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ON THE ASSOCIATION AND CENTRAL LIMIT THEOREM
FOR SOLUTIONS OF THE PARABOLIC ANDERSON MODEL

M. CRANSTON AND G. MUELLER

Abstract. We consider large scale behavior of the solution set
{u(t, x) : x ∈ Zd} of the parabolic Anderson equation

u(t, x) = 1 + κ

∫ t

0

Δu(s,x)ds

+

∫ t

0

u(s,x)∂Wx(s), x ∈ Zd, t ≥ 0,

where {Wx : x ∈ Zd} is a field of i.i.d. standard, one-dimensional
Brownian motions, Δ is the discrete Laplacian and κ > 0. We

establish that the properly normalized sum,
∑

x∈ΛL
u(t, x), over

spatially growing boxes ΛL = {x ∈ Zd : ‖x‖ < L} has an asymp-
totically normal distribution if the box ΛL grows sufficiently

quickly with t and provided κ is sufficiently small depending on

dimension. The asymptotic distribution of properly normalized

sums over spatially growing disjoint boxes Λ1
L,Λ2

L is asymptoti-
cally independent. Thus, on sufficiently large scales the field of

solutions averaged over disjoint large boxes looks like an i.i.d.

Gaussian field. We identify the variance of this Gaussian distri-
bution in terms of the eigenfunction of the positive eigenvalue of
the operator 2κΔ + δ0.

1. Introduction

In this paper, we consider the property of association for the solutions of
the discrete space parabolic Anderson model and its application to a central
limit theorem for the field of solutions of this equation.

A collection of random variables {Xk, k ∈ S} where S is a countable set,
is said to be associated if for any d and coordinate-wise increasing functions
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f, g : Rd → R, and any finite subcollection Xk1 ,Xk2 , . . . ,Xkd
, it holds that

Cov
(
f(Xk1 ,Xk2 , . . . ,Xkd

), g(Xk1 ,Xk2 , . . . ,Xkd
)
)

≥ 0.

This notion was introduced in [6] and is of course related to the FKG in-
equality. One important aspect of this property was developed in [7] where
a central limit theorem was derived for the collection {Xk, k ∈ Zd} under the
assumptions that the {Xk, k ∈ Zd} are stationary and satisfy finite suscepti-
bility ∑

k∈Zd

Cov(X0,Xk) < ∞.(1)

A classical application of this is to take the Xk = σ(k) ∈ {0,1}Zd

, the spins of a
stochastic Ising model and derive a central limit theorem for sums,

∑
k∈Λ σ(k)

over growing boxes Λ, with respect to a Gibbs state. The spins are correlated,
but they possess the property of being associated and stationary with respect
to the Gibbs state.

The parabolic Anderson model is defined as a parabolic differential equa-
tion with white noise potential. Let {Wx : x ∈ Zd} be i.i.d. standard, one-
dimensional Brownian motions defined on some probability space (Ω,Q). We
say that this field is δ-correlated since E[Wx(s)Wy(s)] = (s ∧ t)δ0(x − y). In
what follows, ◦ dWx(t) denotes the Stratonovitch differential of Wx(t) while
dWx(t) denotes the Itô differential. The parabolic Anderson equation is a
Cauchy initial-value problem with random potential ◦ dWx(t), given by

∂u

∂t
(t, x) = κΔu(t, x) + u(t, x) ◦ dWx(t), u(0, x) ≡ 1,

where Δ is the discrete Laplacian and κ > 0. To be precise, by the discrete
Laplacian we mean Δf(x) =

∑
|y−x|=1(f(y) − f(x)). This differential equation

makes sense in its integral form

u(t, x) = 1 + κ

∫ t

0

Δu(s,x)ds +
∫ t

0

u(s,x) ◦ dWx(s), x ∈ Zd, t ≥ 0.(2)

The reader is referred to [2] for fundamental information on this equation
and its applications. Our interest is in the behavior of the field of solutions
{u(t, x) : x ∈ Zd}. We stress that the random variables in this field are de-
pendent and their correlation structure is examined in detail in Theorem 3.1.
A crucial property of the solutions of (2) is that of intermittency which is
defined in terms of the Lyapunov exponents which are the a.s. limits

γ(p) = lim
t→∞

1
t

lnE
[
up(t, x)

]
.

Full intermittency is then the property that γ(p) is strictly convex on [1, ∞),
that is

γ(p)
p

<
γ(p + 1)

p + 1
∀p ≥ 1.
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It is by now classical and was proven in [2] that in dimensions d = 1,2 full
intermittency holds for all κ > 0 but in dimensions d ≥ 3, full intermittency
only holds for 0 < κ < κc(d) where κc(d) is a dimension dependent constant.
In [4], it was shown in the case of full intermittency that a CLT holds for
sums, namely ∑

x∈ΛL
(u(t, x) − et/2)√

Var
∑

x∈ΛL
u(t, x)

L→ N (0,1)(3)

with ΛL = {x ∈ Zd : ‖X‖ < L} provided that L = L(t) → ∞ sufficiently rapid-
ly. The proof followed Bernstein’s method of decomposing the sum (3) into
sums over disjoint, slightly separated boxes. The proof was quite technical
and relied on approximation of the solution u(t, x) to obtain some degree of
independence and a difficult large deviation result from [5].

In this paper, we give a new proof of a stronger result, Theorem 4.1, using
the ideas of Newman about associated random variables. The proof is much
simpler than the previous one. It also yields more information about the
variance of

∑
x∈ΛL

u(t, x), relating it to the first eigenfunction of 2κΔ + δ0

and gives the joint distribution of these sums over disjoint growing boxes.
Moreover, the technique extends easily to cover related models. For example,
the technique applies equally to parabolic Anderson equations for some other
choices of covariance structure for the potentials than the δ spatial correla-
tion case that we consider here. This follows from the fact that the field of
solutions will still be associated and stationary under appropriate conditions
on the correlation function. Indeed, let {W̃x : x ∈ Rd} be a field of stan-
dard, one-dimensional Brownian motions on some probability space (Ω,Q)
with correlation

Cov
(
W̃x(s), W̃y(t)

)
= (s ∧ t)Γ(x − y)

for which Γ is a nonnegative. This of course includes the special case Γ(x) =
δ0(x), covered in (2). The condition Γ nonnegative ensures that the increments
W̃xi(ti) − W̃xi(si), ti > si, i = 1,2, . . . , n, are associated. This is a result of Pitt,
[8] which states that a necessary and sufficient condition for the associativity
of a Gaussian vector is the point-wise nonnegativity of its correlation function.
It’s an easy matter to check that for any x, y ∈ Zd and t > s,u > v, one has

Cov
(
W̃x(t) − W̃x(s), W̃y(u) − W̃y(v)

)
≥ 0.

What is also needed is that the field of solutions of an equation analogous
to (2)

u(t, x) = 1 + κ

∫ t

0

Δu(s,x)ds +
∫ t

0

u(s,x) ◦ dW̃x(s), x ∈ Zd, t ≥ 0,(4)

satisfy the finite susceptibility condition (1). This will occur when the discrete
Schrödinger operator 2κΔ+Γ possesses a simple positive eigenvalue and that
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the eigenfunction ψ associated to this eigenvalue decay exponentially, ψ(x) ≤
ce−c|x|. Given a Γ with compact support, this will be satisfied for sufficiently
small positive κ depending on Γ by arguments similar to those in [2].

This idea also applies to the stationary case considered in [1] (though we
won’t carry this out here) and even may be adapted to derive a CLT in the
continuous space setting under appropriate conditions. If one now takes Δ to
be the Laplacian on Rd and {Wx : x ∈ Rd} to be a field of Brownian motions
with a smooth, positive correlation function Σ, then we are interested in the
solutions of (2) with this operator and potential on continuous space. The
field of solutions will be correlated and the finite susceptibility condition will
hold provided that the operator Δ + Σ possesses a positive eigenvalue with
exponentially decreasing eigenfunction.

The paper is organized as follows. In Section 2, we introduce the notion of
association, some basic results about it and prove that the field of solutions of
(4) is associated. In Section 3, we derive necessary estimates on the covariance
of the solutions to (2) at different spatial points. Section 4 contains the main
result and its proof.

2. Association

We turn now to cover some background information on associated random
variables. An infinite collection of random variables is associated if any finite
subcollection is associated. The following theorem was noted in [6].

Theorem 2.1 (Esary, Proschan, Walkup). If {Yk : k = 1,2, . . . , d} are in-
dependent random variables and f1, f2, . . . , fn are real valued, coordinate-wise
increasing functions on Rd then denoting Y = (Y1, Y2, . . . , Yd) the variables
f1(Y), f2(Y), . . . , fn(Y) are associated.

If Tn
1 , Tn

2 , . . . , Tn
k are associated for all n and Tn

j
L→ Tj , j = 1,2, . . . , k, then

T1, T2, . . . , Tk are associated.

We now use this result to show solutions of the parabolic Anderson equa-
tion (4) are associated.

Theorem 2.2. Let {W̃x : x ∈ Zd} be a Gaussian field of standard, one-
dimensional Brownian motions on some probability space (Ω,Q) with correla-
tion

Cov
(
W̃x(s), W̃y(s)

)
= (s ∧ t)Γ(x − y),

where Γ(x) ≥ 0, x ∈ Zd. Let Ut = {u(t, x) : x ∈ Zd} be the field of solutions
of (4). Then Ut is associated.

Proof. We begin by recalling the Feynman–Kac representation of solutions
of (4). Namely, the solutions may be expressed as an average over continuous
time random walk paths. Let ({X(s) : s ≥ 0}, Fs, P

κ
x ) be the continuous time

Markov process on Zd with generator κΔ. The σ-fields Fs are given by Fs =
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σ(X(u) : u ≤ s) and Pκ
x is the measure on paths started at x. This process is

assumed to be independent of the field {W̃x : x ∈ Zd}. Then by the Feynmen–
Kac formula we may write

u(t, x) = Eκ
x

[
exp

{∫ t

0

dW̃X(t−s)(s)
}]

.

Since the property of association is a property of the distribution of ran-
dom variables, we may work instead with the field of random variables Vt =
{v(t, x) : x ∈ Zd} defined by

v(t, x) = Eκ
x

[
exp

{∫ t

0

dW̃X(s)(s)
}]

,(5)

which has the same distribution as the field Ut.
Let Dt = D([0, t],Zd) be the space of paths which are right continuous,

possess left limits and have a finite number of jumps of size one only. Given
a finite collection of such paths Xi ∈ D([0, t],Zd), i ∈ {1,2, . . . , n}, define the
joint Gaussian random variables

Ht

(
Xi

)
=

∫ t

0

dW̃Xi(s)(s), i ∈ {1,2, . . . , n}.

The covariance of this vector is given by

Cij = E
[
Ht

(
Xi

)
Ht

(
Xj

)]
=

∫ t

0

Γ
(
Xi(s) − Xj(s)

)
ds

and since Γ(x) ≥ 0, it follows from Pitt’s theorem that the random variables
Ht(Xi) are associated. Since increasing functions of associated random vari-
ables are associated, the variables exp{Ht(Xi)} ∧ N, i ∈ {1,2, . . . , n}, are asso-
ciated for any integer N. Going a step further, given pj ≥ 0, j = 1,2, . . ., with∑∞

j=1 pj = 1 and collections Xi
k ∈ D([0, t],Zd), i ∈ {1,2, . . . , n}, k ∈ {1,2, . . . ,

m}, similar reasoning implies that the random variables
∑n

i=1 pi ×
exp{Ht(Xi

k)} ∧ N,k ∈ {1,2, . . . ,m}, are associated. These can be written
n∑

i=1

pi exp
{
Ht

(
Xi

k

)}
∧ N =

∫
Dt

exp
{
Ht(γ)

}
∧ N dμk(γ)

for measures defined by μk =
∑n

i=1 piδXi
k
. Now take sequences of such mea-

sures μn
k , k ∈ {1,2, . . . ,m}, converging weakly to Pκ

xk
, k ∈ {1,2, . . . ,m}. Since

the functions exp{Ht(Xi
k)} ∧ N are continuous on Dt in the metric ρ where

ρ2(X,Y ) = Γ(0)t −
∫ t

0
Γ(X(s) − Y (s))ds. �

Remark 2.1. A heuristic argument the random variables {u(t, x) : x ∈
Zd} are associated can be given using the Malliavin calculus. This relies on
showing that {v(t, x) : x ∈ Zd} are increasing functions of the increments of
{Wx : x ∈ Zd}. Since increasing functions of independent random variables
are associated, this gives that the field of solutions of (2) is associated. The
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Malliavin derivative, denoted Dt,x, is heuristically equal to ∂
∂(dWx(t)) . Express

the integral in the exponential in the representation of v(t, x) at (5) as

HT (X) =
∑

x∈Zd

∫ T

0

Wx(t)δx(Xt).

This has the form

W (h) =
∫ T

0

h(t, x)dWx(t),

where h = h(t,X) = δx(X(t)) and obviously, h ∈ L2([0, T ]) × Zd. The Malli-
avin derivative of W (h) is thus the element of L2([0, T ]) × Zd defined by

Dt,xHT = δx

(
X(t)

)
.

Then taking f(y) = ey and applying the chain rule, we find the Malliavin
derivative of f(HT ) is given by

Dt,xf(HT ) = f(HT )δx

(
X(t)

)
.

Taking the average over paths X and then differentiating yields

Dt,xv(T,x) = E
[
δx

(
X(t)

)
eHt(X)

]
> 0.

Thus, one expects the association property to hold for the field {v(t, x) : x ∈
Zd}.

The field {v(t, x) : x ∈ Zd} satisfies the strictly weaker property of being
positively correlated (in the computation below, X and Y are independent
copies of the Markov process with generator κΔ)

Cov
(
v(t, x), v(t, y)

)
= E

[
v(t, x)v(t, y)

]
− E

[
v(t, x)

]
E

[
v(t, y)

]
= Eκ

x,yE
[
exp

{
Ht(X) + Ht(Y )

}]
− et

= Eκ
x,y

[
exp

{
1
2
E

[(
Ht(X) + Ht(Y )

)2]}]
− et

= Eκ
x,y

[
exp

{
t +

∫ t

0

δ0

(
X(s) − Y (s)

)
ds

}]
− et

= et

(
Eκ

x,y

[
exp

{∫ t

0

δ0

(
X(s) − Y (s)

)
ds

}]
− 1

)
≥ 0.

We now give a description of the result of [7] which is of principal interest
to us. It is an inequality for the characteristic function of sums of associated
random variables.
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Theorem 2.3 (Newman). Suppose X1,X2, . . . ,Xk have finite variance and
are associated. Then, for any r1, r2, . . . , rk ∈ R,∣∣∣∣∣E

[
exp

{
i

k∑
j=1

rjXj

}]
−

k∏
j=1

E
[
exp{irjXj }

]∣∣∣∣∣ ≤ 1
2

∑
l �=m

|rl| |rm| Cov(Xl,Xm).

The content of this theorem is that if the sum of the covariances can be con-
trolled, then the distribution of associated random variables can be compared
to the distribution of independent random variables.

3. Moment properties

We now discuss the moment properties of solutions u(t, x) to (2), again
working instead with their identically distributed analogs v(t, x) defined by
(5). First, as noted above,

E
[
v(t, x)

]
= e

t
2 ,

and so the first moment Lyapunov exponent is easy to compute,

lim
t→∞

1
t

lnE
[
v(t, x)

]
=

1
2

≡ λ(1).

The second Lyapunov exponent exists

lim
t→∞

1
t

lnE
[
v2(t, x)

]
= λ(2).

By Hölder’s inequality
2λ(1) ≤ λ(2),

but strict inequality, which is called intermittency, holds under certain restric-
tions on the parameter κ. As developed in [2], one has

2λ(1) < λ(2), 0 < κ < ∞, d = 1,2,(6)

but for dimensions d ≥ 3, there is a dimension dependent κc(d) > 0 such that

2λ(1) < λ(2), 0 < κ < κc(d), d ≥ 3.(7)

In the rest of this paper we shall always assume we are in the intermittent
regime, that is κ < κc(d) so that 2λ(1) < λ(2). The mixed second moments
E[u(t, x)u(t, y)] are significant in the present work. They are given by

E
[
u(t, x)u(t, y)

]
= etEκ

x,y

[
exp

{∫ t

0

δ0

(
X(s) − Y (s)

)
ds

}]
= etE2κ

x−y

[
exp

{∫ t

0

δ0

(
X(s)

)
ds

}]
.

The asymptotics of the function E[u(t, x)u(t, y)] can be evaluated as follows.
Define

Zκ
β,t(x) = Eκ

x

[
exp

{
β

∫ t

0

δ0

(
X(s)

)
ds

}]
.
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Then observe that

e−tE
[
u(t, x)u(t, y)

]
= Z2κ

1,t(x − y).

But there is a scaling relation

Z2κ
1,t(x − y) = E2κ

x−y

[
exp

{∫ t

0

δ0

(
X(s)

)
ds

}]
= E2κ

x−y

[
exp

{∫ 2κt

0

δ0

(
X(s/2κ)

)
d(s/2κ)

}]
= E1

x−y

[
exp

{
1
2κ

∫ 2κt

0

δ0

(
X(s)

)
ds

}]
= Z1

1
2κ ,2κt(x − y),

since Y (·) = X((2κ)−1·) is rate 1 simple symmetric random walk on Zd with
respect to P 2κ

x . This shows that

Z2κ
1 (t, x) = Z1

1
2κ ,2κt(x).(8)

The function Zβ,t(x) = Z1
β,t(x) arises as the partition function of a homopoly-

mer, [3], and by the Feyman–Kac formula, Zβ,t(x) solves

∂

∂t
Zβ,t(x) = ΔZβ,t(x) + βδ0(x)Zβ,t(x), Zβ,0(x) ≡ 1.

The same proof that shows (6) and (7) also shows that the spectrum of the
operator

Hβ = Δ + βδ0

satisfies

spectrum{Hβ } = [−4d,0] ∪
{
λ0(β)

}
, β > 0, d = 1,2,

and for d ≥ 3, there is a dimension dependent βc(d) such that

spectrum{Hβ } = [−4d,0], 0 < β < βc(d), d ≥ 3,

and
spectrum{Hβ } = [−4d,0] ∪

{
λ0(β)

}
, βc(d) < β,d ≥ 3.

In the above, λ0(β) > 0 is a simple eigenvalue for Hβ . In fact, one now sees
that βc(d) = 1/2κc(d). We denote the corresponding eigenfunction by ψβ and
note that it is given by, see [3],

ψβ(x) =
1

(2π)d

∫
Td

ei〈φ,x〉

λ0(β) + Φ(φ)
dφ,(9)

where

Φ(φ) = 2
d∑

j=1

(1 − cosφj)
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is the symbol (Fourier transform) of Δ and Td is the d-dimensional torus.
The representation (9) can be used to establish the existence of a positive
constant c = c(β,d) such that

ψβ(x) ≤ ce−c|x|, x ∈ Zd.

By the spectral theorem, letting Eλ be the resolution of the identity for the
operator H1/2κ one has

Z1/2κ,t(x) = eλ0(1/2κ)tψ1/2κ(x)‖ψ1/2κ‖L1 +
∫ 0

−4d

eλt〈dEλ1x,1〉.

Note that Z1/2κ,t(x) = E
1/2κ
x [exp{

∫ t

0
δ0(X(s))ds}] ≥ 1.

Theorem 3.1. For d = 1,2 and any κ > 0 or for d ≥ 3 and κ < κc(d) =
1/2βc(d),

Z1/2κ,t(x) − 1(10)

= exp
(
λ0(1/2κ)t

)
×

(
ψ1/2κ(x)‖ψ1/2κ‖L1(Rd) + q(x)O

(
exp(−εt)

))
, t → ∞,

where ∑
x∈Zd

q(x) < ∞.

In addition, when there is a positive eigenvalue for H1/2κ, this eigenfunction
satisfies

ψ1/2κ(x) ≤ ce−c|x|, x ∈ Zd,

where c = c(1/2κ,d) > 0 depends on d and κ.

Proof. Denoting β = 1/2κ, consider the fundamental solution of the heat
equation

∂

∂t
pβ(t, x, y) = Δpβ(t, x, y) + βδ0(x)pβ(t, x, y),

lim
t→0

pβ(t, x, y) = δx(y).

Then
Zβ,t(x) =

∑
y∈Zd

pβ(t, x, y).

The corresponding resolvent has the kernel

Rλ,β(x, y) =
∫ ∞

0

e−λtpβ(t, x, y)dt

which satisfies

Rλ,β(x, y) =
Rλ,0(x, y)
1 − βI(λ)

,(11)
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where
I(λ) = Rλ,0(0,0).

From (11), we can see that λ0(β) satisfies I(λ0(β)) = 1
β . The partition function

Zβ,t(x) can be expressed in terms of the resolvent kernel by inverting the
Laplace transform. Since we are in the case β > βc(d) = 1

I(0) , the kernel
Rλ,β(x, y) is easily seen to have a simple pole at λ0(β). Choosing the contour
to be Γ(a) = {a + is : s ∈ Rd} with a > λ0(β), we have

Zβ,t(x) − 1 =
−β

2πi

∫
Γ(a)

eλt

λ
Rλ,β(x,0)dλ.

By (11), the residue of the simple pole of Rλ,β(x,0) at λ = λ0(β) is Rλ0(β),0(x,
0), and since ψβ(x) = Rλ0(β),0(x,0), on selecting ε ∈ (0, λ0(β)), we get

Zβ,t(x) − 1 =
βeλ0(β)t

λ0(β)
ψβ(x)ψβ(0) − β

2πi

∫
Γ(λ0(β)−ε)

eλt

λ
Rβ,λ(x,0)dλ.

Since (Δ + βδ0 − λ0(β))ψβ = 0, we have∑
x∈Zd

βδ0(x)ψβ(x) =
∑

x∈Zd

(
λ0(β) − Δ

)
ψβ(x) =

∑
x∈Zd

λ0(β)ψβ(x).

That is,
λ0(β)

∑
y∈Zd

ψβ(y) = λ0(β)ψβ(0).

Consequently,

Zβ,t(x) − 1

= eλ0(β)tψβ(x)‖ψβ ‖L1 − β

2πi

∫
Γ(λ0(β)−ε)

eλt

λ
Rβ,λ(x,0)dλ

= eλ0(β)t

(
ψβ(x)‖ψβ ‖L1 − β

2πi

∫
Γ(λ0(β)−ε)

e(λ−λ0(β))t

λ
Rβ,λ(x,0)dλ

)
.

Note that e(λ−λ0(β))t = O(e−εt) on the contour Γ(λ0(β) − ε), while∑
x∈Zd

Rβ,λ(x,0) =
∫ ∞

0

∑
x∈Zd

e−λtp0(t,0, x)
λ(1 − βI(λ))

dt

=
1

λ2(1 − βI(λ))
.

Thus,

− β

2πi

∫
Γ(λ0(β)−ε)

e(λ−λ0(β))t

λ
Rβ,λ(x,0)dλ = q(x)O

(
e−εt

)
,

where ∑
x∈Zd

q(x) < ∞.



CLT FOR PARABOLIC ANDERSON 1323

This completes the proof of the theorem. �

Recalling the equivalence in law stated in (8) it follows from (10) that

Z2κ
1,t(x) ∼ eλ0(1/2κ)2κt

(
ψ1/2κ(x)‖ψ1/2κ‖L1 + q(x)O

(
e−ε2κt

))
.

This leads to the following corollary.

Corollary 3.1. For d = 1,2 and any κ > 0 or for d ≥ 3 and 0 < κ < κc(d),

Cov
(
u(t, x), u(t, y)

)
= et

(
Z2κ

1,2κt(x − y) − 1
)

∼ eteλ0(1/2κ)2κt
(
ψ1/2κ(x − y)‖ψ1/2κ‖L1 + q(x − y)O

(
e−ε2κt

))
.

(12)
E

[
u2(t, x)

]
= et

(
Z2κ

1,t(0) − 1
)

∼ eteλ0(1/2κ)2κt
(
ψ1/2κ(0)‖ψ1/2κ‖L1 + q(0)O

(
e−ε2κt

))
.

Consequently,

λ(2) = 2λ(1) + λ0(1/2κ)2κ(13)
= 1 + λ0(1/2κ)2κ.

Note that (13) gives a quantitative expression for the intermittency condi-
tion λ(2) > 2λ(1) since λ(1) = 1

2 and so we see that

λ(2) − 2λ(1) = λ0(1/2κ)2κ.

We note that λ0(1/2κ) → 0 as κ ↗ κc(d). Its rate of decay depends on the
dimension.

4. Main result

Instead of t we shall now switch to n to denote time. We will be concerned
with sums of the variables u(n,x) over boxes

Bn
k =

{
x ∈ Zd : kin ≤ xi ≤ (ki + 1)n, i = 1,2, . . . , d

}
for k ∈ Zd. Our main result is the following theorem.

Theorem 4.1. Suppose κ < κc(d) and let {u(n, j) : j ∈ Zd} be the solution
of the parabolic Anderson equation (2). Define the random variables

Xn
j = e− 1

2 λ(2)nu(n, j), j ∈ Zd,

Y m,n
k = m− d

2

∑
j∈Bm

k

(
Xn

j − E
[
Xn

j

])
, k ∈ Zd

and
Y

m(n)
k = m(n)− d

2

∑
j∈B

m(n)
k

(
Xn

j − E
[
Xn

j

])
, k ∈ Zd.
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If m(n) = eγn with γ > 1
d (2λ′(2) − λ(2)), then

Y
m(n)
k → Zk, k ∈ Zd,

where the field {
Zk : k ∈ Zd

}
is composed of i.i.d. N (0,A) random variables with

A =
∑

j∈Zd

ψ1/2κ(j)‖ψ1/2κ‖L1 .

We start with some preliminary remarks. Using (12), since∑
y∈Bn

0

Cov
(
u(n,0), u(n, y)

)
∼ eλ(2)n

∑
y∈Bn

0

(
ψ1/2κ(y)‖ψ1/2κ‖L1 + q(y)O

(
e−ε2κn

))
it follows that∑

y∈Bn
0

Cov
(
Xn

0 ,Xn
y

)
∼

∑
y∈Bn

0

(
ψ1/2κ(y)‖ψ1/2κ‖L1 + q(y)O

(
e−ε2κn

))
.

Then, since

Y
m(n)
k = m(n)− d

2

∑
j∈B

m(n)
k

(
Xn

j − E
[
Xn

j

])
= m(n)− d

2

∑
j∈B

m(n)
k

(
Xn

j − e(λ(1)− λ(2)
2 )n

)
,

one gets,

Var
(
Y

m(n)
k

)
(14)

= m(n)−d

(
E

[( ∑
j∈B

m(n)
k

Xn
j

)2]
− m(n)2de−n(λ(2)−2λ(1))

)
∼ m(n)−d

∑
j,k∈B

m(n)
k

(
ψ1/2κ(j − k)‖ψ1/2κ‖L1 + q(j − k)O

(
e−ε2κn

))
− m(n)de−n(λ(2)−2λ(1))

∼
∑

j∈B
m(n)
k

(
ψ1/2κ(j)‖ψ1/2κ‖L1 + q(j)O

(
e−ε2κn

))
− m(n)de−λ0(

√
2κ)2κn.

Define
Am(n) = Var

(
Y

m(n)
k

)
,
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which, by stationarity, does not depend on k ∈ Zd and

A =
∑

j∈Zd

ψ1/2κ(j)‖ψ1/2κ‖L1 .

Note that we have just established by (14), since κ < κc(d) implies
λ0(

√
2κ) > 0, that

lim
n→∞

Am(n) = A.

This gives our lemma.

Lemma 4.1. For any k ∈ Zd,

lim
n→∞

Var
(
Y

m(n)
k

)
=

∑
j∈Zd

ψ1/2κ(j)‖ψ1/2κ‖L1 .(15)

If, in addition,

lim
n→∞

m(n)
m̃(n)

= 1

then

lim
n→∞

E
[(

Y
m(n)
k − Y

m̃(n)
k

)2] = 0.(16)

Also, for j �= k,

lim
n→∞

Cov
(
Y

m(n)
j , Y

m̃(n)
k

)
= 0.(17)

Proof. The limit in (15) follows from (14) as outlined before the lemma.
For (16), if m(n) ≥ m̃(n), then

E
[(

Y
m(n)
k − Y

m̃(n)
k

)2]
= Var

(
Y

m(n)
k

)
+ Var

(
Y

m̃(n)
k

)
− 2

(
m(n)m̃(n)

)−d/2 Cov
(
X

m(n)
0 ,X

m̃(n)
0

)
≤ 7Var

(
Y

m(n)
k

)
+ Var

(
Y

m̃(n)
k

)
− 2

(
m̃(n)
m(n)

)−d/2

Var
(
Y

m̃(n)
k

)
while if m(n) < m̃(n), then

E
[(

Y
m(n)
k − Y

m̃(n)
k

)2] ≤ Var
(
Y

m(n)
k

)
+ Var

(
Y

m̃(n)
k

)
− 2

(
m(n)
m̃(n)

)−d/2

Var
(
Y

m̃(n)
k

)
.

Since limn→∞
m(n)
m̃(n) = 1, by (15),

lim
n→∞

E
[(

Y
m(n)
k − Y

m̃(n)
k

)2] = 0. �
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Proof of Theorem 4.1. This is essentially a triangular array version of the
central limit theorem for associated random variables proved in [7]. The
independence of the variables Zk, k ∈ Zd follows from Theorem 2.3 and (17)
since for finite Λ ⊂ Zd,

lim
n→∞

∣∣∣∣E[
exp

{
i
∑
j∈Λ

irjY
m(n)
j

}]
− exp

{
− 1

2

∑
j∈Λ

Ar2
j

}∣∣∣∣
= lim

n→∞

∣∣∣∣E[
exp

{
i
∑
j∈Λ

irjY
m(n)
j

}]
−

∏
j∈Λ

E
[
exp

{
irjY

m(n)
j

}]∣∣∣∣
≤ lim

n→∞

1
2

∑
k,j∈Λ

|rj | |rk | Cov
(
Y

m(n)
j , Y

m(n)
k

)
= 0.

Observe as well that, for any nonnegative integer l and using [·] to denote the
greatest integer function, since limn→∞

l[m(n)/l]
m(n) = 1, it follows that∣∣E[

exp
{
irY

m(n)
0

}]
− E

[
exp

{
irY

l[m(n)/l]
0

}]∣∣(18)

≤ E
[∣∣exp

{
ir

(
Y

l[m(n)/l]
0 − Y

m(n)
0

)}
− 1

∣∣]
≤ E

[∣∣Y l[m(n)/l]
0 − Y

m(n)
0

∣∣]
≤ E

[(
Y

l[m(n)/l]
0 − Y

m(n)
0

)2]1/2

→ 0, n → ∞.

Furthermore, with l = [m(n)/m], using the fact, which follows from station-
arity, that Y ml

0
L= l−d/2

∑
j∈Bl

0
Y m,n

j , by Theorem 2.3∣∣E[
exp

{
irY ml

0

}]
− E

[
exp

{
irl−d/2Y m,n

0

}]ld ∣∣(19)

≤ 1
2

∑
j,k∈Bl

0,j �=k

r2l−d Cov
(
Y m,n

j , Y m,n
k

)
=

r2

2

(
Cov

(
Y ml

0 , Y ml
0

)
− l−d

∑
j∈Bl

0

Cov
(
Y m,n

j , Y m,n
j

))

=
r2

2
(
Var

(
Y ml

0

)
− Var

(
Y m,n

0

))
→ r2

2
(A − Am), l → ∞.

For the term, E[exp{irl−d/2Y m,n
0 }]l

d

, we use the inequality∣∣∣∣eix − 1 − ix +
x2

2

∣∣∣∣ ≤ c(ε)|x|2+ε, x ∈ R.
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This implies,

E
[
exp

{
irl−d/2Y m,n

0

}]
=

(
1 − r2

2
l−dAm + O(1)|r|2+εl−d(1+ ε

2 )E
[(

Y m,n
0

)2+ε])
=

(
1 − r2

2
l−dAm + O(1)l−d(1+ ε

2 )EQ

[(
Xm

0

)2+ε])
=

(
1 − r2

2
l−dAm + O(1)l−d(1+ ε

2 )e(λ(2+ε)−(1+ ε
2 )λ(2)+o(1))n

)
.

Consequently,

E
[
exp

{
irl−d/2Y m

0

}]ld

=
(

1 − r2

2
l−dAm + O(1)l−d(1+ ε

2 )e(λ(2+ε)−(1+ ε
2 )λ(2)+o(1))n

)ld

∼
(

1 − l−d

(
r2Am

2
+ O(1)l−d ε

2 e(λ(2+ε)−(1+ ε
2 )λ(2)+o(1))n

))ld

=
(

1 − l−d

(
r2Am

2
+ O(1)e(−dγ ε

2+λ(2+ε)−(1+ ε
2 )λ(2)+o(1))n

))ld

.

Now set γ = 1
d (2λ′(2) − λ(2)) + α where α > 0. Then,

−dγ
ε

2
+ λ(2 + ε) −

(
1 +

ε

2

)
λ(2) + o(1)(20)

= −
(
2λ′(2) − λ(2)

) ε

2
+ λ(2 + ε)

−
(

1 +
ε

2

)
λ(2) − dα

ε

2
+ o(1)

= −ε

(
λ′(2) − λ(2 + ε) − λ(2)

ε

)
− dα

ε

2
+ o(1)

= O(1)ε2 − dα
ε

2
+ o(1)

< 0

for n sufficiently large. Therefore,

lim
n→∞

E
[
eirl−d/2Y m,n

0
]ld = e−Am

r2
2 .(21)

Putting together (18), (19) and (21) we have for any m,

limsup
n→∞

∣∣∣∣E[
exp

{
irY

m(n)
0

}]
− exp

{
−A

r2

2

}∣∣∣∣
≤ r2

2
(A − Am) +

(
e−Am

r2
2 − e−A r2

2
)
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Since Am → A as m → ∞

lim
n→∞

E
[
exp

{
irY

m(n)
0

}]
= e−A r2

2

and the theorem is proved. �
We end by remarking that the estimate in Theorem 3.1 holds under rea-

sonable conditions on Γ if one uses the field {W̃x : x ∈ Zd} instead of the
δ-correlated field {Wx : x ∈ Zd}. Thus under reasonable conditions, say Γ has
compact support, Theorem 4.1 holds for the solution field of (4).
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