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INSEPARABLE EXTENSIONS OF ALGEBRAS OVER THE
STEENROD ALGEBRA WITH APPLICATIONS TO

MODULAR INVARIANT THEORY OF FINITE GROUPS II

MARA D. NEUSEL

Dedicated to Huyn Mùi on the occasion of his 60th birthday

Abstract. We continue our study of the homological properties

of the purely inseparable extensions H ↪→ P ∗√
H of integrally closed

unstable Noetherian integral domains over the Steenrod algebra.

It turns out that the projective dimension of H is a lower bound

for the projective dimension of P ∗√
H. Furthermore, depth(H) ≥

depth(P ∗√
H), where depth denotes the depth. Moreover, both

algebras have the same global dimension. We apply these results
to extension F[V•]G ↪→ F[V ]G of rings of invariants.

1. Introduction

Let H be a unstable reduced algebra over the Steenrod algebra of reduced
powers P ∗. We denote the characteristic by p, and the order of the ground
field F by q. Recall that the Steenrod algebra contains an infinite sequence of
derivations iteratively defined as

PΔ1 = P 1,

PΔi = PΔi−1P qi−1 − P qi−1
PΔi−1 for i ≥ 2.

We set
PΔ0(h) = deg(h)h ∀h ∈ H.

Note that PΔ0 is not an element of the Steenrod algebra.
The algebra H is called P ∗-inseparably closed, if whenever h ∈ H and

PΔi(h) = 0 ∀i ≥ 0,
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then there exists an element h′ ∈ H such that(
h′)p = h.

The P ∗-inseparable closure of H is a P ∗-inseparably closed algebra P ∗√
H con-

taining H such that the following universal property holds: Whenever we
have a P ∗-inseparably closed algebra H′ containing H there exists an embed-
ding P ∗√

H ↪→ H′.
In Section 4.1 of [4], an explicit algorithm to construct the inseparable

closure is given. We collect known results in the following proposition.

Proposition 1.1. Consider the natural inclusion

φ : H ↪→ P ∗√
H

of unstable reduced algebras over the Steenrod algebra. Then the following
statements are valid:

(1) H is an integral domain if and only if P ∗√
H is an integral domain.

(2) H ↪→ P ∗√
H is an integral extension, and both algebras have the same Krull

dimension.
(3) If H is integrally closed, then so is P ∗√

H.
(4) H is Noetherian if and only if P ∗√

H is Noetherian.

If in addition H is Noetherian, then

(5) The extension φ is finite.
(6) H is Cohen–Macaulay if and only if P ∗√

H is Cohen–Macaulay, where −
denotes the integral closure of −.

(7) H is polynomial if and only if P ∗√
H is polynomial.

Proof. For (1)–(3), see Proposition 4.2.1 in [4], for (4) see part (2) of
Lemma 4.1.3, Lemma 4.2.2, Proposition 4.2.4, and Theorem 6.3.1 loc. cit., for
(5) see Proposition 4.2.4 [4] and [9]. Statement (6) was proven in1 [7]. State-
ment (7) was conjectured by C. W. Wilkerson around 1980, [9], and proven
in [7]. �

In this paper, we proceed with the investigation of the similarities of an un-
stable integrally closed algebra over the Steenrod algebra and its inseparable
closure. The proofs of statements (6) and (7) in the above proposition led to
the conjecture that H and its inseparable closure P ∗√

H share all properties that
have homological characterizations, like, e.g., the depth, the projective dimen-
sion, the global dimension, and the Gorenstein property. In this generality,
this is not true. We illustrate this with the following two examples.

1 Note that the necessary assumption on H being integrally closed is missing in that

reference.
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Example 1.2. Let F be a finite field of characteristic two. Consider the
P ∗-purely inseparable extensions

F
[
x2, y2

]
↪→ F

[
x2, y2, y3, x2y

]
↪→ F

[
x2, y

]
↪→ F[x, y].

All four algebras have Krull dimension two. Moreover, F[x, y] is the P ∗-
inseparable closure of the other three. Their respective fields of fractions are

F
(
x2, y2

)
↪→ F

(
x2, y

)
= F

(
x2, y

)
↪→ F(x, y).

Thus, all of them are integrally closed except for F[x2, y2, y3, x2y]. Observe
that all of them have depth two, except F[x2, y2, y3, x2y] which has depth
one. Thus, we see that the three integrally closed algebras are isomorphic as
ungraded F-algebras (even though not as algebras over the Steenrod algebra).
However, we note that F[x2, y2, y3, x2y] is not only not isomorphic to F[x2, y2],
nor is it isomorphic to F[x2, y], but also they do not have the same depth
either.

Here is another example illustrating that we cannot expect good results for
algebras that are not integrally closed.

Example 1.3. Consider the P ∗-purely inseparable extension

K = F
[
x2, y, xy

]
↪→ H = F[x, y],

where |F| = 2. Then K = H, and its global dimension is

gl-dim(H) = 2.

However,
gl-dim(K) = proj-dimK(F) = ∞,

where proj-dim denotes the projective dimension.

2. An unstable algebra and its inseparable closure

We assume from now on that H is an integral domain.

Proposition 2.1. Let H be an integrally closed unstable algebra over the
Steenrod algebra. Then

gl-dim(H) = gl-dim(P ∗√
H).

Proof. The global dimension of H is finite if and only if H is a Noetherian
polynomial algebra. By Theorem 7.4 in [7], this is equivalent to P ∗√

H being
Noetherian and polynomial. Thus, the global dimensions of H and its in-
separable closure are simultaneously finite and equal to their common Krull
dimension by Theorem 6.3.1 in [4]. �
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We denote by H[p] ⊆ H the subalgebra generated by the pth powers of
elements in H. The classical Frobenius map

H −→ H[p], h 	→ hp

provides us with an (ungraded) isomorphism between the two F-algebras.

Proposition 2.2. Let H be an integrally closed Noetherian integral do-
main. Then the extension H[p] ↪→ H splits as a modules2 over H[p] 
 P ∗.

Proof. Since H is Noetherian the extension H[p] ↪→ H is finite. Thus, we
can pick a set of generators of H as a module over H[p], say t1, . . . , tk, and
obtain

(�) H =
k∑

i=1

H[p]ti.

By Proposition 5.1 in [6], we can choose the ti’s to be Thom classes, i.e., for
all j = 1, . . . , k

j∑
i=1

H[p]ti

/ j−1∑
i=1

H[p]ti = H[p]tj

/((
j−1∑
i=1

H[p]ti

)
∩ H[p]tj

)

is isomorphic to a suspension of an unstable cyclic module over H[p]. Without
loss of generality, we can assume that t1 = 1. Consider the extension

FF
(
H[p]

)
↪→

k∑
i=1

FF
(
H[p]

)
ti ↪→ FF(H).

We claim that FF(H) =
∑k

i=1 FF(H[p])ti. To that end, take an element h
k ∈

FF(H) with h,k ∈ H. Then

h

k
=

1
kp

hkp−1 =
1
kp

k∑
i=1

hiti =
k∑

i=1

hi

kp
ti ∈

k∑
i=1

FF
(
H[p]

)
ti,

for suitable hi ∈ H[p]. Since FF(H) is a finite dimensional vector space over
FF(H[p]) and {t1, . . . , tk } forms a spanning set, we find a basis among it and
obtain

FF
(
H[p]

)
↪→

l⊕
i=1

FF
(
H[p]

)
ti = FF(H)

2 The notation H[p] � P ∗-module means that we are looking at modules over H[p] that
carry a Steenrod algebra action, that is compatible with the Steenrod algebra action of

H[p].
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for some l ≤ k. By choice of the ti’s, we can rewrite this and obtain a direct
sum decomposition as FF(H[p]) 
 P ∗-modules as follows

FF(H) = FF
(
H[p]

)
t1 ⊕

(
l⊕

i=2

FF
(
H[p]

)
ti

)/
FF

(
H[p]

)
t1 ∩

l⊕
i=2

FF
(
H[p]

)
ti.

We take the unstable part of FF(H). By [3] we have that

H = Un
(
FF(H)

)
because H is assume to be integrally closed. Since Un commutes with direct
sums (see [8]), we obtain

H = Un
(
FF(H)

)
= Un

(
FF

(
H[p]

)
t1

)
⊕ Un

(
l⊕

i=2

FF
(
H[p]

)
ti

)/
FF

(
H[p]

)
t1.

Since t1 = 1 and H[p] is integrally closed, we find Un(FF(H[p])t1) = H[p]. Thus,

H = H[p]t1 ⊕ Un

(
l⊕

i=2

FF
(
H[p]

)
ti

)/
FF

(
H[p]

)
t1

as desired. �
In Chapter 4 of [4], an explicit algorithm to construct the inseparable clo-

sure is given. We recollect the few steps we need in what follows:
Denote by C(H) ⊆ H the subalgebra consisting of the so-called P ∗-constants:

H[p] ⊆ C(H) =
{
h ∈ H|PΔi(h) = 0 ∀i ≥ 0

}
⊆ H.

Let {si, i ∈ I} be a set of generators of C(H) as a module over H[p]. We adjoin
the pth roots of the si’s and obtain

H′ = H[γ1, γ2, . . .]/
√(

γp
i − si, i = 1,2, . . .

)
.

Set H = H0 and H′ = H1. Then we define Hi = (Hi−1)′ and we obtain an
ascending chain of unstable algebras

H = H0 ↪→ H1 ↪→ H2 ↪→ · · · .

The P ∗-inseparable closure is then the colimit
P ∗√

H = colimi{Hi};

see Proposition 4.1.5 in [4]. Furthermore, for the corresponding fields of frac-
tions we have the following:

FF(Hi+1) = FF(Hi)[γ1, γ2, . . .]/
√(

γp
i − si, i = 1,2, . . .

)
;

see Proposition 2.4 in [7].
We note that C(H) is itself an unstable Noetherian integral domain over

the Steenrod algebra, see Lemmata 4.1.1 and 4.1.2 in [4] if H is. We need
another property of C(H).
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Lemma 2.3. If H is an integrally closed integral domain, then so is C(H).

Proof. Consider the commutative diagram

FF
(

C(H)
)

↪→ FF(H)
∪ ∪

C(H) ↪→ H.

Let c
d ∈ FF(C(H)), with c, d ∈ C(H), be integral over C(H). Thus c

d ∈ FF(H) is
integral over H. Since H is integrally closed, we find that c

d = h ∈ H. Thus,
c = dh and we have for all i that

0 = PΔi(c) = PΔi(dh) = PΔi(d)h + dPΔi(h) = dPΔi(h).

Since H is an integral domain, we have PΔi(h) = 0 and thus c
d = h ∈ C(H) as

desired. �
Lemma 2.4. Let H be an unstable algebra over the Steenrod algebra. Then

C(H) = (H1)[p].

Proof. By construction, the extension H ↪→ H1 is purely inseparable of ex-
ponent one. Thus (H1)[p] ⊆ H, and since this algebra consists of P ∗-constants
we have

(H1)[p] ⊆ C(H).
To prove the reverse inclusion note that every element in C(H) has a pth root
in H1, thus is contained in (H1)[p]. �

Theorem 2.5. Let H be an integrally closed Noetherian integral domain.
Then

proj-dim(Hi−1) ≤ proj-dim(Hi) ∀i,

where proj-dim denotes the projective dimension.

Proof. Since Hi is an integrally closed integral domain whenever H is (see
Lemma 2.2 in [7]), it is enough to show the statement for i = 1. We note
that the projective dimension of H can be calculated by finding the projective
dimension as a module over a system of parameters, say S. Since H ↪→ H1 is
finite S ⊆ H1 is a Noether normalization as well. Consider the following com-
mutative diagram of S-module homomorphisms and exact rows and columns

0 0
↑ ↑

0 ↪→ H/C(H) −→ H/C(H) −→ 0
↑ ↑ ↑

0 −→ H[p] ↪→ H −→ H/H[p] −→ 0
| | ↑ ↑

0 −→ H[p] ↪→ C(H) −→ C(H)/H[p] −→ 0
↑ ↑ ↑
0 0 0
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By Lemma 6.3 in [7], the algebras H and H[p] have the same projective dimen-
sion. Set proj-dim(H) = proj-dim(H[p]) = d and proj-dim(C(H)) = t. Since
H[p] ↪→ H splits by Proposition 2.2, we read off the second exact row that

proj-dim(H/H[p]) ≤ d.

We want to show that d ≤ t. Assume to the contrary that d > t. We proceed
by depth chasing: The last row tells us that proj-dim(C(H)/H[p]) = d + 1.
Thus, the last column gives that proj-dim(H/C(H)) = d + 2. However, the
middle column says proj-dim(H/C(H)) = d. This is the desired contradiction.
Thus, we have

proj-dim(H[p]) = proj-dim(H) ≤ proj-dim
(

C(H)
)
.

To conclude the proof, note that C(H) = (H1)[p] by Lemma 2.4 and thus

proj-dim(H) ≤ proj-dim
(
(H1)[p]

)
= proj-dim(H1)

as claimed. �

Corollary 2.6. Let H be a Noetherian integrally closed integral domain.
Then

proj-dim(H) ≤ proj-dim(P ∗√
H).

Proof. Since H is Noetherian the chain of algebras

H = H0 ↪→ H1 ↪→ H2 ↪→ · · · ↪→ Hr = P ∗√
H

stabilizes at some r ∈ N; see Theorem 6.3.1 in [4]. Furthermore, if H is inte-
grally closed, then so is Hi for all i; see Proposition 4.2.1 (5) in [4]. Thus, the
result follows from the preceding by induction on r. �

We have the following immediate corollary.

Corollary 2.7. Let H be a Noetherian integrally closed unstable integral
domain over the Steenrod algebra and let P ∗√

H be its P ∗-inseparable closure.
Then

depth(H) ≥ depth(Hi) ≥ depth(P ∗√
H)

for all i.

Proof. Since H is Noetherian, the extensions H ↪→ Hi ↪→ P ∗√
H is finite.

Thus, a Noether normalization S ⊆ H of H is a Noether normalization for Hi

and P ∗√
H as well. Thus, the statement follows from the Auslander–Buchsbaum

formula. �

Remark 2.8. Note that the above result contains as a special case Corol-
lary 2.2 in [5], where the above inequality was proven for Cohen–Macaulay P ∗√

H.
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3. Applications to modular invariant theory

Let ρ : G ↪→ GL(n,F) be a faithful representation of a finite group over
a finite field F of characteristic p and order q. Denote by V = F

n the n-
dimensional vector space over F, and by F[V ] the symmetric algebra on the
dual V ∗. The representation ρ induces a linear action of G on F[V ]. Denote by
F[V ]G ⊆ F[V ] the subring of G-invariant polynomials. By the Galois Embed-
ding theorem, an integrally closed P ∗-inseparably closed Noetherian unstable
integral domain over the Steenrod algebra is such a ring of invariants F[V ]G for
a suitable representation ρ of some group G, see [1] and Theorem 7.1.1 in [4].

Let V = W0 ⊕ · · · ⊕ We be a vector space decomposition. Set

F[V•] = F[W0] ⊗F F[W1][p] ⊗F · · · ⊗F F[We][p
e].

The generalized Galois Embedding theorem states that H is isomorphic to
F[V•]G as an algebra over the Steenrod algebra for some suitable flag V•, group
G, and representation ρ if and only if H is an integrally closed Noetherian
unstable integral domain over the Steenrod algebra, see [9] and Theorem 5.2
in [7]. Furthermore, we have a commutative diagram

H = F[V•]G ↪→ F[V•]
↓ ↓

P ∗√
H = F[V ]G ↪→ F[V ],

where the horizontal inclusions are Galois and the vertical inclusions are
purely P ∗-inseparable.

In Proposition 6.4 and Theorem 7.4 in [7], we saw that F[V•]G and F[V ]G

are simultaneously Cohen–Macaulay, or polynomial. Based on the results of
the preceding section, we can add to that list the following properties.

Theorem 3.1. Let F[V•]G ↪→ F[V ]G be an extension of rings of invariants.
Then
(1) F[V•]G and F[V ]G have the same global dimension,
(2) proj-dim(F[V•]G) ≤ proj-dim(F[V ]G), and
(3) depth(F[V•]G) ≥ depth(F[V ]G).

Proof. The first statement follows from Proposition 2.1. The second state-
ment follows from Corollary 2.6 and the last from Corollary 2.7. �

Remark 3.2. We note that the preceding result can be refined for the
extension

F[V�]G ↪→ F[V•]G,

where V� ⊆ V• denotes a G-subflag. We find that F[V•]G, F[V�]G, and F[V ]G

have the same global dimension by Proposition 2.1. If in addition F[V•]G =
(F[V�]G)i for some i ≥ 0, then it follows that
(2′) proj-dim(F[V�]G) ≤ proj-dim(F[V•]G) by Theorem 2.5, and similarly
(3′) depth(F[V�]G) ≥ depth(F[V•]G) by Corollary 2.7.
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We note that in the case of the preceding result the image of G under ρ
necessarily consists of matrices of the form⎡

⎢⎢⎢⎢⎢⎢⎣

A0 0 · · · 0
∗ A1 0 · · · 0

∗ . . .
...

· · · . . . 0
∗ · · · ∗ Ae

⎤
⎥⎥⎥⎥⎥⎥⎦

,

where Ai is an invertible ni × ni-matrix with ni = dim(Wi).

Proposition 3.3. Let F be a field of characteristic p and order q. Assume
that ρ(G) consists of matrices of block diagonal form⎡

⎢⎢⎢⎢⎢⎢⎣

A0 0 · · · 0
0 A1 0 · · · 0

0
. . .

...

· · · . . . 0
0 · · · 0 Ae

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Furthermore, let

F[V•] = F[W0] ⊗F F[W1][q] ⊗F · · · ⊗F F[We][q
e]

then F[V•]G and F[V ]G are ungraded isomorphic.

Proof. Consider the (ungraded) isomorphism

φ : F[V ] −→ F[V•], xi 	→ xqj

i

for xi ∈ F[Wj ] as basis element. Since G acts on F[Wj ] for all j = 0, . . . , e, the
map φ commutes with the group action. Thus, the result follows. �

We want to illustrate these results with an example taken from [7]; see
Example 7.6 loc.cit.

Example 3.4. Let p be odd, and F a field of characteristic p. Consider
the four dimensional modular representation Z/p ↪→ GL(4,F) afforded by the
matrix ⎡

⎢⎢⎣
1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1

⎤
⎥⎥⎦ .

Its ring of invariants turns out to be a hypersurface

F[x1, y1, x2, y2]Z/p = F[c1, y1, c2, y2, q]/(r),
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where ci = xp
i − xiy

p−1
i are the top orbit Chern classes of xi, i = 1,2, and

q = x1y2 − x2y1 is an invariant quadratic form. The relation is given by

r = qp − c1y
p
2 + c2y

p
1 + qyp−1

1 yp−1
2 ,

see Theorem 2.1 in [2]. Certainly, Z/p acts also on F[x1, y1] ⊗ F[xp
2, y

p
2 ] and

we find that (
F[x1, y1] ⊗ F

[
xp

2, y
p
2

])Z/p = F
[
c1, y1, c

p
2, y

p
2 , q′]/(

r′),
where q′ = x1y

p
2 − xp

2y1 and r′ = (q′)p − c1y
p2

2 + cp
2y

p
1 − q′yp−1

1 y
p(p−1)
2 . We note

that the two rings are isomorphic, but not graded isomorphic, nor (in the case
of a finite ground field F) isomorphic as algebras over the Steenrod algebra.

Acknowledgment. I would like to thank Lucho Avramov and Clarence W.
Wilkerson for many good discussions.
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