2.9) allows us
to conclude (2.8) in this case.

Assume now that j is even. Then 2(m − n) ≤ j − 2n and (2.9) leads to
m∑

n=0

j∑
l=2n

(−1)l+n

(
j

l

)
El,n

2l−2n
[α + l − n,m − n] = 0,

when m = 0,1, . . . , j
2 − 1.

For m = j
2 and again by (2.9), we can write

m∑
n=0

j∑
l=2n

(−1)l+n

(
j

l

)
El,n

2l−2n
[α + l − n,m − n]

=

j
2∑

n=0

(−1)nj!
n!(j − 2n)!

j−2n∑
s=0

(−1)s

(
j − 2n

s

)
sj−2n

( j
2 − n)!

= j!

j
2∑

n=0

(−1)n

n!(j − 2n)!( j
2 − n)!

Aj−2n,j−2n =
j!

( j
2 )!

j
2∑

n=0

(−1)n

( j
2

n

)
= 0.

Thus, (2.8) is established. �

3. Higher order Riesz transforms associated with Laguerre
expansions

In this section, we prove our main result (Theorem 1.1) concerning to higher
order Riesz transforms associated with the sequence {ϕα

n }n∈N of Laguerre
functions. As it was mentioned, our procedure is based on certain connection
between higher order Riesz transforms in the Laguerre and Hermite settings.

We start proving the representations (2.3) and (2.4) for the negative powers
H−β , β > 0.
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Proposition 3.1. Let β > 0. Then, for every f ∈ L2(R, dx),

(3.1) H−βf(x) =
1

Γ(β)

∫ ∞

0

tβ−1Wt(f)(x)dt,

as L2(R, dx)-functions. Moreover, if f ∈ C∞
c (R) then, the function

(3.2) Ψβ(f)(x) =
∞∑

n=0

cn(f)
(n + 1/2)β

hn(x), x ∈ R,

is continuous on R, and

Ψβ(f)(x) =
∫ +∞

− ∞
K2β(x, y)f(y)dy, x ∈ R,

where, for every γ > 0,

Kγ(x, y) =
1

Γ(γ
2 )

∫ ∞

0

t
γ
2 −1Wt(x, y)dt, x, y ∈ R, x �= y.

Proof. We define the operator Tβ as follows

Tβ(f)(x) =
1

Γ(β)

∫ ∞

0

tβ−1Wt(f)(x)dt, f ∈ L2(R, dx).

According to [27, Remark 2.10] and by using Minkowski’s inequality we get

‖Tβf ‖2 ≤ 1
Γ(β)

∫ ∞

0

tβ−1‖Wtf ‖2 dt

≤ ‖f ‖2

Γ(β)

∫ ∞

0

tβ−1

√
cosh t

dt ≤ ‖f ‖2, f ∈ L2(R, dx).

Hence, Tβ is a bounded operator from L2(R, dx) into itself. Moreover, it is not
hard to see that Tβf = H−βf , for every f ∈ span{hn}n∈N. Since span{hn}n∈N

is a dense subspace of L2(R, dx) [27, Lemma 2.3], we conclude that H−βf =
Tβf , for every f ∈ L2(R, dx).

Assume that f ∈ C∞
c (R). By [27, (2.1)], the series in (3.2) converges uni-

formly on R. Hence, Ψβ(f) is a continuous function on R. Moreover,

Ψβ(f)(x) =
1

Γ(β)

∫ ∞

0

tβ−1Wt(f)(x)dt, a.e. x ∈ R.

On the other hand, we have that, for certain −∞ < a < b < +∞, and x ∈ R,∫ ∞

0

tβ−1

∫ +∞

− ∞
Wt(x, y)

∣∣f(y)
∣∣dy dt

≤ C

∫ b

a

∣∣f(y)
∣∣(∫ 1

0

tβ− 3
2 e−c (x−y)2

t dt +
∫ ∞

1

e− t
2 dt

)
dy < ∞.
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By Fubini’s theorem, we obtain

Ψβ(f)(x) =
∫ +∞

− ∞
K2β(x, y)f(y)dy, a.e. x ∈ R.

We now define the function Λβ(f) by

Λβ(f)(x) =
∫ +∞

− ∞
K2β(x, y)f(y)dy, x ∈ R.

The function Λβ(f) is continuous on R.
In order to see this, we split the inner integral in Λβ(f) into two parts and

write

Λβ(f)(x) =
1

Γ(β)

∫ +∞

− ∞
f(y)

(∫ 1

0

+
∫ ∞

1

)
tβ−1Wt(x, y)dtdy

= Λβ,1(f)(x) + Λβ,2(f)(x), x ∈ R.

Firstly, we analyze the function Λβ,2(f). We can write∣∣∣∣
∫ ∞

1

tβ−1Wt(x, y)dt

∣∣∣∣ ≤ C

∫ ∞

1

tβ−1e− t
2 dt ≤ C, x, y ∈ R.

Then, by applying the dominated convergence theorem we can prove that the
function Λβ,2(f) is continuous on R.

The analysis of Λβ,1(f) is more dedicated. If β > 1
2 , it follows that∣∣∣∣

∫ 1

0

tβ−1Wt(x, y)dt

∣∣∣∣ ≤ C

∫ 1

0

tβ− 3
2 dt ≤ C, x, y ∈ R,

and by using again dominated convergence theorem we conclude that the
function Λβ,1(f) is continuous on R. Assume now that 0 < β ≤ 1

2 . By making
the change of variables s = tanh( t

2 ) (due to Meda), we get∫ 1

0

tβ−1Wt(x, y)dt

=
1√
2π

∫ a

0

(
2s

1 − s2

)− 1
2

e− 1
4 (s(x+y)2+ 1

s (x−y)2) 2
1 − s2

(
log

1 + s

1 − s

)β−1

ds

=
1√
2π

∫ a

0

[(
2s

1 − s2

)− 1
2

e− 1
4 (s(x+y)2+ 1

s (x−y)2) 2
1 − s2

(
log

1 + s

1 − s

)β−1

− 2
(2s)

1
2
e− (x−y)2

4s (2s)β−1

]
ds +

2β− 1
2

√
2π

∫ a

0

e− (x−y)2

4s sβ− 3
2 ds,

x, y ∈ R, x �= y, where a = tanh(1
2 ).
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By using the mean value theorem, it holds∣∣∣∣
(

2s

1 − s2

)− 1
2

e− 1
4 (s(x+y)2+ 1

s (x−y)2) 2
1 − s2

(
log

1 + s

1 − s

)β−1

− 2
(2s)

1
2
e− (x−y)2

4s (2s)β−1

∣∣∣∣
≤ C

(∣∣∣∣
(

1 − s2

2s

) 1
2

− 1
(2s)

1
2

∣∣∣∣sβ−1 + sβ− 3
2

∣∣∣∣ 1
1 − s2

− 1
∣∣∣∣

+
1
s

1
2

∣∣∣∣
(

log
1 + s

1 − s

)β−1

− (2s)β−1

∣∣∣∣ + sβ− 3
2 e− (x−y)2

4s

∣∣e− (x+y)2

4s − 1
∣∣)

≤ Csβ− 1
2
(
1 + (x + y)2

)
, x, y ∈ R and s ∈ (0, a).

Since f has compact support, the dominated convergence theorem allows
us to prove that the function Λβ,1,1(f) defined by

Λβ,1,1(f)(x)

=
1√
2π

∫ ∞

− ∞
f(y)

∫ a

0

[(
2s

1 − s2

)− 1
2

e− 1
4 (s(x+y)2+ 1

s (x−y)2)

× 2
1 − s2

(
log

1 + s

1 − s

)β−1

− 2
(2s)

1
2
e− (x−y)2

4s (2s)β−1

]
dsdy, x ∈ R,

is continuous on R.
Finally, we note that the function Λβ,1,2(f) = Λβ,1(f) − Λβ,1,1(f) can be

written
Λβ,1,2(f)(x) = (f ∗ Kβ)(x), x ∈ R,

where Kβ(z) = 2β−1
√

π

∫ a

0
e− |z|2

4s sβ− 3
2 ds, z ∈ R. Since | Kβ(z)| ≤ C|z|2β−1, z ∈

R \ {0} (see, for instance, [27, Lemma 1.1]), we conclude that Λβ,1,2(f) is
continuous on R.

Putting together the arguments above, we establish that Λβ is continuous
on R. Hence, Ψβ(f)(x) = Λβ(f)(x), x ∈ R. �

In the sequel, if f ∈ C∞
c (R) and β > 0, we write H−βf to refer the contin-

uous function Ψβ(f) on R.
We now prove that, for every f ∈ C∞

c (R) and k ∈ N \ {0}, ( d
dx + x)kH− k

2 f
is given, for almost all x ∈ R, by a principal value integral plus, when k is
even, a multiple of f(x).

Proposition 3.2. Let f ∈ C∞
c (R) and k ∈ N \ {0}. Then,(

d

dx
+ x

)k

H− k
2 f(x) = wkf(x) + lim

ε→0+

∫
|x−y|>ε

R(k)(x, y)f(y)dy,(3.3)

a.e. x ∈ R,
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where wk = 0, if k is odd, and wk = −2
k
2 , when k is even.

Remark 3.1. Note that if x �∈ suppf , then the limit in (3.3) coincides with
the absolutely convergent integral∫ +∞

− ∞
R(k)(x, y)f(y)dy

and (3.3) reduces to(
d

dx
+ x

)k

H− k
2 f(x) =

∫ +∞

− ∞
R(k)(x, y)f(y)dy.

Proof of Proposition 3.2. By making the change of variables s = tanh( t
2 ),

t ∈ (0, ∞), we obtain

H− k
2 f(x) =

1
Γ(k

2 )

∫ +∞

− ∞
f(y)

∫ 1

0

(
log

1 + s

1 − s

) k
2 −1(1 − s2

4πs

) 1
2

× e− 1
4 (s(x+y)2+ 1

s (x−y)2) 2
1 − s2

dsdy

for every x ∈ R. Since, for every m ∈ N,

(3.4)
(

d

dx
+ x

)m

g(x) =
∑

0≤ρ+σ≤m

cm
ρ,σxρ dσ

dxσ
g(x),

where cm
ρ,σ ∈ R, ρ,σ ∈ N, 0 ≤ ρ + σ ≤ m and cm

0,m = 1, in order to prove this
proposition it is sufficient to see that

dr

dxr
H− k

2 f(x) =
1

Γ(k
2 )

∫ +∞

− ∞
f(y)

∫ 1

0

(
log

1 + s

1 − s

) k
2 −1(1 − s2

4πs

) 1
2

× ∂r

∂xr

(
e− 1

4 (s(x+y)2+ 1
s (x−y)2)

) 2
1 − s2

dsdy

for every x ∈ R and r ∈ N, 1 ≤ r ≤ k − 1, and

dk

dxk
H− k

2 f(x) = wkf(x)

+ lim
ε→0+

1
Γ(k

2 )

∫
|x−y|>ε

f(y)
∫ 1

0

(
log

1 + s

1 − s

) k
2 −1

×
(

1 − s2

4πs

) 1
2 ∂r

∂xr

(
e− 1

4 (s(x+y)2+ 1
s (x−y)2)

)
× 2

1 − s2
dsdy, a.e. x ∈ R.
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Let r ∈ N. According to [28, p. 50], ∂r

∂xr (e− 1
4 (s(x+y)2+ 1

s (x−y)2)) is a linear
combination of terms of the form(

s +
1
s

)b1

e− 1
4 (s(x+y)2+ 1

s (x−y)2)

(
s(x + y)2 +

1
s
(x − y)2

)b2

,

where b1, b2 ∈ N and 2b1 + b2 ≤ r. Hence, we have that(
log

1 + s

1 − s

) k
2 −1(1 − s2

4πs

) 1
2 ∂r

∂xr

(
e− 1

4 (s(x+y)2+ 1
s (x−y)2)

) 1
1 − s2

≤ C

(
1 − s2

s

) 1
2

e− 1
4 (s(x+y)2+ 1

s (x−y)2) 1
1 − s2

(
log

1 + s

1 − s

) k
2 −1

×
∑

b1,b2∈N,2b1+b2≤r

(
s +

1
s

)b1(
s(x + y)2 +

1
s
(x − y)2

)b2

≤ C
(− log(1 − s))

k
2 −1

√
1 − s

, s ∈ (0,1), x, y ∈ R.

By taking into account the mean value and dominated convergence theorems,
we get

dr

dxr

∫ +∞

− ∞
f(y)

∫ 1

1
2

(
log

1 + s

1 − s

) k
2 −1 2

1 − s2
Wlog 1+s

1−s
(x, y)dsdy

=
∫ +∞

− ∞
f(y)

∫ 1

1
2

(
log

1 + s

1 − s

) k
2 −1 2

1 − s2

∂r

∂xr
Wlog 1+s

1−s
(x, y)dsdy, x ∈ R.

By using (2.7), we can write, for every s ∈ (0,1) and x, y ∈ R,

∂r

∂xr
Wlog 1+s

1−s
(x, y)(3.5)

=
(

1 − s2

4πs

) 1
2 ∂r

∂xr

[
e− 1

4 (s(x+y)2+ 1
s (x−y)2)

]

=
(

1 − s2

4πs

) 1
2 r∑

j=0

(
r

j

)
∂j

∂xj

(
e− s

4 (x+y)2
) ∂r−j

∂xr−j

(
e− 1

4s (x−y)2
)

=
(

1 − s2

4πs

) 1
2

e− s
4 (x+y)2 ∂r

∂xr

(
e− 1

4s (x−y)2
)

+
(

1 − s2

4πs

) 1
2 r∑

j=1

(
r

j

)(E[ j
2 ]∑

l=0

Ej,l(x + y)j−2l

(
− s

4

)j−l

e− s
4 (x+y)2

)

×
(E[ r−j

2 ]∑
m=0

Er−j,m(x − y)r−j−2m

(
− 1

4s

)r−j−m

e− 1
4s (x−y)2

)
.
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Assume that Ω is a compact subset of R and r ∈ N, 1 ≤ r ≤ k.
We define, for every j = 1, . . . , r, 0 ≤ l ≤ E[ j

2 ] and 0 ≤ m ≤ E[ r−j
2 ],

F j
l,m(x, y, s)

=
(x + y)j−2l(x − y)r−j−2m

√
1 − s2

(
log

1 + s

1 − s

) k
2 −1

e− 1
4 (s(x+y)2+ 1

s (x−y)2)

sr−2j+l−m+ 1
2

for each x, y ∈ R and s ∈ (0, 1
2 ). Since log 1+s

1−s ∼ 2s, as s → 0+, and j ≥ 1, it
follows that∣∣F j

l,m(x, y, s)
∣∣ ≤ C|x + y|j−2l|x − y|r−j−2ms

k−2r
2 − 3

2+2j−l+m(3.6)

× e− 1
4 (s(x+y)2+ 1

s (x−y)2)

≤ Csj− 3
2+ k−r

2 ≤ Cs− 1
2 , x, y ∈ R, s ∈

(
0,

1
2

)
.

We now observe that the mean value theorem leads to∣∣∣∣e− s
4 (x+y)2

(
log

1 + s

1 − s

) k
2 −1 1√

1 − s2
− (2s)

k
2 −1

∣∣∣∣(3.7)

≤
∣∣∣∣
(

log
1 + s

1 − s

) k
2 −1

− (2s)
k
2 −1

∣∣∣∣ +
[∣∣∣∣ 1√

1 − s2
− 1

∣∣∣∣e− s
4 (x+y)2

+
∣∣e− s

4 (x+y)2 − 1
∣∣]∣∣∣∣log

1 + s

1 − s

∣∣∣∣
k
2 −1

≤ C
(
s

k
2 +1 +

(
s2e− s

4 (x+y)2 + s(x + y)2
)
s

k
2 −1

)
≤ Cs

k
2 , x, y ∈ R, s ∈

(
0,

1
2

)
.

By using (2.7) and (3.7), we obtain∣∣∣∣
(

1 − s2

4πs

) 1
2

e− s
4 (x+y)2

(
log

1 + s

1 − s

) k
2 −1 2

1 − s2
− (2s)

k
2 −1

√
πs

∣∣∣∣(3.8)

×
∣∣∣∣ ∂r

∂xr

(
e− (x−y)2

4s

)∣∣∣∣
≤ Cs

k−1
2

∣∣∣∣ ∂r

∂xr

(
e− (x−y)2

4s

)∣∣∣∣
≤ Cs

k−1
2

E[ r
2 ]∑

n=0

|x − y|r−2nsn−re− (x−y)2

4s

≤ Cs
k−r−1

2 ,

s ∈ (0, 1
2 ), x ∈ Ω and y ∈ suppf .
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By combining (3.5), (3.6) and (3.8), we get∣∣∣∣ ∂r

∂xr

[
2

1 − s2

(
log

1 + s

1 − s

) k
2 −1

Wlog 1+s
1−s

(x, y) − (2s)
k
2 −1

√
πs

e− (x−y)2

4s

]∣∣∣∣ ≤ C√
s
,

when s ∈ (0, 1
2 ), x ∈ Ω and y ∈ suppf .

Then, the dominated convergence theorem allows us to show that

Γ
(

k

2

)
dr

dxr
H− k

2 f(x) − dr

dxr

∫ +∞

− ∞
f(y)

∫ 1
2

0

1√
πs

e− (x−y)2

4s (2s)
k
2 −1 dsdy(3.9)

=
∫ +∞

− ∞
f(y)

∫ 1
2

0

∂r

∂xr

(
2

1 − s2

(
log

1 + s

1 − s

) k
2 −1

× Wlog 1+s
1−s

(x, y) − (2s)
k
2 −1

√
πs

e− (x−y)2

4s

)
dsdy

for every x ∈ R. In view of properties (3.5) and (3.9), to establish the desired
property (3.3) it is sufficient to prove that

dk

dxk

∫ +∞

− ∞
f(y)

1
Γ(k

2 )

∫ 1
2

0

(2s)
k
2 −1

√
πs

e− 1
4s (x−y)2 dsdy

= wkf(x) + lim
ε→0+

∫
|x−y|>ε

f(y)
1

Γ(k
2 )

∫ 1
2

0

(2s)
k
2 −1

√
πs

∂k

∂xk

(
e− 1

4s (x−y)2
)
dsdy,

x ∈ R, where wk = 0, if k is odd, and wk = −2
k
2 , when k is even.

Assume that k ∈ N, k ≥ 2. As earlier, we can see that

dk−2

dxk−2

∫ +∞

− ∞
f(y)

∫ 1
2

0

(2s)
k
2 −1

√
πs

e− 1
4s (x−y)2 dsdy

=
∫ +∞

− ∞
f(y)

∫ 1
2

0

(2s)
k
2 −1

√
πs

∂k−2

∂xk−2

(
e− 1

4s (x−y)2
)
dsdy, x ∈ R.

Let us represent by Υm, m = k − 2, k − 1, the following function

Υm(x) =
1

Γ(k
2 )

∫ 1
2

0

(2s)
k
2 −1

√
πs

∂m

∂xm

(
e− x2

4s

)
ds, x ∈ R.

By proceeding as above, we can see that Υm ∈ L1(R). Indeed, for m = k −
2, k − 1, (2.7) leads to

Υm(x) =
1

Γ(k
2 )

E[ m
2 ]∑

l=0

(−1)m−lEm,lx
m−2l

×
∫ 1

2

0

(2s)
k
2 −1

√
πs

(
1
4s

)m−l

e− x2
4s ds, x ∈ R,
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and then, according to [28, Lemma 1.1],

∣∣Υm(x)
∣∣ ≤ C

E[ m
2 ]∑

l=0

|x|m−2l

∫ 1
2

0

s
k
2 − 3

2 −m+le− x2
4s ds(3.10)

≤ C

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

e− x2
4

∫ 1
2

0
e− x2

8s

s ds ≤ C e− x2
4√

|x|
,

x ∈ R \ {0}, if m = k − 1,

√
|x|e− x2

4
∫ 1

2
0

e− x2
8s

s
3
4

ds ≤ C
√

|x|e− x2
4 ,

x ∈ R, if m = k − 2.

We can write, by taking into account (3.10),

dk−1

dxk−1

∫ +∞

− ∞
f(y)

∫ 1
2

0

(2s)
k
2 −1

√
πs

e− 1
4s (x−y)2 dsdy

=
d

dx

∫ +∞

− ∞
f(y)

∫ 1
2

0

(2s)
k
2 −1

√
πs

∂k−2

∂xk−2

(
e− 1

4s (x−y)2
)
dsdy

=
d

dx

∫ +∞

− ∞
f(x − u)Υk−2(u)du

=
∫ +∞

− ∞
f ′(x − u)Υk−2(u)du

= − lim
ε→0+

(∫ −ε

− ∞
+

∫ +∞

ε

)
d

du
Wlog 1+s

1−s
(x, y)dsdy(x − u)Υk−2(u)du

= − lim
ε→0+

(
f(x + ε)Υk−2(−ε) − f(x − ε)Υk−2(ε)

−
(∫ −ε

− ∞
+

∫ +∞

ε

)
f(x − u)Υ′

k−2(u)du

)

= − lim
ε→0+

(
f(x − ε)Υk−2(ε) − f(x + ε)Υk−2(−ε)

+
(∫ −ε

− ∞
+

∫ +∞

ε

)
f(x − u)Υk−1(u)du

)
= lim

ε→0+

(
f(x − ε) − f(x + ε)

)
Υk−2(ε)

+ lim
ε→0+

f(x + ε)
(
Υk−2(ε) − Υk−2(−ε)

)
+

∫ +∞

− ∞
f(x − u)Υk−1(u)du, x ∈ R.
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Hence, by (3.10) we conclude that

dk−1

dxk−1

∫ +∞

− ∞
f(y)

∫ 1
2

0

(2s)
k
2 −1

√
πs

e− 1
4s (x−y)2 dsdy

=
∫ +∞

− ∞
f(y)

∫ 1
2

0

(2s)
k
2 −1

√
πs

∂k−1

∂xk−1
e− 1

4s (x−y)2 dsdy, x ∈ R.

Moreover, if m is even, then Υm is even, and if m is odd, then Υm is odd.
When k is even, we can also see that

(3.11) lim
ε→0

Υk−1(ε) = −2
k
2 −1.

Indeed, if k is even we can write

Υk−1(ε) = − 1
Γ(k

2 )
√

π

k
2 −1∑
l=0

(−1)lEk−1,l
εk−1−2l

2
3k
2 −2l−1

∫ 1
2

0

e− ε2
4s

s
k
2 + 1

2 −l
ds, ε ∈ R.

Hence, the duplication formula [17, (1.2.3)] allows us to write

lim
ε→0

Υk−1(ε) = − 1

2
k
2 Γ(k

2 )
√

π
lim
ε→0

k
2 −1∑
l=0

(−1)lEk−1,l

∫ ∞

ε2
2

e−uu
k
2 − 3

2 −l du

=
−1

2
k
2 Γ(k

2 )
√

π

k
2 −1∑
l=0

(−1)lEk−1,lΓ
(

k − 1
2

− l

)

=
−(k − 1)!

2
k
2 −1(Γ(k

2 ))2

k
2 −1∑
l=0

(−1)l

(k
2 − 1

l

)
1

k − 1 − 2l

=
−(k − 1)!

2
k
2 −1(Γ(k

2 ))2

∫ 1

0

(
1 − t2

) k
2 −1

dt

=
−(k − 1)!

2
k
2 (Γ(k

2 ))2
Γ(k

2 )Γ( 1
2 )

Γ(k+1
2 )

= −2
k
2 −1,

and (3.11) is thus established.
Note that Υk−1 ∈ L1(R) and Υk−1 ∈ C∞(R \ {0}). By proceeding as above

we obtain that, for each x ∈ R,

d

dx

∫ +∞

− ∞
f(y)Υk−1(x − y)dy = lim

ε→0+

[(∫ −ε

− ∞
+

∫ +∞

ε

)
f(y)Υ′

k−1(x − y)dy

+ f(x − ε)Υk−1(ε) − f(x + ε)Υk−1(−ε)
]
.

Suppose now that k is odd. Then Υk−1 is an even function and from (3.10)
we obtain, for every x ∈ R,∣∣f(x − ε)Υk−1(ε) − f(x + ε)Υk−1(−ε)

∣∣ ≤ Cε
∣∣Υk−1(ε)

∣∣ −→ 0, as ε → 0+.
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On the other hand, assuming that k is even, (3.11) leads to

lim
ε→0+

f(x − ε)Υk−1(ε) − f(x + ε)Υk−1(−ε)

= lim
ε→0+

(
f(x + ε) + f(x − ε)

)
Υk−1(ε) = −2

k
2 f(x)

for every x ∈ R.
Hence,

d

dx

∫ +∞

− ∞
f(y)Υk−1(x − y)dy

= wkf(x) + lim
ε→0+

∫
|x−y|>ε

f(y)
∂

∂x

(
Υk−1(x − y)

)
dy,

x ∈ R, where wk = 0, if k is odd, and wk = −2
k
2 , when k is even. Thus, the

proof is finished. �

The following relation between the kernels R
(k)
α (x, y) and R(k)(x, y), x, y ∈

(0, ∞), x �= y, is the key of our procedure in order to establish that the k-
order Riesz transform associated with the Laguerre operator is a principal
value integral operator.

Proposition 3.3. Let α > −1 and k ∈ N \ {0}. For every M > 1 we have
that

(i) |R(k)
α (x, y)| ≤ C yα+ 1

2

xα+ 3
2
, 0 < y < x

M .

(ii) |R(k)
α (x, y)| ≤ C xα+ 1

2

yα+ 3
2
, y > Mx and k even, and |R(k)

α (x, y)| ≤ C xα+ 3
2

yα+ 5
2
,

y > Mx and k odd.
(iii) |R(k)

α (x, y) − R(k)(x, y)| ≤ C 1
x (1 + ( x

|x−y| )
1
2 ), x

M < y < Mx, x �= y.

Proof. We prove the property for M = 2. We can proceed in the same way
for every M > 1. A short calculation using the induction procedure, property
(P3) and combinatorial properties of the coefficients Ej,n shows that, for every
j ∈ N and t, x, y ∈ (0, ∞),

∂j

∂xj

[(
xy

sinh t

)−α

Iα

(
xy

sinh t

)]
(3.12)

=
E[ j

2 ]∑
n=0

Ej,n
xj−2n

2j−n

(
y

sinh t

)2(j−n)

×
(

xy

sinh t

)−α+n−j

Iα−n+j

(
xy

sinh t

)
.
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Let us now prove (i) and (ii). Since ( d
dx + x)g = e− x2

2 d
dx (e

x2
2 g), for every

differentiable function g, we can write, for t, x, y ∈ (0, ∞),

Dk
αWα

t (x, y) = xα+ 1
2 e− x2

2
∂k

∂xk

(
e

x2
2 x−α− 1

2 Wα
t (x, y)

)
= (sinh t)− 1

2

(
xy

sinh t

)α+ 1
2

e− x2
2 − y2

2 coth t

× ∂k

∂xk

[(
xy

sinh t

)−α

Iα

(
xy

sinh t

)
e− x2

2 (coth t−1)

]
.

By taking into account formulas (2.7) and (3.12), we get

∂k

∂xk

[(
xy

sinh t

)−α

Iα

(
xy

sinh t

)
e− x2

2 (coth t−1)

]

=
k∑

j=0

(
k

j

)
∂j

∂xj

[(
xy

sinh t

)−α

Iα

(
xy

sinh t

)]
∂k−j

∂xk−j

[
e− x2

2 (coth t−1)
]

= e− x2
2 (coth t−1)

k∑
j=0

E[ j
2 ]∑

n=0

E[ k−j
2 ]∑

m=0

(
k

j

)
Ej,nEk−j,m

2j−n

×
(

y

sinh t

)2(j−n)(1 − coth t

2

)k−j−m

× xk−2m−2n

(
xy

sinh t

)−α−j+n

× Iα+j−n

(
xy

sinh t

)
, t, x, y ∈ (0, ∞).

Hence, we obtain that

Dk
αWα

t (x, y)(3.13)

= (sinh t)− 1
2

(
xy

sinh t

)α+ 1
2

e− 1
2 (x2+y2) coth t

×
k∑

j=0

E[ j
2 ]∑

n=0

E[ k−j
2 ]∑

m=0

(
k

j

)
Ej,nEk−j,m

2j−n

×
(

y

sinh t

)2(j−n)(1 − coth t

2

)k−j−m

× xk−2m−2n

(
xy

sinh t

)−α−j+n

Iα+j−n

(
xy

sinh t

)
, t, x, y ∈ (0, ∞).
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By using property (P1), it follows that∣∣∣∣
∫ ∞

0, xy
sinh t ≤1

t
k
2 −1Dk

αWα
t (x, y)dt

∣∣∣∣
≤ C(xy)α+ 1

2

k∑
j=0

E[ j
2 ]∑

n=0

E[ k−j
2 ]∑

m=0

xk−2m−2ny2(j−n)

×
∫ ∞

0, xy
sinh t ≤1

t
k
2 −1e− 1

2 (x2+y2) coth t(sinh t)2n+m−k−j−α−1 dt

≤ C(xy)α+ 1
2

k∑
j=0

E[ j
2 ]∑

n=0

E[ k−j
2 ]∑

m=0

xk−2m−2ny2(j−n)

×
(∫ 1

0

t− k
2 −α−2−j+2n+me−c x2+y2

t dt

+ e−c(x2+y2)

∫ ∞

1

t
k
2 −1e−(α+1)t dt

)
.

Hence, by taking into account [28, Lemma 1.1] we conclude that∣∣∣∣
∫ ∞

0, xy
sinh t ≤1

t
k
2 −1Dk

αWα
t (x, y)dt

∣∣∣∣(3.14)

≤ C

k∑
j=0

E[ j
2 ]∑

n=0

E[ k−j
2 ]∑

m=0

(xy)α+ 1
2 xk−2m−2ny2(j−n)

(x2 + y2)
k
2 +α+1+j−2n−m

≤ C
(xy)α+ 1

2

(x2 + y2)α+1
≤ C

⎧⎪⎨
⎪⎩

yα+ 1
2

xα+ 3
2
, 0 < y < x,

xα+ 1
2

yα+ 3
2
, y > x > 0.

Note that if k is odd we can improve the estimate when y > x > 0 as follows

(3.15)
∣∣∣∣
∫ ∞

0, xy
sinh t ≤1

t
k
2 −1Dk

αWα
t (x, y)dt

∣∣∣∣ ≤ C
(xy)α+ 1

2 x

(x2 + y2)α+ 3
2

≤ xα+ 3
2

yα+ 5
2
.

Assume now that xy
sinh t ≥ 1. From (3.13) and property (P2), we get

∣∣Dk
αWα

t (x, y)
∣∣ ≤ C

k∑
j=0

E[ j
2 ]∑

n=0

E[ k−j
2 ]∑

m=0

e− 1
2 (x2+y2) coth t+ xy

sinh t

× xk−2m−2ny2(j−n)(sinh t)2n+m−k−j− 1
2 , t, x, y ∈ (0, ∞).

We also observe that

− 1
2
(
x2 + y2

)
coth t +

xy

sinh t
= − (x − ye−t)2 + (y − xe−t)2

2(1 − e−2t)
.
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Thus, if 0 < y < x
2 , we can write

∣∣Dk
αWα

t (x, y)
∣∣ ≤ C

k∑
j=0

E[ j
2 ]∑

n=0

E[ k−j
2 ]∑

m=0

e− x2(1+coth t)
16 xk−2m−2n+2(j−n)

× (sinh t)2n+m−k−j− 1
2

≤ Ce−cx2(1+coth t)(sinh t)− k
2 − 1

2 , t ∈ (0, ∞).

Hence, if −1 < α < − 1
2 , [28, Lemma 1.1] leads to

∣∣∣∣
∫ ∞

0, xy
sinh t ≥1

t
k
2 −1Dk

αWα
t (x, y)dt

∣∣∣∣ ≤ C

(∫ 1

0

e−c x2
t

t
3
2

dt + e−cx2
)

≤ C
1
x

≤ C
yα+ 1

2

xα+ 3
2
, 0 < y <

x

2
.

For α > − 1
2 , we can proceed as follows.

∣∣∣∣
∫ ∞

0, xy
sinh t ≥1

t
k
2 −1Dk

αWα
t (x, y)dt

∣∣∣∣
≤ C(xy)α+ 1

2

∫ ∞

0

t
k
2 −1e−cx2(1+coth t)

× (sinh t)− k
2 −α−1 dt

≤ C(xy)α+ 1
2

(∫ 1

0

e−c x2
t

tα+2
dt + e−cx2

)

≤ C
(xy)α+ 1

2

x2α+2
≤ C

yα+ 1
2

xα+ 3
2
, 0 < y <

x

2
.

In a similar way, if 0 < 2x < y, we can write∣∣∣∣
∫ ∞

0, xy
sinh t ≥1

t
k
2 −1Dk

αWα
t (x, y)dt

∣∣∣∣
≤ C(xy)α+ 3

2

∫ ∞

0

t
k
2 −1e−cy2(1+coth t)

× (sinh t)− k
2 −α−2 dt

≤ C(xy)α+ 3
2

(∫ 1

0

e−c y2
t

tα+3
dt + e−cy2

)

≤ C
(xy)α+ 3

2

y2α+4
≤ C

xα+ 3
2

yα+ 5
2
.
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These estimations allow us to get

(3.16)
∣∣∣∣
∫ ∞

0, xy
sinh t ≥1

t
k
2 −1Dk

αWα
t (x, y)dt

∣∣∣∣ ≤ C

⎧⎪⎨
⎪⎩

yα+ 1
2

xα+ 3
2
, 0 < y < x

2 ,

xα+ 3
2

yα+ 5
2
, y > 2x > 0.

Hence, by (3.14), (3.15) and (3.16), (i) and (ii) are proved.
Next, we establish statement (iii). Observe first that, since ( d

dx + x)g =

e− x2
2 d

dx (e
x2
2 g), when g is a differentiable function,

Dk
αWα

t (x, y) = xα+ 1
2

(
∂

∂x
+ x

)k[
x−α− 1

2 Wα
t (x, y)

]

=
√

2πxα+ 1
2

(
∂

∂x
+ x

)k[
x−α− 1

2 e− xy
sinh t

(
xy

sinh t

) 1
2

× Iα

(
xy

sinh t

)
Wt(x, y)

]

=
√

2π

(
xy

sinh t

)α+ 1
2 k∑

j=0

(
k

j

)
∂j

∂xj

[
e− xy

sinh t

(
xy

sinh t

)−α

× Iα

(
xy

sinh t

)](
∂

∂x
+ x

)k−j

Wt(x, y)

=
√

2π

(
xy

sinh t

)α+ 1
2 k∑

j=0

(
k

j

)(
∂

∂x
+ x

)k−j

Wt(x, y)

×
j∑

l=0

(−1)j−l

(
j

l

)(
y

sinh t

)j−l

e− xy
sinh t

× ∂l

∂xl

((
xy

sinh t

)−α

Iα

(
xy

sinh t

))
, t, x, y ∈ (0, ∞).

Hence, by using formula (3.12) we obtain that, for every t, x, y ∈ (0, ∞),

Dk
αWα

t (x, y) =
√

2πe− xy
sinh t

k∑
j=0

(−1)j

(
k

j

)(
∂

∂x
+ x

)k−j

(3.17)

×
(
Wt(x, y)

)( y

sinh t

)j

×
E[ j

2 ]∑
n=0

j∑
l=2n

(−1)l

(
j

l

)
El,n

2l−n

×
(

xy

sinh t

)−n(
xy

sinh t

) 1
2

Iα−n+l

(
xy

sinh t

)
.
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Let us consider now x, y, t ∈ (0, ∞) such that xy
sinh t ≥ 1. By taking into

account property (P2) and (3.17), we can write

Dk
αWα

t (x, y) =
(

∂

∂x
+ x

)k(
Wt(x, y)

)(
1 + O

(
sinh t

xy

))

+
k∑

j=1

(−1)j

(
k

j

)(
∂

∂x
+ x

)k−j(
Wt(x, y)

)( y

sinh t

)j

×
E[ j

2 ]∑
n=0

j∑
l=2n

(−1)l

(
j

l

)
El,n

2l−n

(
sinh t

xy

)n

×
(E[ j

2 ]∑
r=0

(−1)r[α + l − n, r]
2r

(
sinh t

xy

)r

+ O

((
sinh t

xy

)E[ j
2 ]+1))

=
(

∂

∂x
+ x

)k(
Wt(x, y)

)
+

k∑
j=1

(−1)j

(
k

j

)

×
(

∂

∂x
+ x

)k−j(
Wt(x, y)

)( y

sinh t

)j

×
E[ j

2 ]∑
n=0

j∑
l=2n

E[ j
2 ]∑

r=0

(−1)l+r

(
j

l

)
El,n

2l−n

[α + l − n, r]
2r

(
sinh t

xy

)n+r

+
k∑

j=0

(−1)j

(
k

j

)(
∂

∂x
+ x

)k−j(
Wt(x, y)

)

× O

((
y

sinh t

)j−E[ j
2 ]−1 1

xE[ j
2 ]+1

)
.

Lemma 2.1 allows us to see that, for every j ∈ N, j = 1, . . . , k,

E[ j
2 ]∑

n=0

j∑
l=2n

E[ j
2 ]∑

r=0

(−1)l+r

(
j

l

)
El,n

2l−n

[α + l − n, r]
2r

(
sinh t

xy

)n+r

=
E[ j

2 ]∑
n=0

j∑
l=2n

E[ j
2 ]+n∑

m=n

(−1)l+m−n

(
j

l

)
El,n

2l−n

[α + l − n,m − n]
2m−n

(
sinh t

xy

)m

=
E[ j

2 ]∑
m=0

(
sinh t

2xy

)m m∑
n=0

j∑
l=2n

(−1)l+m−n

(
j

l

)
El,n

2l−2n
[α + l − n,m − n]



HIGHER ORDER RIESZ TRANSFORMS 53

+
2E[ j

2 ]∑
m=E[ j

2 ]+1

(
sinh t

2xy

)m E[ j
2 ]∑

n=m−E[ j
2 ]

j∑
l=2n

(−1)l+m−n

(
j

l

)

× El,n

2l−2n
[α + l − n,m − n] = O

((
sinh t

xy

)E[ j
2 ]+1)

.

Hence, it follows that

Dk
αWα

t (x, y) =
(

∂

∂x
+ x

)k

Wt(x, y) +
k∑

j=0

(−1)j

(
k

j

)(
∂

∂x
+ x

)k−j

×
(
Wt(x, y)

)
O

((
y

sinh t

)j−E[ j
2 ]−1 1

xE[ j
2 ]+1

)
.

Assume that 0 < x
2 < y < 2x, x �= y. In order to establish (iii), we now proceed

as in the proof of Proposition 3.2. First, note that by formula (3.4)∣∣∣∣Dk
αWα

t (x, y) −
(

∂

∂x
+ x

)k

Wt(x, y)
∣∣∣∣

≤ C

k∑
j=0

∑
0≤ρ+σ≤k−j

xρ

∣∣∣∣ ∂σ

∂xσ
Wt(x, y)

∣∣∣∣
(

y

sinh t

)j−E[ j
2 ]−1 1

xE[ j
2 ]+1

.

Assume that j, ρ, σ, b1, b2 ∈ N, 0 ≤ j ≤ k, 0 ≤ ρ+σ ≤ k − j and 2b1 + b2 ≤ σ.
According to [28, p. 50] and by making the change of variable s = tanh( t

2 ),
we must analyze the following integral

Ib1,b2
ρ,σ,j (x, y) =

xρyj

(xy)1+E[ j
2 ]

∫ 1

0, (1−s2)xy
2s ≥1

(
log

1 + s

1 − s

) k
2 −1(1 − s2

s

)j−E[ j
2 ]− 1

2

×
(

s +
1
s

)b1

e− 1
4 (s(x+y)2+ 1

s (x−y)2)

×
(

s(x + y) +
1
s
(x − y)

)b2 ds

1 − s2

= Jb1,b2
ρ,σ,j (x, y) + Hb1,b2

ρ,σ,j (x, y), x, y ∈ (0, ∞),

where J and H are defined as I but replacing the integral over (0,1) by the
integral over (0, 1

2 ) and ( 1
2 ,1), respectively.

Since log 1+s
1−s ∼ 2s, as s → 0+, it follows that

Jb1,b2
ρ,σ,j (x, y) ≤ C

xρyj

(xy)1+E[ j
2 ]

∫ 1
2

0, (1−s2)xy
2s ≥1

s
k
2 − 1

2 −j+E[ j
2 ]−b1e− 1

4 (s(x+y)2+ (x−y)2

s )

×
∣∣∣∣s(x + y) +

(x − y)
s

∣∣∣∣
b2

ds
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≤ C
yj

(xy)1+E[ j
2 ]

×
∫ 1

2

0, (1−s2)xy
2s ≥1

s
1
2 (k−j−2b1−b2−ρ)+E[ j

2 ]− j
2 − 1

2 e−c (x−y)2

s ds

≤ C
yj

(xy)1+E[ j
2 ]

∫ 1
2

0, (1−s2)xy
2s ≥1

sE[ j
2 ]− j

2 − 1
2 e−c (x−y)2

s ds.

By taking into account that 0 < x
2 < y < 2x and using [28, Lemma 1.1], we

get

Jb1,b2
ρ,σ,j (x, y) ≤ C

xj−2E[ j
2 ]− 3

2

√
x

∫ 1
2

0, (1−s2)xy
2s ≥1

sE[ j
2 ]− j

2 − 1
2 e−c (x−y)2

s ds

≤ C
1√
x

∫ 1
2

0

e−c (x−y)2

s

s
5
4

ds ≤ C
1
x

(
x

|x − y|

) 1
2

.

On the other hand, since that log 1+s
1−s ∼ − log(1 − s), as s → 1−, we have

that

Hb1,b2
ρ,σ,j (x, y) ≤ C

xρyj

(xy)1+E[ j
2 ]

∫ 1

1
2 , (1−s2)xy

2s ≥1

(
− log(1 − s)

) k
2 −1

× (1 − s)j−E[ j
2 ]− 3

2 e−cs(x+y)2 ds

≤ Ce−c(x+y)2
∫ 1

1
2

(
− log(1 − s)

) k
2 −1(1 − s)j− 1

2 ds

≤ Ce−c(x+y)2 , x, y ∈ (0, ∞).

Hence, we conclude that, if 0 < x
2 < y < 2x, x �= y,∣∣∣∣

∫ ∞

0, xy
sinh t ≥1

t
k
2 −1

(
Dk

αWα
t (x, y) −

(
∂

∂x
+ x

)k

Wt(x, y)
)

dt

∣∣∣∣(3.18)

≤ C
1
x

(
x

|x − y|

) 1
2

.

Also, by using again (2.7) we obtain, for each t, x, y ∈ (0, ∞),(
∂

∂x
+ x

)k

Wt(x, y)

= e− x2
2

∂k

∂xk

[
e

x2
2 Wt(x, y)

]

= Wt(x, y)
k∑

j=0

E[ j
2 ]∑

l=0

(
k

j

)
Ej,lx

j−2l

(
y

sinh t

)k−j(1 − coth t

2

)j−l

.
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Hence it follows that, when 0 < x
2 < y < 2x,∣∣∣∣

∫ ∞

0, xy
sinh t ≤1

t
k
2 −1

(
∂

∂x
+ x

)k

Wt(x, y)dt

∣∣∣∣(3.19)

≤ C

E[ k
2 ]∑

l=0

xk−2l

(∫ 1

0

t− k
2 − 3

2+le−c x2
t dt

+ e−cx2
∫ ∞

1

t
k
2 −1e− t

2 dt

)

≤ C
1
x

.

The estimations (3.14), (3.18) and (3.19) allow us to finish the proof
of (iii). �

As it was mentioned in the Introduction, for every β > 0, the −β-power
L−β

α of the Laguerre operator Lα defined by

(3.20) L−β
α f =

∞∑
n=0

cα
n(f)

(2n + α + 1)β
ϕα

n,

is bounded from L2((0, ∞), dx) into itself. Moreover, if f ∈ C∞
c (0, ∞), the

series in (3.20) converges uniformly in every compact subset of (0, ∞) and it
defines a function

Φα,β(f)(x) =
∞∑

n=0

cα
n(f)

(2n + α + 1)β
ϕα

n(x), x ∈ (0, ∞),

that belongs to C∞(0, ∞) (see [22, (2.8)]).
We now prove the useful integral representation (3.21) for L−β

α .

Proposition 3.4. Let β > 0 and α > −1. Then, for every f ∈ L2((0, ∞),
dx),

(3.21) L−β
α f(x) =

1
Γ(β)

∫ ∞

0

tβ−1Wα
t (f)(x)dt,

as L2((0, ∞), dx)-functions.

Proof. It is not hard to see that (3.21) holds for every f ∈ span{ϕα
n }n∈N.

Then, to show (3.21) for every f ∈ L2((0, ∞), dx) it is enough to prove that
the operator defined by

Tα,β(f)(x) =
∫ ∞

0

tβ−1Wα
t (f)(x)dt, f ∈ L2

(
(0, ∞), dx

)
,

is bounded from L2((0, ∞), dx) into itself.
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Suppose that f ∈ L2((0, ∞), dx), f ≥ 0. We can write∫ ∞

0

tβ−1Wα
t (f)(x)dt =

∫ ∞

0

f(y)
∫ ∞

0

tβ−1Wα
t (x, y)dtdy

=
(∫ x

2

0

+
∫ 2x

x
2

+
∫ ∞

2x

)
f(y)

∫ ∞

0

tβ−1Wα
t (x, y)dtdy

=
3∑

j=1

T j
α,β(f)(x), x ∈ (0, ∞).

We analyze the operators T j
α,β , j = 1,2,3. Assume firstly that 0 < 2x < y < ∞.

According to (P2) we have that∫ 1

0, xy
sinh t ≥1

tβ−1Wα
t (x, y)dt ≤ C

∫ 1

0, xy
sinh t ≥1

(sinh t)− 1
2 tβ−1(3.22)

× exp
(

− |x − e−ty|2 + |y − e−tx|2
2(1 − e−2t)

)
dt

≤ C

∫ 1

0

(
xy

sinh t

)α+1

tβ− 3
2 e− cy2

t dt

≤ C(xy)α+1

∫ 1

0

tβ−α−5/2e− cy2
t dt

≤ C
(xy)α+1

y2α+3
≤ C

xα+1

yα+2
,

and ∫ ∞

1, xy
sinh t ≥1

tβ−1Wα
t (x, y)dt ≤ C(xy)α+1e−cy2

∫ ∞

1

e−t(α+ 3
2 ) dt(3.23)

≤ C
(xy)α+1

y2α+3
≤ C

xα+1

yα+2
.

Also, by (P1) it follows that∫ 1

0, xy
sinh t ≤1

tβ−1Wα
t (x, y)dt ≤ C(xy)α+ 1

2

∫ 1

0

tβ−α−2e−c x2+y2
t dt(3.24)

≤ C
(xy)α+ 1

2

(x2 + y2)α+1
≤ C

xα+ 1
2

yα+ 3
2
,

and ∫ ∞

1, xy
sinh t ≤1

tβ−1Wα
t (x, y)dt ≤ C(xy)α+ 1

2 e−c(x2+y2)

∫ ∞

1

e−t(α+1) dt(3.25)

≤ C
xα+ 1

2

yα+ 3
2
.
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From (3.22), (3.23), (3.24) and (3.25), we deduce that

(3.26)
∫ ∞

0

tβ−1Wα
t (x, y)dt ≤ C

xα+ 1
2

yα+ 3
2
.

From (3.26), we obtain that
∣∣T 3

α,β(f)(x)
∣∣ ≤ Cxα+ 1

2

∫ ∞

2x

f(y)
yα+ 3

2
dy, x ∈ (0, ∞).

Then, since Hα+ 1
2∞ is bounded from L2((0, ∞), dx) into itself ([6]), T 3

α,β has
the same boundedness property.

By taking into account that Wα
t (x, y) = Wα

t (y,x), x, y ∈ (0, ∞), from (3.26)
it infers ∫ ∞

0

tβ−1Wα
t (x, y)dt ≤ C

yα+ 1
2

xα+ 3
2
, 0 < y <

x

2
.

Therefore, ∣∣T 1
α,β(f)(x)

∣∣ ≤ CHα+ 1
2

0 (f)(x), x ∈ (0, ∞).

Thus, T 1
α,β is bounded from L2((0, ∞), dx) into itself, because the operator

Hα+ 1
2

0 is also bounded from L2((0, ∞), dx) into itself.
On the other hand, we can write

Wα
t (x, y) −

√
2Wt(x, y) =

(√
2π

(
xy

sinh t

) 1
2

Iα

(
xy

sinh t

)
e− xy

sinh t − 1
)

Wt(x, y)

for every t, x, y ∈ (0, ∞).
By (P2), we get∫ ∞

1, xy
sinh t ≥1

tβ−1
∣∣Wα

t (x, y) −
√

2Wt(x, y)
∣∣dt(3.27)

≤ C

∫ ∞

1, xy
sinh t ≥1

tβ−1

(
sinh t

xy

)
(sinh t)− 1

2 dt

× e− 1
4 (tanh( t

2 )(x+y)2+coth( t
2 )(x−y)2)

≤ Ce−cx2
∫ ∞

1

tβ−1e− t
2 dt ≤ C

x
, 0 <

x

2
< y < 2x < ∞, x �= y

and ∫ 1

0, xy
sinh t ≥1

tβ−1
∣∣Wα

t (x, y) −
√

2Wt(x, y)
∣∣dt(3.28)

≤ C

∫ 1

0, xy
sinh t ≥1

tβ−1

(
sinh t

xy

) 1
4

(sinh t)− 1
2

× e− 1
4 (tanh( t

2 )(x+y)2+coth( t
2 )(x−y)2) dt
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≤ C

(xy)
1
4

∫ 1

0

tβ− 5
4 e− 1

4 (tanh( t
2 )(x+y)2+coth( t

2 )(x−y)2) dt

≤ C

(xy)
1
4

∫ 1

0

e−c (x−y)2

t

t
5
4

dt

≤ C

x

√
x

|x − y| , 0 <
x

2
< y < 2x < ∞.

Moreover, according to (P1) it follows∫ ∞

1, xy
sinh t ≤1

tβ−1
∣∣Wα

t (x, y) −
√

2Wt(x, y)
∣∣dt(3.29)

≤
∫ ∞

1, xy
sinh t ≤1

tβ−1
(
Wα

t (x, y) +
√

2Wt(x, y)
)
dt

≤ C

(
(xy)α+ 1

2 e−c(x2+y2)

∫ ∞

1

e−t(α+1) dt

+ e−c(x2+y2)

∫ ∞

1

e− t
2 dt

)

≤ C

x
, 0 <

x

2
< y < 2x < ∞,

and ∫ 1

0, xy
sinh t ≤1

tβ−1
∣∣Wα

t (x, y) −
√

2Wt(x, y)
∣∣dt(3.30)

≤ C

(
(xy)α+ 1

2

∫ 1

0

e−c x2+y2
t

tα+2
dt +

∫ 1

0

e−c x2+y2
t

t
3
2

dt

)

≤ C

(
(xy)α+ 1

2

(x2 + y2)α+1
+

1
(x2 + y2)

1
2

)

≤ C

x
, 0 <

x

2
< y < 2x < ∞.

By combining (3.27), (3.28), (3.29) and (3.30), we obtain that

(3.31)
∣∣T 2

α,β(f)(x)
∣∣ ≤ C

(∫ 2x

x
2

1
x

(
1 +

(
x

|x − y|

) 1
2
)∣∣f(y)

∣∣dy + T 2
β

(
|f |

)
(x)

)
,

x ∈ (0, ∞), where

T 2
β (f)(g)(x) =

∫ 2x

x
2

g(y)
∫ ∞

0

tβ−1Wt(x, y)dtdy, x ∈ (0, ∞).
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By using Jensen’s inequality, we can see that the operator

T (g) =
∫ 2x

x
2

1
x

(
1 +

(
x

|x − y|

) 1
2
)

g(y)dy, x ∈ (0, ∞),

is bounded from L2((0, ∞), dx) into itself.
If g is a measurable function on (0, ∞), we denote by g0 the function defined

by

g0(x) =

{
g(x), x ∈ (0, ∞),
0, x ∈ (−∞,0].

We have that

(3.32) T 2
β (g) = H−β(g0) − Mβ

0 (g)(x) − Mβ
∞(g),

where

Mβ
0 (g)(x) =

∫ x
2

0

g(y)
∫ ∞

0

tβ−1Wt(x, y)dtdy, x ∈ (0, ∞),

and

Mβ
∞(g)(x) =

∫ ∞

2x

g(y)
∫ ∞

0

tβ−1Wt(x, y)dtdy, x ∈ (0, ∞).

It is not hard to see that

Wt(x, y) ≤ C

{
e− t

2 e−c(x−y)2 , t ≥ 1,

1√
t
e−c (x−y)2

t , 0 < t < 1,
x, y ∈ (0, ∞).

Then,∫ ∞

0

tβ−1Wt(x, y)dt ≤ C

(∫ 1

0

e−c (x−y)2

t

t
3
2

dt + e−c(x−y)2
∫ ∞

1

tβ−1e− t
2 dt

)

≤ C

|x − y| , x, y ∈ (0, ∞), x �= y.

Hence, we get

∣∣Mβ
0 (g)(x)

∣∣ ≤ C

x

∫ x
2

0

∣∣g(y)
∣∣dy, x ∈ (0, ∞),

and ∣∣Mβ
∞(g)(x)

∣∣ ≤ C

∫ ∞

2x

1
y

∣∣g(y)
∣∣dy, x ∈ (0, ∞).

By using well-known Hardy’s inequalities, we conclude that the operators Mβ
0

and Mβ
∞ are bounded from L2((0, ∞), dx) into itself.

Since H−β is bounded from L2((0, ∞), dx) into itself, from (3.31) and (3.32)
it deduces that T 2

α,β is bounded from L2((0, ∞), dx) into itself.
By combining the results above, we get that the operator Tα,β is bounded

from L2((0, ∞), dx) into itself. �
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Assume now that f ∈ C∞
c ((0, ∞)). We fix x ∈ (0, ∞). There exist 0 < t1 <

1 < t2 < +∞ such that xy
sinh t < 1, if t > t2, and xy

sinh t > 1, when t ∈ (0, t1), for
every y ∈ suppf . According to (P1), we have that∫ ∞

t2

∫
suppf

Wα
t (x, y)

∣∣f(y)
∣∣dy dt ≤ C

∫ ∞

t2

tβ−1

∫
supp f

(sinh t)−1

×
(

xy

sinh t

)α√
xy dy dt

≤ C

∫ ∞

t2

tβ−1e−(α+1)t dt < ∞.

By (P2) and [27, Lemma 1.1], it follows that∫ t1

0

tβ−1

∫
supp f

Wα
t (x, y)

∣∣f(y)
∣∣dy dt

≤ C

∫ t1

0

tβ−1

∫
suppf

(sinh t)− 1
2 e−c x2+y2

t dy dt

≤ C

∫
suppf

∫ t1

0

tβ− 3
2 e−c x2

t dtdy < ∞.

Finally, it holds∫ t2

t1

tβ−1

∫
supp f

Wα
t (x, y)

∣∣f(y)
∣∣dy dt < ∞.

Then, we conclude that∫ ∞

0

tβ−1

∫ ∞

0

Wα
t (x, y)

∣∣f(y)
∣∣dy dt < ∞.

Hence, ∫ ∞

0

tβ−1Wα
t (f)(x)dt =

∫ ∞

0

f(y)
∫ ∞

0

tβ−1Wα
t (x, y)dtdy.

Moreover, we have the following result.

Proposition 3.5. Let β > 0, α > −1 and f ∈ C∞
c (0, ∞). Then,

Φα,β(f)(x) =
1

Γ(β)

∫ ∞

0

f(y)
∫ ∞

0

tβ−1Wα
t (x, y)dtdy, x ∈ (0, ∞).

Proof. It is sufficient to see that the function

Ψα,β(f)(x) =
∫ ∞

0

f(y)
∫ ∞

0

tβ−1Wα
t (x, y)dtdy, x ∈ (0, ∞),

is continuous on (0, ∞).
According to Proposition 3.1, the function

Λβ(f)(x) =
∫ ∞

0

f(y)
∫ ∞

0

tβ−1Wt(x, y)dtdy, x ∈ R,
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is continuous on R. Hence, our proof will be finished when we establish that
the function Gα,β(f) = Ψα,β(f) −

√
2Λβ(f) is continuous on (0, ∞). In order

to see this, according to the dominated convergence theorem, it is enough
to show that for every compact subset Ω of (0, ∞) there exists a function
gΩ ∈ L1(0, ∞), gΩ ≥ 0, such that

tβ−1
∣∣Wα

t (x, y) −
√

2Wt(x, y)
∣∣ ≤ gΩ(t), x ∈ Ω, y ∈ suppf and t ∈ (0, ∞).

Let Ω be a compact subset of (0, ∞). There exist 0 < t1 < 1 < t2 < +∞
such that xy

sinh t < 1, if t > t2, and xy
sinh t > 1, when t ∈ (0, t1), for every x ∈ Ω

and y ∈ suppf . According to (P1), we have that

tβ−1
∣∣Wα

t (x, y) −
√

2Wt(x, y)
∣∣ ≤ Ctβ−1

(
Wt(x, y) + Wα

t (x, y)
)

≤ Ctβ−1
(
e−t(α+1) + e−t

)
,

t > t2, x ∈ Ω and y ∈ suppf .
Also, by (P2) it follows that

tβ−1
∣∣Wα

t (x, y) −
√

2Wt(x, y)
∣∣ ≤ Ctβ−1 (sinh t)

1
2

xy
≤ Ctβ− 1

2 ,

0 < t < t1, x ∈ Ω and y ∈ suppf .
Finally,

tβ−1
∣∣Wα

t (x, y) −
√

2Wt(x, y)
∣∣ ≤ C, t1 ≤ t ≤ t2, x ∈ Ω and y ∈ suppf.

Then, by defining

gΩ(t) =

⎧⎪⎨
⎪⎩

tβ−1
(
e−t(α+1) + e−t

)
, t > t2,

1, t1 ≤ t ≤ t2,

tβ− 1
2 , 0 < t < t1,

we have that

tβ−1
∣∣Wα

t (x, y) −
√

2Wt(x, y)
∣∣ ≤ CgΩ(t), x ∈ Ω, y ∈ suppf and t ∈ (0, ∞).

Thus, the proof is completed. �

In the sequel, when f ∈ C∞
c (0, ∞) and β > 0 we define L−β

α f as the C∞(0,
∞)-function Φα,β(f).

We now obtain a representation of the higher order Riesz transform in the
Laguerre setting on C∞

c (0, ∞) as a principal value integral operator.
We previously give conditions on a function f defined on R × R in order

that the formula
∂

∂x

∫
R

f(x, y)dy =
∫

R

∂

∂x
f(x, y)dy, a.e. x ∈ R,

holds. We think that this result is known but we have not found an exact
reference and we present a proof for the sake of completeness (see also, [5]).
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Lemma 3.1. Suppose that f is a measurable function defined on R × R that
satisfies the following conditions:

(i) for every compact subset K of R,
∫

K

∫
R

|f(x, y)| dy dx < ∞, and
(ii) there exists a measurable function g on R × R such that∫

K

∫
R

∣∣g(x, y)
∣∣dy dx < ∞

for every compact subset K of R, and that the distributional derivative Dxf(·,
y) is represented by g(·, y), for every y ∈ R.

Then,
∂

∂x

∫
R

f(x, y)dy =
∫

R

∂

∂x
f(x, y)dy, a.e. x ∈ R,

where the derivatives are understood in the classical sense.

Proof. We define the function h(x) =
∫

R
f(x, y)dy, x ∈ R. By (i) h defines

a regular distribution that we continue denoting by h. According to [24,
Chap. 2, §5, Theorem V], we have that

∂

∂x
f(x, y) = g(x, y), a.e. (x, y) ∈ R × R,

where the derivative is understood in the classical sense.
Moreover, if F ∈ C∞

c (R), then

〈Dxh,F 〉 = −
∫

R

F ′(x)h(x)dx = −
∫

R

F ′(x)
∫

R

f(x, y)dy dx

= −
∫

R

∫
R

f(x, y)F ′(x)dxdy

=
∫

R

∫
R

∂f

∂x
(x, y)F (x)dxdy

=
∫

R

F (x)
∫

R

∂f

∂x
(x, y)dy dx.

Hence, Dxh(x) =
∫

R

∂f
∂x (x, y)dy in the distributional sense. By using again

[24, Chap. 2, §5, Theorem V], we conclude that

∂

∂x
h(x) =

∫
R

∂

∂x
f(x, y)dy, a.e. x ∈ R.

Thus, the proof is completed. �

A useful result in the sequel is the following one.

Lemma 3.2. Let −∞ ≤ a < b ≤ +∞. Assume that f is a continuous func-
tion on I × I , where I = (a, b), such that

(i) For every y ∈ I , the function ∂
∂xf(x, y)dy is continuous on I \ {y},

where the derivative is understood in the classical sense.
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(ii) For every y ∈ I and every compact subset K of I ,
∫

K
|f(x, y)| dx < +∞,

and
∫

K
| ∂f
∂x (x, y)| dx < +∞.

Then, Dxf(x, y) = ∂
∂xf(x, y), for every y ∈ I . Here, as above, Dxf(x, y) de-

notes the distributional derivative respect to x of f .

Proof. Let g ∈ C∞
c (I). We can write〈

Dxf(x, y), g(x)
〉

= −
∫

I

g′(x)f(x, y)dx

= − lim
ε→0+

(∫ y−ε

a

+
∫ b

y+ε

)
g′(x)f(x, y)dx

= lim
ε→0+

[
−g(y − ε)f(y − ε, y) + g(y + ε)f(y + ε, y)

+
(∫ y−ε

a

+
∫ b

y+ε

)
g(x)

∂f

∂x
(x, y)dx

]

=
∫ b

a

g(x)
∂f

∂x
(x, y)dx, y ∈ I.

Then, Dxf(x, y) = ∂f
∂x (x, y), y ∈ I . �

Proposition 3.6. Let α > −1, k ∈ N \ {0} and f ∈ C∞
c (0, ∞). Then

Dk
αL

− k
2

α f(x) = wkf(x) + lim
ε→0+

∫ ∞

0,|x−y|>ε

R(k)
α (x, y)f(y)dy, a.e. x ∈ (0, ∞),

where wk = 0, when k is odd, and wk = −2
k
2 , when k is even.

Proof. Assume that Ω is a compact subset of (0, ∞). There exists M > 0
such that Mx

2 < y < Mx, x ∈ Ω and y ∈ suppf . By proceeding as in the proof
of (iii) in Proposition 3.3, we can see that, for every m = 1, . . . , k − 1, there
exists a function gm ∈ L1(0, ∞), gm ≥ 0, such that∣∣∣∣Dm

α Wα
t (x, y) −

(
∂

∂x
+ x

)m

Wt(x, y)
∣∣∣∣ ≤ Cgm(t),

t ∈ (0, ∞), x ∈ Ω and y ∈ suppf . Then, the dominated convergence theorem
implies that

Dm
α L

− k
2

α f(x) −
(

d

dx
+ x

)m

H− k
2 f(x)(3.33)

=
∫ ∞

0

(
R(k,m)

α (x, y) − R(k,m)(x, y)
)
f(y)dy, x ∈ (0, ∞),

where m = 1, . . . , k − 1, and

R(k,m)
α (x, y) =

1
Γ(k

2 )

∫ ∞

0

t
k
2 −1Dm

α Wα
t (x, y)dt, x, y ∈ (0, ∞).
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Moreover, according to Lemma 3.1 and Proposition 3.2, we can write

Dk
αL

− k
2

α f(x) −
(

d

dx
+ x

)k

H− k
2 f(x)

=
∫ ∞

0

(
R(k)

α (x, y) − R(k)(x, y)
)
f(y)dy, a.e. x ∈ (0, ∞),

and the last integral is absolutely convergent.
Hence, for almost x ∈ (0, ∞), we have that

lim
ε→0+

∫ ∞

0,|x−y|>ε

R(k)
α (x, y)f(y)dy

= lim
ε→0+

∫ ∞

0,|x−y|>ε

(
R(k)

α (x, y) − R(k)(x, y)
)
f(y)dy

+ lim
ε→0+

∫ ∞

0,|x−y|>ε

R(k)(x, y)f(y)dy

=
∫ ∞

0

(
Dk

αKα,k(x, y) −
(

∂

∂x
+ x

)k

Kk(x, y)
)

f(y)dy

+ lim
ε→0+

∫ ∞

0,|x−y|>ε

R(k)(x, y)f(y)dy

=
d

dx

(∫ ∞

0

[
Dk−1

α Kα,k(x, y) −
(

∂

∂x
+ x

)k−1

Kk(x, y)
]
f(y)dy

)

+
(

x −
α + 1

2

x

)∫ ∞

0

Dk−1
α

(
Kα,k(x, y)

)
f(y)dy

− x

∫ ∞

0

(
∂

∂x
+ x

)k−1(
Kk(x, y)

)
f(y)dy

+ lim
ε→0+

∫ ∞

0,|x−y|>ε

R(k)(x, y)f(y)dy.

By taking into account Proposition 3.2, we can conclude that

lim
ε→0+

∫ ∞

0,|x−y|>ε

R(k)
α (x, y)f(y)dy

=
d

dx

(∫ ∞

0

[
Dk−1

α Kα,k(x, y) −
(

∂

∂x
+ x

)k−1

Kk(x, y)
]
f(y)dy

)

+
(

x −
α + 1

2

x

)∫ ∞

0

Dk−1
α Kα,k(x, y)f(y)dy − wkf(x)

+
d

dx

∫ ∞

0

(
∂

∂x
+ x

)k−1

Kk(x, y)f(y)dy

= Dk
αL

− k
2

α f(x) − wkf(x), a.e. x ∈ (0, ∞),



HIGHER ORDER RIESZ TRANSFORMS 65

where wk = 0, for k odd, and wk = −2
k
2 , when k is even. Thus, the proof is

finished. �

We now prove the main result of the paper.

Proof of Theorem 1.1. We consider the maximal operator associated with
R

(k)
α defined by

R
(k)
α,∗f(x) = sup

ε>0

∣∣∣∣
∫ ∞

0,|x−y|>ε

R(k)
α (x, y)f(y)dy

∣∣∣∣.
According to Proposition 3.3, we get

R
(k)
α,∗f(x) ≤ C

(
H

α+ 1
2

0

(
|f |

)
(x) + H

α+ 1
2+δk

∞
(

|f |
)
(x) + R

(k)
loc,∗(f)(x) + N(f)(x)

)
,

where δk = 1, when k is odd, δk = 0, when k is even,

R
(k)
loc,∗(f)(x) = sup

ε>0

∣∣∣∣
∫ 2x

x
2 ,|x−y|>ε

(
∂

∂x
+ x

)k

Kk(x, y)f(y)dy

∣∣∣∣,
and

N(f)(x) =
∫ 2x

x
2

∣∣f(y)
∣∣1
y

(
1 +

(
x

|x − y|

) 1
2
)

dy.

By [6, Lemma 3.1] H
α+ 1

2
0 is of strong type (p, p) with respect to xδ dx,

when 1 < p < ∞ and δ < (α+ 3
2 )p − 1, and of weak type (1,1) when δ ≤ α+ 1

2 .

Also from [6, Lemma 3.2] the operator H
α+ 1

2+δk
∞ is of strong type (p, p) for

xδ dx, when 1 < p < ∞ and −(α + 1
2 )p − 1 < δ, and of weak type (1,1) with

respect to xδ dx when −α − 5
2 ≤ δ, if k is odd; and, in the case that k is even,

when δ ≥ −α − 3
2 , and α �= − 1

2 and when δ > −1 and α = − 1
2 .

On the other hand, by using Jensen’s inequality, we can see that the oper-
ator N is bounded from Lp((0, ∞), xδ dx) into itself, for every 1 ≤ p < ∞ and
δ ∈ R.

In [28] it was established that the kernel R(k)(x, y), x, y ∈ R, x �= y, is a
Calderón–Zygmund kernel. Then, according to [20, Theorem 4.3], the oper-
ator R

(k)
loc,∗ is of strong type (p, p), 1 < p < ∞, and of weak type (1,1) with

respect to xδ dx, for every δ ∈ R.
Then we conclude that R

(k)
α,∗ defines an operator of strong type (p, p) for

xδ dx when 1 < p < ∞ and −(α + 1
2 + δk)p − 1 < δ < (α + 3

2 )p − 1. We have
also that R

(k)
α is of weak type (1,1) for xδ dx when −α − 5

2 ≤ δ ≤ α + 1
2 , if k

is odd. When k is even the maximal operator R
(k)
α,∗ is of weak type (1,1) with

respect to xδ dx, for −α − 3
2 ≤ δ ≤ α + 1

2 and α �= − 1
2 , and for −1 < δ ≤ 0,

when α = − 1
2 .
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By using standard arguments, since C∞
c (0, ∞) is dense in Lp((0, ∞), xδ dx),

we can deduce from Proposition 3.6 that there exists the limit

lim
ε→0+

∫ ∞

0,|x−y|>ε

R(k)
α (x, y)f(y)dy, a.e. x ∈ (0, ∞),

provided that f ∈ Lp((0, ∞), xδ dx) and one of the three conditions is satisfied
(i) 1 < p < ∞ and −(α + 1

2 + δk)p − 1 < δ < (α + 3
2 )p − 1,

(ii) k is odd, p = 1 and −α − 5
2 ≤ δ ≤ α + 1

2 ,
(iii) k is even, p = 1, and −α − 3

2 ≤ δ ≤ α+ 1
2 when α �= − 1

2 , and −1 < δ ≤ 0,
when α = − 1

2 .

Also, the operator R
(k)
α defined by

R
(k)
α (f)(x) = wkf(x) + lim

ε→0+

∫ ∞

0,|x−y|>ε

R(k)
α (x, y)f(y)dy, a.e. x ∈ (0, ∞),

is of strong type (p, p) for xδ dx when 1 < p < ∞ and −(α + 1
2 + δk)p − 1 <

δ < (α + 3
2 )p − 1, and of weak type (1,1) for xδ dx when −α − 5

2 ≤ δ ≤ α + 1
2 ,

if k is odd; and for −α − 3
2 ≤ δ ≤ α+ 1

2 and α �= − 1
2 , and for −1 < δ ≤ 0, when

α = − 1
2 , if k is even.

Note that 0 ∈ (−2(α+ 1
2 + δk) − 1,2α+2). Hence, R

(k)
α is a bounded opera-

tor from L2((0, ∞), dx) into itself. Since R
(k)
α defined by (1.3) is also bounded

from L2((0, ∞), dx) into itself and C∞
c (0, ∞) is dense in L2((0, ∞), dx), Propo-

sition 3.6 implies that R
(k)
α (f) = R

(k)
α (f), f ∈ L2((0, ∞), dx).

Thus, the proof of this theorem is finished. �
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[12] P. Graczyk, J.-L. Loeb, I. A. López, A. Nowak and W. Urbina, Higher order
Riesz transforms, fractional derivatives and Sobolev spaces for Laguerre expansions,

J. Math. Pures Appl. (9) 84 (2005), 375–405. MR 2121578
[13] C. Gutiérrez, C. Segovia and J. L. Torrea, On higher Riesz transforms for Gaussian

measures, J. Fourier Anal. Appl. 2 (1996), 583–596. MR 1423529
[14] E. Harboure, L. de Rosa, C. Segovia and J. L. Torrea, Lp-dimension free boundedness

for Riesz transforms associated to Hermite functions, Math. Ann. 328 (2004), 653–
682. MR 2047645

[15] E. Harboure, C. Segovia, J. L. Torrea and B. Viviani, Power weighted Lp-inequalities
for Laguerre–Riesz transforms, Ark. Mat. 46 (2008), 285–313. MR 2430728

[16] Y. Kanjin and E. Sato, The Hardy–Littlewood theorem on fractional integration for

Laguerre series, Proc. Amer. Math. Soc. 123 (1995), 2165–2171. MR 1257113
[17] N. N. Lebedev, Special functions and their applications, Dover, New York, 1972.

MR 0350075
[18] B. Muckenhoupt, Poisson integrals for Hermite and Laguerre expansions, Trans.

Amer. Math. Soc. 139 (1969), 231–242. MR 0249917
[19] B. Muckenhoupt, Hardy’s inequality with weights, Studia Math. 44 (1972), 31–38.

MR 0311856
[20] A. Nowak and K. Stempak, Weighted estimates for the Hankel transform transplan-

tation operator, Tohoku Math. J. (2) 58 (2006), 277–301. MR 2248434
[21] A. Nowak and K. Stempak, Riesz transforms and conjugacy for Laguerre function

expansions of Hermite type, J. Funct. Anal. 244 (2007), 399–443. MR 2297030
[22] A. Nowak and K. Stempak, Riesz transforms for multi-dimensional Laguerre function

expansions, Adv. Math. 215 (2007), 642–678. MR 2355604
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[24] L. Schwartz, Théorie des distributions, Hermann, Paris, 1973. MR 0209834
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