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HIGHER ORDER RIESZ TRANSFORMS FOR LAGUERRE
EXPANSIONS

JORGE J. BETANCOR, JUAN C. FARINA,
LOURDES RODRIGUEZ-MESA AND ALEJANDRO SANABRIA-GARCIA

ABSTRACT. In this paper, we investigate LP-boundedness proper-
ties for the one-dimensional higher order Riesz transforms associ-
ated with Laguerre operators. We also prove that the k-th Riesz
transform is a principal value singular integral operator (modulus
a constant times of the function when k is even). To establish our
results, we exploit a new estimate connecting Riesz transforms in
the Hermite and Laguerre settings in dimension one.

1. Introduction

The aim of this paper is to investigate higher order Riesz transforms as-
sociated with Laguerre function expansions in the one-dimensional case. To
achieve our goal, we use a procedure that will be described below and that
was developed for the first time by the authors and Torrea in [4]. Our results
complete in some senses the ones obtained by Nowak and Stempak [22] about
higher order Riesz transforms for Laguerre expansions.

For every o > —1, we consider the Laguerre differential operator

1/ & o, 1[4, 1
Laé(@” *P(“ 4)) re0e0)

This operator can be factorized as follows
1
(1.1) La=§®Z®a+a+1,

where D, f = (22 4y dyf—gots d(z=e=3 f) 4o f and D7 denotes

T

the formal adjoint of D, in L?((0,00),dx).
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The factorization (1.1) for L, suggests to define (formally), for every k €
N\ {0}, the k-th Riesz transform RY) associated with L, by

RM =2kL.".
Here, L;?, 3> 0, denotes the —3 power of the operator L, (see (1.2)).
Before establishing the main result of this paper, we give a strict definition

of the Riesz transform R((Xk).
For every n € N, we have that L,p® = (2n + a + 1)¢%, where

ar [ 2'(n+1)
(@) = (F(n +a+1)
and L% denotes the n-th Laguerre polynomial of type a ([30, p. 100] and [31,
p. 7]). The system {¢%}nen of Laguerre functions is an orthonormal basis
for L2((0,00),dx).
We define, for every 8 > 0, the —3 power of the operator L, as follows

1
2 22
) e_Tx“+%Lg(x2), z € (0,00),

PR cn(f) «
(1.2) Laﬁf*;mwm feL?((0,00),d).

Here, ¢ (f) = [;° ¢% () f(x)dx, for every n € N and f € L?((0,00),dx). If
B> 0, the operator L,” is bounded from L?((0,0c),dx) into itself. This
kind of operators, that can be seen as fractional integrals associated with the
Laguerre operator L, has been investigated by several authors ([11], [12], [16]
and [26]).

Let k € N\ {0}. The precise definition of RPf for fe L?((0,00),dx) is
the following

oo o

(1.3) RO =3 mj_j%@iwz-

n=0

Since () = z°t2¢%(z), n €N, and Do = 2726272, where § = 44y
and £, n € N, are understood as in [22] (see (1.4)), according to [22, Propo-
sition 3.5] (see also the comment after the proof of [22, Proposition 3.5]),
we have that the series in (1.3) converges in L?((0,00),dxz), for every f €
L?((0,00),dz), and the operator R defined by (1.3) is bounded from L?((0,
00),dx) into itself.

Moreover, if f € C°(0,00), the space of C*°-functions on (0,00) that have
compact support on (0,00), for every m € N there exists C,, > 0 such that

|2 (f)| < Cm(1+n)™™, neN.

Then, according to [22, (2.8) and Proposition 3.5], we can see that the series
in (1.2) and in (1.3) converge uniformly in every compact subset of (0, 00),
and they define C*°-functions on (0, 00), for every f € C2°(0,00).
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Assume that f € C2°(0,00). We define the C*°-function ®¢(f) on (0,00)
by
() =Y —2f)

n=0
Then, we can write L;%f = ®¢(f) as L*((0,00),dz)-functions. Also, we have
R&k)(f) =Dk ®2(f) as L?((0,00),dx)-functions, where the differential oper-
ators in the right-hand side of the equality are understood in the classical
sense.

In order to represent the k-th Riesz transform Rff) as a principal value
integral operator, we need to use the kernel of the heat semigroup {W;>}i>0
associated with the system {¢%},en. For every t >0, the operator W is
defined by

m@g(t’f)v x € (0,00).

W) = i emtEntetheo oo fe L2((0,00),dx).
n=0
We can also write
W) (x) :/0 W (x,y)fly)dy, f¢€ LQ((O,OO),dQT) and ¢t > 0,

where (see Mehler’s formula [31, p. 8])

W (a,y) =Y e et ()00 (y)
n=0

, 1
= (sinht) ™! (zy) = I, (blﬁt) exp (-5 (z? +9?) Cotht> :

t,x,y € (0,00). Here, I, represents the modified Bessel function of the first
kind and order a.
We can now establish the main result of this paper.

THEOREM 1.1. Let a > —1 and k€ N\ {0}. For every f € C°(0,00) it
holds

R f(w) = wyf (x) + lim R (z,9)f(y)dy. a.c. x€(0,00),
=0+ 0,|lz—y|>e
where
1 <k
BP @) = o [ DN @it sy e 0.00) 2,
I'(3) Jo
and wi, =0, when k is odd and wy = —2§, when k is even.

The operator ng) can be extended, defining it by
RY) f(x) = wi f(w) + lim R (2,9)f(y)dy, a.e. z€(0,00),

e—0+ 0,|lz—y|>e
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as a bounded operator from LP((0,00), 2% dx) into itself, for 1 <p < oo and
(a) —(a+3)p—1<6<(a+3)p—1, when k is odd;
(b) —(a+3)p—1<d<(a+32)p—1, when k is even;
and as a bounded operator from L'((0,00),2°dx) into L%>((0,00),2° dx)
when
() —a—3 <6< a+ 3, when k is odd;
(d) —a——<5<a—|—2,f0roz7é ,and—1<5§0,f0ra:— , when k
18 even.

In Section 3, where Theorem 1.1 is proved, we show that the maximal
operator R((f)’* defined by

R (f) =sup
e>0

J
0,|z—y|>e

is bounded from LP((0,00), 2 dz) into itself, for 1 < p < oo and
(a) —(a+3)p—1<§<(a+2)p—1, when k is odd;
(b) —(a+3)p—1<6<(a+3)p—1, when k is even;

and bounded from L'((0,00), 2% dx) into L1*°((0,00),2° dr) when

(¢) —a—35<d<a+i, when k is odd;
(d) —a——<5<a+ Jfor a# -1, and —1<§ <0, for a =—3, when k
is even.

Therefore, the operator Rff) defined by

oo

RP (f)(2) =we f(z) + lim R (z,y) f(y) dy

e=0% Jo,Ja—y[>e

has also those LP-boundedness properties. In particular, R&k) is bounded
from L?((0,00),dz) into itself. Hence, since RY = R on C2°(0,00) and
C2°(0,00) is dense in L2((0,00),dx), R(k =R% on L?((0,00),dz).

We also get the corresponding principal value property in the Hermite
context (see Proposition 2.1) which completes, in the one dimensional case,
the results in [28] about the higher order Riesz transform associated with the
Hermite operator.

First order Riesz transforms in the L,-setting were studied in [21] for a >
—1/2 and in [1] for a > —1. Also, the procedure developed in [15] can be
used to investigate strong, weak and restricted weak type with respect to the

measure x° dz on (0,00) for the Riesz transforms RV

As it was mentioned, we establish boundedness properties for R&k) in
LP((0,00), 2% dx) (Theorem 1.1).

In the multidimensional Laguerre-function setting when a € [—1/2,00)¢,
Nowak and Stempak in [22] studied weighted LP-boundedness properties of
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the higher order Riesz transforms. They used the Calderén—Zygmund theory
on certain homogeneous type spaces (in the sense of Coifman and Weiss [7]).

Our procedure here is completely different from the one used in [12] and
[22]. In a first step, we split the operator R((lk) into two parts, namely: a
local operator and a global one. These operators are integral operators de-
fined by kernels supported close to and far from the diagonal, respectively.
The global operator is upper bounded by Hardy type operators. The novelty
of our method is the way followed to study the local part. We establish a
pointwise estimate connecting the kernel of R&k) with the corresponding one
to the k-th Riesz transform associated with the Hermite operator in one di-
mension, for every a > —1 (see Proposition 3.3(iii)). By using this identity,
we transfer boundedness and convergence results from the k-th Riesz trans-
form for Hermite operator in one dimension to the k-th Riesz transform in
the L,-setting.

In the literature (see, for instance [6], [21] and [26]), we can find other
systems of Laguerre functions different from {¢%},en. In particular, from
the Laguerre polynomials {L%},en we can also derive the system {¢%},¢n,
where, for every n € N,

= (e

1
> 6_%[/%(.%2), x € (0,00),

{£2},en is an orthonormal basis in L?((0,00),z2**1 dz).

As it is shown in [1], harmonic analysis operators associated with {£5},,en
is closely connected with the corresponding operators related to the family
{¢%}nen. The connection is given by a multiplication operator defined by
Mgf = 2P f, for certain 8 € R. From the strong type results for R&k) estab-
lished in Theorem 1.1, the corresponding results for the k-th Riesz transform
in the {£%},en setting can be deduced. Moreover, the weak type results for
the k-th Riesz transform associated with {£%},en can be obtained by pro-
ceeding as in the {p%},en case in Theorem 1.1. In particular, our results in
Theorem 1.1 lead to, when the dimension is one, that the higher order Riesz
operator MR, associated with {£S },,cn and considered in [22], can be extended
to LP((0,00),2° dz) as a bounded operator from LP((0,00),2%dx) into itself
provided that 1 <p<oo, a>—1, kisodd and —p—1<d< (2a+2)p—1
or when k is even and —1 < § < (2a + 2)p — 1, and from L'((0,00),2° dz)
into L1>°((0,00),2° dz) when a > —1, k is odd and —2 < § < 2o+ 1 or when
a#—1/2, k is even and —1 <§ <2« + 1. From [22, Theorem 3.8], it can
be inferred for power weights only that R is bounded in LP((0,00), 2% dx)
when 1 <p<oo, a>-1/2, keNand -1 <0 < (2 +2)p — 1, and that R
is bounded from L'((0,00), 2% dz) into L'*((0,00),2° dx), when a > —1/2,
keNand -1 <4 <0.
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The organization of the paper is the following. Section 2 contains some
basic facts needed in the sequel. Section 3 is devoted to prove the main
result of this paper (Theorem 1.1) where we establish that the higher order
Riesz transforms are principal value singular integral operators (modulus a
constant times of the function, when % is even) and we show LP((0, 00), 2% dz)-
boundedness properties for them.

Throughout this paper, C2°(I) denotes the space of functions in C*°(I)
having compact support on I. By C and ¢ we always represent positive
constants that can change from one line to the other one, and E[r], r € R,
stands for the integer part of .

2. Preliminaries

In this section, we recall some definitions and properties that will be useful
in the sequel. By H, we denote the Hermite differential operator

1/ &2
(21) = §<—@ +x )

() ) () )]

Note that % + x and —% + 2 are formal adjoint operators in L?(R,dz).

Moreover, if n € N, H,, represents the n-th Hermite polynomial [30, p. 104]
22

and h, is the Hermite function given by hy(z) = (vVa2"n!)"2e~ 7 H,(z),

x € R, then it follows that

1

Moreover, the system {h,},en is an orthonormal basis in L?(R,dz).

The investigations of harmonic analysis in the Hermite setting were begun
by Muckenhoupt [18]. This author considered Hermite polynomial expansions
instead of Hermite function expansions. In the last decades several authors
have studied harmonic analysis operators in the Hermite (polynomial or func-
tion) context (see, for instance, [8], [9], [10], [13], [14], [23], [25], [27], [28] and
32)).

The heat semigroup {W; };~o associated with the family {h,, } nen is defined
by

Wi(f) = Z 67(n+%)tcn(f)hn, f e L*R,dz) and t >0,

n=0

where ¢, (f) = [T h(2) f(z) dz, n €N and f € L*(R,dx).

o0

For every t > 0, the operator W; can be described by the integral

—+o0
Wi (f)(z) = Wiz, y)f(y)dy, fe€L*R,dx),

— 00
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where, according to Mehler’s formula we have that (see [29, (1.4)]), for each
r,yeR and t >0,

Wiz,y) =Y ey, (2)hn (y)
n=0

= (2rsinht) "% exp [i (tanh(é) (z +y)? + coth (;) (- y)z)]

(see [29, (1.4)]).
Let 3> 0. The negative power H~? of H is given by

B = Cn(f) ~
(2.2) H f_;—(n+%)ﬁhn, f e L*(R, dz).

Thus, H~” is a bounded operator from L?(R,dz) into itself.
We also define the operators T and Sg as follows:

23 B -5 /Omtﬁ-lwxfm)dt, f e I(R, dv),
and

—+o0
(2.4) SoN@ = [ Kasle.)f)dy, f € L2(R.da),

where, for every v > 0,

1 [,
K’Y(‘ray):—)/o tj_IWt(xvy)dta x,yGR,x;«éy.

I'(3

We have that T3 = S3 = H? on L?(R,dz) (see Proposition 3.1).
Suppose now that f € C°(R). Then, according to [27, (2.1)] the series in
(2.2) converges uniformly in R and it defines the function

¥ = Y
2

n=0

(), z€eR,

that is continuous on R. Moreover, the function Ag defined by

“+o0

As(f) (@) = / f(0)Kop(z,y) dy, z€R,

is also continuous on R (see Proposition 3.1). Hence, ¥s(f)(x) = Ag(f)(x),
reR.

The factorization in (2.1) suggests to define formally the Riesz transform
R associated with H by

d
R(dxﬂ:)Hé.
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Since (- +x)h,, = V2nhy—1, n €N (here, h_y =0), as in [27, (3.3)], we define
the Rlesz transform R on L?(R,dx) by

> m \? 2
Rf_nZ%<n+ %> en(f)hno1,  f€L*(R,dx).
LP-boundedness properties of the Riesz transform (even in the n-dimensional
case) were established in [27].
In [28], higher order Riesz transforms in the Hermite function setting on
R”™ were investigated. Assume that k& € N\ {0}. The k-th Riesz transform
R™%) associated with H is defined formally by

k
R® = (di —l—x) H s,
X

On L?((0,00),dz) the Riesz transform R(*) is defined in a precise way as
follows

(25) R®f= Z n_<1n+(?z_kﬂ))?cn(f)hn_k, f € L*(R. dx).

It is clear that R(®) is a bounded operator from L?(R, dz) into itself. Moreover,
R®) admits the integral representation

z) = /%o RW(z,y)f(y)dy, = €R\suppf,feL*(R,da),

where
R®(z )*71 / s ( x)kw (x,y)dt, z,yeR,z+#
Y F(—g) 0 ox t\Z, Y 3 Y ; Y.

LP-boundedness properties of the Riesz transform R®) were established in
[28, Theorem 2.3] by invoking the Calderén—Zygmund singular integral the-
ory. For every k € N\ {0}, R*®) can be extended to LP(R,dz) as a bounded
operator from LP(R,dx) into itself, when 1 < p < oo, and from L!(R,dz) into
LY°°(R,dz). Tt is remarkable to note that the LP-mapping properties for the
higher order Riesz transform in the Hermite polynomial setting are essentially
different to the corresponding ones in the Hermite function context ([9] and
[10]).

Assume now f € C2°(0,00). According to [27, Lemma 1.2], for every m € N
there exists C,, > 0 such that

lea(f)] £ Cn(1+n)™™, neN.
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Hence, from [27, (2.2)] we deduce that the series in (2.2) and (2.5) converge
also uniformly in R. By defining as above the function ¥ k (f) on R by

b)) =3

—hn(x), z€R,
n=0 (7’L+ %)%

\Ilg(f) = H *f as L2(R,dz)-functions. Moreover, by [27, (2.2), (3.2) and
Lemma 1.2], ¥ (f) is a C°°-function on R, the series in (2.5) converges uni-
formly in R, and for z € R,

k oo k 1

We have also that (- + x)k‘llg (f)(x) = R™ f as L?(R, dz)-functions.

In order to investigate the higher order Riesz transforms associated with
the Laguerre operator, as it was mentioned, we shall exploit a connection
between higher order Riesz transforms in the Hermite and Laguerre settings.

The following new property that will be proved in Section 3 is needed in
the proof of Theorem 1.1. It states that the higher order Riesz transform for
the Hermite operator is actually a principal value integral operator.

PROPOSITION 2.1. Let k € N\{0}. Then, for every f € C*(R), 1 <p < o0,

(2.6)  RM f(z)=wpf(z)+ lim R (z,))f(y)dy, a.e zeR,
e=0F Jig—y|>e
where
1 [® . [0 g
R®) (z, :—/ t51<+x> Wilz,y)dt, z,yeR,x ,
(z,y) I, 5 t(z,y) y #y
and wi =0, when k is odd, and wy = —25, when k is even.

Since R (z,y), =,y € R, is a Calderén-Zygmund kernel [28] by using stan-
dard density arguments we deduce, from Proposition 2.1, that the operator
R®™) can be extended by (2.6) to LP(R,dz), 1 < p < 0o, as a bounded operator
from LP(R,dz) into itself, 1 < p < oo, and from L'(R,dz) into L1*°(R,dz).

As it was indicated, the modified Bessel function I, of the first kind and
order a appears in the kernel of the heat semigroup associated to the system
{¢%2}nen. The following properties of the function I,, will be repeatedly used
in the sequel (see [17] and [33)]):

(P1) In(2) ~ 2%, z— 0.

(P2) zI,(2) = %(Z?ZO(—:UT[O&,T](QZ)_T +0(z™" 1Y), n=0,1,2,...,
where [a,0] =1 and

(4a” —1)(4a? — 32)--- (4a® — (2r — 1)?)

= :1 2 ceen
[OZ,T] 22TF(T'—|—1) 9 r P
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(P3) d%(z_ala(z)) =2z"%Io41(2), z € (0,00).
On the other hand, in our study of the global part of the operators involved,
it will be useful to consider the Hardy type operators defined by

Haﬁ@ﬂzxﬂﬁﬂéiﬂﬂmd% e (0,00),
and

Hwﬂmzﬂ/my%vww,xemm»

where 77> —1. LP-boundedness properties of the operators HJ and H!L, were
established by Muckenhoupt [19] and Andersen and Muckenhoupt [2]. In
particular, mappings properties for Hj and H! on LP((0,00), 2% dx) can be
encountered in [6, Lemmas 3.1 and 3.2].

The following formula established in [12, Lemma 4.3, (4.6)] will be fre-
quently used in the paper. For every N € N, and a sufficiently smooth function
g: (0,00) — R, it holds

dN E[§] dN-!
(2.7) TN [9(302)} = Z EN,liﬂNQl(de—zg) ($2)a
1=0
where
N! N
En;=2V"2___" __ 0<I<E|—]|.
i NN =20 = =72

We finish this section establishing the following technical lemma that is
needed in the proof of Proposition 3.3.

LEMMA 2.1. Let a > —1 and j € N\ {0}. For every m:O,l,...,E[%], we
have

(2.8) SO (=t (‘;) jjgn [+1—n,m—n]=0.

n=01[=2n

Proof. For every s =0,...,j we denote by A;, the values
: j
Ajo=> (=DH e
=30 ()
1=0
where we take the convention 0° = 1.
In [3, (43)], it was established that
(2.9) Ajy=0, s=0,1,...,5—1.

On the other hand, since (ZL) = %(m_l)7 for m >n > 1, by using (2.9) we

n—1

obtain that Aj,j = 7jAj,1,j,1, jE N, 7>1 and so AjJ = (71){7', J e N.
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Consider m =0,1,...,E[§] and n=0,1,...,m. We can write

l,n
2l72n

[a4+1—mn,m—n)]

g
3
N/\
=
N
—~ .
~_—
=

Jj—2n . E
=2 (s+j2n> s;nm [+ s+n,m—n]

. J—2n s
I S G Vi
nl = sl(j —2n —s)!

! 4 | —2n
:m z_:(_l)s<] . )[a+s+n’m_n]_

We observe that [ + s+ n,m — n] is a polynomial in s which has degree
2(m —n). Besides, if j is odd, 2(m —n) <j — 2n — 1. Hence, (2.9) allows us
to conclude (2.8) in this case.

Assume now that j is even. Then 2(m —n) < j — 2n and (2.9) leads to

m J N\ E
Z Z (—1)tHn <Jl> 21}; [@+1—n,m—n]=0,

[+ s+ n,m—n]

n=01[=2n
when m:O,l,...7% —1.
For m = % and again by (2.9), we can write
m 7 .
nfJ Elﬁn
> 3 () gl = mm =
n=01[=2n
i i_on 4
_ . (_]‘)nj' e (_1)5 <]-2’I’L) 8]_271
n=0 n'(‘]_zn)' s=0 § (%777’)'
: L4 »
. (=™ 7! 1
=j! : Ai_op i_op = —o— -1)"2)=0.
TG = am(L — R (%y;( "
Thus, (2.8) is established. O

3. Higher order Riesz transforms associated with Laguerre
expansions

In this section, we prove our main result (Theorem 1.1) concerning to higher
order Riesz transforms associated with the sequence {¢%},en of Laguerre
functions. As it was mentioned, our procedure is based on certain connection
between higher order Riesz transforms in the Laguerre and Hermite settings.

We start proving the representations (2.3) and (2.4) for the negative powers
H=P, 3>0.



38 J. J. BETANCOR ET AL.

PROPOSITION 3.1. Let 3> 0. Then, for every f € L*(R,dx),

1 oo
(3.1) H'Bf(z)r(ﬁ)/o PIWL () (2) dt,
as L*(R,dx)-functions. Moreover, if f € C>°(R) then, the function
_ — cn(f)
(3:2) s(f)(z) —nzzomhn(m), z eR,
is continuous on R, and
+oo
V(@)= |  Kap(wy)fly)dy, z€R,

where, for every v >0,

K\ (z,y) = = / t2 ' Wy(z,y)dt, z,yeR,z#y.
I'(3) Jo
Proof. We define the operator T as follows
1 o0
(@) =i [ WD @) de, € LR, do).
L'(B) Jo

According to [27, Remark 2.10] and by using Minkowski’s inequality we get

1 oo
1T fll2 < = / VW f 2 di
0

T(5)
1flz (= 0 )
Srw)/o =< [l feI*(Rda)

Hence, T is a bounded operator from L?(R,dx) into itself. Moreover, it is not
hard to see that T f = H=P f, for every f € span{h,, }nen. Since span{hy, }nen
is a dense subspace of L?(R,dx) [27, Lemma 2.3], we conclude that H =P f =
Tsf, for every f € L?(R,dx).
Assume that f € C°(R). By [27, (2.1)], the series in (3.2) converges uni-
formly on R. Hence, Ug(f) is a continuous function on R. Moreover,
1

‘I’ﬁ(f)(ﬁ)Zm/oootﬁ_lwt(f)(x)da ae. v €R.

On the other hand, we have that, for certain —oo < a <b < +o00, and x € R,

o0 +oo
-1 N
/0 ! /_Oo We(z,y)|f(y)| dydt

b 1 . o
SC/ !f(y)|</ 19— 5 gmet= dt+/ ezdt) dy < 0.
a 0 1
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By Fubini’s theorem, we obtain

+o0
Vs(f)(x) = Kog(z,y)f(y)dy, ae z€R.

— 00

We now define the function Ag(f) by

“+o00
Ap(f)(z) = Kop(z,y)f(y)dy, zeR.

— 00

The function Ag(f) is continuous on R.
In order to see this, we split the inner integral in Ag(f) into two parts and

write
“+o0 1 e’}
M@ =05 | f(y)</0 -/ )tﬁlwx,y)dtdy
— Apa(N)@) + Asa(f)a), zER

Firstly, we analyze the function Ago(f). We can write

/tﬁ_lwt(x,y)dt’<0/ ' le 3 dt<C, z,y€eR.
1 1

Then, by applying the dominated convergence theorem we can prove that the
function Ago(f) is continuous on R.
The analysis of Ag1(f) is more dedicated. If 3 > %, it follows that

1 1
/tﬂ—lwt(m,y)dt'gc/t—%dtgc, 2,y €R,
0 0

and by using again dominated convergence theorem we conclude that the
function Ag1(f) is continuous on R. Assume now that 0 < 3 < . By making
the change of variables s = tanh(%) (due to Meda), we get

1
/ Wy () dt
0

_1 5—1
2 1. 2,1 2 2 1+s

—L(s(a+y)?+ 1 (2=9)?) . J

\/27r (152) e 152<Ogls> 5

1

_1 B-1
/ f et rta—yh 2 (1o, 1FS
\/271- 1—32 1—s2 1—s

2 G=w? W=z [T oy 3
- e 2s ds + e 5 P72 ds,
(23)% ( ) ] V2

z,y € R,z #y, where a = tanh(%).
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By using the mean value theorem, it holds

—1 B—1
28 2 1 2,1 2 2 1+S
~1(s@+9)*+ 1 (z-1)?) 1
'(1—32> “ 1—32(Og1—s>

1-s2\2 1
<([(%7) -&n ;-
2s (25)5 1—s
B—1
1 z—y)? z+y)2
(10g1+8> —(25)5_1 +Sﬁ_g€_%‘6_%—1’)
-5

SC’sﬁ*%(1+(x+y)2), z,y €R and s € (0,a).

Since f has compact support, the dominated convergence theorem allows
us to prove that the function Ag 1 1(f) defined by

Ap11(f)(=)

— [t [ () e
277 —00 0 1 — S

g1
2 1+4s 2 (2—y)?
1 ~ —a (2s5)771 dsd R
><1$2<0g18) (25)%6 (2s) sdy, z€R,

5’871 Jrsﬁ 3

1
T
S2

is continuous on R.
Finally, we note that the function Ag12(f) = Ag1(f) — Ag,1,1(f) can be
written
Ag1a(f)(x) = (f *Kp)(z), we€R,

_ 1212

where K(z) = 2— ["e~ i 578 ds, 2 € R. Since [Kp(2)| < O[22 €
R\ {0} (see, for instance, [27, Lemma 1.1]), we conclude that Agqo(f) is
continuous on R.

Putting together the arguments above, we establish that Ag is continuous
on R. Hence, Ug(f)(z) =As(f)(x), z €R. O

In the sequel, if f € C2°(R) and 8> 0, we write H~” f to refer the contin-
uous function ¥s(f) on R.

We now prove that, for every f € C2°(R) and k € N\ {0}, (£ + o)FH- 5 f
is given, for almost all x € R, by a principal value integral plus, when k is
even, a multiple of f(x).

PROPOSITION 3.2. Let f € C°(R) and k € N\ {0}. Then,

k
33 (f+e) B0 =wg@+ [ RO )

e—0+ lz—y|>e
a.e. T €R,
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where wi, =0, if k is odd, and wi = —237 when k is even.
REMARK 3.1. Note that if & supp f, then the limit in (3.3) coincides with

the absolutely convergent integral

“+oo
/ RO (2, y) () dy

— 00

and (3.3) reduces to

(%er) H™% f(x / R® (z,y) f(y) dy

Proof of Proposition 3.2. By making the change of variables s = tanh(%),
€ (0,00), we obtain

H ) = [ [ (=) ()

o e Aty @y 2 dsdy
— S
for every z € R. Since, for every m € N,
d m I
(3.4) (f+0) s= ¥ auariato)

0<p+o<m

where ¢!, €R, p,c €N, 0<p+ 0o <m and ¢, =1, in order to prove this
proposmon it is sufficient to see that

o . 1 [t L/ 14s\2 1/ 1—52\2
H™ 2 = — I

Lt p) F(g)/_m o [ (e 22) ()

87"

Xaxr(

forevery zeRand reN, 1 <r<k—1, and

L(s(z+y)’*+1(z—y)? ))1 2 2d5dy
— S

k
L () = wif ()

dzk
k
1 L 14s\2!
+ lim —/ f(y)/ (log )
e—0+ F(%) le—y|>e 0 1-s

1
1—82 2 9 1 2,1 2
—i(s(z+y) " +5(z—y)%)
x < > 81:7’ (6 )

47s

2
X mdsdy, a.e. z€R.
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Let 7 € N. According to [28, p. 50], 8‘9—;(6_%(8(‘”9)2‘*‘%(“_?1)2)) is a linear
combination of terms of the form

" 1 b2
(H _> o= H(s(e+y)*+1 (2 —y) >< (@ +1)? + _(myy) ’
S S

where b1,bs € N and 2b; + by < r. Hence, we have that

1+s\ 271/ 1—s2\? o7
1 O~ kst @—)?)
(Og1—5> <47rs> 83:"(6 )1—82
1= 52\ % 3 eieyyy 1 145) 2"
<C e~ 1(s(@+y) " +5(z—y)%) log
s 1—s? 1-—s

I S O N R O

b1,b2E€N,2b1 +ba2<r

—log(1 — )5
<ol 1og\(/1178)) , s€(0,1),z,yeR.
—s

By taking into account the mean value and dominated convergence theorems
we get

ar [+ L/ 14s\2 7 2
dﬂ/ f(y)/ <log1_ ) T2 Wiog 122 (2,) ds dy

+o0 1 5—1 r
14+s)\2 2 0
= n f(y)/é <log1 s) 1_82@V[/'10g1+e(m y)dsdy, zeR.

By using (2.7), we can write, for every s € (0,1) and z,y € R,

=

x"

2 -
_ (1—3 )2887 [e—i(s(“”‘*‘y)z"‘%(w_y)z)]
4drs "
2 T\ ol sy or—J )
) () (T g )

2\ % T
14_3 )zei(ery)?aaT(e 25 (@— y))
s x

1-s2\ 2N (r ZE )y s\ — 2 (z+y)?
4rs ‘ e +y) 4 ¢
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Assume that €2 is a compact subset of R and r €N, 1 <r <k.
We define, for every j=1,...,7, 0 <1< E[f] and 0 <m < E[52],
ﬂ{m(x,y,S)
(z + )i~z — y)r—i—2m o, L+ 51— L(s(aty)*+ 1 (z—p)?)
V1—s2 ( © ) g 2j+l—m+3

for each z,y € R and s € (0,%). Since log 1T
follows that

1—s

, 1t

)

1—

(36) ’F‘l{m(qj,y7 3)‘ < C|l‘ + y|j_2l‘.’1,‘ _ y|r_j_2m8k722r—%+2j—l+m

% e~ 1 (5@t +1(@—y)?)
) —r 1
SCSJ_%+kT SCS_%, x,yER,SE(O,g).

We now observe that the mean value theorem leads to

k_1
s 1+S 2 1 k
3.7 —i@tw)? () —— (2s)5 70
kg
1+s)\2 E_q 1 so2
<|(1 — (25)2 S — 1S
<|(wi3) " - *[m e
k_1
_|_|6 2 (z+y)? 1|] 1+5 2

<C’(s2+1—|—(s e ilEty)’ —|—s(sc—|—y)2)s§71)
: 1
SCSg, r,yER s€ (0,5)

By using (2.7) and (3.7), we obtain

1—s2\? of 148\ 2 (28)571
(3.8) ’( ) e i(@ty) (log ) —

47s 1—s 1—s2 VTS
", _@—y?
)
k—1| O" (x—y)2
<(Cs = -
— $ axr (6 )‘

<CS >3 Z |l‘ |7’ 2n s re——(zzf)Q

k—r—1

<Cs =z ,

s€(0,1), z€Q and y € supp f.
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By combining (3.5), (3.6) and (3.8), we get

k

k-
oI 2 1+5)2 (2s)27! _@-w? C
ax’" [w (log 1 — 5) Wlog%z(x;y) — e s <

3), x€Q and y € supp f.

Then, the domlnated convergence theorem allows us to show that

E\ d7 ar e 51l _ew? LI
39 1§ )t i@ - [ [ e e sy
too z o 2 1+s)% "
/Oo f(y)/o 8337’(1—52 <10g1—s>

25)571 o —y
XVVlog%(xay)_( S) e e ) >d8dy

Nz

when s € (0,

/s

for every x € R. In view of properties (3.5) and (3.9), to establish the desired
property (3.3) it is sufficient to prove that

db [t 1 [2(28)50 i

= - @Y 154

dxk /,oo f(y)F(g)/o VT ¢ say
f

V)
—
[\

»
~
[SIES
|
—
Q
ol

1 1 2
-1 (z—y)
e is dsdy,
e=0+ Jjg_y|>e Y F(g)/o LT 8xk( ) dsdy

x € R, where wy =0, if k is odd, and wy = —25, when k is even
Assume that k € N, k> 2. As earlier, we can see that

dk=2 e T (28)5°1
- —15(@—y)
dxk—2 /,OO f(y)/o NG c dsdy

+oo 1 (28)3—1 k=2
_ 2 @—y)?
/_Oo f(y)/0 N (e 1 )dsdy, x eR.

Let us represent by Y1,,,, m=k — 2,k — 1, the following function
1 k
1 2 (25)2— Lt gm 22
T, (z e 15 )ds, xeR.
(@) r'(%) /0 s Ox™ )

By proceeding as above, we can see that Y, € L'(R). Indeed, for m =k —
2,k—1, (2.7) leads to

o)

%]

Tm(ﬂ;‘) _ T (_1)m_lEm,l$m_2l
2
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and then, according to [28, Lemma 1.1],

o
G

s .
(310)  [Tw(@)|<C Y |zm2 / O
0

2

"2 1 —_z= —
_z2 3 e 8s e
emT [Peds<C P

2 €R\{0}, if m=k—1,

i
R,

)

i3

22

wlet Jf i ds < Oyl
s4

zeR, f m=k—2.

We can write, by taking into account (3.10),

dk=1 oo T(28)571
= — 1 (z—y)
dzh—1 /,OO ! (y)/o Nl dsdy

d +o0 1 (28)3—1 ok—2 e
= % f(y)/o \/ﬁ axk—Q (e 45( Y) )dey

d [+
= flz—u)Yr_o(u)du

+oo
:/ flx—u)T_2(u)du

— 00

—€ +oo d
=— lim (/ —|—/ > %ng 1 (z,y)dsdy(x —u)Yi_2(u)du

e—0t

= hm (f(x—i—&)Tk 2(—¢) — f(z —e)Ti—2(¢)

([ oo

=— lim (f(x —&)T_2(e) — flx +&)Tr_2(—¢)

e—0+

([ oo

= lim (f(z =) f<x+e>m 2(6)
+ lim f(@+2)(Tima(e) ~ Troa(—2))

+oo
+ fl@—u)Yg_1(u)du, z€R.

— 00
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Hence, by (3.10) we conclude that

dk=1  tee 7 (28)570 4
-9 Jsd
[ [ e b sy

+o0 1 (28)2_1 ok—1 L )
| [T sdy, w

Moreover, if m is even, then T,, is even, and if m is odd, then T,, is odd.
When £k is even, we can also see that

(3.11) lim T () = —2571,
E—
Indeed, if k is even we can write
ch—1-20 3 -5
Ti_1(e) = , ds, e€R.
k-1(¢) Z 32’%72171/0 sEti—t

1 2 oo w
lim Ty, () = — %F(g)ﬁg% 4 (-1 Ek—l,l/izz e tuz2 " du
IR e 1
IIRONG ;H) E’“‘“F( - l>
= (k=1 L ~1 1
_2§—I(F(§))2 g(_l)l< l >k12l
_(k_1)| ! 2\y3—1
e O
—(k =)' TEICG) e
25(1(%))? T(HH) ’

and (3.11) is thus established.

Note that Tj_1 € L'(R) and YT;_1 € C>®(R\ {0}). By proceeding as above
we obtain that, for each x € R,

- :Of(y)rkl(x— ydy= lim K/_ /+OO> Y)Thoi (e —y)dy

+ flx—e)Ti_1(e) — flx +&)Tr_1(—¢)|.

Suppose now that k is odd. Then Y;_; is an even function and from (3.10)
we obtain, for every x € R,

|f(@—e)Yio1(e) = fl@+e)Tio1(—¢)| < Ce|Tio1(e)] — 0, ase—07.
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On the other hand, assuming that k& is even, (3.11) leads to

lim f(z—¢&)Yp-1(e) = f(@+)Lp-1(—¢)

e—0+
= lim (e +2) + (=) Thma(e) = 25 /(@)
E—
for every = € R.
Hence,
d [T
— Ti_1(x—y)d
o F@)Th1(z—y)dy
= wpf(2) + lim FW) 5 (Cxmn (e — ) dy
e—0t lo—y|>e Ox ’
z € R, where wy =0, if k is odd, and wy = 723, when k is even. Thus, the
proof is finished. O

The following relation between the kernels R&k)(x, y) and R¥) (z,y), z,y €
(0,00), x #y, is the key of our procedure in order to establish that the k-
order Riesz transform associated with the Laguerre operator is a principal
value integral operator.

PROPOSITION 3.3. Let o> —1 and k € N\ {0}. For every M > 1 we have
that
() 1R (w.9)] < Oy

+§,,0<y<i.

(i) |RP¥ (z,y)] < Ozaé’ y> Mz and k even, and |RY (2,y)| < C’

y>Max and k odd.
(iii) |RY (2,y) = B9 (2,9)| S CL(1+ (55))%), & <y <Mz, z #y.

+o?

Proof. We prove the property for M = 2. We can proceed in the same way
for every M > 1. A short calculation using the induction procedure, property
(P3) and combinatorial properties of the coefficients F; ,, shows that, for every
jeNand t,z,y € (0,00),

o’ zy \ 7 xy
(812) i [(sinht) Ia(sinht)]
E[§]

i—2n 2(j—n)
e ()
= 27—n \ sinht

zy \ zy
X . Ia—n+j 14
sinh ¢ sinh ¢
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M)

x

d (2
+-(e7 g), for every

Let us now prove (i) and (ii). Since (£ +z)g=e"%
differentiable function g, we can write, for ¢,z,y € (0,00),
kyrro a+ _z? ak —a—1
DR () =2 2o T 2 (e W (0,)
Oé+% 2 2

. _1 xry 22 _Y¥° otht

= ht) 2 PR

(sinh?) (sinht) ¢

oF xy \ xy 2
- 1, —2Z—(cotht—1) )
" o [(Sinht) (sinht ¢
By taking into account formulas (2.7) and (3.12), we get
87]6 Ty - I, Ty 67é(cotht71)
dzk | \ sinht sinh ¢

= o’ Ly _aI ry akij‘[ef%(cothtfl)}
Oz |\ sinht *\ sinht / | Oxk—i

J
K El§] B[]
2 E .
_ ,— %~ (cotht—1) w
)Y WES
7=0n=0 m=0

y y \2U™ /1 _cotht\FI™
sinh ¢ 2
—a—j+n
% xk—?m—?n ﬂ
sinh ¢

Ty
Iovinl — |, t,x, 0,00).
X Lot (smht> .y € ( )

7 N\

Mw

Il
<

Hence, we obtain that
(3.13) DEWS (2,y)

1
. _1 Yy ot —L1(224¢y?)cotht
= (sinht)~2 ( - e~ z(@ 4y co
E

k 3
22 2 ()

Y 20-m) 11— cotht\ 7™
>< e —
sinh ¢ 2

zy \ O y
k—2m—2n .
X T ( . > Ia—l—j—n(sinht)a t7I,yE(O,OO).
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By using property (P1), it follows that

/ H D (2,y) dt'
0, <1

smht =

&

K E[3] E[*37]
Z xk—Q'm—QnyQ(j—n)

j=0 n=C

.

m|

a+

Nf=

.

m=(

00
X/ t%—le—%(xz-i-gf)cotht(sinht)2n+m—k—j—a—1 dt
0,24 <1

’sinh t —

k
SR>
:O m=0

1 k ) 22 4y?
X (/ t7§7a72fj+2n+mefc + dt
0
oo
+€—c(x2+y2)/ tg_le_(aﬂ)tdt)
1

Hence, by taking into account [28, Lemma 1.1] we conclude that

3.14 tg Lk x,y)dt
a'lt
0,24 <1

’sinht —

E[$] B[*51]

IIM

k72m72ny2(jfn)

B[22

iEz: Z oz+2xk 2m—2n 2(] n)
7=0n=0 m=

$2+y +oz+1+] 2n—m

ati

Y
s (xy)aJr% cc e O<y<uz,
= (@24 g2)et = 2o

—=, y>x>0.
Y 2

Note that if k& is odd we can improve the estimate when y > x > 0 as follows

(3.15)

o at} ot
/ E1pk e gy at| < o TR @
0,-24-<1

R (22 +y2)o¢+% - ya+% .
Assume now that %= > 1. From (3.13) and property (P2), we get

k El3] B[*37]

DEWR(w,y)| <33T 3T ety ottt

j=0n=0 m=0

x gh—2m=2n,2(j—n) (sinh¢)?ntm—k=i=z2

17 t"r’ye(O’m)'
We also observe that

12, . zy (z—ye ")+ (y —we™")?
- tht =— :
o (% +y7)cotht+ 2o 2(1— e 2t)
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Thus, if 0 <y < 3, we can write

k E[3]E[*3]
‘@kWaxy < Z
7j=0n m=

X (Sinht)2"+m_k_j_%
< Ce—cr’(1+cotht) (sinht)_g_%, t € (0,00).

2(14c .
“%;Otht)xk—%n—%z—‘ﬂ(j—n)

Hence, if —1<a < —%, [28, Lemma 1.1] leads to

o E L e_cﬁ 2
/ t2 1R We(x,y) dt' < C(/ s—dt +e )
0,24 >1 o 12
yots

1 T
<C-<C—, O<y<-—.
I A anr% y 2

we can proceed as follows.

(oo}
/ 21D W (2, y) dt’
O’slnht>1

< C(l’y)a+% /Ootg—le—cw2(l+cotht)
0

X (sinht)*gf‘k1 dt

1 —cz?
e
< CO(zy)o+s </0 e die 2)
X
2

1
For a > —3,

(zy)+s yots
<C 2072 <C oy O<y<

In a similar way, if 0 < 2z <y, we can write

/ t2 1R WO (1, ) dt‘
0 >1

’snlhtf
s [ & 2

< C(xy)aJrE/ t§7167Cy (14cotht)
O

x (sinht)~ 2> 24t
1 —e2
a+§ € t —cy?
< Clzy) 2(/0 = dt+e y)

a3

a+3
G i
=~ y2a+4 — yaJr 3
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These estimations allow us to get

a+i
0o . %, O<y<%,

s [ tzl@(’zwmx,y)dt‘sc
0, 5ip 21 =, y>22>0.

Y 2

Hence, by (3.14), (3.15) and (3.16), (i) and (ii) are proved.
Next, we establish statement (iii). Observe first that, since (=L + z)g =

7)2 12 . . . .
e~ 7 2L (e g), when g is a differentiable function,

o k
DL (o) =0t (L) [ o)
1 6 k x 2
:\/27rxa+§ (a_i_x) |:x a_2e sinh ¢ (Sl:flit>
x
XI&<Slnht>Wt(x’y):|
()T () 2 [ ()
s ver sinht 7)) 0xI ¢ sinht

o' ry \ xy
— 1 t .
% (%cl((sinht) O‘<sinht)>’ 12,y €(0,00)

Hence, by using formula (3.12) we obtain that, for every t,z,y € (0,00),
k

(317)  DEWP(x,y) = V2me wti Y (~1)! (1;) (a% +x)k_j

=0

x (W(z,y)) (Jm)j
W NEAEE

_n 1
ry ry \* I xy
sinh ¢ sinh ¢ o=t Sinht )

X
Y
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Let us consider now x,y,t € (0,00) such that 3= >1. By taking into

account property (P2) and (3.17), we can write

D (2,) = (% +x>k(Wt<m’y>) (”O_(Si;l;t)) |
e () (@) i ()
’ j}ié(—l)l (J) g (bt

) (*ﬁj (_1)T[a24;l —n,7] (Si;lzlty
cof ()™)
(22 i+ (4)

Jj=1

( +x) Wt(x,y))<sii/ht>j
B3] j Bl

X nz%lz::n [2] l+r<l‘> 2El'z_z [a+12: n,r] <Si;12t>n+r
F2 ( > (8 “7>kj (Wi(z,y))

k
7=0

o y Ji—E[$]-1 1
sinht LB+ )7

Lemma 2.1 allows us to see that, for every j €N, j=1,... k,

E[Z] 5 E[Z
[Q]ii](—l)lw 3\ Ein [a+1—n,r] (sinht """
n=0 [=2n r=0 ¢ 2lin 2 Y
E[L © E[i]an
B [z]i [3]+ (_1)l+m—n ] El,n [a_i_l_n,m—n] sinh ¢ "
- n=0[=2n m=n ! 2lin S Y

sinht ™ ¢ & ltm—n(J\ El
= 20y ZZ(—l) 1) 5 2n[a+l n,m — n]



HIGHER ORDER RIESZ TRANSFORMS 53

B B g

m=E[4] nmE]lQ"

By, sinht P31
x2l2n[a+l—n,m—n]:()<( ” > .

Hence, it follows that

D) = (a% * x>kWt(x,y) + Xk:(—l)f <k> (% + a;>k_j

=0

y VR
X (Wt(xay))O((Slnht) xE[%]‘Fl)

Assume that 0 < § <y <2z, x #y. In order to establish (iii), we now proceed
as in the proof of Proposition 3.2. First, note that by formula (3.4)

ke - (5 +x)kWt<x,y>'

or
k . E[3]
0 y \’ 1
< E E Pl — - .
= C X axo_Wt(xvy)‘ (Slnht) [L‘E[%]+1
Assume that j,p,0,01,b0 e N 0<j<k,0<p+o<k—jand 2b; +by <o.

J=00<p+o<k—j
According to [28, p. 50] and by making the change of variable s = tanh(%),
we must analyze the following integral

. k_ i Elil—1
% (2. y) zPy’ /1 (1 1+s)2 1<1—82)J El3)-3
“ (@, = o
£,9,] y (:L'y)l“rE[%] 07(1—;§)$1421 & 1 — S S

1\"
y <S+ _) o H(s(a+)P+1 (@—9)?)
S

( (x+y)+ 1(30—@/)>bzli

—s2

bi,b bi,b
=J, 55 (@) + H) % (w,y), 2,y €(0,00),

where J and H are defined as I but replacing the integral over (0,1) by the
integral over (0, 1) and ( 1), respectively.

Since log 1+ = , it follows that
, 1
Tt () < c%/Q SE— b=+ E[§]—b1 g— L (s(oy)?+ 502
pyo,j \" I = (my)1+E[J§] 07(1—;§)zy >1
b2
o
s(x+y) + % ds
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J
<c—Y

= (ay) B
1
2

. ; i s — )2
x/ S%(k—]—2b1—b2—P)+E[%]—%—ée—c(T =)\
2
0,d=s22u>q
S >

J 2 i1 g —y)2
¢ ; ; / sPlal=z %6 — ds.
E[L
e

By taking into account that 0 < § <y < 2z and using [28, Lemma 1.1]
get

j—2B[4]-3 3 o 2
by.b X J1_di_1 _.(e=y)
I3 (xy) < C——Frn sPlEl=2 730775 g
P05 \/5 0’(1*;:”%’21

2
_olz—y)

1 1
1 2 E 1 2
§C—/ eisdsgC—( x ) .
VT Jo 51 z\ |z —y
On the other hand, since that log i
that

S

(I1—-3s), as s — 17, we have

Pyd 1 k
7o (g < 0 / ~log(1—s))?~
P50,] ( y) (a’jy)1+E[%] 1 (1_23)“’7‘/21( Og( S))

29

x (1 — s)/~FlEI=3 gmes@tv)’ g

2 1 E_ .1
< Cemety) / (—log(1— ) 7' (1— sy~ ds

2
< Ce_c(x+y)2, x,y € (0,00).

Hence, we conclude that, if 0 < § <y <2z, x # y,

N k
[ (ot - (o) W) df
0, sz 21 o
<ol <~T> y
z \ |z —yl

Also, by using again (2.7) we obtain, for each ¢,z,y € (0, 00)

<§:c +x)kWt(x,y)

=e” 7 o [T Wila,y)]

k Bl

k—j j—1
k . Y 1 — cotht
=Wilew) ) (J’)E”x] 2l(sinht> ( ) '
§=0 1=0

2

(3.18)




HIGHER ORDER RIESZ TRANSFORMS 55

Hence it follows that, when 0 < § <y < 2u,

(3.19) / 51 <+x> Wt(x,y)dt‘
0,:54-<1 Or
B[] 1 .
<oy ([t a
1=0 0
+e*“2/ t’ileédt)
1
<cl.
x
The estimations (3.14), (3.18) and (3.19) allow us to finish the proof
of (iii). -

As it was mentioned in the Introduction, for every > 0, the —g-power
L7 of the Laguerre operator L, defined by

- - n(f o

is bounded from L?((0,00),dx) into itself. Moreover, if f € C°(0,00), the
series in (3.20) converges uniformly in every compact subset of (0,00) and it
defines a function

oo

Pes D) =3 B gt € 0.

that belongs to C*°(0,00) (see [22, (2.8)]).
We now prove the useful integral representation (3.21) for L_7.

PROPOSITION 3.4. Let 3>0 and a > —1. Then, for every f € L?((0,00),
dz),

(3.21) LoP i) = %ﬁ) / T W () ) dr,

as L?((0,00),dz)-functions.
Proof. Tt is not hard to see that (3.21) holds for every f € span{¢%},en.

Then, to show (3.21) for every f € L?((0,00),dx) it is enough to prove that
the operator defined by

T.s(0)a) = [ T W (@) dr, e L2((0,00). da),

0
is bounded from L2((0,00),dz) into itself.
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Suppose that f € L?((0,00),dx), f >0. We can write

> B—1lyr« T _ > > B—1lyr« T
A O (f) () dt A ﬂwA W (2, y) dt dy

(S o [ weea
=§Hﬂmm:mmmy

We analyze the operators Ti’ﬁ, j=1,2,3. Assume firstly that 0 < 2z < y < cc.
According to (P2) we have that

1 1
(3.22) / PIWE (2, y)dt < C / (sinht)~ 70~
Y >1 0 4_>1

’sinh t =

L —t12 o —t2
Xexp<_|$ e 'yl +ly — ez )dt

b]Ilh t =

2(1—e—2t)

1 xT atl 3 cy?
gc/ ( 2y > i 2e " at
o \sinht

1
< O(xy)‘*“/ 10=a=5/2= % gy
0

a+1 xa-&-l

(zy)
S ¢ y2a+3 — ya+2’

and

o0 00
B2 [ Wy Cyrte s [T et
1,5 >1 1

s sinh t =

- C (xy)a-i-l :L.oc—i-l
— y2a+3 — ya+2 :

Also, by (P1) it follows that

1
(3.24) / PIWE (2, y) dt < C(ay)*t2 / e
O,Tﬁﬁgl 0
(wy)>t2 zots
= 2 2)a+1 <C at B
(J) +y ) Y 2

and

(3.25) /1 - tﬁ*tha (z,y)dt < C(xy)oHr%e*c(a:?er?) /1 e—tlat1) pp
7sxnht —

a2

<ot .
<O
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From (3.22), (3.23), (3.24) and (3.25), we deduce that

2otz

(oo}
(3.26) / tPIWE (2, y) dt < O —5-
0 Y2

From (3.26), we obtain that

12ate)] < 0xt [~ Ty, we 0.00)
2z 2

Then, since ng% is bounded from L?((0,00),dx) into itself ([6]), T3 ; has
the same boundedness property.
By taking into account that W2 (z,y) = W (y,x), z,y € (0,00), from (3.26)

it infers
yots

/ PIWE (2, ) dt < O O<y<g.
0

xots’
Therefore,
a+2
Tos(F)(@)| <CHy 2 (f)@), x€(0,00).
Thus, T} 4 is bounded from L?((0,00),dx) into itself, because the operator

(03 1 . . .
H0+2 is also bounded from L?((0,00),dz) into itself.
On the other hand, we can write

Wﬁ(x,y)—ﬁwt(x,w:(%ﬂ =Y )%1 ( y )e —1>Wt(ﬂc y)

sinht sinht
for every t,z,y € (0,00).
By (P2), we get

(3.27) ][ tOHWE (2,y) — V2W, (2, )| dt
—2Y_>1

)Sinht =

sinh ¢
<({/ <5H1 )(gnhﬂédt
Ty
< e 4<uum<2xz+y>?+anh(%xx—y>%
o . C
SCe—cxz/ t5_16_5dt§;, 0<§<y<2x<oo,x7éy
1
and
1
(3.28) ]/ W (2,y) — V2Wy(2,y)| dt
0,28 >1

’sinht =

<C’/ (smht) (sinht)_%
Ty

0, smh t

><efzuamm )(a+y)>+eoth($)(z—9)%) g
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1
< ¢ /tﬁf%6—%<tanh(%)(w+y>2+coth<g><wfy>2>dt
0

(zy)7
1 _elz=w)?
< Cl/e i
(xzy)s Jo 3
C
< — %, 0<g<y<2x<oo.
z\ |x—y

Moreover, according to (P1) it follows

oo
(3.29) [ ey - Ve
1,-24-<1

>Sinht =

</ PN W (z,y) + V2Wi(a,y)) dt
1,-2Y <1

’sinht =

sc((xy)“+%e—6<f2+y2> / e tlet) gy
1

+ e~ c@®+y?) /OO e7? dt)
1
C
< —, O<§<y<2x<oo,
X
and
1
(3.30) / W () — VEW, (2, y)| dt
0,=2¥_<1

»Sinht =
22442 22442

1 —cZ Ty 1 —¢
e t e t
<Cf(x a+%/ 7dt+/ SR
- (( ) o 12 0 t3

((ngj’);)aﬂ " (22 +1 y2)é)

T
, 0<§<y<2ac<oo.

)

By combining (3.27), (3.28), (3.29) and (3.30), we obtain that
2x 1
(3.31) |T2 |<C<[C 5<1+<—|x ) >|f |dy+Tg(|f|)(x)),
€ (0,00), where

D) = [ "9 / T W) dtdy, @€ (0,00).
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By using Jensen’s inequality, we can see that the operator

T(g) =/jx%(1+ <|xfy|>%>g(y)dy, z € (0,00),

2

is bounded from L?((0,00),dz) into itself.
If g is a measurable function on (0, 00), we denote by go the function defined
by

_ g(z), € (0,00),
go(@) = {0, z € (—00,0].
We have that
(3.32) T5(9) = H"(g0) — Mg (9)(x) — ML (9),

where

ME (g)() = / * 9w / T W) dedy,  x € (0,00),
and
M2 (g)(z) = / a(v) / Wi, y) didy, @€ (0,00).

x

It is not hard to see that

e*%efc(l’*y)(z’ tZ 1’
Wi(z,y) <C 1 _ole=w? x,y € (0,00).
se T, 0<t<,
Then,
00 1 e*CM _ oo
/ tﬁflwt(as,y)dt < C’</ 73dt+e*0(90*y) / tﬁleédt>
0 0 t2 1
C
< Erk z,y € (0,00),z #y.

Hence, we get

@< [Clow)]ds. e @0,
0
and

M2 () ()] < c/m éyg<y>| dy, € (0,00).

By using well-known Hardy’s inequalities, we conclude that the operators Mg
and M2 are bounded from L?((0,00),dz) into itself.

Since H A is bounded from L2((0, 00), dx) into itself, from (3.31) and (3.32)
it deduces that Tgﬁ is bounded from L?((0,00),dz) into itself.

By combining the results above, we get that the operator 7, g is bounded
from L2((0,00),dz) into itself. O
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Assume now that f € C"X’((O 00)). We fix x € (0,00). There exist 0 < t; <

i < 1,if t > £y, and %5 > 1, when ¢ € (0,y), for

every ¥y € supp f . Accordmg to (Pl) we have that

// W (z,9)| f(y)| dydt < C tﬁ—l/ (sinht)~!
ta Jsupp f ta supp f

Vaydydt

x (smht) Y

SC/ P 1e= (Dt gt < .
ta

By (P2) and [27, Lemma 1.1], it follows that

/tﬁl WE( xy|f |dydt
supp f

<C’/ 9= 1/ (sinht)™
supp f

SC’/ / tﬁf%efc%dtdy<oo.
supp f /0

Finally, it holds

ta
[ [ we i) dyde <.
121 supp f

Then, we conclude that

/tﬁ*lf W (@, y)| f(y)] dy dt < oc.
) 0

(

Hence,

[ ewein@de= [ s [ we g didy.
0 0 0
Moreover, we have the following result.

PROPOSITION 3.5. Let 3>0, a > —1 and f € C>(0,00). Then,

Basl @)=z | 1) [ W ey, e (0.0,

B

Proof. Tt is sufficient to see that the function

s (f)(a) = / " i) / T W,y didy, e (0,00),

0
is continuous on (0, c0).
According to Proposition 3.1, the function

As(f)(x) = / i) / T W (ay) didy, @R,
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is continuous on R. Hence, our proof will be finished when we establish that
the function Gy 5(f) = Vo 5(f) — V2As(f) is continuous on (0,00). In order
to see this, according to the dominated convergence theorem, it is enough
to show that for every compact subset  of (0,00) there exists a function
g € L1(0,00), go >0, such that

W (2, y) — V2Wi(2,y)| < galt), 2 €Qyesupp f and t € (0,00).
Let © be a compact subset of (0,00). There exist 0 <t; <1<ty <400
such that 7%= <1, if t > t5, and 7%= > 1, when ¢ € (0,1), for every z € Q

sin sinht

and y € supp f. According to (P1), we have that
tP1 (W (z,y) — \/§Wt(x,y)| <ot (Wi(z,y) + W (z,y))
< Otﬁfl(eft(oﬂrl) i eft)’

t>to,x € and y € supp f.
Also, by (P2) it follows that

(sinht)z
ry

tﬂ_1|Wta(‘ray) - ﬂWt(xay)’ < Ctﬂ_l < Ctﬂ_%

0<t<ty,ze€Q and y € supp f.
Finally,

tﬁ_l‘Wta(x,y) — \/§Wt(x7y)’ <C, t1<t<ty,ze€Q and ye€suppf.
Then, by defining
A=t (e Mot pemt) t> 1y,
gQ(t): 17 tl StSt27
-3, 0<t<ty,
we have that
W (2, y) — V2Wi(z,y)| < Cgalt), 2 €Q,y€supp f and ¢ € (0,00).
Thus, the proof is completed. O
In the sequel, when f € C2°(0,00) and 3 > 0 we define L f as the C>(0,
oo)-function ®, z(f).
We now obtain a representation of the higher order Riesz transform in the
Laguerre setting on C2°(0,00) as a principal value integral operator.

We previously give conditions on a function f defined on R x R in order
that the formula

B B
%/Rf(%y)dy—/ﬂw—xf(%y)dy, a.e. r€R,

holds. We think that this result is known but we have not found an exact
reference and we present a proof for the sake of completeness (see also, [5]).
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LEMMA 3.1. Suppose that f is a measurable function defined on R X R that
satisfies the following conditions:

(i) for every compact subset K of R, [, [o|f(z,y)|dydz < oo, and
(i) there exists a measurable function g on R x R such that

//’g(x,y)|dyda:<oo
K JR

for every compact subset K of R, and that the distributional derivative Dy f (-,
y) 1is represented by g(-,y), for every y € R.

Then,
—/f(x )d :/—f(:v )d, a.e. t€R
9 7y y 9$ ’y y7 . )

where the derivatives are understood in the classical sense.

Proof. We define the function h(x fR z,y)dy, x € R. By (i) h defines
a regular distribution that we contlnue denoting by h. According to [24,
Chap. 2, §5, Theorem V], we have that

— f(@y)=g@y), ae (m,y) ERXR,

where the derivative is understood in the classical sense.
Moreover, if F' € C2°(R), then

(D h,F) = /F’(x)h(ac)dx: /RF'(:U)/R]‘(%y)dydac

//fxy x)dz dy
//afxy x)dzdy
—/ /8 (z,y)dydz.

Hence, D h(x fR 5o (z,y) dy in the distributional sense. By using again
[24, Chap. 2, §5 TheoremV we conclude that

/ (z,y)dy, ae. xR

Thus, the proof is completed. O
A useful result in the sequel is the following one.

LEMMA 3.2. Let —o0o <a <b< +4o00. Assume that f is a continuous func-
tion on I x I, where I = (a,b), such that

(i) For every y € I, the function a%f(x,y) dy is continuous on I\ {y},
where the derivative is understood in the classical sense.
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(ii) For everyy € I and every compact subset K of I, [, |f(z,y)|dx < 400,
and [, |%($,y)| dx < 4o00.

Then, D, f(x,y) = %f(x,y), for every y € I. Here, as above, D, f(x,y) de-
notes the distributional derivative respect to x of f.

Proof. Let g € C2°(I). We can write

(Daf(z,y),9(x)) = — / ¢ (@) () de

([ ] Josen

= lim {—g(y —e)fly—ey)+gly+e)fly+ey)

e—0t

([ Jraned

:/ g(x )a—f(at y)dz, yel.

Then, D, f(z,y) = df;(x y),yel O

PROPOSITION 3.6. Let a> —1, ke N\ {0} and f € C°(0,00). Then
_k &
DF Lo ? f(z) =wif(z) + lim R (z, ) f(y)dy, a.e. e (0,00),
e=0% Jo,jz—y|>e
where w, =0, when k is odd, and wy = —25, when k is even.
Proof. Assume that € is a compact subset of (0,00). There exists M >0
such that 42 <y < Mz, x € Q and y € supp f. By proceedmg as in the proof

of (iii) in Propos1t10n 3.3, we can see that, for every m=1,...,k — 1, there
exists a function g,, € Ll(O, 00), gm > 0, such that

a m
01 e) - (55 +2) Wile)

€ (0,00), z € Q and y € supp f. Then, the dominated convergence theorem
implies that

(333)  ©"Latf(x)— <% + x) mH*%f(z)

<Cgm(t),

= [T (R ) - RO @) S dy, € (0,00),

0
where m=1,...,k—1, and

R (2,y) = / T DIWE (2, y) dt, @,y € (0,00).

r(5) Jo
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Moreover, according to Lemma 3.1 and Proposition 3.2, we can write

k _k d k k

Dola®f(x) = ——+a ) H 2 f(2)
dx

= [ (EO @) - RO @) f) . e 2 (0.00)
0

and the last integral is absolutely convergent.

Hence, for almost x € (0,00), we have that
lim
e—0t

R (2,y) f(y) dy
0,|z—y|>e

= lim RP (z,y) — R¥) (x,y)) f(y) dy
e—0t 0,|:D—y\>8

+ lim
e—0t

R¥) (z,y) f(y) dy
0,|lz—y|>e
o0 a k
:/ (@’;Ka,k(:f,y) (a +:c) Kk(a:,y))f(y)dy
0 X
+ lim R¥)(z,y)f(y) dy
e—0+ 0,|lz—y|>e

([Tt st - (5

ox

+x>k1Kk(w7y)} f(y) dy)
; (x_ o ) | o st

(2
330 o ¥

k—1
) (Ki(2.9)) £ () dy

oo
+ lim R® (,) f (y) dy.
e—0T 0,|lz—y|>e
By taking into account Proposition 3.2, we can conclude that
o0
lim
e—0t

R (z,y) f(y) dy
0,|z—y|>e
_ d ° k—1 a
— ([ o Faste -

a+3
+<m— 2
T

k—1
gte) Kl f)ay)
) [ o5 Kasloa S dy - wnf2)

0o k—1
va [ (Gre)  Bawniw
= @ZL;%f(x) —wif(x), ae. x€(0,00),
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where wy, =0, for k odd, and wy = —257 when k is even. Thus, the proof is
finished. O

We now prove the main result of the paper.

Proof of Theorem 1.1. We consider the maximal operator associated with
R defined by

R&klf(x) =sup
e>0

[ mPwns) dy].

Jz—y|>e

According to Proposition 3.3, we get

RELf(x) < C(HST2 (1) (@) + HE T (1) (2) + B L (F)(@) + N(f)(@),

where 0 =1, when k is odd, §; =0, when k is even,

2x b k
[ (Gere) mnswa
L |lz—y|>e

2

N(f)(ar):[gglf(y)%(H (ﬁ)) ay.

2

RY (f)(x) =sup
e>0

)

and

1
By [6, Lemma 3.1] H(?Jrz is of strong type (p,p) with respect to z° dz,
when 1 <p < oo and § < (a+2)p—1, and of weak type (1,1) when § <o+ 1.

1
Also from [6, Lemma 3.2] the operator ng"‘”k is of strong type (p,p) for

2% dx, when 1 < p < oo and —(a + %)p — 1< 4, and of weak type (1,1) with
respect to 2’ dz when —a — g <4, if k is odd; and, in the case that k is even,
when 0 > —a — %, and « # —% and when 6 > —1 and o = —%.

On the other hand, by using Jensen’s inequality, we can see that the oper-
ator N is bounded from LP((0,00),2° dz) into itself, for every 1 < p < oo and
0 eR.

In [28] it was established that the kernel R¥)(z,y), z,y €R, x #y, is a
Calderén—Zygmund kernel. Then, according to [20, Theorem 4.3], the oper-

ator R(k)

loc,*

is of strong type (p,p), 1 <p < 0o, and of weak type (1,1) with
respect to 2% dz, for every § € R.

Then we conclude that R&kl defines an operator of strong type (p,p) for
2’dr when 1 <p<oo and —(a+ 3 +8)p—1<d<(a+ 3)p—1. We have

also that R&k) is of weak type (1,1) for 2% dx when —a — % <jf<a-+ %, if k

is odd. When k is even the maximal operator Rflkl is of weak type (1,1) with

respect to xédx, for —a — % <éd<a+ % and o # —%, and for —1 <6 <0,
1

when o = —5-



66 J. J. BETANCOR ET AL.

By using standard arguments, since C°(0,00) is dense in LP((0,00), z° dx),
we can deduce from Proposition 3.6 that there exists the limit

lim RB) (z,9)f(y)dy, ae. xe(0,00),
=0+ 0,|z—y|>e

provided that f € LP((0,00),2? dz) and one of the three conditions is satisfied
(i) 1<p<ooand —(a+3+d)p—1<d<(a+2)p-1,
(i) kisodd, p=1and —a—2<dé<a+3,
(iii) kiseven, p=1, and —a—% <6< oz—&—% when a # —%7 and —1 <6 <0,

when o = —1.

Also, the operator R&k) defined by
(oo}

R (f)(x) = wyf(z) + lim R (x,9)f(y) dy, ae. z€(0,00),
e—0+F 0,|x—y|>e
is of strong type (p,p) for 2°dx when 1 < p < oo and —(a + % +o)p—1<
§ <(a+32)p—1, and of weak type (1,1) for 2° dz when —a — 2 <§<a+1,
if k is odd; and for —a—% §5§a+% anda;é—%, and for —1 < § <0, when
a= f%, if £ is even.

Note that 0 € (—2(a+ 3 +6;) — 1,2+ 2). Hence, R¥ is a bounded opera-
tor from L2((0,00),dz) into itself. Since RY) defined by (1.3) is also bounded
from L?((0,00),dx) into itself and C2°(0, 00) is dense in L?((0,c), dz), Propo-
sition 3.6 implies that Rék)(f) = Rgc)(f), feL?(0,00),dr).

Thus, the proof of this theorem is finished. O
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