MAPS THAT TAKE GAUSSIAN MEASURES TO GAUSSIAN MEASURES

DANIEL W. STROOCK
For Don Burkholder, with apologies for what may be abstract nonsense

Abstract. Given a pair of separable, real Banach spaces E and F and a centered Gaussian measure μ on E, one can ask what sort of Borel measurable maps $\Phi: E \longrightarrow F$ map μ to a centered Gaussian measure on F. Obviously, a sufficient condition is that Φ be linear. On the other hand, linearity is far more than is really needed. Indeed, it suffices to know that Φ has the property that

$$
\Phi\left(\frac{x_{1}+x_{2}}{\sqrt{2}}\right)=\frac{\Phi\left(x_{1}\right)+\Phi\left(x_{2}\right)}{\sqrt{2}}
$$

for \mathcal{W}^{2}-almost every $\left(x_{1}, x_{2}\right) \in E^{2}$. In this article, I will first prove a structure theorem which shows that any map Φ which satisfies this property arises from a linear map on the Cameron-Martin space associated with μ on E. I will then investigate which linear maps on the Cameron-Martin space determine a Φ, and finally I will discuss some of the properties of Φ which reflect properties of the linear map from which it is determined.

1. Abstract Wiener spaces

In this section, I will summarize a few facts about Gaussian measures on a Banach space. My treatment derives from L. Gross's theory of abstract Wiener space. For more details, I refer the reader to [2], [5], or Chapter 8 in [6]. In particular, it is important to know that any non-degenerate, centered Gaussian measure on a separable, real Banach space can be realized as the measure in an abstract Wiener space.

I will call the pair (E, H) a potential abstract Wiener space if H is a real, separable Hilbert space, E is a real separable Banach space, and H is continuously embedded in E as a dense subspace. The following lemma summarizes some elementary facts about potential abstract Wiener spaces.

Lemma 1.1. Let (H, E) be a potential abstract Wiener space. For each $x^{*} \in$ E^{*} there exists a unique $h_{x^{*}} \in H$ with the property that $\left\langle h, x^{*}\right\rangle=\left(h, h_{x^{*}}\right)_{H}$ for all $h \in H$. Moreover, $x^{*} \in E^{*} \longmapsto h_{x^{*}} \in H$ is a continuous, one-to-one, linear map whose range is dense, and, as a map from E^{*} into $E, x^{*} \rightsquigarrow h_{x^{*}}$ is continuous. Finally, $\left\{h_{x^{*}}: x^{*} \in E^{*}\right\}$ contains an orthonormal basis for H.

Given a potential abstract Wiener space (H, E), the triple (H, E, \mathcal{W}) is called an abstract Wiener space if \mathcal{W} is a Borel probability measure on E with the property that, for each $x^{*} \in E^{*}$, the random variable $x \rightsquigarrow\left\langle x, x^{*}\right\rangle$ under \mathcal{W} is a centered Gaussian with variance $\left\|h_{x^{*}}\right\|_{H}^{2}$. Equivalently, the Fourier transform $\widehat{\mathcal{W}}$ of \mathcal{W} is given by

$$
\widehat{\mathcal{W}}\left(x^{*}\right)=\mathbb{E}^{\mathcal{W}}\left[e^{\sqrt{-1}\left\langle x, x^{*}\right\rangle}\right]=e^{-\frac{\left\|h_{x^{*}}\right\|_{H}^{2}}{2}} \quad \text { for } x^{*} \in E^{*}
$$

The Hilbert space H in (H, E, \mathcal{W}) is called the Cameron-Martin space associated with \mathcal{W} on E.

Although the uniqueness of \mathcal{W} is obvious, its existence is a highly nontrivial matter. Nonetheless, for each H there always exists an E on which there is a \mathcal{W} for which it is the Cameron-Martin space (i.e., (H, E, \mathcal{W}) is an abstract Wiener space). When $N=\operatorname{dim}(\mathrm{H})<\infty$ and one thinks of H as $\mathbb{R}^{\mathbb{N}}$ with some Hilbert norm, all choices of E can also be identified with \mathbb{R}^{N}, and \mathcal{W} is the distribution of

$$
\left(\xi_{1}, \ldots, \xi_{N}\right) \in \mathbb{R}^{\mathbb{N}} \longrightarrow \sum_{k=1}^{N} \xi_{k} h_{k} \quad \text { under } \gamma_{0,1}^{N},
$$

where $\gamma_{0,1}$ is the standard Gauss measure on \mathbb{R} and $\left\{h_{k}: 1 \leq k \leq N\right\}$ is an orthonormal basis for H. When $\operatorname{dim}(H)=\infty$, one has the following criterion for the existence of \mathcal{W}.

Lemma 1.2. Let (H, E) be an infinite dimensional (i.e., $\operatorname{dim}(H)=\infty)$ potential abstract Wiener space. Then there exists a \mathcal{W} on E for which (H, E, \mathcal{W}) is an abstract Wiener space if there exists an orthonormal basis $\left\{h_{k}: k \geq 1\right\}$ in H for which the series

$$
\begin{equation*}
\sum_{k=1}^{\infty} \xi_{k} h_{k} \text { converges in } E \text { for } \gamma_{0,1}^{\mathbb{Z}^{+}} \text {-almost every }\left(\xi_{1}, \ldots, \xi_{k}, \ldots\right) \in \mathbb{R}^{\mathbb{Z}^{+}} \tag{1.1}
\end{equation*}
$$

Conversely, if (H, E, \mathcal{W}) is an abstract Wiener space, then (1.1) holds for every choice of orthonormal basis, the convergence is in $L^{p}\left(\gamma_{0,1}^{\mathbb{Z}^{+}} ; E\right)$ for every $p \in[1, \infty)$, and \mathcal{W} is the distribution of the series under $\gamma_{0,1}^{\mathbb{Z}^{+}}$.

Given an abstract Wiener space (H, E, \mathcal{W}), there is a unique, linear isometric map $h \in H \longmapsto \mathcal{I}(h) \in L^{2}(\mathcal{W} ; \mathbb{R})$, known as the Paley-Wiener map, such that $\mathcal{I}\left(h_{x^{*}}\right)=\left\langle\cdot, x^{*}\right\rangle \mathcal{W}$-almost surely for each $x^{*} \in E^{*}$. Indeed, the existence and uniqueness of \mathcal{I} follow immediately from the facts that $\left\|h_{x^{*}}\right\|_{H}$ is the $L^{2}(\mathcal{W} ; \mathbb{R})$-norm of $\left\langle\cdot, x^{*}\right\rangle$ and that $\left\{h_{x^{*}}: x^{*} \in E^{*}\right\}$ is dense in H. Moreover, since $\left\langle\cdot, x^{*}\right\rangle$ is a centered Gaussian random variable under \mathcal{W} for each $x^{*} \in E^{*}$, it follows that $\mathcal{I}(h)$ under \mathcal{W} is a centered Gaussian random variable with variance $\|h\|_{H}^{2}$ for each $h \in H$. Hence, $\{\mathcal{I}(h): h \in H\}$ is a closed, centered Gaussian family in $L^{2}(\mathcal{W} ; \mathbb{R})$.

Recall the (unnormalized) Hermite polynomials $H_{n}, n \geq 0$, given by

$$
H_{n}(\xi)=(-1)^{n} e^{\frac{\xi^{2}}{2}} \frac{d^{n}}{d \xi^{n}} e^{-\frac{\xi^{2}}{2}}, \quad \xi \in \mathbb{R}
$$

Familiar facts about these polynomials are that

$$
\begin{equation*}
\left(H_{m}, H_{n}\right)_{L^{2}\left(\gamma_{0,1} ; \mathbb{R}\right)}=m!\delta_{m, n} \quad \text { and } \quad \frac{d H_{m}}{d \xi}=m H_{(m-1)^{+}} \tag{1.2}
\end{equation*}
$$

and the span of $\left\{H_{n}: n \geq 0\right\}$ is dense in $L^{2}\left(\gamma_{0,1} ; \mathbb{R}\right)$. Now suppose that (H, E, \mathcal{W}) is an abstract Wiener space with $\operatorname{dim}(H)=\infty$, choose an orthonormal basis $\left\{h_{k}: k \geq 1\right\}$ in H, and, for $\alpha=\left(\alpha_{1}, \ldots, \alpha_{k}, \ldots\right) \in \mathbb{N}^{Z^{+}}$with $\|\alpha\|=\sum_{k=1}^{\infty} \alpha_{k}<\infty$, define

$$
\mathcal{H}_{\alpha}=\prod_{k=1}^{\infty} H_{\alpha_{k}}\left(\mathcal{I}\left(h_{k}\right)\right)
$$

Then

$$
\left(\mathcal{H}_{\alpha}, \mathcal{H}_{\beta}\right)_{L^{2}(\mathcal{W} ; \mathbb{R})}=\alpha!\delta_{\alpha, \beta},
$$

where $\alpha!=\prod_{k=1}^{\infty} \alpha_{k}$!. Moreover, because $\left\{H_{n}: n \geq 0\right\}$ is an orthogonal basis for $L^{2}\left(\gamma_{0,1} ; \mathbb{R}\right)$, one can use the results in Lemma 1.2 to check that $\left\{\mathcal{H}_{\alpha}:\|\alpha\|<\right.$ $\infty\}$ is an orthogonal basis in $L^{2}(\mathcal{W} ; \mathbb{R})$. In particular, if

$$
Z^{(n)}(\mathcal{W})={\overline{\operatorname{span}\left(\left\{\mathcal{H}_{\alpha}:\|\alpha\|=n\right\}\right)}}^{L^{2}(\mathcal{W} ; \mathbb{R})}
$$

then $Z^{(m)}(\mathcal{W}) \perp Z^{(n)}(\mathcal{W})$ for $m \neq n$ and $L^{2}(\mathcal{W} ; \mathbb{R})=\bigoplus_{n=0}^{\infty} Z^{(n)}(\mathcal{W})$. This is Wiener's decomposition of $L^{2}(\mathcal{W} ; \mathbb{R})$ into spaces of homogeneous chaos. It is important to recognize that $Z^{(n)}(\mathcal{W})$ does not depend on the particular choice of orthonormal basis $\left\{h_{k}: k \geq 1\right\}$ in terms of which it is defined. In particular, $Z^{(0)}(\mathcal{W})$ consists of the \mathcal{W}-almost surely constant elements of $L^{2}(\mathcal{W} ; \mathbb{R})$ and $Z^{(1)}(\mathcal{W})=\{\mathcal{I}(h): h \in H\}$.

Now choose $\left\{x_{k}^{*}: k \geq 1\right\} \subseteq E^{*}$ so that $\left\{h_{k}: k \geq 1\right\}$ is an orthonormal basis for H when $h_{k}=h_{x_{k}^{*}}$, and use this basis and the choice of $\left\langle\cdot, x_{k}^{*}\right\rangle$ to represent $\mathcal{I}\left(h_{k}\right)$ to define the \mathcal{H}_{α} 's. Clearly, each φ from the span of the \mathcal{H}_{α} 's is a polynomial in variable $\left\{\left\langle\cdot, x_{k}^{*}\right\rangle: \alpha_{k} \neq 0\right\}$, and therefore $\left.\partial_{k} \varphi \equiv \frac{d}{d t} \varphi\left(x+t h_{k}\right)\right|_{t=0}$
exists and is a polynomial function of the same variables as φ. Moreover, from (1.2) one sees that if $\varphi \in Z^{(n)}(\mathcal{W})$ for some $n \geq 1$, then $\partial_{k} \varphi \in Z^{(n-1)}(\mathcal{W})$ and

$$
\begin{equation*}
\sum_{k=1}^{\infty}\left\|\partial_{k} \varphi\right\|_{L^{2}(\mathcal{W} ; \mathbb{R})}^{2}=n\|\varphi\|_{L^{2}(\mathcal{W} ; \mathbb{R})}^{2} \tag{1.3}
\end{equation*}
$$

Hence, for each $n \geq 1, \partial_{k}$ admits a unique continuous extension as a linear map from $Z^{(n)}(\mathcal{W})$ into $Z^{(n-1)}(\mathcal{W})$ for which (1.3) continues to hold. Similarly, for $h \in H$, there is a linear map ∂_{h} on the span of the \mathcal{H}_{α} 's with the properties that $\partial_{h} \varphi=\sum_{k=1}^{\infty}\left(h, h_{k}\right)_{H} \partial_{k} \varphi$ when $h \in \operatorname{span}\left(\left\{h_{k}: k \geq 1\right\}\right)$ and, for each $n \geq 1, \partial_{h}$ takes $Z^{(n)}(\mathcal{W})$ into $Z^{(n-1)}(\mathcal{W})$ with

$$
\begin{equation*}
\left\|\partial_{h} \varphi\right\|_{L^{2}(\mathcal{W} ; \mathbb{R})}^{2} \leq n\|h\|_{H}^{2}\|\varphi\|_{L^{2}(\mathcal{W} ; \mathbb{R})}^{2} \quad \text { for } \varphi \in Z^{(n)}(\mathcal{W}) \tag{1.4}
\end{equation*}
$$

Hence, for each $h \in H, \partial_{h}$ has a unique extension to $\operatorname{span}\left(\bigcup_{n=0}^{\infty} Z^{(n)}(\mathcal{W})\right)$ as a linear operator with the property that (1.4) holds. Moreover, ∂_{h} maps $Z^{(0)}(\mathcal{W})$ to 0 and, when $n \geq 1, Z^{(n)}(\mathcal{W})$ to $Z^{(n-1)}(\mathcal{W})$.

2. Wiener maps

Given an abstract Wiener space (H, E, \mathcal{W}), it is clear that $\left(E^{2}, H^{2}, \mathcal{W}^{2}\right)$ is also an abstract Wiener space. Further, if $S: E^{2} \longrightarrow E$ is given by

$$
S\left(x_{1}, x_{2}\right)=\frac{x_{1}+x_{2}}{\sqrt{2}}
$$

then $S_{*} \mathcal{W}^{2}=\mathcal{W}$.
Now suppose that (H, E, \mathcal{W}) is an abstract Wiener space and that F is a second real, separable Banach space. A map $\Phi: E \longrightarrow F$ is a Wiener map if Φ is Borel measurable and

$$
\begin{equation*}
\Phi \circ S=\frac{\Phi \circ \pi_{1}+\Phi \circ \pi_{2}}{\sqrt{2}} \quad \mathcal{W}^{2} \text {-almost surely } \tag{2.1}
\end{equation*}
$$

where $\pi_{i}: E^{2} \longrightarrow E$ is the projection map $\pi_{i}\left(y_{1}, y_{2}\right)=y_{i}$ for $i \in\{1,2\}$. Notice that if $\Phi: E \longrightarrow F$ is a Wiener map, then $\Phi_{*} \mathcal{W}$ is a centered Gaussian measure on F. Indeed, given any $y^{*} \in E^{*}$, the distribution μ of $\left\langle\Phi, y^{*}\right\rangle$ will satisfy the convolution equation $\mu=\mu_{2^{-\frac{1}{2}}} \star \mu_{2^{-\frac{1}{2}}}$, where, for $\alpha \in \mathbb{R}, \mu_{\alpha}$ is the distribution of $x \rightsquigarrow \alpha x$ under μ, and (cf. Exercise 2.3.21 in Chapter 2 of [6]) the only solutions to this equation are centered Gaussians. Hence, by Fernique's theorem, ${ }^{1}$

$$
\begin{equation*}
\mathbb{E}^{\mathcal{W}}\left[e^{\lambda\|\Phi\|_{F}^{2}}\right]<\infty \quad \text { for some } \lambda \in(0, \infty) \tag{2.2}
\end{equation*}
$$

In addition, if $\Psi: E \longrightarrow F$ is a second Borel measurable map which is \mathcal{W} almost surely equal to Φ, then Ψ is also a Wiener map, and, more generally, a

[^0]Borel measurable Φ is a Wiener map if it is the \mathcal{W}-almost sure limit of Wiener maps.

In this section, I will investigate the structure of Wiener maps, and, since there is nothing more to say when $\operatorname{dim}(H)<\infty$, I will assume throughout that $\operatorname{dim}(H)=\infty$.

Lemma 2.1. If $\varphi \in Z^{(n)}(\mathcal{W})$ for some $n \geq 0$, then $\varphi \circ S \in Z^{(n)}\left(\mathcal{W}^{2}\right)$ and $\partial_{(h,-h)} \varphi \circ S=0 \mathcal{W}$-almost surely for each $h \in H$.

Proof. Obviously there is nothing to do when $n=0$, and so I will assume that $n \geq 1$. In addition, since the set of $\varphi \in Z^{(n)}(\mathcal{W})$ for which these properties hold is a closed subspace of $L^{2}(\mathcal{W} ; \mathbb{R})$, it suffices to prove them when $\varphi=\mathcal{H}_{\alpha}$ for some α with $\|\alpha\|=n \geq 1$. Further, I will assume that the \mathcal{H}_{α} 's are defined in terms of an orthonormal basis $\left\{h_{k}: k \geq 1\right\}$ where, for each $k \geq 1, h_{k}=h_{x_{k}^{*}}$ for some $x_{k}^{*} \in E^{*}$. Thus, \mathcal{H}_{α} can be taken to be a polynomial in the variables $\left\{\left\langle\cdot, x_{k}^{*}\right\rangle: \alpha_{k} \neq 0\right\}$.

That $\partial_{(h,-h)} \mathcal{H}_{\alpha} \circ S=0$ is essentially trivial. Indeed, for any $k \geq 1, \sqrt{2} \times$ $\partial_{\left(h_{k},-h_{k}\right)} \mathcal{H}_{\alpha} \circ S\left(x_{1}, x_{2}\right)$ equals

$$
\begin{aligned}
& H_{\alpha_{k}}^{\prime}\left(\frac{\left\langle x_{1}+x_{2}, x_{k}^{*}\right\rangle}{\sqrt{2}}\right) \prod_{j \neq k} H_{\alpha_{j}}\left(\frac{\left\langle x_{1}+x_{2}, x_{j}^{*}\right\rangle}{\sqrt{2}}\right) \\
& \quad-H_{\alpha_{k}}^{\prime}\left(\frac{\left\langle x_{1}+x_{2}, x_{k}^{*}\right\rangle}{\sqrt{2}}\right) \prod_{j \neq k} H_{\alpha_{j}}\left(\frac{\left\langle x_{1}+x_{2}, x_{j}^{*}\right\rangle}{\sqrt{2}}\right)=0 .
\end{aligned}
$$

To prove that $\mathcal{H}_{\alpha} \circ S \in Z^{(n)}\left(\mathcal{W}^{2}\right)$ when $\|\alpha\|=n$, use the generating function

$$
e^{\lambda \xi-\frac{\lambda^{2}}{2}}=\sum_{n=0}^{\infty} \frac{\lambda^{n}}{n!} H_{n}(\xi)
$$

to see that

$$
H_{n}\left(\frac{\xi_{1}+\xi_{2}}{\sqrt{2}}\right)=2^{-\frac{n}{2}} \sum_{m=0}^{n}\binom{n}{m} H_{m}\left(\xi_{1}\right) H_{n-m}\left(\xi_{2}\right)
$$

and from this conclude that

$$
\mathcal{H}_{\alpha} \circ S=2^{-\frac{n}{2}} \sum_{\beta \leq \alpha}\binom{\alpha}{\beta} \mathcal{H}_{\beta} \circ \pi_{1} \mathcal{H}_{\alpha-\beta} \circ \pi_{2} \in Z^{(n)}\left(\mathcal{W}^{2}\right)
$$

where $\beta \leq \alpha$ means that $\beta_{k} \leq \alpha_{k}$ for all $k \geq 1$ and $\binom{\alpha}{\beta}=\prod_{k=1}^{\infty}\binom{\alpha_{k}}{\beta_{k}}$.
Lemma 2.2. A Borel measurable $\varphi: E \longrightarrow \mathbb{R}$ is a Wiener map if and only if $\varphi=\mathcal{I}(h)$ for some $h \in H$.

Proof. First, suppose that $\varphi=\mathcal{I}(h)$. If $h=h_{x^{*}}$ for some $x^{*} \in E^{*}$, then $\varphi=\left\langle\cdot, x^{*}\right\rangle \mathcal{W}$-almost surely and so, because $\left\langle\cdot, x^{*}\right\rangle$ is linear and therefore a Wiener map, it follows that φ is a Wiener map also. To extend the result
to general $h \in H$, simply remember that the set of \mathbb{R}-valued Wiener maps is closed in $L^{2}(\mathcal{W} ; \mathbb{R})$.

Now suppose that φ is an \mathbb{R}-valued Wiener map. Since φ is a centered Gaussian under $\mathcal{W}, \varphi \in L^{2}(\mathcal{W} ; \mathbb{R})$. Now let φ_{n} denote the orthogonal projection of φ onto $Z^{(n)}(\mathcal{W})$. We will know that $\varphi=\mathcal{I}(h)$ for some $h \in H$ once we know that $\varphi_{n}=0$ for $n \neq 1$. Since $\mathbb{E}^{\mathcal{W}}[\varphi]=0, \varphi_{0}=0$. Thus, assume that $n \geq 2$. To show that $\varphi_{n}=0$, I will first show that φ_{n} is a Wiener map. Indeed, from $\varphi=\sum_{m=0}^{\infty} \varphi_{m}$, we know that $\varphi \circ S=\sum_{m=0}^{\infty} \varphi_{m} \circ S$. Moreover, by Lemma 2.1, $\varphi_{m} \circ S \in Z^{(m)}\left(\mathcal{W}^{2}\right)$, and therefore $\varphi_{n} \circ S$ is the projection of $\varphi \circ S$ onto $Z^{(n)}\left(\mathcal{W}^{2}\right)$. At the same time, because $\varphi \circ S=\frac{\varphi \circ \pi_{1}+\varphi \circ \pi_{2}}{\sqrt{2}} \mathcal{W}^{2}$ almost surely, it is clear that $\frac{\varphi_{n} \circ \pi_{1}+\varphi_{n} \circ \pi_{2}}{\sqrt{2}}$ is also the projection of $\varphi \circ S$ onto $Z^{(n)}\left(\mathcal{W}^{2}\right)$. Hence $\varphi_{n} \circ S=\frac{\varphi_{n} \circ \pi_{1}+\varphi_{n} \circ \pi_{2}}{\sqrt{2}} \mathcal{W}^{2}$-almost surely. From this and Lemma 2.1, it follows that $\partial_{h}\left(\varphi_{n} \circ \pi_{1}\right)=\partial_{h}\left(\varphi_{n} \circ \pi_{2}\right) \mathcal{W}^{2}$-almost surely. But $\partial_{h}\left(\varphi_{n} \circ \pi_{1}\right)$ is independent of $\partial_{h}\left(\varphi_{n} \circ \pi_{2}\right)$ under \mathcal{W}^{2}, and therefore they can be \mathcal{W}^{2}-almost surely equal only if $\partial_{h} \varphi_{n}$ is \mathcal{W}-almost surely constant. Since this means that $\partial_{h} \varphi \in Z^{(0)}(\mathcal{W}) \cap Z^{(n-1)}(\mathcal{W})$ and $n \geq 2$, we now know that $\partial_{h} \varphi=0 \mathcal{W}$-almost surely. In particular, if $\left\{h_{k}: k \geq 1\right\}$ is an orthonormal basis in H, then, by (1.3),

$$
0=\sum_{k=1}^{\infty}\left\|\partial_{h_{k}} \varphi_{n}\right\|_{L^{2}(\mathcal{W} ; \mathbb{R})}^{2}=n\left\|\varphi_{n}\right\|_{L^{2}(\mathcal{W} ; \mathbb{R})}^{2}
$$

and so $\varphi_{n}=0 \mathcal{W}$-almost surely.
ThEOREM 2.3. If $\Phi: E \longrightarrow F$ is Borel measurable, then Φ is a Wiener map if and only if there is a bounded, linear map $A: H \longrightarrow F$ such that $\left\langle\Phi, y^{*}\right\rangle=\mathcal{I}\left(A^{\top} y^{*}\right) \mathcal{W}$-almost surely for each $y^{*} \in F^{*}$, where $A^{\top}: F^{*} \longrightarrow H$ is the adjoint of A. Moreover, if A exists, then it is unique, it is continuous from the weak* topology on H into the strong topology on F, and, for any orthonormal basis $\left\{h_{k}: k \geq 1\right\}$,

$$
\Phi=\sum_{m=1}^{\infty} \mathcal{I}\left(h_{k}\right) A h_{k} \quad \mathcal{W} \text {-almost surely }
$$

where the convergence is \mathcal{W}-almost sure as well as in $L^{p}(\mathcal{W} ; \mathbb{R})$ for each $p \in$ $[1, \infty)$. In particular, if F_{A} is the closure in F of the range $A H$ of A, then $\Phi \in F_{A} \mathcal{W}$-almost surely.

Proof. First, suppose that A exists. Then, by Lemma 2.2, for each $y^{*} \in E^{*}$, $\left\langle\Phi, y^{*}\right\rangle$ is an \mathbb{R}-valued Wiener map and therefore

$$
\left\langle\Phi \circ S, y^{*}\right\rangle=\frac{\left\langle\Phi \circ \pi_{1}+\Phi \circ \pi_{2}, y^{*}\right\rangle}{\sqrt{2}} \quad \mathcal{W}^{2} \text {-almost surely. }
$$

Hence, since F^{*} is separable in the weak* topology, Φ is a Wiener map. Furthermore, because

$$
\left\langle A h, y^{*}\right\rangle=\left(h, A^{\top} y^{*}\right)_{H}=\mathbb{E}^{\mathcal{W}}\left[\mathcal{I}(h) \mathcal{I}\left(A^{\top} y^{*}\right)\right]=\mathbb{E}^{\mathcal{W}}\left[\mathcal{I}(h)\left\langle\Phi, y^{*}\right\rangle\right]
$$

it is clear that there is at most one choice of A.
Now suppose that Φ is a Wiener map. I begin by constructing the map $A^{\top}: F^{*} \longrightarrow H$ which will be the adjoint of the A for which we are looking. Namely, given $y^{*} \in F^{*}$, set $\varphi=\left\langle\Phi, y^{*}\right\rangle$. Then, because Φ is a Wiener map, φ is an \mathbb{R}-valued Wiener map. Hence, by Lemma 2.2 , there exists a necessarily unique $A^{\top} y^{*} \in H$ such that $\left\langle\Phi, y^{*}\right\rangle=\mathcal{I}\left(A^{\top} y^{*}\right) \mathcal{W}$-almost surely. By uniqueness, A^{\top} is linear. Furthermore, because, by $(2.2), \Phi \in L^{2}(\mathcal{W} ; F)$ and

$$
\left\|A^{\top} y^{*}\right\|_{H}=\left\|\mathcal{I}\left(A^{\top} y^{*}\right)\right\|_{L^{2}(\mathcal{W} ; \mathbb{R})} \leq\left\|y^{*}\right\|_{F^{*}}\|\Phi\|_{L^{2}(\mathcal{W} ; F)}
$$

it is clear that A^{\top} is bounded from F^{*} into H. In fact, if $y_{n}^{*} \longrightarrow 0$ in the weak ${ }^{*}$ topology on F^{*}, then, because, by the uniform boundedness principle, $C=\sup \left\{\left\|y_{n}^{*}\right\|_{F^{*}}: n \geq 1\right\}<\infty$ and therefore $\left|\left\langle\Phi, y_{n}^{*}\right\rangle\right| \leq C\|\Phi\|_{F} \in L^{2}(\mathcal{W} ; \mathbb{R})$, it follows from Lebesgue's Dominated Convergence theorem that

$$
\left\|A^{\top} y_{n}^{*}\right\|_{H}^{2}=\int\left\langle\Phi, y_{n}^{*}\right\rangle^{2} d \mathcal{W} \longrightarrow 0
$$

Hence, A^{\top} is continuous from the weak* topology on F^{*} into the strong topology on H. In particular, this means that if $h \in H$ and $y^{* *}=\left(A^{\top}\right)^{\top} h \in$ $F^{* *}$, then

$$
\left\langle y_{n}^{*}, y^{* *}\right\rangle=\left(h, A^{\top} y_{n}^{*}\right)_{H} \longrightarrow 0
$$

when $\left\{y_{n}^{*}: n \geq 1\right\} \subseteq F^{*}$ tends to 0 in the weak* topology. Thus (cf. Theorem 9 on p. 421 of $[1]), y^{* *} \in F$, and so $\left(A^{\top}\right)^{\top}$ determines a bounded linear map, which I will call A, from H into F, and clearly A^{\top} is the adjoint of A.

The continuity of A with respect to the weak* topology on H into to the strong topology on F is an immediate consequence of the corresponding continuity property of A^{\top} and the fact that the closed unit ball in F^{*} is weak* compact. To prove the concluding assertion, let $\left\{h_{k}: k \geq 1\right\}$ be an orthonormal basis for H and take \mathcal{F}_{n} to be the σ-algebra generated by $\left\{\mathcal{I}\left(h_{k}\right): 1 \leq k \leq n\right\}$. Then, because $\Phi \in L^{p}(\mathcal{W} ; F)$ for every $p \in[1, \infty)$ and the \mathcal{W}-completion of $\bigvee_{n=1}^{\infty} \mathcal{F}_{n}$ contains the Borel field over E, we know that $\mathbb{E}^{\mathcal{W}}\left[\Phi \mid \mathcal{F}_{n}\right] \longrightarrow \Phi$ both \mathcal{W}-almost surely as well as in $L^{p}(\mathcal{W} ; F)$ for every $p \in[1, \infty)$. On the other hand,

$$
\begin{aligned}
& \left\langle\mathbb{E}^{\mathcal{W}}\left[\Phi \mid \mathcal{F}_{n}\right], y^{*}\right\rangle \\
& \quad=\mathbb{E}^{\mathcal{W}}\left[\left\langle\Phi, y^{*}\right\rangle \mid \mathcal{F}_{n}\right]=\mathbb{E}^{\mathcal{W}}\left[\mathcal{I}\left(A^{\top} y^{*}\right) \mid \mathcal{F}_{n}\right] \\
& \quad=\sum_{k=1}^{n}\left\langle A h_{k}, y^{*}\right\rangle \mathcal{I}\left(h_{k}\right)=\left\langle\sum_{k=1}^{n} \mathcal{I}\left(h_{k}\right) A h_{k}, y^{*}\right\rangle \quad \mathcal{W} \text {-almost surely }
\end{aligned}
$$

for each $y^{*} \in F^{*}$. Hence, since the weak* topology on F^{*} is separable,

$$
\mathbb{E}^{\mathcal{W}}\left[\Phi \mid \mathcal{F}_{n}\right]=\sum_{k=1}^{n} \mathcal{I}\left(h_{k}\right) A h_{k}
$$

3. A's which determine Wiener maps

Given a bounded, linear map $A: H \longrightarrow F$ and a Wiener map $\Phi: E \longrightarrow F$, I will say that Φ comes from A if $\left\langle\Phi, y^{*}\right\rangle=\mathcal{I}\left(A^{\top} y^{*}\right) \mathcal{W}$-almost surely for each $y^{*} \in F^{*}$, in which case I will say that A determines Φ. Again because F^{*} is weak* separable, it is obvious that, up to a set of \mathcal{W}-measure $0, A$ can determine at most one Φ. On the other hand, the problem of deciding whether a given A determines any Φ is much more difficult. Indeed, it turns out to be tantamount to finding out whether a certain potential abstract Wiener space can be made into an abstract Wiener space. To explain this, let $H_{A}=A H$ be the range of A, turn H_{A} into a Hilbert space with norm $\|\cdot\|_{H_{A}}$ determined by $\|A h\|_{H_{A}}=\|h\|_{H}$ when $h \perp \operatorname{Null}(A)$. Next, take F_{A} to be the closure of H_{A} in F, and turn F_{A} into a Banach space by restricting $\|\cdot\|_{F}$ to F_{A}. Obviously, $\left(H_{A}, F_{A}\right)$ is a potential Wiener space. Moreover, F_{A}^{*} can be identified as the quotient space F^{*} / \sim, where $z^{*} \sim y^{*}$ means that $\left\langle y, z^{*}-y^{*}\right\rangle=0$ for all $y \in F_{A}$. Finally, if $y^{*} \in F^{*}$ and $\left[y^{*}\right]_{A}$ is the \sim-equivalence class containing y^{*}, then $A A^{\top} y^{*}$ is the unique $g_{A} \in H_{A}$ with the property that $\left\langle h_{A},\left[y^{*}\right]_{A}\right\rangle=\left(g_{A}, h_{A}\right)_{H_{A}}$ for all $h_{A} \in H_{A}$. Thus, $\left(h_{A}\right)_{\left[y^{*}\right]_{A}}=A A^{\top} y^{*}$, and therefore $\left\|\left(h_{A}\right)_{\left[y^{*}\right]_{A}}\right\|_{H_{A}}=\left\|A^{\top} y^{*}\right\|_{H}$.

Theorem 3.1. Refer to the preceding discussion. Then the following are equivalent.
(1) A determines a Wiener map $\Phi: E \longrightarrow F$.
(2) There is an orthonormal basis $\left\{h_{k}: k \geq 1\right\}$ in H such that the series

$$
\sum_{k=1}^{\infty} \xi_{k} A h_{k} \text { converges in } F \text { for } \gamma_{0,1}^{\mathbb{Z}^{+}} \text {-almost every }\left(\xi_{1}, \ldots, \xi_{k}, \ldots\right) \in \mathbb{R}^{\mathbb{Z}^{+}}
$$

(3) There is a \mathcal{W}_{A} on F_{A} for which $\left(H_{A}, F_{A}, \mathcal{W}_{A}\right)$ is an abstract Wiener space.
Moreover, if (1) holds and $\left\{h_{k}: k \geq 1\right\}$ is an orthonormal basis in H, then

$$
\Phi=\sum_{k=1}^{\infty} \mathcal{I}\left(h_{k}\right) A h_{k} \quad \mathcal{W} \text {-almost surely }
$$

where the series converges in $L^{p}\left(\mathcal{W} ; F_{A}\right)$ for every $p \in[1, \infty)$ as well as \mathcal{W} almost surely. In addition, the \mathcal{W}_{A} in (3) equals the restriction to F_{A} of $\Phi_{*} \mathcal{W}$.

Proof. First suppose that (1) holds, and let $\left\{h_{k}: k \geq 1\right\}$ be an orthonormal basis in H. Then, by the last part of Theorem $2.3, \sum_{k=1}^{\infty} \mathcal{I}\left(h_{k}\right) A h_{k}$ converges in F to $\Phi \mathcal{W}$-almost surely as well as in $L^{p}(\mathcal{W} ; F)$ for every $p \in[1, \infty)$. Hence, we now know that the concluding assertion is true. Also, because $\gamma_{0,1}^{\mathbb{Z}^{+}}$is the \mathcal{W}-distribution of $\left(\mathcal{I}\left(h_{1}\right), \ldots, \mathcal{I}\left(h_{k}\right), \ldots\right)$, we know that (1) implies (2).

Next suppose that (2) holds, and denote by Φ the sum of the series. Then, because, by Lemma 2.2, each of the summands is a Wiener map, it follows that Φ is also a Wiener map. In addition, for any $y^{*} \in F^{*}, \mathcal{W}$-almost surely

$$
\left\langle\Phi, y^{*}\right\rangle=\sum_{k=1}^{\infty} \mathcal{I}\left(h_{k}\right)\left\langle A h_{k}, y^{*}\right\rangle=\sum_{k=1}^{\infty} \mathcal{I}\left(h_{k}\right)\left(h_{k}, A^{\top} y^{*}\right)_{H}=\mathcal{I}\left(A^{\top} y^{*}\right)
$$

Hence, (2) implies (1).
Next, suppose that (1), and therefore (2), holds. By (2), $\Phi \in F_{A} \mathcal{W}$-almost surely, and so $\Phi_{*} \mathcal{W}\left(F_{A}\right)=1$. In addition,

$$
\mathbb{E}^{\mathcal{W}}\left[e^{\sqrt{-1}\left\langle\Phi, y^{*}\right\rangle}\right]=\mathbb{E}^{\mathcal{W}}\left[e^{\sqrt{-1} \mathcal{I}\left(A^{\top} y^{*}\right)}\right]=e^{-\frac{1}{2}\left\|A^{\top} y^{*}\right\|_{H}^{2}}
$$

Hence, since $\left\|\left(h_{A}\right)_{\left[y^{*}\right]_{A}}\right\|_{H_{A}}=\left\|A^{\top} y^{*}\right\|_{H},\left(H_{A}, F_{A}, \Phi_{*} \mathcal{W} \upharpoonright F_{A}\right)$ is an abstract Wiener space, and so (1) implies (3) and the \mathcal{W}_{A} in (3) equals $\Phi_{*} \mathcal{W} \upharpoonright F_{A}$. Conversely, if (3) holds, choose an orthonormal basis $\left\{h_{k}: k \geq 1\right\}$ in H so that, for each $k \geq 1$, either $A h_{k}=0$ or $h_{k} \perp \operatorname{Null}(A)$, and denote by \mathcal{K} the set $\left\{k: h_{k} \perp \operatorname{Null}(A)\right\}$. Then $\left\{A h_{k}: k \in \mathcal{K}\right\}$ is an orthonormal basis in H_{A}, and so $\sum_{k \in \mathcal{K}} \mathcal{I}_{A}\left(A h_{k}\right) A h_{k}$ is \mathcal{W}_{A}-almost surely convergent in F_{A}, where \mathcal{I}_{A} is the Paley-Wiener map for $\left(H_{A}, F_{A}, \mathcal{W}_{A}\right)$. Since $A h_{k}=0$ for $k \notin \mathcal{K}$ and $\left\{\mathcal{I}_{A}\left(A h_{k}\right): k \in \mathcal{K}\right\}$ under \mathcal{W}_{A} are mutually independent standard normal random variables, I have proved that (3) implies (2).

Obviously, if $A: H \longrightarrow F$ is a linear map which is bounded with respect to $\|\cdot\|_{E}$ in the sense that $\|A h\|_{F} \leq C\|h\|_{E}$ for some $C<\infty$, then the unique extension of A as a bounded linear map from E to F is a Wiener map determined by A. I will now discuss a more interesting source of A 's which determine Wiener maps. Before stating the main result in this direction, I recall the following familiar fact (cf. [3] and [4]).

Lemma 3.2. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, assume that the random variables $\left\{X_{i}: i \geq 1\right\} \subseteq L^{2}(\mathbb{P} ; \mathbb{R})$ span a Gaussian family, and set $C_{i, j}=$ $\mathbb{E}^{\mathbb{P}}\left[X_{i} X_{j}\right]$. Then the joint distribution μ on $\mathbb{R}^{\mathbb{Z}^{+}}$of $\left\{X_{i}: i \geq 1\right\}$ under \mathbb{P} is absolutely continuous with respect to $\gamma_{0,1}^{\mathbb{Z}^{+}}$if and only if the matrix $\left(\left(C_{i, j}\right)\right)_{i, j \in \mathbb{Z}^{+}}$ determines a bounded operator C on $\ell^{2}\left(\mathbb{Z}^{+} ; \mathbb{R}\right), \operatorname{Null}(C)=0$, and $\sum_{i, j=1}^{\infty}\left(\delta_{i, j}-\right.$ $\left.C_{i, j}\right)^{2}<\infty$. Equivalently, $\mu \ll \gamma_{0,1}^{\mathbb{Z}_{1}^{+}}$if and only if $\left(\left(C_{i, j}\right)\right)_{i, j \in \mathbb{Z}^{+}}$determines a bounded, non-degenerate operator C on $\ell^{2}\left(\mathbb{Z}^{+} ; \mathbb{R}\right)$ such that $I-C$ is HilbertSchmidt.

Theorem 3.3. Let $\left(E, H, \mathcal{W}_{H}\right)$ and $\left(F, G, \mathcal{W}_{G}\right)$ be a pair of infinite dimensional abstract Wiener spaces, let $A: H \longrightarrow G$ be a bounded linear map, and use $A^{\dagger}: G \longrightarrow H$ to denote its adjoint. If, for some $\lambda>0, \lambda I-A A^{\dagger}$ is a Hilbert-Schmidt operator on G, then A determines a Wiener map from E to F.

Proof. Clearly it suffices to handle the case when $\lambda=1$ since the general case reduces to this one when A is replaced by $\lambda^{-\frac{1}{2}} A$. Thus, assume that $\lambda=1$.

I will first show that there is an orthonormal basis for G such that $S=$ $\lim _{m \rightarrow \infty} S_{m}$ exists in $F \mathcal{W}_{H}$-almost surely when $S_{m}=\sum_{i=1}^{m} \mathcal{I}\left(A^{\dagger} g_{i}\right) g_{i}$. To this end, note that, because $I-A A^{\dagger}$ is Hilbert-Schmidt, $\operatorname{Null}\left(A^{\dagger}\right)=$ $\operatorname{Null}\left(A A^{\dagger}\right)$ is finite dimensional. Now choose an orthonormal basis for G $\left\{g_{i}: i \geq 1\right\}$ so that $g_{i} \in \operatorname{Null}\left(A^{\dagger}\right)$ if $1 \leq i \leq N=\operatorname{dim}\left(\operatorname{Null}\left(A^{\dagger}\right)\right)$ and $g_{i} \perp$ $\operatorname{Null}\left(A^{\dagger}\right)$ if $i>N$. Obviously, $S_{m}=0$ if $1 \leq m \leq N$ and

$$
S_{m}=\sum_{i=N+1}^{m} \mathcal{I}\left(A^{\dagger} g_{i}\right) g_{i} \quad \text { if } m>N
$$

Moreover, because $A A^{\dagger}$ is non-degenerate on $\operatorname{Null}\left(A^{\dagger}\right)^{\perp}$ and $I-A A^{\dagger}$ is HilbertSchmidt, Lemma 3.2 says that the joint distribution of $\left\{\mathcal{I}\left(A^{\dagger} g_{i}\right): i>N\right\}$ under \mathcal{W}_{H} is absolutely continuous with respect to the joint distribution of $\left\{\mathcal{J}\left(g_{i}\right): i>N\right\}$ under \mathcal{W}_{G}, where \mathcal{J} denotes the Paley-Wiener map for $\left(G, F, \mathcal{W}_{G}\right)$. Hence, because $\sum_{i=1}^{\infty} \mathcal{J}\left(g_{i}\right) g_{i}$ is \mathcal{W}_{G}-almost surely convergent in F, it follows that $\lim _{m \rightarrow \infty} S_{m}$ converges \mathcal{W}_{H}-almost surely in F.

To complete the proof, observe that each S_{m} is a centered, F-valued, Gaussian random variable under \mathcal{W}_{H}, and therefore that S is also. Thus, by Fernique's theorem, the fact that $S_{m} \longrightarrow S$ in $F \mathcal{W}_{H}$-almost surely implies that there exists an $\varepsilon>0$ such that $\sup _{m>1} E^{\mathcal{W}_{H}}\left[e^{\varepsilon\left\|S_{m}\right\|_{F}^{2}}\right]<\infty$, and therefore that $S_{m} \longrightarrow S$ in $L^{1}\left(\mathcal{W}_{H} ; F\right)$. Now let $\left\{h_{k}: k \geq 1\right\}$ be an orthonormal basis for H, and let \mathcal{F}_{n} be the σ-algebra generated by $\left\{\mathcal{I}\left(h_{k}\right): 1 \leq k \leq n\right\}$. Then $\mathbb{E}^{\mathcal{W}_{H}}\left[S \mid \mathcal{F}_{n}\right]=\lim _{m \rightarrow \infty} \mathbb{E}^{\mathcal{W}_{H}}\left[S_{m} \mid \mathcal{F}_{n}\right]$ in $L^{1}\left(\mathcal{W}_{H} ; F\right)$. At the same time,

$$
\begin{aligned}
& \mathbb{E}^{\mathcal{W}_{H}}\left[S_{m} \mid \mathcal{F}_{n}\right] \\
& \quad=\sum_{i=1}^{m} \mathbb{E}^{\mathcal{W}_{H}}\left[\mathcal{I}\left(A^{\dagger} g_{i}\right) \mid \mathcal{F}_{n}\right] g_{i}=\sum_{i=1}^{m}\left(\sum_{k=1}^{n}\left(A^{\dagger} g_{i}, h_{k}\right)_{H} \mathcal{I}\left(h_{k}\right)\right) \\
& \quad=\sum_{k=1}^{n} \mathcal{I}\left(h_{k}\right)\left(\sum_{i=1}^{m}\left(A h_{k}, g_{i}\right)_{G} g_{i}\right) \longrightarrow \sum_{k=1}^{n} \mathcal{I}\left(h_{k}\right) A h_{k} \quad \text { in } G \text { as } m \rightarrow \infty .
\end{aligned}
$$

Hence,

$$
\mathbb{E}^{\mathcal{W}_{H}}\left[S \mid \mathcal{F}_{n}\right]=\sum_{k=1}^{n} \mathcal{I}\left(h_{k}\right) A h_{k} \quad \mathcal{W}_{H} \text {-almost surely }
$$

and therefore $\sum_{k=1}^{n} \mathcal{I}\left(h_{k}\right) A h_{k}$ converges in F to $S \mathcal{W}_{H}$-almost surely.

Now apply Theorem 3.1.
As the next result makes explicit, in Theorem 3.3 the image $\Phi_{*} \mathcal{W}_{H}$ of \mathcal{W}_{H} under Φ will not be absolutely continuous with respect to \mathcal{W}_{G} unless $\lambda=1$.

Corollary 3.4. Let $\left(H, E, \mathcal{W}_{H}\right)$ and $\left(G, F, \mathcal{W}_{G}\right)$ be as in the proceding, and suppose that $A: H \longrightarrow F$ is a bounded, linear map. Then the following are equivalent.
(1) A determines a Wiener map $\Phi: E \longrightarrow F$ and $\Phi_{*} \mathcal{W}_{H} \ll \mathcal{W}_{G}$.
(2) A maps H boundedly into $G, \operatorname{Null}\left(A^{\dagger}\right)=0$, and $I-A A^{\dagger}$ is HilbertSchmidt on G.
Moreover, if (2), and therefore (1), holds, then $\mathcal{J}(g) \circ \Phi=\mathcal{I}\left(A^{\dagger} g\right) \mathcal{W}_{H}$-almost surely for each $g \in G$, where \mathcal{I} and \mathcal{J} denote the Paley-Wiener maps for $\left(H, E, \mathcal{W}_{H}\right)$ and $\left(G, F, \mathcal{W}_{G}\right)$, respectively.

Proof. First, assume that (1) holds. Choose $\left\{y_{i}^{*}: i \geq 1\right\} \subseteq F^{*}$ so that $\left\{g_{i}: i \geq 1\right\}$ is an orthonormal basis for G when $g_{i}=g_{y_{i}^{*}}$. Because $\Phi_{*} \mathcal{W}_{H} \ll$ \mathcal{W}_{G} and $\left\langle\Phi, y_{i}^{*}\right\rangle=\mathcal{J}\left(g_{i}\right) \circ \Phi \mathcal{W}_{H}$-almost surely, the joint distribution of $\left\{\left\langle\Phi, y_{i}^{*}\right\rangle: i \geq 1\right\}$ under \mathcal{W}_{H} is absolutely continuous with respect to the joint distribution of $\left\{\mathcal{J}\left(g_{i}\right): i \geq 1\right\}$ under \mathcal{W}_{G}. Equivalently, the joint distribution of $\left\{\mathcal{I}\left(A^{\top} y_{i}^{*}\right): i \geq 1\right\}$ under \mathcal{W}_{H} is absolutely continuous with respect to $\gamma_{0,1}^{\mathbb{Z}^{+}}$. Hence, by Lemma 3.2, if $C_{i, j}=\left\langle A^{\top} y_{i}^{*}, A^{\top} y_{j}^{*}\right\rangle$, then the matrix $\left(\left(C_{i, j}\right)\right)_{i, j \in \mathbb{Z}^{+}}$ determines a bounded, non-degenerate operator C on $\ell^{2}\left(\mathbb{Z}^{+} ; \mathbb{R}\right)$ and $I-C$ is Hilbert-Schmidt. Starting from this and taking $M=1+\|I-C\|_{\text {H.S. }}$, it is easy to check that $\left\|A^{\top} y^{*}\right\|_{H} \leq M\left\|g_{y^{*}}\right\|_{G}$ and therefore that there is a unique bounded, linear $A^{\dagger}: G \longrightarrow H$ such that $A^{\dagger} g_{y^{*}}=A^{\top} y^{*}$, and clearly $\left\|A^{\dagger}\right\|_{\text {op }} \leq M$. Since this means that $\left|\left\langle A h, y^{*}\right\rangle\right| \leq M\|h\|_{H}\left\|g_{y^{*}}\right\|_{G}$, it follows that A maps H boundedly into G and that A^{\dagger} is the adjoint of A as a map from H to G. Furthermore, from the properties of C, it is clear that $A A^{\dagger}$ is non-degenerate and that $I-A A^{\dagger}$ is Hilbert-Schmidt on H.

Now assume that (2) holds. By Theorem 3.3, we know that A determines a Wiener map $\Phi: E \longrightarrow F$. Moreover, in the notation used above, the operator C is non-degenerate and $I-C$ is Hilbert-Schmidt. Hence, by Lemma 3.2, the joint distribution of $\left\{\mathcal{I}\left(A^{\top} y_{i}^{*}\right): i \geq 1\right\}$ under \mathcal{W}_{H} is absolutely continuous with respect to $\gamma_{0,1}^{\mathbb{Z}^{+}}$, and so the joint distribution of $\left\{\left\langle\Phi, y_{i}^{*}\right\rangle: i \geq 1\right\}$ under \mathcal{W}_{H} is absolutely continuous with that of $\left\{\mathcal{J}\left(g_{i}\right): i \geq 1\right\}$ under \mathcal{W}_{G}. Since this means that the distribution of Φ under \mathcal{W}_{H} is absolutely continuous with respect to $\mathcal{W}_{G}, \Phi_{*} \mathcal{W}_{H} \ll \mathcal{W}_{G}$.

We now know that $(1) \Longleftrightarrow(2)$. Assume (2) and therefore (1) hold. Given $g \in G$, choose $\left\{y_{n}^{*}: n \geq 1\right\} \subseteq F^{*}$ so that $g_{n} \equiv g_{y_{n}^{*}} \longrightarrow g$ in G. Then, $\mathcal{J}\left(g_{n}\right) \longrightarrow$ $\mathcal{J}(g)$ in $L^{2}\left(\mathcal{W}_{G} ; \mathbb{R}\right)$, and so I may and will assume that $\mathcal{J}\left(g_{n}\right) \longrightarrow \mathcal{J}(g) \mathcal{W}_{G^{-}}$ almost surely, which, by absolute continuity, means that $\mathcal{J}\left(g_{n}\right) \circ \Phi \longrightarrow \mathcal{J}(g) \circ$ $\Phi \mathcal{W}_{H}$-almost surely. At the same time, $A^{\dagger} g_{n} \longrightarrow A^{\dagger} g$ in H, and so I may and
will also assume that $\mathcal{I}\left(A^{\dagger} g_{n}\right) \longrightarrow \mathcal{I}\left(A^{\dagger} g\right) \mathcal{W}_{H}$-almost surely. Hence, since $\mathcal{J}\left(g_{n}\right) \circ \Phi=\mathcal{I}\left(A^{\dagger} g_{n}\right) \mathcal{W}_{H}$-almost surely, it follows that $\mathcal{J}(g) \circ \Phi=\mathcal{I}\left(A^{\dagger} g\right)$ \mathcal{W}_{H}-almost surely.

Corollary 3.5. Again let $\left(H, E, \mathcal{W}_{H}\right)$ and $\left(G, F, \mathcal{W}_{G}\right)$ be as in Theorem 3.3, and assume that $\Phi: E \longrightarrow F$ is a Wiener map for which $\Phi_{*} \mathcal{W}_{H} \ll$ \mathcal{W}_{G}. In addition, let Ψ be a Wiener map from F into a third real, separable Banach space K. Then $\Psi \circ \Phi$ is a Wiener map from E into K. Moreover, if Φ and Ψ are determined by A and B, respectively, then $\Psi \circ \Phi$ is determined by $B \circ A$.

Proof. Because $\Phi_{*} \mathcal{W}_{H} \ll \mathcal{W}_{G}$, the set of $\left(x_{1}, x_{2}\right) \in E^{2}$ for which

$$
\Psi\left(\frac{\Phi\left(x_{1}\right)+\Phi\left(x_{2}\right)}{\sqrt{2}}\right) \neq \frac{\Psi \circ \Phi\left(x_{1}\right)+\Psi \circ \Phi\left(x_{2}\right)}{\sqrt{2}}
$$

has \mathcal{W}_{H}^{2}-measure 0 . Hence, since

$$
\Phi\left(\frac{x_{1}+x_{2}}{\sqrt{2}}\right)=\frac{\Phi\left(x_{1}\right)+\Phi\left(x_{2}\right)}{\sqrt{2}}
$$

for \mathcal{W}_{H}^{2}-almost every $\left(x_{1}, x_{2}\right) \in E^{2}$, it follows that $\Psi \circ \Phi$ is also a Wiener map.
Next, let $A: H \longrightarrow F$ be the bounded, linear map which determines Φ. By Corollary 3.4, A is a bounded map from H to G and $\mathcal{J}(g) \circ \Phi=\mathcal{I}\left(A^{\dagger} g\right)$ \mathcal{W}_{H}-almost surely for each $g \in G$. Hence, if $B: F \longrightarrow K$ determines Ψ, then, for any $z^{*} \in K^{*}$,

$$
\left\langle\Psi \circ \Phi, z^{*}\right\rangle=\mathcal{J}\left(B^{\top} z^{*}\right) \circ \Phi=\mathcal{I}\left(A^{\dagger} B^{\top} z^{*}\right) \quad \mathcal{W}_{H} \text {-almost surely. }
$$

But $A^{\dagger} B^{\top}=(B \circ A)^{\top}$, and so $B \circ A$ determines $\Psi \circ \Phi$.
Corollary 3.6. Let $\left(H, E, \mathcal{W}_{H}\right)$ and $\left(G, F, \mathcal{W}_{G}\right)$ be as in Theorem 3.3, suppose that $\Phi: E \longrightarrow F$ is a Wiener map for which $\Phi_{*} \mathcal{W}_{H} \ll \mathcal{W}_{G}$, and let $A: H \longrightarrow G$ be the associated map described in (2) of Corollary 3.4. If A is non-degenerate and $I-A^{\dagger} A$ is Hilbert-Schmidt on H, then there exists a Wiener map $\Psi: F \longrightarrow E$ such that $\Psi_{*} \mathcal{W}_{G} \ll \mathcal{W}_{H}$ and Ψ is the inverse of Φ in the sense that $\Psi \circ \Phi(x)=x$ for \mathcal{W}_{H}-almost every $x \in E$ and $\Phi \circ \Psi(y)=y$ for \mathcal{W}_{G}-almost every $y \in F$.

Proof. I begin by showing that A has a bounded inverse $A^{-1}: G \longrightarrow H$ and that $I-A^{-1}\left(A^{-1}\right)^{\dagger}$ is Hilbert-Schmidt on H. Indeed, because A is non-degenerate and $I-A^{\dagger} A$ is Hilbert-Schmidt, $A A^{\dagger}$ has a pure point spectrum $\left\{\lambda_{i}: i \geq 1\right\} \subseteq(0, \infty)$ for which 1 is the only possible accumulation point. Hence, there exists an $\varepsilon>0$ such that $\lambda_{i} \geq \varepsilon$ for all $i \geq 1$, and therefore A has a bounded inverse $A^{-1}: G \longrightarrow H$. Furthermore, the Hilbert-Schmidt norm of $I-A^{-1}\left(A^{-1}\right)^{\dagger}$ is

$$
\sum_{i=1}^{\infty}\left(1-\frac{1}{\lambda_{i}}\right)^{2} \leq \varepsilon^{-2} \sum_{i=1}^{\infty}\left(1-\lambda_{i}\right)^{2}<\infty
$$

and so $I-A^{-1}\left(A^{-1}\right)^{\dagger}$ is Hilbert-Schmidt on H.
Given the preceding, Corollary 3.4 says that A^{-1} determines a Wiener map $\Psi: F \longrightarrow E$ such that $\Psi_{*} \mathcal{W}_{G} \ll \mathcal{W}_{H}$, and Corollary 3.5 says that $\Psi \circ \Phi$ is a Wiener map which is determined by $A^{-1} \circ A=I$. Hence, by uniqueness, $\Psi \circ \Phi$ is \mathcal{W}_{H}-almost surely equal to the identity map on E. Similarly, $\Phi \circ \Psi$ must be \mathcal{W}_{G}-almost surely equal to the identity map on F.

References

[1] N. Dunford and J. Schwartz, Linear Operators, Wiley-Interscience, New York, 1964.
[2] H. H. Kuo, Gaussian measures in Banach spaces, Lecture Notes in Math., vol. 436, Springer-Verlag, Berlin, 1975. MR 0461643
[3] R. Ramer, On nonlinear transformations of Gaussian measures, J. Funct. Anal. 15 (1974), 166-187. MR 0349945
[4] I. M. Segal, Distributions in Hilbert space and canonical systems of operators, Trans. Amer. Math. Soc. 88 (1958), 12-41. MR 0102759
[5] D. Stroock, Abstract Wiener space, revisited, Comm. Stoch. Anal. 2 (2008), 145-151. MR 2446996
[6] D. Stroock, Probability theory, an analytic view, 2nd ed., Cambridge Univ. Press, New York, 2010. MR 2760872
Daniel W. Stroock, M.I.T., 2-272, Cambridge, MA 02139, USA
E-mail address: dws@math.mit.edu

[^0]: ${ }^{1}$ The statement of Fernique's theorem to which I am referring asserts that there is a $C<\infty$ such that for each $R>0$ there is a $\lambda>0$ for which $\mathbb{E}^{\mu}\left[e^{\lambda\|x\|_{E}^{2}}\right] \leq C$ whenever μ is a centered Gaussian measure on a separable, real Banach space E with $\mu\left(\|x\|_{E} \geq R\right) \leq \frac{1}{4}$.

