Illinois Journal of Mathematics Volume 54, Number 4, Winter 2010, Pages 1343–1355 S 0019-2082

MAPS THAT TAKE GAUSSIAN MEASURES TO GAUSSIAN MEASURES

DANIEL W. STROOCK

For Don Burkholder, with apologies for what may be abstract nonsense

ABSTRACT. Given a pair of separable, real Banach spaces E and F and a centered Gaussian measure μ on E, one can ask what sort of Borel measurable maps $\Phi: E \longrightarrow F$ map μ to a centered Gaussian measure on F. Obviously, a sufficient condition is that Φ be linear. On the other hand, linearity is far more than is really needed. Indeed, it suffices to know that Φ has the property that

$$\Phi\left(\frac{x_1+x_2}{\sqrt{2}}\right) = \frac{\Phi(x_1) + \Phi(x_2)}{\sqrt{2}}$$

for \mathcal{W}^2 -almost every $(x_1, x_2) \in E^2$. In this article, I will first prove a structure theorem which shows that any map Φ which satisfies this property arises from a linear map on the Cameron–Martin space associated with μ on E. I will then investigate which linear maps on the Cameron–Martin space determine a Φ , and finally I will discuss some of the properties of Φ which reflect properties of the linear map from which it is determined.

1. Abstract Wiener spaces

In this section, I will summarize a few facts about Gaussian measures on a Banach space. My treatment derives from L. Gross's theory of abstract Wiener space. For more details, I refer the reader to [2], [5], or Chapter 8 in [6]. In particular, it is important to know that any non-degenerate, centered Gaussian measure on a separable, real Banach space can be realized as the measure in an abstract Wiener space.

C2012 University of Illinois

Received May 25, 2010; received in final form November 5, 2010. 2010 Mathematics Subject Classification. 46G12, 60B11.

I will call the pair (E, H) a *potential abstract Wiener space* if H is a real, separable Hilbert space, E is a real separable Banach space, and H is continuously embedded in E as a dense subspace. The following lemma summarizes some elementary facts about potential abstract Wiener spaces.

LEMMA 1.1. Let (H, E) be a potential abstract Wiener space. For each $x^* \in E^*$ there exists a unique $h_{x^*} \in H$ with the property that $\langle h, x^* \rangle = (h, h_{x^*})_H$ for all $h \in H$. Moreover, $x^* \in E^* \longmapsto h_{x^*} \in H$ is a continuous, one-to-one, linear map whose range is dense, and, as a map from E^* into $E, x^* \rightsquigarrow h_{x^*}$ is continuous. Finally, $\{h_{x^*} : x^* \in E^*\}$ contains an orthonormal basis for H.

Given a potential abstract Wiener space (H, E), the triple (H, E, W) is called an *abstract Wiener space* if W is a Borel probability measure on Ewith the property that, for each $x^* \in E^*$, the random variable $x \rightsquigarrow \langle x, x^* \rangle$ under W is a centered Gaussian with variance $||h_{x^*}||_H^2$. Equivalently, the Fourier transform \widehat{W} of W is given by

$$\widehat{\mathcal{W}}(x^*) = \mathbb{E}^{\mathcal{W}}\left[e^{\sqrt{-1}\langle x, x^* \rangle}\right] = e^{-\frac{\|h_{x^*}\|_{H}^2}{2}} \quad \text{for } x^* \in E^*.$$

The Hilbert space H in (H, E, W) is called the *Cameron–Martin space* associated with W on E.

Although the uniqueness of \mathcal{W} is obvious, its existence is a highly nontrivial matter. Nonetheless, for each H there always exists an E on which there is a \mathcal{W} for which it is the Cameron–Martin space (i.e., (H, E, \mathcal{W}) is an abstract Wiener space). When $N = \dim(H) < \infty$ and one thinks of H as $\mathbb{R}^{\mathbb{N}}$ with some Hilbert norm, all choices of E can also be identified with \mathbb{R}^N , and \mathcal{W} is the distribution of

$$(\xi_1, \dots, \xi_N) \in \mathbb{R}^{\mathbb{N}} \longrightarrow \sum_{k=1}^N \xi_k h_k \quad \text{under } \gamma_{0,1}^N,$$

where $\gamma_{0,1}$ is the standard Gauss measure on \mathbb{R} and $\{h_k : 1 \leq k \leq N\}$ is an orthonormal basis for H. When $\dim(H) = \infty$, one has the following criterion for the existence of \mathcal{W} .

LEMMA 1.2. Let (H, E) be an infinite dimensional (i.e., $\dim(H) = \infty$) potential abstract Wiener space. Then there exists a W on E for which (H, E, W) is an abstract Wiener space if there exists an orthonormal basis $\{h_k : k \ge 1\}$ in H for which the series

(1.1)
$$\sum_{k=1}^{\infty} \xi_k h_k \text{ converges in } E \text{ for } \gamma_{0,1}^{\mathbb{Z}^+} \text{-almost every } (\xi_1, \dots, \xi_k, \dots) \in \mathbb{R}^{\mathbb{Z}^+}$$

Conversely, if (H, E, W) is an abstract Wiener space, then (1.1) holds for every choice of orthonormal basis, the convergence is in $L^p(\gamma_{0,1}^{\mathbb{Z}^+}; E)$ for every $p \in [1, \infty)$, and W is the distribution of the series under $\gamma_{0,1}^{\mathbb{Z}^+}$. Given an abstract Wiener space (H, E, W), there is a unique, linear isometric map $h \in H \longrightarrow \mathcal{I}(h) \in L^2(W; \mathbb{R})$, known as the *Paley–Wiener map*, such that $\mathcal{I}(h_{x^*}) = \langle \cdot, x^* \rangle$ *W*-almost surely for each $x^* \in E^*$. Indeed, the existence and uniqueness of \mathcal{I} follow immediately from the facts that $||h_{x^*}||_H$ is the $L^2(W; \mathbb{R})$ -norm of $\langle \cdot, x^* \rangle$ and that $\{h_{x^*} : x^* \in E^*\}$ is dense in H. Moreover, since $\langle \cdot, x^* \rangle$ is a centered Gaussian random variable under \mathcal{W} for each $x^* \in E^*$, it follows that $\mathcal{I}(h)$ under \mathcal{W} is a centered Gaussian random variable with variance $||h||_H^2$ for each $h \in H$. Hence, $\{\mathcal{I}(h) : h \in H\}$ is a closed, centered Gaussian family in $L^2(\mathcal{W}; \mathbb{R})$.

Recall the (unnormalized) Hermite polynomials $H_n, n \ge 0$, given by

$$H_n(\xi) = (-1)^n e^{\frac{\xi^2}{2}} \frac{d^n}{d\xi^n} e^{-\frac{\xi^2}{2}}, \quad \xi \in \mathbb{R}.$$

Familiar facts about these polynomials are that

(1.2)
$$(H_m, H_n)_{L^2(\gamma_{0,1};\mathbb{R})} = m! \delta_{m,n} \text{ and } \frac{dH_m}{d\xi} = mH_{(m-1)^+}$$

and the span of $\{H_n : n \ge 0\}$ is dense in $L^2(\gamma_{0,1}; \mathbb{R})$. Now suppose that (H, E, \mathcal{W}) is an abstract Wiener space with $\dim(H) = \infty$, choose an orthonormal basis $\{h_k : k \ge 1\}$ in H, and, for $\alpha = (\alpha_1, \ldots, \alpha_k, \ldots) \in \mathbb{N}^{\mathbb{Z}^+}$ with $\|\alpha\| = \sum_{k=1}^{\infty} \alpha_k < \infty$, define

$$\mathcal{H}_{\alpha} = \prod_{k=1}^{\infty} H_{\alpha_k} \big(\mathcal{I}(h_k) \big).$$

Then

$$(\mathcal{H}_{\alpha}, \mathcal{H}_{\beta})_{L^{2}(\mathcal{W};\mathbb{R})} = \alpha! \delta_{\alpha,\beta},$$

where $\alpha! = \prod_{k=1}^{\infty} \alpha_k!$. Moreover, because $\{H_n : n \ge 0\}$ is an orthogonal basis for $L^2(\gamma_{0,1}; \mathbb{R})$, one can use the results in Lemma 1.2 to check that $\{\mathcal{H}_{\alpha} : \|\alpha\| < \infty\}$ is an orthogonal basis in $L^2(\mathcal{W}; \mathbb{R})$. In particular, if

$$Z^{(n)}(\mathcal{W}) = \overline{\operatorname{span}(\{\mathcal{H}_{\alpha} : \|\alpha\| = n\})}^{L^{2}(\mathcal{W};\mathbb{R})}$$

then $Z^{(m)}(\mathcal{W}) \perp Z^{(n)}(\mathcal{W})$ for $m \neq n$ and $L^2(\mathcal{W}; \mathbb{R}) = \bigoplus_{n=0}^{\infty} Z^{(n)}(\mathcal{W})$. This is Wiener's decomposition of $L^2(\mathcal{W}; \mathbb{R})$ into spaces of homogeneous chaos. It is important to recognize that $Z^{(n)}(\mathcal{W})$ does not depend on the particular choice of orthonormal basis $\{h_k : k \geq 1\}$ in terms of which it is defined. In particular, $Z^{(0)}(\mathcal{W})$ consists of the \mathcal{W} -almost surely constant elements of $L^2(\mathcal{W}; \mathbb{R})$ and $Z^{(1)}(\mathcal{W}) = \{\mathcal{I}(h) : h \in H\}.$

Now choose $\{x_k^*: k \ge 1\} \subseteq E^*$ so that $\{h_k: k \ge 1\}$ is an orthonormal basis for H when $h_k = h_{x_k^*}$, and use this basis and the choice of $\langle \cdot, x_k^* \rangle$ to represent $\mathcal{I}(h_k)$ to define the \mathcal{H}_{α} 's. Clearly, each φ from the span of the \mathcal{H}_{α} 's is a polynomial in variable $\{\langle \cdot, x_k^* \rangle : \alpha_k \neq 0\}$, and therefore $\partial_k \varphi \equiv \frac{d}{dt} \varphi(x + th_k)|_{t=0}$ exists and is a polynomial function of the same variables as φ . Moreover, from (1.2) one sees that if $\varphi \in Z^{(n)}(\mathcal{W})$ for some $n \ge 1$, then $\partial_k \varphi \in Z^{(n-1)}(\mathcal{W})$ and

(1.3)
$$\sum_{k=1}^{\infty} \|\partial_k \varphi\|_{L^2(\mathcal{W};\mathbb{R})}^2 = n \|\varphi\|_{L^2(\mathcal{W};\mathbb{R})}^2.$$

Hence, for each $n \geq 1$, ∂_k admits a unique continuous extension as a linear map from $Z^{(n)}(\mathcal{W})$ into $Z^{(n-1)}(\mathcal{W})$ for which (1.3) continues to hold. Similarly, for $h \in H$, there is a linear map ∂_h on the span of the \mathcal{H}_{α} 's with the properties that $\partial_h \varphi = \sum_{k=1}^{\infty} (h, h_k)_H \partial_k \varphi$ when $h \in \text{span}(\{h_k : k \geq 1\})$ and, for each $n \geq 1$, ∂_h takes $Z^{(n)}(\mathcal{W})$ into $Z^{(n-1)}(\mathcal{W})$ with

(1.4)
$$\|\partial_h \varphi\|^2_{L^2(\mathcal{W};\mathbb{R})} \le n \|h\|^2_H \|\varphi\|^2_{L^2(\mathcal{W};\mathbb{R})} \quad \text{for } \varphi \in Z^{(n)}(\mathcal{W}).$$

Hence, for each $h \in H$, ∂_h has a unique extension to $\operatorname{span}(\bigcup_{n=0}^{\infty} Z^{(n)}(\mathcal{W}))$ as a linear operator with the property that (1.4) holds. Moreover, ∂_h maps $Z^{(0)}(\mathcal{W})$ to 0 and, when $n \geq 1$, $Z^{(n)}(\mathcal{W})$ to $Z^{(n-1)}(\mathcal{W})$.

2. Wiener maps

Given an abstract Wiener space (H, E, \mathcal{W}) , it is clear that $(E^2, H^2, \mathcal{W}^2)$ is also an abstract Wiener space. Further, if $S: E^2 \longrightarrow E$ is given by

$$S(x_1, x_2) = \frac{x_1 + x_2}{\sqrt{2}},$$

then $S_*\mathcal{W}^2 = \mathcal{W}$.

Now suppose that (H, E, W) is an abstract Wiener space and that F is a second real, separable Banach space. A map $\Phi : E \longrightarrow F$ is a *Wiener map* if Φ is Borel measurable and

(2.1)
$$\Phi \circ S = \frac{\Phi \circ \pi_1 + \Phi \circ \pi_2}{\sqrt{2}} \quad \mathcal{W}^2\text{-almost surely},$$

where $\pi_i: E^2 \longrightarrow E$ is the projection map $\pi_i(y_1, y_2) = y_i$ for $i \in \{1, 2\}$. Notice that if $\Phi: E \longrightarrow F$ is a Wiener map, then $\Phi_* \mathcal{W}$ is a centered Gaussian measure on F. Indeed, given any $y^* \in E^*$, the distribution μ of $\langle \Phi, y^* \rangle$ will satisfy the convolution equation $\mu = \mu_{2^{-\frac{1}{2}}} \star \mu_{2^{-\frac{1}{2}}}$, where, for $\alpha \in \mathbb{R}$, μ_{α} is the distribution of $x \rightsquigarrow \alpha x$ under μ , and (cf. Exercise 2.3.21 in Chapter 2 of [6]) the only solutions to this equation are centered Gaussians. Hence, by Fernique's theorem,¹

(2.2)
$$\mathbb{E}^{\mathcal{W}}\left[e^{\lambda\|\Phi\|_{F}^{2}}\right] < \infty \quad \text{for some } \lambda \in (0,\infty).$$

In addition, if $\Psi : E \longrightarrow F$ is a second Borel measurable map which is \mathcal{W} -almost surely equal to Φ , then Ψ is also a Wiener map, and, more generally, a

¹ The statement of Fernique's theorem to which I am referring asserts that there is a $C < \infty$ such that for each R > 0 there is a $\lambda > 0$ for which $\mathbb{E}^{\mu}[e^{\lambda \|x\|_{E}^{2}}] \leq C$ whenever μ is a centered Gaussian measure on a separable, real Banach space E with $\mu(\|x\|_{E} \geq R) \leq \frac{1}{4}$.

Borel measurable Φ is a Wiener map if it is the W-almost sure limit of Wiener maps.

In this section, I will investigate the structure of Wiener maps, and, since there is nothing more to say when $\dim(H) < \infty$, I will assume throughout that $\dim(H) = \infty$.

LEMMA 2.1. If $\varphi \in Z^{(n)}(\mathcal{W})$ for some $n \ge 0$, then $\varphi \circ S \in Z^{(n)}(\mathcal{W}^2)$ and $\partial_{(h,-h)}\varphi \circ S = 0$ \mathcal{W} -almost surely for each $h \in H$.

Proof. Obviously there is nothing to do when n = 0, and so I will assume that $n \ge 1$. In addition, since the set of $\varphi \in Z^{(n)}(\mathcal{W})$ for which these properties hold is a closed subspace of $L^2(\mathcal{W}; \mathbb{R})$, it suffices to prove them when $\varphi = \mathcal{H}_{\alpha}$ for some α with $\|\alpha\| = n \ge 1$. Further, I will assume that the \mathcal{H}_{α} 's are defined in terms of an orthonormal basis $\{h_k : k \ge 1\}$ where, for each $k \ge 1$, $h_k = h_{x_k^*}$ for some $x_k^* \in E^*$. Thus, \mathcal{H}_{α} can be taken to be a polynomial in the variables $\{\langle \cdot, x_k^* \rangle : \alpha_k \ne 0\}$.

That $\partial_{(h,-h)}\mathcal{H}_{\alpha} \circ S = 0$ is essentially trivial. Indeed, for any $k \geq 1$, $\sqrt{2} \times \partial_{(h_k,-h_k)}\mathcal{H}_{\alpha} \circ S(x_1,x_2)$ equals

$$H_{\alpha_{k}}^{\prime}\left(\frac{\langle x_{1}+x_{2},x_{k}^{*}\rangle}{\sqrt{2}}\right)\prod_{j\neq k}H_{\alpha_{j}}\left(\frac{\langle x_{1}+x_{2},x_{j}^{*}\rangle}{\sqrt{2}}\right)$$
$$-H_{\alpha_{k}}^{\prime}\left(\frac{\langle x_{1}+x_{2},x_{k}^{*}\rangle}{\sqrt{2}}\right)\prod_{j\neq k}H_{\alpha_{j}}\left(\frac{\langle x_{1}+x_{2},x_{j}^{*}\rangle}{\sqrt{2}}\right)=0.$$

To prove that $\mathcal{H}_{\alpha} \circ S \in Z^{(n)}(\mathcal{W}^2)$ when $\|\alpha\| = n$, use the generating function

$$e^{\lambda\xi - \frac{\lambda^2}{2}} = \sum_{n=0}^{\infty} \frac{\lambda^n}{n!} H_n(\xi)$$

to see that

$$H_n\left(\frac{\xi_1+\xi_2}{\sqrt{2}}\right) = 2^{-\frac{n}{2}} \sum_{m=0}^n \binom{n}{m} H_m(\xi_1) H_{n-m}(\xi_2),$$

and from this conclude that

$$\mathcal{H}_{\alpha} \circ S = 2^{-\frac{n}{2}} \sum_{\beta \leq \alpha} {\alpha \choose \beta} \mathcal{H}_{\beta} \circ \pi_1 \mathcal{H}_{\alpha-\beta} \circ \pi_2 \in Z^{(n)}(\mathcal{W}^2),$$

where $\beta \leq \alpha$ means that $\beta_k \leq \alpha_k$ for all $k \geq 1$ and $\binom{\alpha}{\beta} = \prod_{k=1}^{\infty} \binom{\alpha_k}{\beta_k}$.

LEMMA 2.2. A Borel measurable $\varphi : E \longrightarrow \mathbb{R}$ is a Wiener map if and only if $\varphi = \mathcal{I}(h)$ for some $h \in H$.

Proof. First, suppose that $\varphi = \mathcal{I}(h)$. If $h = h_{x^*}$ for some $x^* \in E^*$, then $\varphi = \langle \cdot, x^* \rangle$ *W*-almost surely and so, because $\langle \cdot, x^* \rangle$ is linear and therefore a Wiener map, it follows that φ is a Wiener map also. To extend the result

to general $h \in H$, simply remember that the set of \mathbb{R} -valued Wiener maps is closed in $L^2(\mathcal{W};\mathbb{R})$.

Now suppose that φ is an \mathbb{R} -valued Wiener map. Since φ is a centered Gaussian under $\mathcal{W}, \varphi \in L^2(\mathcal{W}; \mathbb{R})$. Now let φ_n denote the orthogonal projection of φ onto $Z^{(n)}(\mathcal{W})$. We will know that $\varphi = \mathcal{I}(h)$ for some $h \in H$ once we know that $\varphi_n = 0$ for $n \neq 1$. Since $\mathbb{E}^{\mathcal{W}}[\varphi] = 0$, $\varphi_0 = 0$. Thus, assume that $n \ge 2$. To show that $\varphi_n = 0$, I will first show that φ_n is a Wiener map. Indeed, from $\varphi = \sum_{m=0}^{\infty} \varphi_m$, we know that $\varphi \circ S = \sum_{m=0}^{\infty} \varphi_m \circ S$. Moreover, by Lemma 2.1, $\varphi_m \circ S \in Z^{(m)}(\mathcal{W}^2)$, and therefore $\varphi_n \circ S$ is the projection of $\varphi \circ S$ onto $Z^{(n)}(\mathcal{W}^2)$. At the same time, because $\varphi \circ S = \frac{\varphi \circ \pi_1 + \varphi \circ \pi_2}{\sqrt{2}} \mathcal{W}^2$ almost surely, it is clear that $\frac{\varphi_n \circ \pi_1 + \varphi_n \circ \pi_2}{\sqrt{2}}$ is also the projection of $\varphi \circ S$ onto almost surely, it is clear that $\frac{\sqrt{2}}{\sqrt{2}}$ is also the projection of $\varphi \circ S$ onto $Z^{(n)}(\mathcal{W}^2)$. Hence $\varphi_n \circ S = \frac{\varphi_n \circ \pi_1 + \varphi_n \circ \pi_2}{\sqrt{2}} \mathcal{W}^2$ -almost surely. From this and Lemma 2.1, it follows that $\partial_h(\varphi_n \circ \pi_1) = \partial_h(\varphi_n \circ \pi_2) \mathcal{W}^2$ -almost surely. But $\partial_h(\varphi_n \circ \pi_1)$ is independent of $\partial_h(\varphi_n \circ \pi_2)$ under \mathcal{W}^2 , and therefore they can be \mathcal{W}^2 -almost surely equal only if $\partial_h \varphi_n$ is \mathcal{W} -almost surely constant. Since this means that $\partial_h \varphi \in Z^{(0)}(\mathcal{W}) \cap Z^{(n-1)}(\mathcal{W})$ and $n \geq 2$, we now know that $\partial_h \varphi = 0$ W-almost surely. In particular, if $\{h_k : k \ge 1\}$ is an orthonormal basis in H, then, by (1.3),

$$0 = \sum_{k=1}^{\infty} \|\partial_{h_k} \varphi_n\|_{L^2(\mathcal{W};\mathbb{R})}^2 = n \|\varphi_n\|_{L^2(\mathcal{W};\mathbb{R})}^2,$$

and so $\varphi_n = 0$ *W*-almost surely.

THEOREM 2.3. If $\Phi: E \longrightarrow F$ is Borel measurable, then Φ is a Wiener map if and only if there is a bounded, linear map $A: H \longrightarrow F$ such that $\langle \Phi, y^* \rangle = \mathcal{I}(A^\top y^*)$ W-almost surely for each $y^* \in F^*$, where $A^\top: F^* \longrightarrow H$ is the adjoint of A. Moreover, if A exists, then it is unique, it is continuous from the weak* topology on H into the strong topology on F, and, for any orthonormal basis $\{h_k: k \geq 1\}$,

$$\Phi = \sum_{m=1}^{\infty} \mathcal{I}(h_k) A h_k \quad \mathcal{W}\text{-almost surely},$$

where the convergence is W-almost sure as well as in $L^p(W; \mathbb{R})$ for each $p \in [1, \infty)$. In particular, if F_A is the closure in F of the range AH of A, then $\Phi \in F_A$ W-almost surely.

Proof. First, suppose that A exists. Then, by Lemma 2.2, for each $y^* \in E^*$, $\langle \Phi, y^* \rangle$ is an \mathbb{R} -valued Wiener map and therefore

$$\langle \Phi \circ S, y^* \rangle = \frac{\langle \Phi \circ \pi_1 + \Phi \circ \pi_2, y^* \rangle}{\sqrt{2}}$$
 \mathcal{W}^2 -almost surely.

Hence, since F^* is separable in the weak^{*} topology, Φ is a Wiener map. Furthermore, because

$$\left\langle Ah, y^* \right\rangle = \left(h, A^\top y^* \right)_H = \mathbb{E}^{\mathcal{W}} \left[\mathcal{I}(h) \mathcal{I} \left(A^\top y^* \right) \right] = \mathbb{E}^{\mathcal{W}} \left[\mathcal{I}(h) \left\langle \Phi, y^* \right\rangle \right]$$

it is clear that there is at most one choice of A.

Now suppose that Φ is a Wiener map. I begin by constructing the map $A^{\top}: F^* \longrightarrow H$ which will be the adjoint of the A for which we are looking. Namely, given $y^* \in F^*$, set $\varphi = \langle \Phi, y^* \rangle$. Then, because Φ is a Wiener map, φ is an \mathbb{R} -valued Wiener map. Hence, by Lemma 2.2, there exists a necessarily unique $A^{\top}y^* \in H$ such that $\langle \Phi, y^* \rangle = \mathcal{I}(A^{\top}y^*)$ \mathcal{W} -almost surely. By uniqueness, A^{\top} is linear. Furthermore, because, by (2.2), $\Phi \in L^2(\mathcal{W}; F)$ and

$$\|A^{\top}y^{*}\|_{H} = \|\mathcal{I}(A^{\top}y^{*})\|_{L^{2}(\mathcal{W};\mathbb{R})} \le \|y^{*}\|_{F^{*}}\|\Phi\|_{L^{2}(\mathcal{W};F)},$$

it is clear that A^{\top} is bounded from F^* into H. In fact, if $y_n^* \longrightarrow 0$ in the weak* topology on F^* , then, because, by the uniform boundedness principle, $C = \sup\{\|y_n^*\|_{F^*} : n \ge 1\} < \infty$ and therefore $|\langle \Phi, y_n^* \rangle| \le C \|\Phi\|_F \in L^2(\mathcal{W}; \mathbb{R})$, it follows from Lebesgue's Dominated Convergence theorem that

$$\left\|A^{\top}y_{n}^{*}\right\|_{H}^{2} = \int \left\langle\Phi, y_{n}^{*}\right\rangle^{2} d\mathcal{W} \longrightarrow 0.$$

Hence, A^{\top} is continuous from the weak^{*} topology on F^* into the strong topology on H. In particular, this means that if $h \in H$ and $y^{**} = (A^{\top})^{\top} h \in F^{**}$, then

$$\left\langle \boldsymbol{y}_{n}^{*},\boldsymbol{y}^{**}\right\rangle =\left(\boldsymbol{h},\boldsymbol{A}^{\top}\boldsymbol{y}_{n}^{*}\right)_{H}\longrightarrow\boldsymbol{0}$$

when $\{y_n^* : n \ge 1\} \subseteq F^*$ tends to 0 in the weak* topology. Thus (cf. Theorem 9 on p. 421 of [1]), $y^{**} \in F$, and so $(A^{\top})^{\top}$ determines a bounded linear map, which I will call A, from H into F, and clearly A^{\top} is the adjoint of A.

The continuity of A with respect to the weak^{*} topology on H into to the strong topology on F is an immediate consequence of the corresponding continuity property of A^{\top} and the fact that the closed unit ball in F^* is weak^{*} compact. To prove the concluding assertion, let $\{h_k : k \ge 1\}$ be an orthonormal basis for H and take \mathcal{F}_n to be the σ -algebra generated by $\{\mathcal{I}(h_k) : 1 \le k \le n\}$. Then, because $\Phi \in L^p(\mathcal{W}; F)$ for every $p \in [1, \infty)$ and the \mathcal{W} -completion of $\bigvee_{n=1}^{\infty} \mathcal{F}_n$ contains the Borel field over E, we know that $\mathbb{E}^{\mathcal{W}}[\Phi|\mathcal{F}_n] \longrightarrow \Phi$ both \mathcal{W} -almost surely as well as in $L^p(\mathcal{W}; F)$ for every $p \in [1, \infty)$. On the other hand,

for each $y^* \in F^*$. Hence, since the weak^{*} topology on F^* is separable,

$$\mathbb{E}^{\mathcal{W}}[\Phi|\mathcal{F}_n] = \sum_{k=1}^n \mathcal{I}(h_k)Ah_k.$$

3. *A*'s which determine Wiener maps

Given a bounded, linear map $A: H \longrightarrow F$ and a Wiener map $\Phi: E \longrightarrow F$, I will say that Φ comes from A if $\langle \Phi, y^* \rangle = \mathcal{I}(A^\top y^*)$ W-almost surely for each $y^* \in F^*$, in which case I will say that A determines Φ . Again because F^* is weak^{*} separable, it is obvious that, up to a set of \mathcal{W} -measure 0, A can determine at most one Φ . On the other hand, the problem of deciding whether a given A determines any Φ is much more difficult. Indeed, it turns out to be tantamount to finding out whether a certain potential abstract Wiener space can be made into an abstract Wiener space. To explain this, let $H_A = AH$ be the range of A, turn H_A into a Hilbert space with norm $\|\cdot\|_{H_A}$ determined by $\|Ah\|_{H_A} = \|h\|_H$ when $h \perp \text{Null}(A)$. Next, take F_A to be the closure of H_A in F, and turn F_A into a Banach space by restricting $\|\cdot\|_F$ to F_A . Obviously, (H_A, F_A) is a potential Wiener space. Moreover, F_A^* can be identified as the quotient space F^*/\sim , where $z^*\sim y^*$ means that $\langle y, z^* - y^* \rangle = 0$ for all $y \in F_A$. Finally, if $y^* \in F^*$ and $[y^*]_A$ is the ~-equivalence class containing y^* , then $AA^{\top}y^*$ is the unique $g_A \in H_A$ with the property that $\langle h_A, [y^*]_A \rangle = (g_A, h_A)_{H_A}$ for all $h_A \in H_A$. Thus, $(h_A)_{[y^*]_A} = AA^\top y^*$, and therefore $||(h_A)_{[y^*]_A}||_{H_A} = ||A^{\top}y^*||_H$.

THEOREM 3.1. Refer to the preceding discussion. Then the following are equivalent.

- (1) A determines a Wiener map $\Phi: E \longrightarrow F$.
- (2) There is an orthonormal basis $\{h_k : k \ge 1\}$ in H such that the series

$$\sum_{k=1}^{\infty} \xi_k Ah_k \text{ converges in } F \text{ for } \gamma_{0,1}^{\mathbb{Z}^+} \text{-almost every } (\xi_1, \dots, \xi_k, \dots) \in \mathbb{R}^{\mathbb{Z}^+}$$

(3) There is a W_A on F_A for which (H_A, F_A, W_A) is an abstract Wiener space.

Moreover, if (1) holds and $\{h_k : k \ge 1\}$ is an orthonormal basis in H, then

$$\Phi = \sum_{k=1}^{\infty} \mathcal{I}(h_k) A h_k \quad \mathcal{W}\text{-almost surely},$$

where the series converges in $L^p(\mathcal{W}; F_A)$ for every $p \in [1, \infty)$ as well as \mathcal{W} almost surely. In addition, the \mathcal{W}_A in (3) equals the restriction to F_A of $\Phi_*\mathcal{W}$. *Proof.* First suppose that (1) holds, and let $\{h_k : k \ge 1\}$ be an orthonormal basis in H. Then, by the last part of Theorem 2.3, $\sum_{k=1}^{\infty} \mathcal{I}(h_k)Ah_k$ converges in F to Φ \mathcal{W} -almost surely as well as in $L^p(\mathcal{W}; F)$ for every $p \in [1, \infty)$. Hence, we now know that the concluding assertion is true. Also, because $\gamma_{0,1}^{\mathbb{Z}^+}$ is the \mathcal{W} -distribution of $(\mathcal{I}(h_1), \ldots, \mathcal{I}(h_k), \ldots)$, we know that (1) implies (2).

Next suppose that (2) holds, and denote by Φ the sum of the series. Then, because, by Lemma 2.2, each of the summands is a Wiener map, it follows that Φ is also a Wiener map. In addition, for any $y^* \in F^*$, *W*-almost surely

$$\langle \Phi, y^* \rangle = \sum_{k=1}^{\infty} \mathcal{I}(h_k) \langle Ah_k, y^* \rangle = \sum_{k=1}^{\infty} \mathcal{I}(h_k) (h_k, A^\top y^*)_H = \mathcal{I}(A^\top y^*).$$

Hence, (2) implies (1).

Next, suppose that (1), and therefore (2), holds. By (2), $\Phi \in F_A \mathcal{W}$ -almost surely, and so $\Phi_*\mathcal{W}(F_A) = 1$. In addition,

$$\mathbb{E}^{\mathcal{W}}\left[e^{\sqrt{-1}\langle\Phi,y^*\rangle}\right] = \mathbb{E}^{\mathcal{W}}\left[e^{\sqrt{-1}\mathcal{I}(A^{\top}y^*)}\right] = e^{-\frac{1}{2}\|A^{\top}y^*\|_{H}^2}.$$

Hence, since $\|(h_A)_{[y^*]_A}\|_{H_A} = \|A^\top y^*\|_H$, $(H_A, F_A, \Phi_*\mathcal{W} \upharpoonright F_A)$ is an abstract Wiener space, and so (1) implies (3) and the \mathcal{W}_A in (3) equals $\Phi_*\mathcal{W} \upharpoonright F_A$. Conversely, if (3) holds, choose an orthonormal basis $\{h_k : k \ge 1\}$ in H so that, for each $k \ge 1$, either $Ah_k = 0$ or $h_k \perp \text{Null}(A)$, and denote by \mathcal{K} the set $\{k : h_k \perp \text{Null}(A)\}$. Then $\{Ah_k : k \in \mathcal{K}\}$ is an orthonormal basis in H_A , and so $\sum_{k \in \mathcal{K}} \mathcal{I}_A(Ah_k)Ah_k$ is \mathcal{W}_A -almost surely convergent in F_A , where \mathcal{I}_A is the Paley–Wiener map for $(H_A, F_A, \mathcal{W}_A)$. Since $Ah_k = 0$ for $k \notin \mathcal{K}$ and $\{\mathcal{I}_A(Ah_k) : k \in \mathcal{K}\}$ under \mathcal{W}_A are mutually independent standard normal random variables, I have proved that (3) implies (2).

Obviously, if $A: H \longrightarrow F$ is a linear map which is bounded with respect to $\|\cdot\|_E$ in the sense that $\|Ah\|_F \leq C \|h\|_E$ for some $C < \infty$, then the unique extension of A as a bounded linear map from E to F is a Wiener map determined by A. I will now discuss a more interesting source of A's which determine Wiener maps. Before stating the main result in this direction, I recall the following familiar fact (cf. [3] and [4]).

LEMMA 3.2. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, assume that the random variables $\{X_i : i \geq 1\} \subseteq L^2(\mathbb{P}; \mathbb{R})$ span a Gaussian family, and set $C_{i,j} = \mathbb{E}^{\mathbb{P}}[X_iX_j]$. Then the joint distribution μ on $\mathbb{R}^{\mathbb{Z}^+}$ of $\{X_i : i \geq 1\}$ under \mathbb{P} is absolutely continuous with respect to $\gamma_{0,1}^{\mathbb{Z}^+}$ if and only if the matrix $((C_{i,j}))_{i,j\in\mathbb{Z}^+}$ determines a bounded operator C on $\ell^2(\mathbb{Z}^+;\mathbb{R})$, Null(C) = 0, and $\sum_{i,j=1}^{\infty} (\delta_{i,j} - C_{i,j})^2 < \infty$. Equivalently, $\mu \ll \gamma_{0,1}^{\mathbb{Z}^+}$ if and only if $((C_{i,j}))_{i,j\in\mathbb{Z}^+}$ determines a bounded, non-degenerate operator C on $\ell^2(\mathbb{Z}^+;\mathbb{R})$ such that I - C is Hilbert–Schmidt. THEOREM 3.3. Let (E, H, W_H) and (F, G, W_G) be a pair of infinite dimensional abstract Wiener spaces, let $A : H \longrightarrow G$ be a bounded linear map, and use $A^{\dagger} : G \longrightarrow H$ to denote its adjoint. If, for some $\lambda > 0$, $\lambda I - AA^{\dagger}$ is a Hilbert–Schmidt operator on G, then A determines a Wiener map from E to F.

Proof. Clearly it suffices to handle the case when $\lambda = 1$ since the general case reduces to this one when A is replaced by $\lambda^{-\frac{1}{2}}A$. Thus, assume that $\lambda = 1$.

I will first show that there is an orthonormal basis for G such that $S = \lim_{m \to \infty} S_m$ exists in $F \ W_H$ -almost surely when $S_m = \sum_{i=1}^m \mathcal{I}(A^{\dagger}g_i)g_i$. To this end, note that, because $I - AA^{\dagger}$ is Hilbert–Schmidt, Null $(A^{\dagger}) =$ Null (AA^{\dagger}) is finite dimensional. Now choose an orthonormal basis for G $\{g_i : i \geq 1\}$ so that $g_i \in \text{Null}(A^{\dagger})$ if $1 \leq i \leq N = \dim(\text{Null}(A^{\dagger}))$ and $g_i \perp \text{Null}(A^{\dagger})$ if i > N. Obviously, $S_m = 0$ if $1 \leq m \leq N$ and

$$S_m = \sum_{i=N+1}^m \mathcal{I}(A^{\dagger}g_i)g_i \quad \text{if } m > N.$$

Moreover, because AA^{\dagger} is non-degenerate on Null $(A^{\dagger})^{\perp}$ and $I - AA^{\dagger}$ is Hilbert– Schmidt, Lemma 3.2 says that the joint distribution of $\{\mathcal{I}(A^{\dagger}g_i): i > N\}$ under \mathcal{W}_H is absolutely continuous with respect to the joint distribution of $\{\mathcal{J}(g_i): i > N\}$ under \mathcal{W}_G , where \mathcal{J} denotes the Paley–Wiener map for (G, F, \mathcal{W}_G) . Hence, because $\sum_{i=1}^{\infty} \mathcal{J}(g_i)g_i$ is \mathcal{W}_G -almost surely convergent in F, it follows that $\lim_{m\to\infty} S_m$ converges \mathcal{W}_H -almost surely in F.

To complete the proof, observe that each S_m is a centered, F-valued, Gaussian random variable under \mathcal{W}_H , and therefore that S is also. Thus, by Fernique's theorem, the fact that $S_m \longrightarrow S$ in $F \mathcal{W}_H$ -almost surely implies that there exists an $\varepsilon > 0$ such that $\sup_{m \ge 1} E^{\mathcal{W}_H}[e^{\varepsilon ||S_m||_F^2}] < \infty$, and therefore that $S_m \longrightarrow S$ in $L^1(\mathcal{W}_H; F)$. Now let $\{h_k : k \ge 1\}$ be an orthonormal basis for H, and let \mathcal{F}_n be the σ -algebra generated by $\{\mathcal{I}(h_k) : 1 \le k \le n\}$. Then $\mathbb{E}^{\mathcal{W}_H}[S|\mathcal{F}_n] = \lim_{m \to \infty} \mathbb{E}^{\mathcal{W}_H}[S_m|\mathcal{F}_n]$ in $L^1(\mathcal{W}_H; F)$. At the same time,

$$\mathbb{E}^{\mathcal{W}_H}[S_m|\mathcal{F}_n] = \sum_{i=1}^m \mathbb{E}^{\mathcal{W}_H} \left[\mathcal{I}(A^{\dagger}g_i) | \mathcal{F}_n \right] g_i = \sum_{i=1}^m \left(\sum_{k=1}^n \left(A^{\dagger}g_i, h_k \right)_H \mathcal{I}(h_k) \right) \\ = \sum_{k=1}^n \mathcal{I}(h_k) \left(\sum_{i=1}^m (Ah_k, g_i)_G g_i \right) \longrightarrow \sum_{k=1}^n \mathcal{I}(h_k) Ah_k \quad \text{in } G \text{ as } m \to \infty.$$

Hence,

$$\mathbb{E}^{\mathcal{W}_H}[S|\mathcal{F}_n] = \sum_{k=1}^n \mathcal{I}(h_k)Ah_k \quad \mathcal{W}_H\text{-almost surely},$$

and therefore $\sum_{k=1}^{n} \mathcal{I}(h_k) Ah_k$ converges in F to S \mathcal{W}_H -almost surely.

Now apply Theorem 3.1.

As the next result makes explicit, in Theorem 3.3 the image $\Phi_* \mathcal{W}_H$ of \mathcal{W}_H under Φ will not be absolutely continuous with respect to \mathcal{W}_G unless $\lambda = 1$.

COROLLARY 3.4. Let (H, E, W_H) and (G, F, W_G) be as in the proceeding, and suppose that $A : H \longrightarrow F$ is a bounded, linear map. Then the following are equivalent.

- (1) A determines a Wiener map $\Phi: E \longrightarrow F$ and $\Phi_* \mathcal{W}_H \ll \mathcal{W}_G$.
- (2) A maps H boundedly into G, $\text{Null}(A^{\dagger}) = 0$, and $I AA^{\dagger}$ is Hilbert-Schmidt on G.

Moreover, if (2), and therefore (1), holds, then $\mathcal{J}(g) \circ \Phi = \mathcal{I}(A^{\dagger}g) \mathcal{W}_{H}$ -almost surely for each $g \in G$, where \mathcal{I} and \mathcal{J} denote the Paley–Wiener maps for (H, E, \mathcal{W}_{H}) and (G, F, \mathcal{W}_{G}) , respectively.

Proof. First, assume that (1) holds. Choose $\{y_i^*: i \ge 1\} \subseteq F^*$ so that $\{g_i: i \ge 1\}$ is an orthonormal basis for G when $g_i = g_{y_i^*}$. Because $\Phi_* \mathcal{W}_H \ll \mathcal{W}_G$ and $\langle \Phi, y_i^* \rangle = \mathcal{J}(g_i) \circ \Phi \mathcal{W}_H$ -almost surely, the joint distribution of $\{\langle \Phi, y_i^* \rangle: i \ge 1\}$ under \mathcal{W}_H is absolutely continuous with respect to the joint distribution of $\{\mathcal{I}(A^\top y_i^*): i \ge 1\}$ under \mathcal{W}_H is absolutely continuous with respect to $\gamma_{0,1}^{\mathbb{Z}^+}$. Hence, by Lemma 3.2, if $C_{i,j} = \langle A^\top y_i^*, A^\top y_j^* \rangle$, then the matrix $((C_{i,j}))_{i,j \in \mathbb{Z}^+}$ determines a bounded, non-degenerate operator C on $\ell^2(\mathbb{Z}^+; \mathbb{R})$ and I - C is Hilbert–Schmidt. Starting from this and taking $M = 1 + \|I - C\|_{\mathrm{H.S.}}$, it is easy to check that $\|A^\top y^*\|_H \le M\|g_{y^*}\|_G$ and therefore that there is a unique bounded, linear $A^\dagger: G \longrightarrow H$ such that $A^\dagger g_{y^*} = A^\top y^*$, and clearly $\|A^\dagger\|_{\mathrm{op}} \le M$. Since this means that $|\langle Ah, y^* \rangle| \le M\|h\|_H \|g_{y^*}\|_G$, it follows that A maps H boundedly into G and that A^\dagger is the adjoint of A as a map from H to G. Furthermore, from the properties of C, it is clear that AA^\dagger is non-degenerate and that $I - AA^\dagger$ is Hilbert–Schmidt on H.

Now assume that (2) holds. By Theorem 3.3, we know that A determines a Wiener map $\Phi: E \longrightarrow F$. Moreover, in the notation used above, the operator C is non-degenerate and I - C is Hilbert–Schmidt. Hence, by Lemma 3.2, the joint distribution of $\{\mathcal{I}(A^{\top}y_i^*): i \geq 1\}$ under \mathcal{W}_H is absolutely continuous with respect to $\gamma_{0,1}^{\mathbb{Z}^+}$, and so the joint distribution of $\{\langle \Phi, y_i^* \rangle: i \geq 1\}$ under \mathcal{W}_H is absolutely continuous with that of $\{\mathcal{J}(g_i): i \geq 1\}$ under \mathcal{W}_G . Since this means that the distribution of Φ under \mathcal{W}_H is absolutely continuous with respect to \mathcal{W}_G , $\Phi_*\mathcal{W}_H \ll \mathcal{W}_G$.

We now know that $(1) \iff (2)$. Assume (2) and therefore (1) hold. Given $g \in G$, choose $\{y_n^* : n \ge 1\} \subseteq F^*$ so that $g_n \equiv g_{y_n^*} \longrightarrow g$ in G. Then, $\mathcal{J}(g_n) \longrightarrow \mathcal{J}(g)$ in $L^2(\mathcal{W}_G; \mathbb{R})$, and so I may and will assume that $\mathcal{J}(g_n) \longrightarrow \mathcal{J}(g) \mathcal{W}_G$ -almost surely, which, by absolute continuity, means that $\mathcal{J}(g_n) \circ \Phi \longrightarrow \mathcal{J}(g) \circ \Phi \mathcal{W}_H$ -almost surely. At the same time, $A^{\dagger}g_n \longrightarrow A^{\dagger}g$ in H, and so I may and

1353

will also assume that $\mathcal{I}(A^{\dagger}g_n) \longrightarrow \mathcal{I}(A^{\dagger}g) \mathcal{W}_H$ -almost surely. Hence, since $\mathcal{J}(g_n) \circ \Phi = \mathcal{I}(A^{\dagger}g_n) \mathcal{W}_H$ -almost surely, it follows that $\mathcal{J}(g) \circ \Phi = \mathcal{I}(A^{\dagger}g) \mathcal{W}_H$ -almost surely. \Box

COROLLARY 3.5. Again let (H, E, W_H) and (G, F, W_G) be as in Theorem 3.3, and assume that $\Phi : E \longrightarrow F$ is a Wiener map for which $\Phi_*W_H \ll W_G$. In addition, let Ψ be a Wiener map from F into a third real, separable Banach space K. Then $\Psi \circ \Phi$ is a Wiener map from E into K. Moreover, if Φ and Ψ are determined by A and B, respectively, then $\Psi \circ \Phi$ is determined by $B \circ A$.

Proof. Because $\Phi_* \mathcal{W}_H \ll \mathcal{W}_G$, the set of $(x_1, x_2) \in E^2$ for which

$$\Psi\left(\frac{\Phi(x_1) + \Phi(x_2)}{\sqrt{2}}\right) \neq \frac{\Psi \circ \Phi(x_1) + \Psi \circ \Phi(x_2)}{\sqrt{2}}$$

has \mathcal{W}_H^2 -measure 0. Hence, since

$$\Phi\left(\frac{x_1+x_2}{\sqrt{2}}\right) = \frac{\Phi(x_1) + \Phi(x_2)}{\sqrt{2}}$$

for \mathcal{W}_{H}^{2} -almost every $(x_{1}, x_{2}) \in E^{2}$, it follows that $\Psi \circ \Phi$ is also a Wiener map.

Next, let $A: H \longrightarrow F$ be the bounded, linear map which determines Φ . By Corollary 3.4, A is a bounded map from H to G and $\mathcal{J}(g) \circ \Phi = \mathcal{I}(A^{\dagger}g)$ \mathcal{W}_{H} -almost surely for each $g \in G$. Hence, if $B: F \longrightarrow K$ determines Ψ , then, for any $z^{*} \in K^{*}$,

$$\langle \Psi \circ \Phi, z^* \rangle = \mathcal{J}(B^\top z^*) \circ \Phi = \mathcal{I}(A^\dagger B^\top z^*) \quad \mathcal{W}_H$$
-almost surely.

But $A^{\dagger}B^{\top} = (B \circ A)^{\top}$, and so $B \circ A$ determines $\Psi \circ \Phi$.

COROLLARY 3.6. Let (H, E, W_H) and (G, F, W_G) be as in Theorem 3.3, suppose that $\Phi : E \longrightarrow F$ is a Wiener map for which $\Phi_*W_H \ll W_G$, and let $A : H \longrightarrow G$ be the associated map described in (2) of Corollary 3.4. If Ais non-degenerate and $I - A^{\dagger}A$ is Hilbert–Schmidt on H, then there exists a Wiener map $\Psi : F \longrightarrow E$ such that $\Psi_*W_G \ll W_H$ and Ψ is the inverse of Φ in the sense that $\Psi \circ \Phi(x) = x$ for W_H -almost every $x \in E$ and $\Phi \circ \Psi(y) = y$ for W_G -almost every $y \in F$.

Proof. I begin by showing that A has a bounded inverse $A^{-1}: G \longrightarrow H$ and that $I - A^{-1}(A^{-1})^{\dagger}$ is Hilbert–Schmidt on H. Indeed, because A is non-degenerate and $I - A^{\dagger}A$ is Hilbert–Schmidt, AA^{\dagger} has a pure point spectrum $\{\lambda_i : i \ge 1\} \subseteq (0, \infty)$ for which 1 is the only possible accumulation point. Hence, there exists an $\varepsilon > 0$ such that $\lambda_i \ge \varepsilon$ for all $i \ge 1$, and therefore A has a bounded inverse $A^{-1}: G \longrightarrow H$. Furthermore, the Hilbert–Schmidt norm of $I - A^{-1}(A^{-1})^{\dagger}$ is

$$\sum_{i=1}^{\infty} \left(1 - \frac{1}{\lambda_i}\right)^2 \le \varepsilon^{-2} \sum_{i=1}^{\infty} (1 - \lambda_i)^2 < \infty,$$

and so $I - A^{-1}(A^{-1})^{\dagger}$ is Hilbert–Schmidt on H.

Given the preceding, Corollary 3.4 says that A^{-1} determines a Wiener map $\Psi: F \longrightarrow E$ such that $\Psi_* \mathcal{W}_G \ll \mathcal{W}_H$, and Corollary 3.5 says that $\Psi \circ \Phi$ is a Wiener map which is determined by $A^{-1} \circ A = I$. Hence, by uniqueness, $\Psi \circ \Phi$ is \mathcal{W}_H -almost surely equal to the identity map on E. Similarly, $\Phi \circ \Psi$ must be \mathcal{W}_G -almost surely equal to the identity map on F.

References

- [1] N. Dunford and J. Schwartz, Linear Operators, Wiley-Interscience, New York, 1964.
- H. H. Kuo, Gaussian measures in Banach spaces, Lecture Notes in Math., vol. 436, Springer-Verlag, Berlin, 1975. MR 0461643
- [3] R. Ramer, On nonlinear transformations of Gaussian measures, J. Funct. Anal. 15 (1974), 166–187. MR 0349945
- [4] I. M. Segal, Distributions in Hilbert space and canonical systems of operators, Trans. Amer. Math. Soc. 88 (1958), 12–41. MR 0102759
- [5] D. Stroock, Abstract Wiener space, revisited, Comm. Stoch. Anal. 2 (2008), 145–151. MR 2446996
- [6] D. Stroock, Probability theory, an analytic view, 2nd ed., Cambridge Univ. Press, New York, 2010. MR 2760872

DANIEL W. STROOCK, M.I.T., 2-272, CAMBRIDGE, MA 02139, USA

E-mail address: dws@math.mit.edu