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A CHARACTERIZATION OF PRODUCT PRESERVING
MAPS WITH APPLICATIONS TO A CHARACTERIZATION

OF THE FOURIER TRANSFORM

S. ALESKER, S. ARTSTEIN-AVIDAN, D. FAIFMAN AND V. MILMAN

Abstract. It is shown that a product preserving bijective (not
necessarily real linear or continuous) operator on an appropriate

class of complex valued functions must have either the form [φ �→
φ ◦ u] or [φ �→ φ ◦ u] where u is a fixed diffeomorphism of the base.

1. Introduction

To state the various results, we need to recall first some well-known defini-
tions and simple observations. For a reference on the standard results stated
below, see, for example, [GS], the elementary [S1], or the more advanced [S2].

Definition 1.1. One says that an infinitely smooth function f : Rn → C

is rapidly decreasing (also called Schwartz function) if for any l ∈ Z+ and any
multi-index α = (α1, . . . , αn) of nonnegative integers one has

sup
x∈Rn

∣∣∣∣∂αf(x)
∂xα

(1 + |x|l)
∣∣∣∣ < ∞,

where as usual ∂αf(x)
∂xα := ∂|α|f

∂x
α1
1 ··· ∂xαn

n
, |α| :=

∑n
i=1 αi.

The space of all rapidly decreasing complex valued functions on Rn is
denoted by S(n), and is called the Schwartz space. Below we denote S(n) = S
when the dependence on n is obvious.
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The space S = S(n) becomes a Fréchet space when equipped with the
system of norms:

‖f ‖N := sup
{∣∣∣∣∂αf(x)

∂xα
(1 + |x|N )

∣∣∣∣ ∣∣ x ∈ Rn, |α| ≤ N

}
.

One of the main properties of the Schwartz space S is that the Fourier trans-
form F : S → S , defined by

(Ff)(ξ) =
∫

Rn

f(x)e−2πi〈x,ξ〉 dx

is a linear topological isomorphism.
The space S has two structures of algebra given by the point-wise product

and the convolution

· : S × S → S,

∗ : S × S → S.

Both operations are continuous with respect to both arguments simultane-
ously.

Let S ′(n) be the topological dual of S(n). (Again, we will write S ′(n) = S ′

whenever there is no possibility for confusion.) It will be equipped with the
weak topology. Elements of S ′ are called distributions of tempered growth.
We have the canonical continuous map S → S ′ given by

〈φ, f 〉 =
∫

Rn

f(x)φ(x)dx.

This map is injective and has a dense image in the weak topology. We will
identify S with its image in S ′: S ⊂ S ′.

The proof of the following claim is straightforward (see, e.g., [GS], Chap-
ter 2).

Claim 1. (i) The point-wise product on S extends (uniquely) to a separately
continuous map S × S ′ → S ′ which is given explicitly by

〈φ,ψ · f 〉 = 〈φ · ψ,f 〉

for any f ∈ S ′, φ,ψ ∈ S . Then S ′ becomes a module over S .
(ii) The convolution on S extends (uniquely) to a separately continuous

map S × S ′ → S ′ which is given explicitly by

〈φ,ψ ∗ f 〉 = 〈φ ∗ (−Id)∗ψ,f 〉

for any f ∈ S ′, φ,ψ ∈ S . Then S ′ becomes a module over S . (Here (−Id)∗

denotes the operator defined by ((−Id)∗ψ)(x) = ψ(−x), a special case of the
definition of u∗ below.)
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(iii) The Fourier transform extends (uniquely) to an isomorphism of linear
topological spaces F : S ′ →̃S ′. Moreover, F is an isomorphism of S-modules:
for any φ ∈ S, f ∈ S ′

F(φ · f) = F(φ) ∗ F(f),
F(φ ∗ f) = F(φ) · F(f).

Our main result is as follows.

Theorem 2. Assume we are given a bijective map T : S → S which admits
an extension T ′ : S ′ → S ′ and such that for every f ∈ S and g ∈ S ′ we have

T ′(f · g) = (T f) · (T ′g). Then there exists a C∞-diffeomorphism u : Rn → Rn

such that

either T (f) = f ◦ u for all f ∈ S,

or T (f) = f ◦ u for all f ∈ S.

Remark 3. (1) Let us emphasize that neither real linearity of T nor con-
tinuity are assumed a-priori, but they follow from the theorem a-posteriori.

(2) A version of Theorem 2 for real valued functions was proved in [AAM2].
(3) If one would take the class of continuous functions (even with compact

support) instead of S, S ′ in the above theorem, then the result would not be
true. Indeed the map C(Rn) → C(Rn) given by [φ �→ |φ|2 · arg(φ)] is bijective
and multiplicative.

As an immediate corollary, we get the following characterization of the
Fourier transform.

Theorem 4. Assume we are given a bijective transform F : S → S which
admits an extension F ′ : S ′ → S ′ which is bijective, and such that for every
f ∈ S and g ∈ S ′ we have F ′(f · g) = (F f) ∗ (F ′g).

Then, there exists some diffeomorphism w : Rn → Rn such that either for
every f ∈ S , F f = F(f ◦ w), or, for every f ∈ S , F f = F(f ◦ w).

Remark 5. In [AAM2] the following corollary of Theorem 4 was proved.

Theorem 6 ([AAM2]). Assume we are given a bijective transform F : S →
S which admits an extension F ′ : S ′ → S ′ which is also bijective, and such
that:
1. For every f ∈ S and g ∈ S ′ we have F ′(f ∗ g) = (F f) · (F ′g).
2. For every f ∈ S and g ∈ S ′ we have F ′(f · g) = (F f) ∗ (F ′g).

Then, F is essentially the Fourier transform F, that is, for some B ∈
GLn(R) with |det(B)| = 1, we have either for all f that F (f) = F(f ◦ B) or
for all f that F (f) = F(f ◦ B).

The main Theorem 2 can be generalized to arbitrary smooth manifolds
as follows. Let X be a smooth manifold. Let D(X) denote the space of
complex valued infinitely smooth functions with compact support. The space
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D(X) is equipped with the standard linear topology of (strict) inductive limit
of Fréchet spaces. Let M(X) denote the space of infinitely smooth com-
pactly supported measures on X . The space M(X) is also equipped with
the standard linear topology of (strict) inductive limit of Fréchet spaces. Let
D ′(X) denote the topological dual of M(X). We have the natural linear map
D(X) → D ′(X) given by

f �→
[
μ �→

∫
X

f · dμ

]
.

This map is injective with dense image. We will identify D(X) with its image
in D ′(X):

D(X) ⊂ D ′(X).
Naturally D ′(X) is a D(X)-module.

Theorem 7. Assume we are given a bijective map T : D(X) → D(X)
which admits and extension T ′ : D ′(X) → D ′(X) and such that for every
f ∈ D(X) and g ∈ D ′(X) we have T ′(f · g) = (T f) · (T ′g). Then there ex-
ists a C∞-diffeomorphism u : X → X such that

either T (f) = f ◦ u for all f ∈ S,(1)

or T (f) = f ◦ u for all f ∈ S.(2)

Conversely, any transformation of the form (1) or (2) obviously satisfies the
assumptions of the theorem.

Before we pass to the proofs of our results, let us briefly comment on where
these theorems originated from. For reasons connected with the topic of con-
vex analysis, we were interested in the characterization of a very basic concept
in convexity: duality and the Legendre transform. In the paper [AM1], it was
shown that the Legendre transform can be characterized as follows: up to lin-
ear terms, it is the only involution on the class of convex lower semi-continuous
functions on Rn which reverses the (partial) order of functions. Since the
Legendre transform has another special property, namely that it exchanges
summation of functions with their inf-convolution (for definitions and details
see [AM2]), this in fact implied that an involution on lower semi-continuous
convex functions which reverses order must have this special property. It turns
out that also the opposite is true, namely any involutive transform (on this
class) which exchanges summation with inf-convolution, must reverse order,
and, in fact, be up to linear terms the Legendre transform (see [AM2] for
proofs and a discussion). Thus, already at this stage we observed that very
minimal basic properties essentially uniquely define some classical transform
which traditionally is defined in a concrete, and quite involved form.

It looks very intriguing to determine how far this point of view can be
extended. It turns out that also the classical Fourier transform may be de-
fined essentially uniquely by very minimal and basic conditions, namely by the
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condition of exchanging convolution with product, see [AAM2]. We are going
further in this paper and study transformations which are assumed only to
preserve product (the above Theorem 6 from [AAM2] is equivalent to under-
standing maps preserving both product and convolution). Theorem 2 implies
that these transforms must be, up to a diffeomorphism of the base, either
identity or conjugation. Previously, we could deal with such transforms only
in the case of real valued functions, but now we are able also to deal with the
case of complex valued functions, which is of course necessary for the study of
the Fourier transform. The complex valued case turns out to be much more
involved than the real valued case, both algebraically and analytically. Let us
mention here only one such point: We use in the proof a 90 years old result
of Banach [B] and Sierpiński [S] (from 1920) stating that a measurable and
additive function is continuous. This delicate result, perhaps, has never found
an application until this paper.

After our papers [AAM1], [AAM2] about the real case have been published,
the paper [J], extending the results to the setting of Zn, has appeared. We
thank the anonymous referee for pointing this out to us. However, let us
emphasize that the main point of our results is the minimality of the conditions
(no linearity or continuity are assumed, but follow aposteriori) which is not
the case in the aforementioned paper.

2. Proof of Theorem 2

We present in this section a detailed proof of Theorem 2. The proof of
Theorem 7 follows essentially the same lines. We may of course assume with-
out loss of generality that the transformation T is defined over the whole
space S ′.

Before starting the proof, a short discussion of what it means to evaluate
generalized functions from S ′ at a point when needed. Clearly, generalized
functions in S ′ are defined via their action on functions in S . However, there
are subclasses A ⊂ S ′ which are themselves, say, continuous functions, and so
evaluating them at a point is meaningful. Consider the following interesting
subclass S1 ⊂ S ′ consisting of all generalized functions φ ∈ S ′ such that for
every f ∈ S we have that φ · f ∈ S . For example, all constant functions belong
to S1. It is also easy to see that any function in S1 is infinitely smooth. In
fact, S1 contains all infinitely smooth functions f with the following growth
condition: any partial derivative of f is bounded by C(1 + |x|)k for some
constant C and integer k.

Note that for φ ∈ S1 and ψ ∈ S ′, the product ψ · φ is well defined and
belongs to S ′. Indeed, for f ∈ S we have that 〈ψ · φ, f 〉 = 〈ψ, (φ · f)〉 is the
action of a function in S ′ with a function in S , which is well defined since the
map S → S given by f �→ φ · f is continuous.
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It is not difficult to see that for φ ∈ S ′ one has: φ ∈ S1 iff T φ ∈ S1. Indeed

T φ ∈ S1 ⇔
∀f ∈ S, (T φ) · f ∈ S ⇔

∀g ∈ S, (T φ) · (T g) ∈ S ⇔
∀g ∈ S, T (φ · g) ∈ S ⇔

∀g ∈ S, φ · g ∈ S ⇔ φ ∈ S1.

Moreover, this implies that for φ ∈ S1 and ψ ∈ S ′ we have that T (ψ · φ) =
(T ψ) · (T φ), both sides being well defined: indeed, note that for any g ∈ S ,
letting f = T −1g we have that

T (ψ · φ) · g = T (ψ · φ · f) = T (ψ) · T (φ · f)

and likewise
(T ψ · T φ) · g = T (ψ) · T (φ · f).

Thus, the product of the two with any function g ∈ S is the same (and well
defined), which easily implies that they are the same element in S ′. We will
use this observation mainly for φ being the constant function.

Finally, note that for functions φ in S1, evaluation at a point is meaningful
since as noted before these may be identified with a subclass of C∞ functions,
and in particular are continuous.

Proof of Theorem 2. The proof is divided into 13 steps; several of them
are exactly the same as in the case of real valued functions in [AAM2]. We
repeat them here for the convenience of the reader.

Step 1. The following identities hold, despite the fact that a-priori both
functions in each identity belong to S ′ \ S . This can be done directly, but
follows from the above discussion and the fact that the constant functions
belong to S1.

T (Cδx) = T (δx) · T (C),
T (C1 · C2) = T (C1) · T (C2).

Step 2. Next, we may determine the image of the constant functions 0
and 1. We show T (1) = 1 and T (0) = 0.

Proof of Step 2. Indeed, for all f ∈ S , and in fact all f ∈ S ′, we have
1 · f = f , hence T (1) · g = g for all g ∈ S ′ and hence (taking e.g., g = 1) we
see that T (1) = 1. Similarly, 0 · f = 0 for all f ∈ S ′, so T (0) · g = T (0) for all
g ∈ S ′ (e.g., for g = 0) and so T (0) = 0.

Definition 2.1. For f ∈ S the support of f , denoted supp(f), is defined
as usual as the closure of the set of points where f �= 0. For φ ∈ S ′, the
support of φ, denoted supp(φ), is defined as follows: x /∈ supp(φ) if there
exists an open neighborhood U with x ∈ U and such that for any f ∈ S with
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supp(f) ⊂ U one has 〈φ, f 〉 = 0. (When φ ∈ S the second definition coincides
with the first.)

Step 3. In this step, we show that any constant multiple of the delta
function at a point x is mapped to a function supported at one point.

Proof of Step 3. Indeed, assume that there are two different points z, y ∈
supp(T δx). Take disjoint neighborhoods of y and z, Uy and Uz .

By the definition of the support of a function in S ′, we may find two
functions, gy, gz ∈ S , supported on Uy and Uz respectively, which satisfy that
〈T δx, gy 〉 �= 0, and 〈T δx, gz 〉 �= 0. In particular, (T δx) · gy �≡ 0 and (T δx) ·
gz �≡ 0. However, by disjointness of Uy and Uz , we have gy · gz ≡ 0.

Assume gy = T fy and gz = T fz for some functions fy, fz ∈ S . Then, by
injectivity and Step 2, we see that also δx · fy �≡ 0 and δx · fz �≡ 0, and therefore
fy(x) �= 0 and fz(x) �= 0. This in turn implies that (fy · fz)(x) �= 0, which
means in particular that (fy · fz) �≡ 0, and by multiplication preservation, and
injectivity, T fy · T fz �≡ 0, contradicting gy · gz ≡ 0.

We define a function u : Rn → Rn by the following formula: u(x) =
supp(T (δx)).

Step 4. In this step, we show that if f ∈ S satisfies that f(x) = 1 then
(T f)(u(x)) = 1, and if f(x) = 0 then (T f)(u(x)) = 0.

Proof of Step 4. It is well known that the generalized functions which are
supported on a single point u are only the functions which are the sum of a
finite number of various derivatives of the generalized function δu.

Thus, we have by Step 3 that for every x there exist an M and constants
γα ∈ C for α ∈ (N ∪ 0)n with |α| ≤ M such that

T (δx) = γ0δu(x) +
∑
α

γα
∂α

∂tα
δu(x)

(where as before, α is a multi-index, |α| =
∑

i αi and ∂α

∂tα = ∂|α|∏
∂t

αi
i

). Note that
to be precise we must write M(x) and γα(x) for each α, since these coefficients
may, a-priori, depend on the point x which we fixed. We may assume that
for some α with |α| = M we have γα �= 0.

Consider a function f ∈ S , then f · δx = f(x)δx. Therefore, (T f) · (T δx) =
T (f(x)δx). Assume f(x) = 0, then we have that (T f) · (T δx) ≡ 0. Plugging
in the formula for T δx, we see that in this case

(T f) ·
(

γ0δu(x) +
∑
α

γα
∂α

∂tα
δu(x)

)
≡ 0.

We may use the formula for multiplication of a function by a derivative of
the delta function, and get many equations. The equations corresponding the
derivatives α with |α| = M are easily seen to be (T f)(u(x))γα

∂α

∂tα δu(x) = 0.
Thus, since for one of them γα �= 0, we get (T f)(u(x)) = 0.
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Similarly, assume that f(x) = 1, then (T f) · (T δx) = T δx, and we may plug
in the formula for T δx, getting the equation

(T f) ·
(

γ0δu(x) +
∑
α

γα
∂α

∂tα
δu(x)

)
= γ0δu(x) +

∑
α

γα
∂α

∂tα
δu(x).

Comparing the terms next to ∂α

∂tα δu(x), we get this time that (T f)(u(x)) = 1.
We remark that in the exact same way, for a function f ∈ S with f(x) = C,

what one would get is that (T f)(u(x)) = (T C)(u(x)). (This uses the fact,
mentioned at the beginning, that evaluation of T C at a point has meaning.)
In other words, this step actually shows that the transform, on S , is local: its
value at u(x) only depends on the value of f at x.

Step 5. We show here that the generalized function T δx is some constant
multiple of δu(x). We may thus write

T (δx) = cxδu(x).

Proof of Step 5. From Step 3, we know that for every x there exist constants
γα(x) and M(x) such that

T (δx) = γ0(x)δu(x) +
∑
α

γα(x)
∂α

∂tα
δu(x),

and so that there exists some α with |α| = M and γα(x) �= 0, and with γα(x) =
0 for |α| > M(x).

Let f ∈ S , and g = T f , and compute

g ·
(

γ0(x)δu(x) +
∑

0<|α|≤M

γα(x)
∂α

∂tα
δu(x)

)

which is obviously itself a function supported on u(x), that is, it is a-priori
equal to some expression of the form

(3) g · (T δx) =
∑
α

aα
∂α

∂tα
δu(x),

where aα depend on both x and g.
To compute these terms, we integrate by parts to get∫ (

g(t) · ∂α

∂tα
δy(t)

)
z(t)dt

=
∫

∂α

∂tα
δy(t)

(
g · z(t)

)
dt

= (−1)|α| ∂α

∂tα
(g · z)(y) = (−1)|α|

∑
α1+α2=α

(
∂α1

∂tα1
g(y) · ∂α2

∂tα2
z

)
(y)

= (−1)|α|
∑

α1+α2=α

(
∂α1

∂tα1
g(y)

)
·
(∫ (

δy(t)
∂α2

∂tα2
z

)
(t)dt

)
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= (−1)|α|
∑

α1+α2=α

(
∂α1

∂tα1
g(y)

)
· (−1)|α2|

(∫ (
∂α2

∂tα2
δy

)
(t) · z(t)dt(t)dt

)

=
∫ ( ∑

α1+α2=α

(−1)|α1|
(

∂α1

∂tα1
g

)
(y) ·

(
∂α2

∂tα2
δy

))
(t) · z(t)dt.

Thus, we know what is g · ∂α

∂tα δy for every α. In particular, it equals a
linear combination of derivatives of δy of order α and lower, with coefficients
depending on derivatives of order α and lower of g at y.

Return to equation (3), and consider the coefficient, on the left hand side, of
∂α

∂tα δu(x) for α with |α| = M . It appears only as a by-product of ∂α

∂tα δu(x) from
the part T (δx) on the left hand side (so, with α1 = 0 and α2 = α) and hence
its coefficient is exactly g(u(x))γα. So we have determined aα for |α| = M .

Assume that M �= 0, and consider the coefficient of some ∂α

∂tα δu(x) with
|α| = M − 1. Thus, letting α = (α1, . . . , αn), it can be generated either by
simply letting α1 = 0 and α2 = α, or by letting α1 = ei and α2 = α. Therefore,
we get the equation (for |α| = M − 1) that

aα = g(u(x))γα −
n∑

i=1

γα+ei

(
∂

∂ti
g

)
(u(x)).

Next, assume that f ∈ S satisfies that f(x) = 1, and as before, g = T f .
Step 4 implies that g(u(x)) = 1, and in fact we know that this is equivalent,
since all conditions are symmetric with respect to T and T −1, therefore if
(T f)(u(x)) = 1 then f(x) = 1.

Under this assumption, we have that T (f · δx) = T δx, so that the coeffi-
cients of ∂α

∂tα δu(x) in each side of this equation are the same. Comparing the
coefficients for |α| = M − 1, we get the equation, for every α (after cancelation
of the term g(u(x))γα)

0 =
n∑

i=1

γα+ei

(
∂

∂ti
g

)
(u(x)).

Note that at least one of these equations is nontrivial, since we know that
there is some α′ with |α′ | = M and γα′ �= 0, and so α′ has some coordinate i
with α′

i �= 0, so that α = α′ − ei gives a nontrivial equation above.
To get the contradiction, we choose g ∈ S with g(u(x)) = 1 but for which

one of the above equations fails. This is clearly possible, since the condition is
only that some linear combination of the directional derivatives be equal to 0
at the chosen point x, and that g(u(x)) = 1. We may even take g to be linear
in some neighborhood of u(x), and smoothed out outside to belong to S .

The proof of this step is thus complete, and we see that M = 0, and the
image of a delta function T δx is some constant multiple of δu(x).
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Step 6. In this step, we note that u : Rn → Rn is invertible, and also that
multiples of the delta functions at x are mapped by T to multiples of the
delta function at u(x).

Proof of Step 6. Indeed, first note that T (cδx) = T (c) · T (δx) = (T c)(u(x))×
Cxδu(x), so that multiples of the delta function δx are also mapped to multiples
of δu(x).

To construct u−1 simply note that all considerations above are also true for
T −1, we may define v(y) = supp(T −1δy), and by the equation T −1(T δx) = δx

and T (T −1δy) = δy , we get that u(v(y)) = y and v(u(x)) = x so that u is
invertible.

Step 7. In this step, we determine the general form of the transform, namely
that for any f ∈ S1 and y = u(x),

(T f)(y) = (T (f(x)))(y).

(In fact, this was done already in the proof of Step 4.)
Proof of Step 7. For any f ∈ S we have that, letting y = u(x), that

(T f)(y) · Cxδy = T (f · δx) = T
(
f(x) · δx

)
= T (f(x)) · Cxδy = T (f(x))(y)Cxδy.

Therefore, (T f)(y) = T (f(x))(y). That is,

(4) (T f)(y) = T (f(u−1(y)))(y).

The same is true for functions f ∈ S1, since these can be multiplied by δx in
exactly the same way, by the discussion at the beginning of the section.

Step 8. In this step, we show that u : Rn → Rn is continuous, locally
bounded, and open.

Proof of Step 8. From Step 7, we see that for any f ∈ S , if f(x) = 1 then
(T f)(u(x)) = 1, and if f(x) = 0 then (T f)(u(x)) = 0 (actually, we already saw
this in Step 4). Let A be some bounded open subset of Rn, then we may take
f to equal 0 outside A and �= 0 in A. Then for T f , we have that (T f) �= 0
exactly on u(A), and we get that u(A) is open as well. Since T f ∈ S , u(A) is
bounded. (Recall that u is bijective, which eases these considerations.) The
same applies to u−1, using T −1.

Step 9. Define, for every x ∈ Rn, the function αx : C → C, by αx(C) =
T (C)(x). We first deal with |C| = 1, and show that either αx(C) = C for
every x and |C| = 1, or αx(C) = C for every x and |C| = 1.

Proof of Step 9. By Step 7, we have that

(5) (T f)(y) = αy(f(u−1(y))).

Similarly,
(T −1f)(y) = βy(f(u(y))),

so that, looking at T −1T f we have that βy(αu(y)(C)) = C (and
αy(βu−1(y)(C)) = C). We thus know that for every x, αx is multiplicative,
and by the above, also invertible.
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Fix some m ∈ N and consider the constant function e2πi/m. For every x, by
multiplicativity, αx(e2πi/m) is again a root of unity of degree m, so for some
ω = ωm,x ∈ {0,1, . . . ,m − 1} = Zm we have

αx(e2πi/m) = e2πiωm,x/m.

By (5), considering the constant function e2πi/m which is in S1, we have
that T (e2πi/m)(x) = e2πiωm,x/m, and since it must be continuous we get that
ωm,x = ωm does not depend on x. Moreover, since e2πi/m is primitive, so must
be its image, that is, ωm ∈ Z∗

m (invertible).
Let us first consider the one-dimensional case, x ∈ R. The general case will

be very similar. Fixing θ ∈ R, we look at the function φθ(·) = e2πi(·+θ) ∈ C(R).
By (5),

ϕθ(x) := (T φθ)(x) = αx

(
e2πi(u−1(x)+θ)

)
∈ C(R).

Consider also ψθ := ϕθ ◦ u. Since u is continuous by Step 8,

ψθ(x) = αu(x)

(
e2πi(x+θ)

)
∈ C(R).

Finally, define ηθ(y) = ψθ(y − θ), so that

ηθ(y) = αu(y−θ)(e2πiy) ∈ C(R).

We notice several things regarding ηθ. First, for y ∈ Q, we have that ηθ(y) ∈
S1 (it is even a root of unity). Therefore, by continuity, ηθ ∈ C(R → S1).
Secondly, for y ∈ Q, the root of unity which is ηθ(y) does not depend on θ.
Therefore, by continuity, ηθ does not depend on θ at all. We thus denote it
by η. The third fact is that for y1, y2 ∈ Q we have that

η(y1 + y2) = η(y1) · η(y2).

However, by continuity again, this fact extends to R and we get that η : R →
S1 is a multiplicative and continuous function, that is, a continuous character,
which implies that there is some a ∈ R such that

η(y) = e2πiay.

Because of the first fact, namely that roots of unity are mapped to roots
of unity, we see that a ∈ Q. Moreover, since primitive roots are mapped to
primitive roots of the same order, we see that a ∈ {±1}.

Going back to the definition of η, we see that for every θ

e2πiay = αu(y−θ)(e2πiy).

Since θ ∈ R can be anything, and u is onto, we conclude that there exists
a ∈ {±1} such that for any x and any y

αx(e2πiy) = e2πiay,

which completes the proof that on S1, αx is conjugation for all x or αx is
identity for all x. Let us next prove that the same is true for higher dimensions,
x ∈ Rn.
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Fixing again θ ∈ R, we look at the function φθ(x) = e2πi(x1+θ) ∈ S1, where
for x ∈ Rn we denote by x1 its first coordinate. By (5),

ϕθ(x) := (T φθ)(x) = αx

(
e2πi((u−1(x))1+θ)

)
∈ C(Rn → R).

Consider also ψθ = ϕθ ◦ u, so that

ψθ(x) = αu(x)

(
e2πi(x1+θ)

)
∈ C(Rn → R).

Finally, define ηθ(y) = ψθ(y − (θ,0, . . . ,0)), so that

ηθ(y) = αu(y−(θ,0,...,0))(e2πiy1) ∈ C(Rn → R).

Again we notice several things regarding ηθ. First, for y ∈ Rn with y1 ∈ Q,
we have that ηθ(y) ∈ S1 (is even a root of unity). Therefore, by continuity,
ηθ ∈ C(Rn → S1). Secondly, for y1 ∈ Q, the root of unity which is ηθ(y) does
not depend on θ. Therefore, by continuity, ηθ does not depend on θ at all.
We may thus denote it by η. The third fact is that for z,w with z1,w1 ∈ Q

we have that
η(z + w) = η(z) · η(w),

a fact which again extends to Rn by continuity, and we get that η : Rn → S1

is a multiplicative and continuous function, that is, a continuous character,
and further, it depends only on the first coordinate. This implies that there
is some a ∈ R such that

η(y) = e2πiay1 .

As before, since primitive roots of unity are mapped to primitive roots of
unity of the same order, we see that a = ±1.

Going back to the definition of η, we see that for every θ and every y

e2πiay1 = αu(y−(θ,0,...,0))(e2πiy1).

Rewriting this we get that for all x ∈ Rn and θ ∈ R,

e2πia(x1+θ) = αu(x)

(
e2πi(x1+θ)

)
,

which in turn implies that for all x ∈ Rn and y ∈ R

αx(e2πiy) = e2πiay

which is what we wanted to show.
Step 10. In this step, we show that for every x ∈ Rn there is some a(x) ∈ R

such that |(T C)(x)| = |C|a(x). Moreover, a(x) is a C∞ function of x, and
nowhere 0.

Proof of Step 10. Clearly, T C is multiplicative in C, so that for every
x, (T C)(x) is multiplicative as well. We also know that as a function of C,
Tx(C) := |(T C)(x)| is onto, because T is onto and because of formula (4).

Given a multiplicative function on R, very little is needed in order to es-
tablish the existence of a(x) as above. Indeed, one may consider the function
tx(C) = log |Tx(C)|, which is additive, and one only needs to show that it is
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linear, which by the fact that Tx is onto, and Tx(1) = 1, implies the formula
with a(x).

For example, if we show that Tx is monotone on R+, this is enough (a non-
linear, additive function cannot be monotone). Assume by contradiction that
there are 0 < C1 < C2 such that (T C1)(x) > (T C2)(x). By multiplicativity,
this means that (T c)(x) > 1 for c = C1/C2 < 1.

From Step 4 (applied to T −1), we know that this implies (since the constant
functions c is never equal to 1) that for all y ∈ Rn we have (T c)(y) > 1.

Construct a function f ∈ S which equals to c at x, equals 0 at some other
x′, and assumes values only between 0 and c (for example, take such a linear
function on the interval [x′, x] and smooth it so as to belong to S and have
compact support).

Then by Step 4 again, (T f)(z) �= 1 for any z, however by (4) we have that

(T f)(u(x)) = T (f(x))(u(x)) = (T c)(u(x)) > 1

and
(T f)(u(x′)) = T (f(x′))(u(x′)) = (T 0)(u(x′)) = 0.

By the mean value theorem, there is some z ∈ [u(x), u(x′)] for which
(T f)(z) = 1, a contradiction.

We conclude that Tx is monotone increasing on R+, which (together with
onto and Tx(1) = 1) implies that it is of the form Tx(C) = |C|a(x).

The fact that a(x) is in C∞ follows from the fact that | T (C)| = |C|a(x) is a
C∞ function of x for every C (for example, enough just for say C = 2), which
in turn follows from the fact that C ∈ S1. The fact that a(x) is never equal
to 0 follows from the fact that for every x, the function Tx is onto, and for
|C| = 1 one has | T (C)| = 1 by Step 9.

Step 11. We claim that u(x) ∈ C∞ as well.
Proof of Step 11. By Steps 7, 9 and 10,

(6) |(T f)(y)| = |f(u−1(y))|a(y)

for any non-vanishing f ∈ S . Fixing a point y0, to find the derivative of ∂ξu
−1

in some direction ξ, simply define a function fi ∈ S to be, in a neighborhood
of y0, equal to fi(x) = e〈x,ei 〉. Then (6) becomes

|(T fi)(y)| = exp[〈u−1(y), ei〉a(y)].

Since |(T fi)(y)| and a(y) are C∞-smooth and non-vanishing, the function
log |(T fi)(y)|

a(y) = 〈u−1(y), ei〉 is C∞-smooth for any i. Hence u−1 ∈ C∞. Fi-
nally, the same arguments can be applied to T −1, so also u is continuously
differentiable.

Step 12. Let us prove the following lemma.

Lemma. Let v : Rn → Rn be a homeomorphism, and also assume that
B : Rn × R → S1 ⊂ C satisfies the following two conditions:



1128 ALESKER, ARTSTEIN-AVIDAN, FAIFMAN AND MILMAN

(1) B(x, z1 + z2) = B(x, z1)B(x, z2) for all x ∈ Rn, z1, z2 ∈ R.
(2) For all g(x) ∈ C∞(Rn,R), the function B(x, g(v(x))) is continuous.

Then B(x, z) = eic(x)z with c(x) ∈ C(Rn,R).

Proof. Let A = {x ∈ Rn|B(x, ·) is discontinuous}. First, we prove that A
has no accumulation points.

Assume the contrary, that is, A � xk → x∞, xm �= xk for m �= k, and
xk �= x∞. Take

ψ(x) =

{
e
1− 1

1− |x|2 , |x| < 1,

0, |x| ≥ 1.

This is a smooth cut-off function on Rn. Denote cα = max | ∂αψ
∂xα |.

Let

δk = min
(

1
2

min{ |v(xm) − v(xk)| : 1 ≤ m ≤ ∞,m �= k},
1
2k

)
.

Now by property (1), B(xk, ·) is a discontinuous character, and therefore at-
tains values eiφ with φ ≥ π/2 in (0, ε) for all ε > 0 (otherwise, B(xk, (0, ε)) ⊂
(e−iπ/2, eiπ/2), and thus for all j ∈ N, B(xk, (0, ε/2j)) ⊂ (e−iπ/2j

, eiπ/2j

) im-
plying continuity of B(xk, ·) at 0, and therefore continuity everywhere).

Hence, we can choose 0 < zk < e−1/δk such that |B(xk, zk) − 1| > 1/2. Also,
define

gk(x) = zkψ

(
x − v(xk)

δk

)
.

Then gk(x) ∈ C∞(Rn) is a family of cut-off functions such that gk(v(xk)) = zk,
and gk vanishes outside |x − v(xk)| < δk. Also, | ∂αgk

∂xα | ≤ zk
cα

δ
|α|
k

. Now we define

g(x) =
∑∞

k=1 gk(x). For all α = (j1, . . . , jn), we have
∞∑

k=1

∣∣∣∣∂αgk

∂xα

∣∣∣∣ ≤ cα

∞∑
k=1

e−1/δk

δ
|α|
k

�
∞∑

k=1

δk ≤
∞∑

k=1

1
2k

= 1

and therefore g(x) is a C∞(Rn) function. Note also that g(v(xk)) = zk and
g(v(x∞)) = 0. By property (2), B(x, g(v(x))) is a continuous function, and
hence B(xk, g(v(xk))) → B(x∞, g(v(x∞))) = B(x∞,0) = 1.

But |B(xk, g(v(xk))) − 1| = |B(xk, zk) − 1| > 1/2, a contradiction. We con-
clude that A has no accumulation points, and therefore its complement is
dense in Rn.

Next, we claim that A is empty. Assume the contrary, and take x0 ∈ A
and xn ∈ Rn\A, xn → x0. For all z0 ∈ R, B(x, z0) is a continuous function
on Rn by property (2), and therefore B(xn, z0) → B(x0, z0). By assumption,
B(xn, ·) → B(x0, ·) pointwise. This implies B(x0, ·) is a measurable function,
as the pointwise limit of continuous functions. By a theorem of Banach,
B(x0, ·) must be continuous (by property (1)), a contradiction.
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We conclude that B(x, z) is continuous for every fixed x, which implies
that B(x, z) = eic(x)z for some function c : Rn → R. We are left to show that
c(x) is continuous.

Let xn → x0. Then

B(xn, z)B(x0, z)−1 = ei(c(xn)−c(x0))z = eicnz → 1

for all z ∈ R, where we denoted cn = c(xn) − c(x0). We will show that cn → 0
(which means continuity of c at x0). Take f ∈ S . By the dominated conver-
gence theorem, ∫ ∞

− ∞
f(z)eicnz dz →

∫ ∞

− ∞
f(z)dz

i.e. f̂(−cn) → f̂(0) for all f ∈ S , or equivalently, f(−cn) → f(0) for all f ∈ S .
It follows that cn → 0, which completes the proof. �

Step 13. In this step, we complete the proof of the theorem by showing
that for all C ∈ C, either αx(C) = C for every x and C, or αx(C) = C for
every x and C.

Proof of Step 13. To determine αx on C, we must show that αx|R+ is the
identity function for every x, since then we would have, by the previous step,
that for a fixed a ∈ { ±1} and all θ

αx(Reiθ) = αx(R)αx(eiθ) = Reiaθ.

By Step 10 for R > 0
|αx(R)| = Ra(x),

where a ∈ C∞(Rn,R), a nowhere vanishes.
Let us define B : Rn × R → S1 ⊂ C by

B(x, z) :=
αx(ez)

|αx(ez)| .

By Step 12, B(x, z) = eib(x)z with b(x) ∈ C(Rn,R).
Thus, we deduce that for R > 0

αx(R) = eib(x) log(R)Ra(x) = Ra(x)+ib(x),

where a ∈ C∞, b ∈ C.
This means that the general form of the transform is either

(T f)(x) = (|f(u−1(x))|)a(x)+ib(x) · f(u−1(x))
|f(u−1(x))|

or

(T f)(x) = (|f(u−1(x))|)a(x)+ib(x) · f(u−1(x))
|f(u−1(x))| .

Let us assume without loss of generality that it is of the first form and
show that a(x) ≡ 1 and b(x) ≡ 0 (the other case will follow from this since we
may always conjugate the expression to get another transform satisfying the
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conditions). Let us show that b ∈ C∞. For any R > 0 the function T (R) ∈ C∞.
But (T R)(x) = Ra(x)+ib(x). Since a ∈ C∞ by Step 10, the function Rib(x) is
C∞ for any R > 0. This readily implies that b ∈ C∞.

Since u ∈ C∞ by Step 11, we may and will assume, for convenience of
writing mainly, that u = Id . The reason that we may do this without losing
generality is that in what follows we will only use the conditions of the the-
orem for functions in S with compact support (namely functions in D). The
transform T ◦ u satisfies the multiplicativity assumptions on D and it is easy
to check that T is bijective also on D, a fact remaining valid for T ◦ u, which
we shall use.

Next, we will use the smoothness to show that a(x) ∈ Z+. Fix y ∈ Rn and
let f(x) = x1 − y1 in a neighborhood of y, and smoothed to be in D. Then
(with the assumption u = Id) we have that in the neighborhood of y

(T f)(x) = |x1 − y1|a(x)+ib(x) sign(x1 − y1) ∈ C∞.

Restrict the function to the ray {(x1, y2, y3, . . . , yn) : x1 ∈ R}. From smooth-
ness, we may make a Taylor series for this function: let k ∈ Z+ be the order of
the first nonzero derivative of the function at y (we will show the finiteness of
k right away). Then we know that as x1 → y1 we have (for some fixed γ ∈ C

depending on y)

|x1 − y1|â(x1)+ib̂(x1) sign(x1 − y1) = γ(x1 − y1)k
(
1 + o(1)

)
,

where we have denoted â(x1) = a(x1, y2, . . . , yn) and similarly for b̂. We may
also decompose â(x) and b̂(x) into Taylor series around y1, and get that

â(x1) = a(y) + O(|x1 − y1|) and b̂(x1) = b(y) + O(|x1 − y1|).
From the fact that a(y) �= 0 for all y we see that as x1 → y1, on the ray, the
function in absolute value behaves like

|x1 − y1|a(x) = |x1 − y1|a(y)+O(|x1−y1|) = |x1 − y1|a(y)
(
1 + o(1)

)
and so converges to 0 at the rate |x1 − y1|a(y), which means that a(y) = k
is a positive integer. This also explains why k must be finite, because we
know that a(y) �= 0 and if the function had all its derivatives equal to 0 it
could not converge to 0 at such a slow rate |x1 − y1|a(y). We conclude that
a(y) = k ∈ Z+, and from continuity of a(y) it does not depend on y.

Next, we turn to showing that b(y) = 0 for all y, which follows from the same
argument, because if b(y) = b0 �= 0 then we would get that the as x1 → y1+,
say, the function behaves like

|x1 − y1|k+ib0
(
1 + o(1)

)
which must be the same behavior, as x1 → y1, as γ(x1 − y1)k for a fixed γ,
however if b0 �= 0 then the term oscillates, and this contradicts γ being con-
stant. Thus, b0 = b(y) = 0(mod2π) for all y.
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Finally, we use the bijectivity of T on D to show that k = 1. Indeed, if
k > 1, we claim this implies that some functions in D are not attained as
images of functions under T . Indeed, if (T f)(x) = |f(x)|k( f(x)

|f(x)| ) then we
have that whenever (T f)(x) = 0 then also ∇(T f)(x) = 0, which clearly need
not happen for all g ∈ D, so there are some g ∈ D which are not of the form

T f for any f ∈ D, a contradiction. We conclude that a(y) ≡ 1.
There was no loss in assuming that u = Id , and the same is true in the

general case. Also, the same argument works if the transform is complex
conjugated, so we have actually shown here that under the conditions of the
theorem, there exists u ∈ C∞(Rn → Rn) such that either for all f and x, we
have (T f)(x) = f(u−1(x)), or, for all f and x, we have (T f)(x) = f(u−1(x)).

�

3. Proof of Theorem 4

We recall the following.

Theorem 4. Assume we are given a bijective transform F : S → S which
admits an extension F ′ : S ′ → S ′ which is bijective, and such that for every
f ∈ S and g ∈ S ′ we have F ′(f · g) = (F f) ∗ (F ′g).

Then, there exists some diffeomorphism w : Rn → Rn such that either for
every f ∈ S , F f = F(f ◦ w), or, for every f ∈ S , F f = F(f ◦ w).

Proof of Theorem 4. Again we may assume that F is defined over the
whole space S ′. Denote T = F ◦ F . then we have that T : S ′ → S ′ satisfies

T (S) = S and for every f ∈ S and g ∈ S ′ we have T (f · g) = F((F f) ∗ (F g)) =
T f · T g. Therefore, by Theorem 2, we have that there exists some dif-
feomorphism u : Rn → Rn such that, either for every f ∈ S , T f = f ◦ u,
in which case F f = F−1(f ◦ u) = F(f ◦ w), or, T f = f ◦ u, in which case
F f = F−1f ◦ u = F(f ◦ w). �

Similarly, replacing in the proof above F ◦ F by F ◦ F, we get a proof of
the following corollary.

Corollary 8. Assume we are given a bijective transform F : S → S which
admits an extension F ′ : S ′ → S ′ and such that for every f ∈ S and g ∈ S ′ we
have F ′(f ∗ g) = (F f) · (F ′g).

Then, there exists some diffeomorphism w : Rn → Rn such that either for
every f ∈ S , F f = (Ff) ◦ w, or, for every f ∈ S , F f = (Ff) ◦ w.
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