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KALMAN–BUCY FILTER AND SPDES WITH GROWING
LOWER-ORDER COEFFICIENTS IN W 1

p SPACES
WITHOUT WEIGHTS

N. V. KRYLOV

Dedicated to D. L. Burkholder

Abstract. We consider divergence form uniformly parabolic
SPDEs with VMO bounded leading coefficients, bounded coef-
ficients in the stochastic part, and possibly growing lower-order

coefficients in the deterministic part. We look for solutions which

are summable to the pth power, p ≥ 2, with respect to the usual

Lebesgue measure along with their first-order derivatives with
respect to the spatial variable.

Our methods allow us to include Zakai’s equation for the
Kalman–Bucy filter into the general filtering theory.

1. Introduction

We consider divergence form uniformly parabolic SPDEs with bounded
VMO leading coefficients, bounded coefficients in the stochastic part, and
possibly growing lower-order coefficients in the deterministic part. We look
for solutions which are summable to the pth power, p ≥ 2, with respect to the
usual Lebesgue measure along with their first-order derivatives with respect to
the spatial variable. The present paper seems to be the first one treating the
unique solvability of these equations without imposing any special conditions
on the relations between the coefficients or on their derivatives.

This article in its spirit is similar to the author’s recent articles [18], [12],
[15], and [16] and we spare the reader the common part of the comments
about the literature, which can be found in the above references. The main
idea, we use, originated from [18] and [12] and relies on application of special

Received February 1, 2010; received in final form May 14, 2010.
Partially supported by NSF grant DMS-06-53121.

2010 Mathematics Subject Classification. 60H15, 93E11.

1069

c©2012 University of Illinois

http://www.ams.org/msc/


1070 N. V. KRYLOV

cut-off functions whose support evolves in time in a manner adapted to the
drift terms. The paper consists of two parts: Sections 2–6 are devoted to
some general issues of the theory of SPDEs with growing coefficients and
in Sections 7–9 we apply the results of the previous sections to show that
the filtering equations corresponding to the Kalman–Bucy filter fall into the
general theory.

In a sense, the methods of the first part of the present article arose as a
combination of the methods from [15] and [16] which allow us to combine
the method used for PDE equations with irregular (VMO) higher-order coef-
ficients, growing lower-order coefficients, and p > 1 with the methods which
work in similar situation for SPDEs if p = 2. Since we are interested in higher
regularity of solutions (see, for instance, Theorem 3.4), we use the power of
summability p ≥ 2 and, in contrast with [15], this forces us to require some
regularity of the higher-order coefficients. Roughly speaking, we need the
second-order coefficients of the deterministic part of the equation belong to
VMO in x and the first-order coefficients of the stochastic part to be uni-
formly continuous in x. In particular, the results of the present article do not
generalize those of [15].

On the other hand, if we drop all stochastic terms, then we obtain the re-
sults of [16] for p ≥ 2, which by duality, available for deterministic equations,
allows one to extend the result to full range p > 1. Concerning the determin-
istic equations with growing coefficients in spaces with or without weights it
is worth mentioning that

(i) Equations in spaces with weights are treated, for instance, in [1], [3],
[5], [23], and [25] for time independent coefficients, part of the result of which
are extended in [6] to time-dependent Ornstein–Uhlenbeck operators;

(ii) Equations in spaces without weights are treated, for instance, in [24],
[26], [27], and [4].

Some conclusions in the above cited papers are quite similar to ours but the
corresponding assumptions are not as general in what concerns the regularity
of the coefficients. However, these papers contain a lot of additional important
information, which is probably impossible to obtain by using our methods.

The second part of the article is devoted to the Kalman–Bucy filter. One
can say that one of the sources of interest in SPDEs with growing coefficients
is Zakai’s equation for filtering density in the case of partially observable dif-
fusion processes. This equation has divergence form which makes it possible
to use the results of the first part of the article. In a very particular case of
Gaussian processes, the filtering density is given by the Kalman–Bucy filter.
Generally, part of the coefficients of filtering equations in case of Gaussian
processes grow. When the coefficients of an SPDE grow, it is quite natural to
consider the equations in function spaces with weights which would restrict
the set of solutions in such a way that all terms in the equation will be from
the same space as the free terms. There are very many articles which use
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this idea in L2- and Lp-settings (see, for instance, [2], [9], [7], [8] and the
references therein). Unfortunately, the application of the spaces with weights
do not allow one to treat filtering equations corresponding to the Kalman–
Bucy filter even without the so-called cross terms when the operators Λk

t in
(7.11) are of zeroth order. The main obstacle here is that the zeroth order
coefficient of Λk

t is a linear function of x. In the general theory, which we de-
velop in this article, we do not allow it to grow either and we use an auxiliary
function to “kill” this coefficient. The construction of this auxiliary function
exploits a specific structure of the equation and allows us to transform the
general filtering equation (7.11) to its “reduced” form (8.1), which does not
contain the zeroth order term in the stochastic part. After that, one can use
a simple change of the unknown function shifting the x variables in such a
way that the stochastic part of (8.1) will disappear altogether and the equa-
tion will become a parabolic equation with time inhomogeneous and random
Ornstein–Uhlenbeck operator. The fact that the operator is time inhomoge-
neous makes it impossible to apply any results based, for instance, on the
semigroup approach and even specifically aimed at the Ornstein–Uhlenbeck
operator, which one can find in the above mentioned recent articles such as
[3], [5], [25], or other results on elliptic operators with unbounded coefficients
such as in [27]. The results of [2] are not applicable either because in [2]
the zeroth-order coefficient is assumed to grow quadratically if the firs-order
coefficients grow linearly. However, the results of [9] on general SPDEs with
growing coefficients are applicable to the reduced form of the SPDE for the
Kalman–Bucy filter and they provide existence and uniqueness theorems in
Sobolev spaces with p = 2 and weights depending on t, x and ω. By the way,
a drawback of using weights depending on t is that one cannot extract from
the results for general SPDEs any result for deterministic elliptic equations.

If one concentrates on p = 2, then one can use the results from [6] where
the Ornstein–Uhlenbeck time inhomogeneous operators are investigated in
Sobolev spaces with Gaussian time dependent weight. Again this would allow
one to investigate (8.1) in Sobolev spaces with p = 2 and weights depending
on t, x and ω. We deal with any p ≥ 2 and do not use weights.

The article is organized as follows. In Section 2, we introduce basic no-
tation, function spaces, and equations. Section 3 contains our main results
concerning SPDEs. Section 4 contains the proof of Theorem 3.1 concerning
an a priori estimate and Theorem 3.4 about regularity properties of solutions.
In Section 5, we prove the existence Theorem 3.3.

In Section 6, we prove a version of Itô’s formula which allows us to use the
results of the previous sections to derive the filtering equation without using
anything from the filtering theory itself. We do it by following [20] and [14].
In Section 7, we state our main result about the equation corresponding to
Kalman–Bucy filter. We consider the so-called conditionally Gaussian process
in the spirit of [22]. However, in contrast with [22], our coefficients depend
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only on the current state of the two-component process under consideration
and are not allowed to depend on the whole past of the observable compo-
nent. In Section 8, we consider the “reduced” form (8.1) of the main filtering
equation (7.11). The results of the previous sections turn out to be applicable
to (8.1). In the final Section 9, we finish proving Theorems 7.1 and 7.4, part
of assertions of the former being proved in Section 8.

2. General setting

Let (Ω, F , P ) be a complete probability space with an increasing filtration
{Ft, t ≥ 0} of complete with respect to (F , P ) σ-fields Ft ⊂ F . Denote by P =
P ({Ft}) the predictable σ-field in Ω × (0, ∞) associated with {Ft}. Let wk

t ,
k = 1,2, . . . , be independent one-dimensional Wiener processes with respect
to {Ft}. Let τ be a stopping time.

We consider the second-order operator Lt

(2.1) Ltut(x) = Di

(
aij

t (x)Djut(x)+bi
t(x)ut(x)

)
+ bi

t(x)Diut(x) − ct(x)ut(x),

and the first-order operators

Λk
t ut(x) = σik

t (x)Diut(x) + νk
t (x)ut(x)

acting on functions ut(x) defined on Ω × R
d+1
+ , where R

d+1
+ = [0, ∞) × R

d, and
given for k = 1,2, . . . (the summation convention is enforced throughout the
article), where

Di =
∂

∂xi
.

We set R+ = [0, ∞).
Our main concern in the first part of the paper is proving the unique

solvability of the equation

(2.2) dut = (Ltut − λut + Dif
i
t + f0

t )dt + (Λk
t ut + gk

t )dwk
t , t ≤ τ,

with an appropriate initial condition at t = 0, where λ ≥ 0 is a constant. The
precise assumptions on the coefficients, free terms, and initial data will be
given later. First, we introduce appropriate function spaces.

Fix a number
p ≥ 2,

and denote Lp = Lp(Rd). We use the same notation Lp for vector- and matrix-
valued or else �2-valued functions such as gt = (gk

t ) in (2.2). For instance, if
u(x) = (u1(x), u2(x), ...) is an �2-valued measurable function on R

d, then

‖u‖p
Lp

=
∫

Rd

|u(x)|p�2 dx =
∫

Rd

( ∞∑
k=1

|uk(x)|2
)p/2

dx.

As usual,

W 1
p = {u ∈ Lp : Du ∈ Lp}, ‖u‖W 1

p
= ‖u‖ Lp + ‖Du‖ Lp ,
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where by Du we mean the gradient with respect to x of a function u on R
d.

Recall that τ is a stopping time and introduce

Lp(τ) := Lp({ Ft}, τ) := Lp(|(0, τ ]], P , Lp),

W
1
p(τ) := W

1
p({ Ft}, τ) := Lp(|(0, τ ]], P ,W 1

p ),

Lp = Lp(∞), W
1
p = W

1
p(∞).

Remember that the elements of Lp(τ) need only belong to Lp on a predictable
subset of |(0, τ ]] of full measure. For the sake of convenience, we will always
assume that they are defined everywhere on |(0, τ ]] at least as generalized
functions. Similar situation occurs in the case of W

1
p(τ).

The following definition is most appropriate for investigating our equations
if the coefficients of Lt and Λk

t are bounded.

Definition 2.1. Introduce W 1
p (τ), as the space of functions ut = ut(ω, ·) on

{(ω, t) : 0 ≤ t ≤ τ(ω), t < ∞} with values in the space of generalized functions
on R

d and having the following properties:
(i) We have u0 ∈ Lp(Ω, F0, Lp);
(ii) We have u ∈ W

1
p(τ);

(iii) There exist f i ∈ Lp(τ), i = 0, . . . , d, and g = (g1, g2, . . .) ∈ Lp(τ) such
that for any ϕ ∈ C∞

0 = C∞
0 (Rd) with probability 1 for all t ∈ [0, ∞) we have

(ut∧τ , ϕ) = (u0, ϕ) +
∞∑

k=1

∫ t

0

Is≤τ (gk
s , ϕ)dwk

s(2.3)

+
∫ t

0

Is≤τ

(
(f0

s , ϕ) − (f i
s,Diϕ)

)
ds.

In particular, for any φ ∈ C∞
0 , the process (ut∧τ , φ) is Ft-adapted and (a.s.)

continuous. In case that property (iii) holds, we write

dut = (Dif
i
t + f0

t )dt + gk
t dwk

t , t ≤ τ.

Finally, set W 1
p = W 1

p (∞).

Remark 2.1. The reader understands that if u is a generalized function
on R

d, then (u,φ) represents the result of the action of u on the test function
φ ∈ C∞

0 . When u is a locally integrable function, (u,φ) is the integral of the
product uφ. According to these notation

(f0
s , ϕ) − (f i

s,Diϕ) = (f̄s, φ),

where the function f̄s with values in the space of generalized functions is
defined by f̄s = Dif

i
s + f0

s . In the framework of Definition 2.1 we have f̄ ∈
Lp(|(0, τ ]], P ,H−1

p ), where H−1
p = (1 − Δ)1/2Lp. One also knows that any

f̄ ∈ Lp(|(0, τ ]], P ,H−1
p ) is written as f̄s = Dif

i
s + f0

s with some f j ∈ Lp(τ).

Also introduce the spaces of initial data in the same way as in [11].
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Definition 2.2. Let u0 be an F0-measurable function on Ω with values
in the space of generalized functions on R

d. We write u0 ∈ tr W 1
p = tr W 1

p (F0)
if there exists a function v ∈ W 1

p such that dvt = (Δvt − vt)dt, t ∈ R+, and
v0 = u0. In such a case, we set

‖u0‖p
tr W1

p
= E‖v‖p

W1
p
.

One knows that tr W 1
p is a Banach space, v in the above definition is unique

and F0-measurable.
We give the definition of solution of (2.2) adopted throughout the article

and which in case the coefficients of Lt and Λk
t are bounded coincides with

the one obtained by applying Definition 2.1.

Definition 2.3. Let f j ∈ Lp(τ), j = 0, . . . , d, g = (g1, g2, . . .) ∈ Lp(τ). By
a solution of (2.2) (relative to { Ft}) with initial condition u0 ∈ tr W 1

p we mean
a function u ∈ W

1
p(τ) (not W 1

p (τ)) such that
(i) For any φ ∈ C∞

0 , the integrals in

(ut∧τ , φ) = (u0, φ) +
∞∑

k=1

∫ t

0

Is≤τ (σik
s Dius + νk

s us + gk
s , φ)dwk

s(2.4)

+
∫ t

0

Is≤τ [(bi
sDius − (cs + λ)us + f0

s , φ)

− (aij
s Djus + bi

sus + f i
s,Diφ)]ds

are well defined and are finite for all finite t ∈ R+ and the series converges
uniformly on finite subinterval of R+ in probability;

(ii) For any φ ∈ C∞
0 with probability one, equation (2.4) holds for all t ∈ R+.

Observe that for any solution of (2.2) in the sense of the above definition
and any φ ∈ C∞

0 the process (ut∧τ , φ) is continuous (a.s.) and Ft-adapted.
Also notice that, if the coefficients of L and Λk are bounded, then any

u ∈ W 1
p (τ) is a solution of (2.2) with appropriate free terms since if (2.3)

holds, then (2.2) holds (always in the sense of Definition 2.3) as well with

f i
t − aij

t Djut − biut, i = 1, . . . , d, f0
t + (ct + λ)ut − bi

tDiut,

gk
t − σikDiut − νk

t ut

in place of f i
t , i = 1, ..., d, f0

t , and gk
t , respectively.

3. Main results for SPDEs

For ρ > 0, denote Bρ(x) = {y ∈ R
d : |x − y| < ρ}, Bρ = Bρ(0).

Assumption 3.1. (i) The functions aij
t (x), bi

t(x), bi
t(x), ct(x), σik

t (x), νk
t (x)

are real valued, measurable with respect to F ⊗ B(Rd+1
+ ), Ft-adapted for any

x, and c ≥ 0.
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(ii) There exists a constant δ > 0 such that for all values of arguments and
ξ ∈ R

d

(aij − αij)ξiξj ≥ δ|ξ|2, |aij | ≤ δ−1, |ν|�2 ≤ δ−1,

where αij = (1/2)(σi·, σj·)�2 . Also, the constant λ ≥ 0.
(iii) For any x ∈ R

d (and ω), the function

(3.1)
∫

B1

(
|bt(x + y)| + |bt(x + y)| + |ct(x + y)|

)
dy

is locally integrable to the p′th power on R+ = [0, ∞), where p′ = p/(p − 1).

Notice that the matrix a = (aij) need not be symmetric. Also notice that
in Assumption 3.1(iii) the ball B1 can be replaced with any other ball without
changing the set of admissible coefficients b, b, c.

Recall that as is well known if u ∈ W
1
p(τ), then owing to the boundedness

of ν and σ and the fact that Du,u, g ∈ Lp(τ), p ≥ 2, the first series on the
right in (2.4) converges uniformly in probability and the series is a continuous
local martingale. Furthermore, if we denote it by mt, then for any T ∈ R+

E sup
t≤T

|mt|p(3.2)

≤ NE

( ∞∑
k=1

∫ τ ∧T

0

(σik
s Dius + νk

s us + gk
s , φ)2 ds

)p/2

≤ N ‖φ‖p/2
L1

× E

(∫ τ ∧T

0

∞∑
k=1

(|σik
s |2|Dius|2 + |νk

s |2|us|2 + |gk
s |2, |φ|)ds

)p/2

≤ N
(

‖u‖p
W1

p(τ) + ‖g‖p
Lp(τ)

)
,

where the constants N depend only on φ, d, p, δ, and T .

Assumption 3.2. There exists a function κ(r), r ∈ R+, such that κ(0+) =
0 and for any ω ∈ Ω, t ≥ 0, x, y ∈ R

d, and i = 1, . . . , d we have

|σi·
t (x) − σi·

t (y)|�2 ≤ κ(|x − y|).

The following assumptions contain parameters γa, γb ∈ (0,1], whose values
will be specified later. They also contain constants K ≥ 0, ρ0, ρ1 ∈ (0,1] which
are fixed.

Assumption 3.3. For any ω ∈ Ω, ρ ∈ (0, ρ0], t ≥ 0, and i, j = 1, . . . , d, we
have

(3.3) ρ−2d−2

∫ t+ρ2

t

(
sup
x∈Rd

∫
Bρ(x)

∫
Bρ(x)

|aij
s (y) − aij

s (z)| dy dz

)
ds ≤ γa.
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Obviously, the left-hand side of (3.3) is less than

N(d) sup
t≥0

sup
|x−y|≤2ρ

|aij
t (x) − aij

t (y)|,

which implies that Assumption 3.3 is satisfied with any γa > 0 if, for instance,
a is uniformly continuous in x uniformly in ω and t. Recall that if a is
independent of t and for any γa > 0 there is a ρ0 > 0 such that Assumption 3.3
is satisfied, then one says that a is in VMO.

We take and fix a number q = q(d, p) such that

(3.4) q ≥ max(d, p) if p 	= d, q > d if p = d.

Assumption 3.4. For any ω ∈ Ω, b := (b1, . . . ,bd), b := (b1, . . . , bd), and
(t, x) ∈ R

d+1, we have∫
Bρ1 (x)

∫
Bρ1 (x)

|bt(y) − bt(z)|q dy dz +
∫

Bρ1 (x)

∫
Bρ1 (x)

|bt(y) − bt(z)|q dy dz

+
∫

Bρ1 (x)

∫
Bρ1 (x)

|ct(y) − ct(z)|q dy dz ≤ KIq>d + ρd
1γb.

Obviously, Assumption 3.4 is satisfied if b, b, and c are independent of x.
They also are satisfied with any q > d, γb = 0, and ρ1 = 1 on the account of
choosing K appropriately if, say,

|bt(x) − bt(y)| + |bt(x) − bt(y)| + |ct(x) − ct(y)| ≤ K1

whenever |x − y| ≤ 1, where K1 is a constant. In particular, Assumption 3.4
is satisfied if b, b, and c are globally Lipschitz continuous:

|bt(x) − bt(y)| + |bt(x) − bt(y)| + |ct(x) − ct(y)|(3.5)

≤ K1|x − y| ∀x, y ∈ R
d, t ≥ 0.

We see that Assumption 3.4 allows b, b, and c growing linearly in x. Here is
our result on a priori estimates of solutions of (2.2).

Theorem 3.1. There exist

γa = γa(d, δ, p), γb = γb(d, δ, p, κ, ρ0) ∈ (0,1],
N = N(d, δ, p, κ, ρ0), λ0 = λ0(d, δ, p, κ, ρ0, ρ1,K) ≥ 1

such that, if the above assumptions are satisfied and λ ≥ λ0 and u is a solution
of (2.2) with initial data u0 ∈ tr W 1

p and some f j , g ∈ Lp(τ), then

λ‖u‖2
Lp(τ) + ‖Du‖2

Lp(τ) ≤ N

(
d∑

i=1

‖f i‖2
Lp(τ) + ‖g‖2

Lp(τ)

)
(3.6)

+ Nλ−1‖f0‖2
Lp(τ) + N ‖u0‖2

tr W1
p
.
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Remark 3.1. There is an unusual property of ut, which is nontrivial even
if f j

t = gk
t ≡ 0.

Namely, assume that g ≡ 0. Take a predictable �2-valued process ξt such
that (νt, ξt)�2 ≥ 0 and (νt, ξt)�2 and (σi·

t , ξt) are independent of x (which hap-
pens, for instance, if ν = 0 and σ is independent of x) and∫ τ

0

|ξt|2�2 dt < ∞

(a.s.) and assume that Eρτ (ξ) = 1, where

ρt(ξ) = ρt(ξ, dw) := exp
(

−
∫ t

0

ξk
s dwk

s − 1
2

∫ t

0

|ξs|2�2 ds

)
.

Then the assertion of Theorem 3.1 holds with the same γa, γb, λ0, and N if
we understand ‖v‖p

Lp(τ) for all v’s as

Eρτ

∫ τ

0

‖vt‖p
Lp

dt.

Indeed, one can change the probability measure by using Girsanov’s the-
orem. This will add a new drift term in the deterministic part of (2.2) and
this additional drift depends only on (ω, t). This will also add the term
−(νt, ξt)�2ut dt, where (νt, ξt)�2 is nonnegative and also independent of x.
Then the result follows immediately from Theorem 3.1.

Theorem 3.1 admits the following version if τ is bounded.

Theorem 3.2. Let T ∈ (0, ∞) be a constant and suppose that τ ≤ T . As-
sume that the above assumptions are satisfied with γa and γb from Theo-
rem 3.1. Let λ = 0 and let u be a solution of (2.2) with initial data u0 ∈ tr W 1

p

and some f j , g ∈ Lp(τ). Then

(3.7) ‖u‖2
W1

p(τ) ≤ N

(
d∑

i=0

‖f i‖2
Lp(τ) + ‖g‖2

Lp(τ) + ‖u0‖2
tr W1

p

)
,

where N = N(d, δ, p, κ, ρ0, ρ1,K,T ).

This result is a trivial consequence of Theorem 3.1 since, for any constant
μ, the function vt := ute

−μt satisfies (2.2) with λ + μ, f j
t e−μt, and gk

t e−μt in
place of λ, f j

t , and gk
t , respectively. If μ is large enough and τ ≤ T , estimate

(3.6) for v implies (3.7) indeed.

Remark 3.2. Theorems 3.1 and 3.2 provide uniqueness of solutions of
(2.2). The a priori estimates (3.6) and (3.7) can also be used to investigate
continuous dependence of solutions on the coefficients and other data.

To prove the existence, we need stronger assumptions because, generally,
Assumption 3.4 does not guarantee that

Di(bi
tut) + bi

tDiut − ctut
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can be written even locally as Dif̂
i
t + f̂0

t with f̂ j ∈ Lp(τ) if we only know that
u ∈ W

1
p(τ) even if b, b, and c are independent of x. We can only prove our

Lemma 5.2 if we have a certain control on this expression.

Assumption 3.5. For any x ∈ R
d (and ω), the function (3.1) is locally

integrable to the power p/(p − 2) (locally bounded if p = 2) on R+ = [0, ∞).

Remark 3.3. Assumptions 3.4 and 3.5 are both satisfied if the global
Lipschitz condition (8.7) holds and bt(0), bt(0), and ct(0) are bounded for
each ω.

Theorem 3.3. Let the above assumptions be satisfied with γa and γb taken
from Theorem 3.1. Take λ ≥ λ0, where λ0 is defined in Theorem 3.1, and take
u0 ∈ tr W 1

p . Then there exists a unique solution of (2.2) with initial condition
u0.

Remark 3.4. If the stopping time τ is bounded, then in the above the-
orem one can take λ0 = 0. This is shown by the same argument as after
Theorem 3.2.

In general, the continuity properties in t of the solution from Theorem 3.3
are unknown. For instance, we do not know if ‖ut∧τφ‖ Lp is continuous (a.s.)
for any φ ∈ C∞

0 . However, under stronger assumptions we can say more about
regularity of u. In the following theorem by Hγ

p , we mean (1 − Δ)−γ/2Lp.

Theorem 3.4. Under the above assumptions suppose that for each x ∈ R
d

the function (3.1) is bounded on |(0, τ ]]. Then the (unique) solution u possesses
the following properties:

(i) For any φ ∈ C∞
0 , we have φu ∈ W 1

p (τ);
(ii) For any φ ∈ C∞

0 , the process ut∧τφ is continuous on R+ as an Lp-
valued process (a.s.);

(iii) If p > 2 and τ is bounded and we have two numbers α and β such that

2
p

< α < β ≤ 1,

then for any φ ∈ C∞
0 (a.s.)

uφ ∈ Cα/2−1/p([0, τ ],H1−β
p ).

In particular, if p > d + 2, then
(a) for any ε ∈ (0, ε0], with

ε0 = 1 − d + 2
p

,

(a.s.) for any t ∈ [0, τ ] we have utφ ∈ Cε0−ε(Rd) and the norm of utφ in this
space is bounded as a function of t;
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(b) for any ε as in (a) (a.s.) for any x ∈ R
d we have u·(x)φ(x) ∈

C(ε0−ε)/2([0, τ ]) and the norm of u·(x)φ(x) in this space is bounded as a func-
tion of x.

Observe that assertions (ii) and (iii) of Theorem 3.4 follow from assertion (i)
proved in Remark 4.1. In case of assertion (ii) this is shown in [13]. The main
part of assertion (iii) follows from assertion (i) and Corollary 4.12 [10]. By
applying Sobolev’s embedding theorems, assertion (iii) (a) is obtained after
taking α and β close to 2/p and (iii) (b) after taking α and β close to 1 − d/p.

Remark 3.5. Let p1, p2 ∈ [2, ∞), let τ be bounded (cf. Remark 3.4), and
let the assumptions of Theorem 3.3 be satisfied for any p ∈ [p1, p2] with γa and
γb which are suitable for all p ∈ [p1, p2]. Then it turns out that the solution
from Theorem 3.3 corresponding to p = p1 coincides with the one obtained
for p = p2.

This fact is obtained in the same way as the proof of Theorem 3.4 of [16]
is obtained from the proof of Theorem 3.3 [16].

Our last main result on general SPDEs bears on the measurability of ut

with respect to σ-fields which are smaller than Ft. It will be used in Section 8
and this is the reason why we use the somewhat strange notation ỹt and b̃

k
t

below. We suppose that all the above assumptions are satisfied with γa and
γb taken from Theorem 3.1 and let F̃t, t ≥ 0, be a filtration of complete with
respect to F , P σ-fields such that Ft ⊃ F̃t. Our aim is to show that sometimes
ut is F̃t-adapted even if some terms in (2.2) are not F̃t-adapted. However, the
equation is assumed to have a special structure. The result is not surprising
because in the notation, introduced below, the equation

dut = (Λk
t ut + gk

t )dwk
t(3.8)

+ (Ltut + b̂i
tDiut − ĉtut + Dif

i
t + f0

t + f̂t)dt, t ≤ τ

is written as

(3.9) dut = (Λk
t ut + gk

t )dỹk
t + (Ltut + Dif

i
t + f0

t )dt, t ≤ τ.

Theorem 3.5. Fix a number T ∈ (0, ∞). Assume that we are given an
�2-valued process b̃t which is Ft-adapted, jointly measurable with respect to
(ω, t), and such that |b̃t|�2 is locally square integrable on R+ and EρT = 1,
where

ρt = ρt(b̃, dw) = exp
(

−
∫ t

0

b̃
k
s dwk

s − 1
2

∫ t

0

|b̃s|2�2 ds

)
.

Suppose that Assumption 3.1(i) is satisfied with F̃t in place of Ft and the
processes

ỹk
t = wk

t +
∫ t

0

b̃
k
s ds
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are F̃t adapted. Introduce

b̄i
t(x) = σik

t (x)b̃k
t , c̄t(x) = −νk

t (x)b̃k
t

and suppose that b + b̄ and c + c̄ satisfy Assumption 3.4 with γb from Theo-
rem 3.1, for any x ∈ R

d (and ω) we have c̄t(x) ≤ K, and the function

(3.10)
∫

B1

(
|b̄t(x + y)| + |c̄t(x + y)|

)
dy

is locally integrable to the power p/(p − 2) (locally bounded if p = 2) on R+.
Let τ be an F̃t-stopping time such that τ ≤ T .

Then, for any initial data u0 ∈ tr W 1
p (F̃0) and f j , g ∈ Lp({ F̃t}, τ) such that

f̃ := (g, b̃)�2 ∈ Lp({ Ft}, τ),
(i) equation (3.8) has a unique solution u relative to {Ft} in the sense of

Definition 2.3,
(ii) for any φ ∈ C∞

0 the process (ut∧τ , φ) is F̃t-adapted.

Proof. Owing to the argument after Theorem 3.2 allowing us to introduce
as large λ as we wish, assertion (i) follow immediately from Theorem 3.3.

To prove (ii), we use a change of measure. Define P̃ (dω) = ρT (ω)P (dω),
notice that by Girsanov’s theorem the processes ỹk

t , t ≤ T , are independent
Wiener processes with respect to P̃ , Ft. By assumption, they are F̃t-adapted
and since F̃t ⊂ Ft the increments ỹk

t+s − ỹk
t are independent of F̃t if s ≥ 0.

Thus (ỹk
t , F̃t) are independent Wiener processes. Introduce Ẽ as the expec-

tation sign relative to P̃ .
After rewriting (3.8) in form (3.9) and applying Theorems 3.1 and 3.3, we

get that there exists a unique solution ũ of (3.8) with initial data u0 relative to
{ F̃t} in the sense of Definition 2.3 on the new probability space, that is with
Lp(τ) and W

1
p(τ) replaced with L̃p({ F̃t}, τ) and W̃

1
p({ F̃t}, τ), respectively,

where the norms in these spaces are defined as

Ẽ

∫ τ

0

‖ut‖p
Lp

dt and Ẽ

∫ τ

0

‖ut‖p
W 1

p
dt

raised to the power 1/p, respectively.
Now for n ≥ 2, we introduce Ft-stopping times

τn = τ ∧ inf{t ≥ 0 : ρt ≤ 1/n}
and observe that

E

∫ τn

0

‖ũt‖p
Lp

dt ≤ nEρτn

∫ τn

0

‖ũt‖p
Lp

dt = nẼ

∫ τn

0

‖ũt‖p
Lp

dt < ∞.

Similar estimates hold if we replace Lp with W 1
p . By recalling that F̃t ⊂ Ft,

we conclude that ũ is a solution of (3.8) relative to {Ft} with τn in place
of τ . By uniqueness, in the sense of distributions ũtIt≤τn = utIt≤τn for almost
all (ω, t), that is, (ũt, φ)It≤τn = (ut, φ)It≤τn for almost all (ω, t) for each fixed
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φ ∈ C∞
0 . Then it follows from the integral form of (3.8) that for each φ ∈ C∞

0

with probability one (ũt∧τn , φ) = (ut∧τn , φ) for all t. Upon letting n → ∞,
we replace τn with τ and it only remains to observe that (ũt∧τ , φ) is F̃t-
measurable. The theorem is proved. �

The following is almost identical to Remark 3.5 of [15].

Remark 3.6. We do not use the spaces with weights. However, there is
a trivial and since very long time known way how to use results like ours for
treating equations in spaces with weights. For instance, let ψt(x) > 0 be a
nonrandom smooth function on R

d+1. Introduce, ∂t = ∂/∂t,

b̂i
t = bi

t − aij
t Dj lnψt, b̂i

t = bi
t − aij

t Dj lnψt,

ĉt = ct + (bi
t + bi

t)Di lnψt − aij
t (Di lnψt)Dj lnψt − ∂t lnψt,

ν̂k
t = νk

t − σik
t Di lnψt,

f̂ i
t = ψtf

i
t , i = 1, . . . , d, f̂0

t = f0
t ψt − f i

tDiψt, ĝk
t = gk

t ψt.

Suppose that, if we replace b, b, c, and ν with b̂, b̂, ĉ, and ν̂, respectively, then
Assumptions 3.1, 3.4, and 3.5 are satisfied with γa and γb from Theorem 3.1.
Finally, assume that f̂ j , ĝ ∈ L2(τ) and u0ψ0 ∈ tr W 1

p . Then it turns out that
for λ ≥ λ0 (λ0 is taken from Theorem 3.1) equation (2.2) has a unique solution
u such that uψ ∈ W

1
p(τ).

This fact is almost trivial since u satisfies (2.2) if and only if v := uψ
satisfies the version of (2.2) which is obtained as the result of the replacements
described above and also the replacement of f j , g with f̂ j , ĝ, respectively. In
addition, the natural estimate of the W

1
p(τ)-norm of v gives an estimate of u

in an appropriate space with weights.
As a specification of the above, in the setting of Remark 3.3 take a T ∈

(0, ∞), set τ = T , and for θ ∈ (0, ∞) introduce

lnψt(x) = −θeθ2(t−T )
√

1 + |x|2.

Obviously, Di lnψ are bounded for t ≤ T . Furthermore, it is not hard to see
that if θ is large enough, then ĉt ≥ 0 for t ≤ T . Also, if |x − y| ≤ 1, then owing
to the fact that |Dij lnψt(x)| ≤ N(1+ |x|)−1 for t ≤ T , where N is a constant,
we have

|bi
t(x)Di lnψt(x) − bi

t(y)Di lnψt(y)|
≤

∣∣(bi
t(x) − bi

t(y)
)
Di lnψt(x)

∣∣ + N(1 + |x|)|D lnψt(x) − D lnψt(y)|
≤ K|D lnψt(x)| + N

for t ≤ T . Estimates similar to this one show that b̂, b̂, and ĉ satisfy Assump-
tion 3.4 for t ≤ T . By what is said in the beginning of the current remark,
if u0ψ0 ∈ tr W 1

p (for instance, u0(x) = x1), then (2.2) has a unique solution u
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such that uψ ∈ W
1
p(T ). Since D lnψ is bounded, the inclusion uψ ∈ W

1
p(T ) is

equivalent to uψ ∈ Lp(T ), ψDu ∈ Lp(T ).
To the best of the author’s knowledge even in this special case the result

in this generality was not known before.

4. Proof of Theorems 3.1 and 3.4

In this section, we suppose that Assumptions 3.1, 3.2, 3.3, and 3.4 are sat-
isfied with some γa, γb ∈ (0,1] and start by showing that the requirement (i) of
Definition 2.3 is automatically satisfied for any u ∈ W

1
p(τ). Take a nonnegative

ξ ∈ C∞
0 (Bρ1) with unit integral and define

b̄s(x) =
∫

Bρ1

ξ(y)bs(x − y)dy, b̄s(x) =
∫

Bρ1

ξ(y)bs(x − y)dy,(4.1)

c̄s(x) =
∫

Bρ1

ξ(y)cs(x − y)dy.

We may assume that |ξ| ≤ N(d)ρ−d
1 .

Remark 4.1. By Corollary 5.4 of [16], for x0 ∈ R
d, v ∈ Lp, φ ∈ W 1

p′ , and
u ∈ W 1

p we have(
|bs − b̄s(x0)|IBρ1 (x0)v, |φ|

)
≤ N ‖v‖ Lp ‖φ‖W 1

p′
,(4.2)∥∥IBρ1 (x0)|bs − b̄s(x0)|u

∥∥
Lp

+
∥∥IBρ1 (x0)|cs − c̄s(x0)|u

∥∥
Lp

≤ N ‖u‖W 1
p
,

where N = N(d, p, ρ1,K). In particular,

(4.3)
(

|bs|IBρ1 (x0)v, |φ|
)

≤
(
N + |b̄s(x0)|

)
‖v‖ Lp ‖φ‖W 1

p′
,

the latter implying that |bs|IBρ1 (x0)v ∈ H−1
p . It is also seen that if u ∈ W

1
p(τ)

and |b̄s(x0)| is a bounded function on |(0, τ ]], then

IBρ1
(x0)biDiu ∈ Lp(|(0, τ ]], P ,H−1

p ).

Similarly, ∥∥IBρ1 (x0)|bs|u
∥∥

Lp
+

∥∥IBρ1 (x0)|cs|u
∥∥

Lp
(4.4)

≤
(
N + |b̄s(x0)| + |c̄s(x0)|

)
‖u‖W 1

p
.

By the way, Remark 2.1 now shows that under the conditions of Theo-
rem 3.4 for any solution u of (2.2) and φ ∈ C∞

0 with support lying in a ball
of radius ρ1 we have uφ ∈ W 1

p (τ). Of course, the restriction on the size of
support of φ is easily removed and this proves assertion (i) of Theorem 3.4.
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Lemma 4.1. Let R ∈ (0, ∞). Then there exists a sequence of bounded
stopping times τn → ∞ such that for any ω ∈ Ω, u ∈ Lp((0, τ),W 1

p ), and
φ ∈ C∞

0 (BR) ∫ τn ∧τ

0

(
|(bi

sDius, φ)| + |(bi
sus,Diφ)| + |(csus, φ)|

)
ds(4.5)

≤ n‖u‖Lp((0,τ),W 1
p )‖φ‖W 1

p′
,

so that requirement (i) in Definition 2.3 can be dropped.

Proof. By having in mind partitions of unity, we convince ourselves that
it suffices to prove (4.5) under the assumption that φ has support in a ball
Bρ1(x0). Observe that by (4.4) and Hölder’s inequality

(4.6) |(bi
sus,Diφ)| + |(csus, φ)| ≤ N

(
1 + |b̄s(x0)| + |c̄s(x0)|

)
‖us‖W 1

p
‖φ‖W 1

p′
.

It follows again by Hölder’s inequality that∫ t∧τ

0

(
|(bi

sus,Diφ)| + |(csus, φ)|
)
ds ≤ Nχt‖u‖ Lp((0,τ),W 1

p )‖φ‖W 1
p′

,

where

χt = t1/p′
+

(∫ t

0

|b̄s(x0)|p′
ds

)1/p′

+
(∫ t

0

|c̄s(x0)|p′
ds

)1/p′

.

After that, in what concerns b and c, it only remains to recall Assump-
tion 3.1(iii). Similarly the integral of |(bi

sDius, φ)| is estimated by using (4.3)
and the lemma is proved. �

Remark 4.2. Estimates (4.3) and (4.4) show that for any u ∈ W
1
p for

almost all (ω, s) the functions bi
sDius, Di(bi

sus), and csus are distributions
on R

d.

Since bounded linear operators are continuous we obtain the following.

Corollary 4.2. Let R,τn, φ be as in Lemma 4.1. Then the operators

ut →
∫ t∧τn

0

(bi
sDius, φ)ds, ut →

∫ t∧τn

0

(bi
sus,Diφ)ds,

ut →
∫ t∧τn

0

(csus, φ)ds

are continuous as operators from W
1
p(τ) to Lp(|(0, τn]]) for any n.

This result will be used in Section 5.
Now we prove Theorem 3.1 in a particular case.

Lemma 4.3. Let bi, bi, and c be independent of x and let u0 = 0. Then
the assertion of Theorem 3.1 holds, naturally, with λ0 = λ0(d, δ, p, ρ0, κ) (in-
dependent of ρ1).
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Proof. First, let c ≡ 0. We want to use the Itô-Wentzell formula to get rid
of the first-order terms. Observe that (2.2) reads as

dut = (Λk
t ut + gk

t )dwk
t(4.7)

+
[
Di

(
aij

t Djut + (bi
t + bi

t)ut + f i
t

)
+ f0

t − λut

]
dt, t ≤ τ.

Recall that from the start (see Definition 2.3) it is assumed that u ∈ W
1
p(τ).

Then one can find a predictable set A ⊂ |(0, τ ]] of full measure such that IAf j ,
j = 0,1, . . . , d, IAg, and IADiu, i = 1, . . . , d, are well defined as Lp-valued
predictable functions satisfying∫ τ

0

IA

(
d∑

j=0

‖f j
t ‖p

Lp
+ ‖gt‖p

Lp
+ ‖Dut‖p

Lp

)
dt < ∞.

Replacing f j , g, and Diu in (4.7) with IAf j , IAg, and IADiu, respectively,
will not affect (4.7). Similarly one can treat the term ht = (bi

t +bi
t)ut for which∫ T ∧τ

0

‖ht‖ Lp dt < ∞

(a.s.) for each T ∈ R+, owing to Assumption 3.1 and the fact that u ∈ Lp(τ).
After these replacements all terms on the right in (4.7) will be of class D1

and D2 as appropriate since a and σ are bounded (see the definition of D1

and D2 in [17]). This allows us to apply Theorem 1.1 of [17] and for

Bi
t =

∫ t

0

(bi
s + bi

s)ds, ût(x) = ut(x − Bt)

obtain that

(4.8) dût = [Di(â
ij
t Dj ût) − λût + Dif̂

i
t + f̂0

t ]dt + (Λ̂k
t ût + ĝk

t )dwk
t ,

where Λ̂k
t = σ̂ik

t Di + ν̂k
t and

(âij
t , σ̂ik

t , ν̂k
t , f̂ j

t , ĝk
t )(x) = (aij

t , σik
t , νk

t , f j
t , gk

t )(x − Bt).

Obviously, û is in W
1
p(τ) and its norm coincides with that of u. Equation

(4.8) shows that û ∈ W 1
p (τ).

Next observe that owing to (3.3), for any ω ∈ Ω, ρ ∈ (0, ρ0], t ≥ 0, and i, j =
1, . . . , d we have

ρ−2d−2

∫ t+ρ2

t

(
sup
x∈Rd

∫
Bρ(x)

∫
Bρ(x)

|âij
s (y) − âij

s (z)| dy dz

)
ds ≤ γa,

which in terms of [11] implies that the couple (â, σ̂) is (ε, ε)-regular at any
point of R+ × R

d for any ε ∈ (0, ρ0]. Then owing to our Assumptions 3.1(ii)
and 3.2 one can choose ε = ε(δ,κ) ∈ (0, ρ0] so that Assumption 2.2 of [11] is
satisfied.
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By Theorem 2.2 of [11] if Assumption 3.3 is satisfied with γa = γa(d, δ, p) >
0, specified in its proof, and if λ ≥ λ0(d, δ, p, κ, ρ0) ≥ 1, then

λ‖û‖2
Lp(τ) + ‖Dû‖2

Lp(τ) ≤ N

(
d∑

i=1

‖f̂ i‖2
Lp(τ) + ‖ĝ‖2

Lp(τ) + λ−1‖f̂0‖2
Lp(τ)

)
,

where N = N(d, δ, p, κ, ρ0). This coincides with (3.6) and proves the lemma
in case c ≡ 0.

In the general case, observe that owing to Assumption 3.1(iii) there exists
a sequence of stopping times τn ↑ τ such that∫ τn

0

cs ds ≤ n.

Clearly, if we can prove (3.6) with τn in place of τ , then by passing to the
limit we will get (3.6) as is. Therefore, without losing generality, we assume
that

sup
Ω

∫ ∞

0

cs ds < ∞.

Then introduce

ξt = exp
(∫ t

0

cs ds

)
.

By the above argument, we have ū := ξu ∈ W
1
p(τ) and

dūt =
[
Di(a

ij
t Dj ūt + [bi

t + bi
t]ūt + ξtf

i
t ) + ξtf

0
t − λūt

]
dt

+ (Λk
t ūt + ξtg

k
t )dwk

t , t ≤ τ.

By the above result for any stopping time τ ′ ≤ τ

λp/2‖ξu‖p
Lp(τ ′) + ‖ξDu‖p

Lp(τ ′)(4.9)

= λp/2‖ū‖p
Lp(τ ′) + ‖Dū‖p

Lp(τ ′)

≤ N

(
d∑

i=1

‖ξf i‖p
Lp(τ ′) + ‖ξg‖p

Lp(τ ′) + λ−p/2‖ξf0‖p
Lp(τ ′)

)
.

If needed, one can enlarge the original probability space in such a way that
there will exist an exponentially distributed, with parameter one, random
variable η independent of { Ft, t ≥ 0}. We assume that the enlargement is not
needed and define

φt = p

∫ t

0

cs ds, ψs = τ ∧ inf{t ≥ 0 : φt ≥ s}, τ ′ = ψη.

Notice that
{ω : ψs > t} = {ω : τ > t,φt < s}.

Hence,
{ω : τ ′ > t} = {ω : τ > t,φt < η}.



1086 N. V. KRYLOV

It follows that τ ′ is a stopping time with respect to Ft ∨ σ(η). Furthermore,
for any nonnegative predictable (relative to the original filtration Ft) process
ht we have

E

∫ τ ′

0

ht dt =
∫ ∞

0

EhtE{Iτ ′>t | Ft} dt

=
∫ ∞

0

EhtIτ>te
−φt dt = E

∫ τ

0

htξ
−p
t dt.

This and (4.9) immediately lead to (3.6) and the lemma is proved. �
To proceed further take b̄, b̄, and c̄ from (4.1). From Lemma 4.2 of [12] and

Assumption 3.4 it follows that, for ht = b̄t, b̄t, c̄t, it holds that |Dnht| ≤ Mn,
where Mn = Mn(n,d, ρ1,K) ≥ 1 and Dnht is any derivative of ht of order n ≥ 1
with respect to x. By Corollary 4.3 of [12], we have |ht(x)| ≤ K(t)(1 + |x|),
where for each ω the function K(t) = K(ω, t) is locally integrable with respect
to t on R+. Owing to these properties the equation

(4.10) xt = x0 −
∫ t

t0

(b̄s + b̄s)(xs)ds, t ≥ t0,

for any (ω and) (t0, x0) ∈ R
d+1
+ has a unique solution xt = xt0,x0,t. Obviously,

the process xt0,x0,t, t ≥ t0, is Ft-adapted.
Next, for i = 1,2 set χ(i)(x) to be the indicator function of Bρ1/i and

introduce
χ

(i)
t0,x0,t(x) = χ(i)(x − xt0,x0,t)It≥t0 .

By using the above results and reproducing the proofs of Lemma 5.5 of
[15], where p = 2 and SPDEs are treated, and Lemma 5.8 of [16], where p is
general but only PDEs are considered, we easily obtain the following.

Lemma 4.4. Suppose that Assumption 3.3 is satisfied with γa = γa(d, δ, p)
taken from Lemma 4.3. Assume that we are given a function u which is a
solution of (2.2) with some f j , g ∈ Lp(τ), and λ ≥ λ0 = λ0(d, δ, p, ρ0, κ), where
λ0(d, δ, p, ρ0, κ) is taken from Lemma 4.3. Take (t0, x0) ∈ R

d+1
+ and assume

that ut = 0 if t ≤ t0 ∧ τ . Then

λp/2
∥∥χ

(2)
t0,x0

u
∥∥p

Lp(τ)
+

∥∥χ
(2)
t0,x0

Du
∥∥p

Lp(τ)
(4.11)

≤ N

(
d∑

i=1

∥∥χ
(1)
t0,x0

f i
∥∥p

Lp(τ)
+

∥∥χ
(1)
t0,x0

g
∥∥p

Lp(τ)

)

+ Nλ−p/2
∥∥χ

(1)
t0,x0

f0
∥∥p

Lp(τ)

+ Nγ
p/q
b

∥∥χ
(1)
t0,x0

Du
∥∥p

Lp(τ)
+ N ∗λ−p/2

∥∥χ
(1)
t0,x0

Du
∥∥p

Lp(τ)

+ N ∗∥∥χ
(1)
t0,x0

u
∥∥p

Lp(τ)
+ N ∗λ−p/2

d∑
i=1

∥∥χ
(1)
t0,x0

f i
∥∥p

Lp(τ)
,
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where N is a constant depending only on d, δ, p, ρ0, and κ and N ∗ depends
only on the same objects, γb, ρ1, and K.

Upon integrating through equation (4.11) with respect to x0 and repeating
the arguments in the proofs of Lemma 5.6 of [15] or Lemma 5.9 of [16], we
obtain the following result in which M1(d, ρ1,K) is the constant introduced
before Lemma 4.4.

Lemma 4.5. Suppose that Assumption 3.3 is satisfied with γa = γa(d, δ, p)
taken from Lemma 4.3. Assume that we are given a function u which is a
solution of (2.2) with some f j , g ∈ Lp(τ), and λ ≥ λ0 = λ0(d, δ, p, ρ0, κ), where
λ0(d, δ, p, ρ0, κ) is taken from Lemma 4.3. Take an s0 ∈ R+ and assume that
ut = 0 if t ≤ s0 ∧ τ . Then for Is0 := I(s0,t0), where t0 = s0 + M −1

1 , we have

λp/2‖Is0u‖p
Lp(τ) + ‖Is0Du‖p

Lp(τ)(4.12)

≤ N

(
d∑

i=1

‖Is0f
i‖p

Lp(τ) + ‖Is0g‖p
Lp(τ)

)

+ Nλ−p/2‖Is0f
0‖p

Lp(τ) + Nγ
p/q
b ‖Is0Du‖p

Lp(τ)

+ N ∗λ−p/2‖Is0Du‖p
Lp(τ) + N ∗ ‖Is0u‖p

Lp(τ)

+ N ∗λ−p/2
d∑

i=1

‖Is0f
i‖p

Lp(τ),

where N is a constant depending only on d, δ, p, ρ0, and κ and N ∗ depends
only on the same objects, γb, ρ1, and K.

Proof of Theorem 3.1. First, we show how to choose an appropriate γb =
γb(d, δ, p, ρ0, κ). Call N0 the constant factor of γ

p/q
b ‖Is0Du‖p

Lp(τ) in (4.12)

and choose a γb ∈ (0,1] in such a way that N0γ
p/q
b ≤ 1/2. Then under the

assumptions of Lemma 4.5 we have

λp/2‖Is0u‖p
Lp(τ) + ‖Is0Du‖p

Lp(τ)(4.13)

≤ N

(
d∑

i=1

‖Is0f
i‖p

Lp(τ) + ‖Is0g‖p
Lp(τ)

)

+ Nλ−p/2‖Is0f
0‖p

Lp(τ) + N ∗λ−p/2‖Is0Du‖p
Lp(τ)

+ N ∗ ‖Is0u‖p
Lp(τ) + N ∗λ−p/2

d∑
i=1

‖Is0f
i‖p

Lp(τ).

To proceed further, assume that

(4.14) u0 = 0.
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After γb has been fixed, we recall that M1 = M1(d, ρ1,K) and we take a
ζ ∈ C∞

0 (R) with support in (0,M −1
1 ) such that

(4.15)
∫ ∞

− ∞
ζp(t)dt = 1.

For s ∈ R, define ζs
t = ζ(t − s), us

t (x) = ut(x)ζs
t . Obviously, us

t = 0 if 0 ≤ t ≤
s+ ∧ τ . Therefore, we can apply (4.13) to us

t by taking s0 = s+ and observing
that

dus
t =

(
Ltu

s
t − λus

t + Di(ζs
t f i

t ) + ζs
t f0

t + ut(ζs
t )′)dt

+ (Λk
t us

t + ζs
t gk

t )dwk
t , t ≤ τ.

We also use the fact that for t ≥ 0, as is easy to see, Is+(t)ζs
t = ζs

t . Then for
and λ ≥ λ0 = λ0(d, δ, p, ρ0, κ), where λ0(d, δ, p, ρ0, κ) is taken from Lemma 4.3,
we obtain

λp/2‖ζsu‖p
Lp(τ) + ‖ζsDu‖p

Lp(τ)(4.16)

≤ N

(
d∑

i=1

‖ζsf i‖p
Lp(τ) + ‖ζsg‖p

Lp(τ)

)

+ Nλ−p/2
(

‖ζsf0‖p
Lp(τ) + ‖(ζs)′u‖p

Lp(τ)

)
+ N ∗λ−p/2‖ζsDu‖p

Lp(τ) + N ∗ ‖ζsu‖p
Lp(τ)

+ N ∗λ−p/2
d∑

i=1

‖ζsf i‖p
Lp(τ).

We integrate through this relation with respect to s ∈ R, use (4.15) and∫ ∞

− ∞
|(ζs

t )′ |p ds =
∫ ∞

− ∞
|ζ ′(t)|p dt = N ∗.

Then we conclude

λp/2‖u‖p
Lp(τ) + ‖Du‖p

Lp(τ) ≤ N1

(
d∑

i=1

‖f i‖p
Lp(τ) + ‖g‖p

Lp(τ)

)

+ N1λ
−p/2‖f0‖p

Lp(τ) + N ∗
1 λ−p/2‖Du‖p

Lp(τ)

+ N ∗
1 ‖u‖p

Lp(τ) + N ∗
1 λ−p/2

d∑
i=1

‖f i‖p
Lp(τ).

Without losing generality, we assume that N1 ≥ 1 and we show how to choose
λ0 = λ0(d, δ, p, ρ0, ρ1, κ,K) ≥ 1. Above, we assumed that λ ≥ λ0(d, δ, p, ρ0, κ),
where λ0(d, δ, p, ρ0, κ) is taken from Lemma 4.3. Therefore, we take

λ0 = λ0(d, δ, p, ρ0, ρ1, κ,K) ≥ λ0(d, δ, p, ρ0, κ)
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such that λ
p/2
0 ≥ 2N ∗

1 (recall that N ∗
1 = N ∗

1 (d, δ, p, ρ0, ρ1, κ,K)). Then we
obviously come to (3.6) (with u0 = 0).

A standard method to remove assumption (4.14) by subtracting from u the
solution of the heat equation dvt = (Δvt − vt)dt with initial data u0 does not
work because it leads to subtracting the terms Di(biv) + biDiv, which one
should include into the free terms Dif

i + f0 in the equation. Generally, this
is impossible because we only know that Div ∈ Lp(τ) and if we multiply Div
by an arbitrary function of x with linear growth, the inclusion may fail.

Therefore, we use a different method. The idea is to shift all data along
the time axis by 1, consider our equations on |(1, τ̂ ]], where τ̂ = 1 + τ , and
supplement this equation with an equation for t ∈ [0,1] with zero initial data
and such that the value of its solution at time 1 would coincide with u0. Then
the two equations combined would give an equation on |(0, τ̂ ]] with zero initial
condition, which would allow us to apply the above result.

Formally, we need to have Wiener processes on [0, ∞) and after shifting they
will be defined only on [1, ∞) (and satisfy wk

1 = 0). Therefore, we augment if
needed our probability space in such a way that we may assume that there are
Wiener processes w̄1

t , w̄2
t , . . . , t ≥ 0, independent of {Fs, s ≥ 0}. Then define

F w̄
t as the completion of σ(w̄s : s ≤ t),

F̂t = F0 ∨ F w̄
t , t ∈ [0,1], F̂t = Ft−1 ∨ F w̄

1 , t ≥ 1,

ŵk
t = w̄k

t , t ∈ [0,1], ŵk
t = w̄k

1 + wk
t−1, t ≥ 1, τ̂ = 1 + τ,

and for t ≥ 1 define the coefficients and the free terms by following the example
âij

t = aij
t−1.

Next, take the function v from Definition 2.2 and for t ∈ [0,1] set

âij
t = δij , f̂ i

t = −2tDiv1−t, f̂0
t = (1 + t + λt)v1−t,

where λ ≥ λ0 with λ0 determined in the first part of the proof. We define
all other coefficients with hats and the free terms ĝk

t to be zero for t ∈ [0,1].
Notice that for ût = tv1−t, t ∈ [0,1], we have

dût = [Di(â
ij
t Dj ût + f̂ i

t ) + f̂0
t − λût]dt.

Moreover, û0 = 0, û1 = u0, and ût is F̂t-adapted. Therefore, naturally we
define ût = ut−1 for t ≥ 1.

It is easy to see that if we construct the operators L̂t and Λ̂k
t from the

coefficients with hats, then

dût = (L̂tût − λût + Dif̂
i
t + f̂0

t )dt + (Λ̂k
t ût + ĝk

t )dŵk
t , t ≤ τ̂ .

By the first part of the proof,

λ‖u‖2
Lp(τ) + ‖Du‖2

Lp(τ) ≤ λ‖û‖2
Lp(τ̂) + ‖Dû‖2

Lp(τ̂)

≤ N

(
d∑

i=1

‖f̂ i‖2
Lp(τ̂) + ‖ĝ‖2

Lp(τ̂)

)
+ Nλ−1‖f̂0‖2

Lp(τ̂)
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≤ N

(
d∑

i=1

‖f i‖2
Lp(τ) + ‖g‖2

Lp(τ)

)
+ Nλ−1‖f0‖2

Lp(τ)

+ N(‖v‖2
Lp

+ ‖Dv‖2
Lp

).

It only remains to notice that the last term is dominated by N ‖u0‖2
tr W1

p
. The

theorem is proved. �

5. Proof of Theorem 3.3

Throughout this section, we suppose that the assumptions of Theorem 3.3
are satisfied.

Owing to Theorem 3.1, implying that the solution in W
1
p(τ) is unique, and

having in mind setting all data equal to zero for t > τ , we see that without
loss of generality we may assume that τ = ∞. Set

Lp = Lp(∞), W
1
p = W

1
p(∞).

We need two auxiliary results.

Lemma 5.1. For any T,R ∈ (0, ∞) (and ω), we have

(5.1)
∫ T

0

∫
BR

(
|bs(x)|p′

+ |bs(x)|p′
+ cp′

s (x)
)
dxds < ∞.

This lemma is proved in the same way as Lemma 6.1 of [16] on the basis
of Assumptions 3.1(iii) and 3.4 and the fact that q ≥ p′.

The solution of our equation will be obtained as the weak limit of the
solutions of equations with cut-off coefficients. Therefore, the following result
is relevant.

Lemma 5.2. Let φ ∈ C∞
0 , um, u ∈ W

1
p, m = 1,2, . . ., be such that um → u

weakly in W
1
p. For m = 1,2, . . . define χm(t) = (−m) ∨ t ∧ m, bi

mt = χm(bi
t),

bi
mt = χm(bi

t), and cmt = χm(ct). Then there is a sequence of bounded stopping
times τn → ∞ such that, for any n, the functions

(5.2)
∫ t

0

(bi
msDiu

m
s , φ)ds,

∫ t

0

(bi
msu

m
s ,Diφ)ds,

∫ t

0

(cmsu
m
s , φ)ds

converge weakly in the space Lp(|(0, τn]]) as m → ∞ to

(5.3)
∫ t

0

(bi
sDius, φ)ds,

∫ t

0

(bi
sus,Diφ)ds,

∫ t

0

(csus, φ)ds,

respectively.

Proof. Let R be such that φ(x) = 0 for |x| ≥ R. We take τn → ∞ such that
each of them is bounded, they are smaller than the ones from Lemma 4.1,
and are such that the left-hand side of (5.1) with T = τn is less than n.
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By Corollary 4.2 and by the fact that (strongly) continuous operators are
weakly continuous, we obtain that∫ t

0

(bi
sDiu

m
s , φ)ds →

∫ t

0

(bi
sDius, φ)ds

as m → ∞ weakly in the space Lp(|(0, τn]]) for any n. Therefore, in what
concerns the first function in (5.2), it suffices to show that∫ t

0

(
Diu

m
s , (bi

s − bi
ms)φ

)
ds → 0

weakly in Lp(|(0, τn]]). In other words, it suffices to show that for any ξ ∈
Lp′ (|(0, τn]])

E

∫ τn

0

ξt

(∫ t

0

(
Diu

m
s , (bi

s − bi
ms)φ

)
ds

)
dt → 0.

This relation is rewritten as

(5.4) E

∫ τn

0

(
Diu

m
s , ηs(bi

s − bi
ms)φ

)
ds → 0,

where

ηs :=
∫ τn

s

ξt dt.

Observe that by the choice of τn, we have

E

∫ τn

0

|ηs|p′
∫

|x|≤R

|bs(x)|p′
dxds ≤ E sup

t≤τn

|ηs|p′
∫ τn

0

∫
|x|≤R

|bs(x)|p′
dxds

≤ nE

(∫ τn

0

|ξs|ds

)p′

< ∞.

It follows by the dominated convergence that ηs(bi
s − bi

ms)φ → 0 as m → ∞
strongly in Lp′ (τn). By assumption Dum → Du weakly in Lp(τn). This im-
plies (5.4). Similarly, one proves our assertion about the remaining functions
in (5.2). The lemma is proved. �

Proof of Theorem 3.3. Recall that we may assume that τ = ∞. Since the
case p = 2 is dealt with in [15] (under much milder assumptions), we also
assume that p > 2. Define bmt, bmt, and cmt as in Lemma 5.2 and consider
equation (2.2) with bmt, bmt, and cmt in place of bt, bt, and ct, respectively.
Obviously, bmt, bmt, and cmt satisfy Assumption 3.4 with the same γb and
K as bt, bt, and ct do. By Theorem 3.1 and the method of continuity for
λ ≥ λ0(d, δ, p, κ, ρ0, ρ1,K) there exists a unique solution um of the modified
equation on R.

By Theorem 3.1, we also have

‖um‖Lp + ‖Dum‖Lp ≤ N,
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where N is independent of m. Hence, the sequence of functions um is bounded
in the space W

1
p and consequently has a weak limit point u ∈ W

1
p. For simplic-

ity of presentation, we assume that the whole sequence um converges weakly
to u.

Take a φ ∈ C∞
0 . Then by Lemma 5.2 for appropriate τn we have that

the functions (5.2) converge to (5.3) weakly in Lp(|(0, τn]]) as m → ∞ for
any n. Owing to (3.2) and the fact that bounded linear operators are weakly
continuous, the stochastic terms in the equations for um

t also converge weakly
in Lp(|(0, τn]]) as m → ∞ for any n. Obviously, the same is true for (um

t , φ) →
(ut, φ) and the remaining terms entering the equation for um

t . Hence, by
passing to the weak limit in the equation for um

t we see that for any φ ∈ C∞
0

equation (2.4) holds for almost any (ω, t).
Until this moment, Assumption 3.5 was not needed. We will need it in order

to be able to apply Theorem 3.1 of [19] and find an appropriate modification
of ut.

Take a ψ ∈ C∞
0 and observe that uψ ∈ W

1
2(T ) and gψ ∈ L2(T ) for any

T ∈ (0, ∞) which implies that

mψ
t := u0ψ +

∞∑
k=1

∫ t

0

ψ(Λk
sus + gk

s )dwk
s

is well defined as an L2-valued continuous martingale such that for any φ ∈ L2

with probability one

(5.5) (mψ
t , φ) = (u0ψ,φ) +

∞∑
k=1

∫ t

0

(
ψ(Λk

sus + gk
s ), φ

)
dwk

s

for all t ∈ R+.
Notice that for any φ ∈ C∞

0

(5.6) (utψ,φ) =
∫ t

0

(u∗
sψ,φ)ds + (mψ

t , φ)

for almost all (ω, t), where u∗
s is a function with values in the space of distri-

butions on R
d defined by

u∗
s = Lsus − λus + Dif

i
s + f0

s

(see Remark 4.2).
Next, take an R ∈ (0, ∞) and let W −1

p′ (BR) denote the dual space for
0

W 1
p(BR) := W 1

p (BR) ∩ {v : v|∂BR
= 0}.

Estimate (4.6) combined with the facts that, p′ < p and that one can cover
BR with finitely many balls of radius ρ1 shows that for any φ ∈ C∞

0 (BR)

|(Di(bi
sus), φ)| ≤ N

(
1 +

∫
BR+1

|bs| dx

)
‖us‖W 1

p
‖φ‖W 1

p
,
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where N is independent of ω, s,us, φ. Due to the arbitrariness of φ and the

fact that C∞
0 (BR) is dense in

0

W 1
p(BR), we conclude that (for almost all (ω, s))

we have Di(bi
sus) ∈ W −1

p′ (BR) and

‖Di(bi
sus)‖W −1

p′ (BR) ≤ N

(
1 +

∫
BR+1

|bs| dx

)
‖us‖W 1

p
.

Here the right-hand side is locally summable on R+ to the power p′ (a.s.) ow-
ing to Assumption 3.5, Hölder’s inequality, and the fact that u ∈ W

1
p. Similar

statements are true for bi
sDius, csus, and u∗

s .

Now, since uψ ∈ Lp(R+,
0

W 1
p(BR)) and

0

W 1
p(BR) is dense in L2(BR), by

Theorem 3.1 of [19] we get that there exist an event Ωψ of full probability
and a continuous L2(BR)-valued Ft-adapted process uψ

t such that uψ
t = utψ

as L2(BR)-valued functions for almost all (ω, t) and for any ω ∈ Ωψ , t ∈ R+,
and φ ∈ C∞

0 (BR) we have

(5.7) (uψ
t , φ) =

∫ t

0

(u∗
sψ,φ)ds + (mψ

t , φ).

Take a ψ ∈ C∞
0 such that ψ(x) = 1 for |x| ≤ 1 and for k = 1,2, . . . define

ψk(x) = ψ(x/k) and

Ω′ =
∞⋂

k=1

Ωψk .

Clearly, P (Ω′) = 1. We will further reduce Ω′ in the following way. Obviously
(see (5.5)), if ψ′, ψ′ ′ ∈ C∞

0 and ψ′ = ψ′ ′ on BR and φ ∈ L2 is such that φ = 0
outside BR, then with probability one we have (mψ′

t , φ) = (mψ′ ′

t , φ) for all t.
Let Φ be the union over n = 1,2, . . . of countable subsets of C∞

0 (Bn) each
of which everywhere dense in L2(Bn). For φ ∈ C∞

0 denote d(φ) the smallest
radius of the balls centered at the origin containing the support of φ. Then
by the above for φ ∈ C∞

0 the events

Ω(φ) = {ω ∈ Ω : (mψk
t , φ) = (mψj

t , φ), ∀t ∈ R+, k, j ≥ d(φ)},

Ω′ ′ = Ω′
⋂ ⋂

φ∈Φ

Ω(φ)

have probability one. Since mψ
t are L2-valued and Φ ∩ C∞

0 (Bn) is dense in
L2(Bn), we have that for ω ∈ Ω′ ′, t ∈ R+, and any φ ∈ C∞

0 (Bn) it holds that

(mψk
t , φ) = (mψj

t , φ)

as long as i, j ≥ n.
Then (5.7) implies that for any ω ∈ Ω′ ′, t ∈ R+, and φ ∈ C∞

0 (Bn) we have
(uψj

t , φ) = (uψk
t , φ) for all j, k ≥ n. In particular, for any ω ∈ Ω′ ′, t ∈ R+,

n = 1,2 . . . it holds that u
ψj

t = uψk
t as distributions on Bn for j, k ≥ n and
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there exists a distribution ūt on R
d such that ūt = uψk

t on Bn for all k ≥ n.
Since uψk

t = utψk for almost all (ω, t), we have that ūt = ut (as distributions
on R

d) for almost all (ω, t). The inclusion u ∈ W
1
p now yields ū ∈ W

1
p.

It also follows from (5.7) that if ω ∈ Ω′ ′, t ∈ R+, and φ ∈ C∞
0 is such that

φ = 0 outside Bn, then for any j ≥ n

(ūt, φ) = (uψj

t , φ) =
∫ t

0

(Lsus − λus + Dif
i
s + f0

s , φ)ds + (mψj

t , φ).

By having in mind (5.5), we conclude that for any φ ∈ C∞
0 with probability

one for all t ∈ R+

(ūt, φ) = (u0, φ) +
∫ t

0

(Lsus − λus + Dif
i
s + f0

s , φ)ds

+
∞∑

k=1

∫ t

0

(Λk
sus + gk

s , φ)dwk
s .

Now it only remains to observe that since ūs = us for almost all (ω, s), we can
replace us with ūs in the above equation. The theorem is proved. �

6. Itô’s formula for the product of two processes of class W 1
2,loc(τ)

The results of this section will be used in a few places below, in particular,
in the proof of Lemma 8.5. Recall that the spaces W 1

p (τ) are introduced in
Definition 2.1.

Theorem 6.1. Let τ be a stopping time and let u, ũ, f j , f̃ j , g = (g1, g2, . . .),
g̃ = (g̃1, g̃2, . . .) be some functions such that for any φ ∈ C∞

0 we have φu,φũ ∈
W 1

2 (τ), φf j , φf̃ j ∈ L2(τ), j = 0, . . . , d, and φg,φg̃ ∈ L2(τ). Assume that in the
sense of generalized functions

dut = (Dif
i
t + f0

t )dt + gk
t dwk

t , dũt = (Dif̃
i
t + f̃0

t )dt + g̃k
t dwk

t , t ≤ τ.

Then

d(utũt) = [ũt(Dif
i
t + f0

t ) + ut(Dif̃
i
t + f̃0

t ) + ht]dt

+ (ũtg
k
t + utg̃

k
t )dwk

t , t ≤ τ,

where ht := (gt, g̃t)�2 , in the sense of generalized functions, that is, for any
φ ∈ C∞

0 , with probability one,

(ut∧τ ũt∧τ , φ) = (u0ũ0, φ) +
∫ t

0

Is≤τ (ũsg
k
s + usg̃

k
s , φ)dwk

s(6.1)

+
∫ t

0

Is≤τ [(ũsf
0
s , φ) − (f i

s,Di(ũsφ))

+ (usf̃
0
s , φ) − (f̃ i

s,Di(usφ)) + (hs, φ)]ds

for all t.
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Proof. To prove (6.1), we only need to consider the case that ũ = u. Indeed,
then by writing down the stochastic differential of |ut + λũt|2, where λ is an
arbitrary constant, and comparing the coefficients of λ, we would come to
(6.1). In other words, to prove (6.1), we need only prove that for any φ ∈ C∞

0

with probability one

(u2
t∧τ , φ) = (u2

0, φ) + 2
∫ t

0

Is≤τ (usg
k
s , φ)dwk

s(6.2)

+
∫ t

0

Is≤τ [2(usf
0
s , φ) − 2(f i

s,Di(usφ)) + (|gs|2�2 , φ)]ds

for all t.
Next, observe that for any ψ,φ ∈ C∞

0 , with probability one

(ψut∧τ , φ) = (ψu0, φ) +
∫ t

0

It≤τ (ψgk
s , φ)dwk

s

+
∫ t

0

It≤τ [(ψf0
s − f i

sDiψ,φ) − (ψf i
s,Diφ)]dt

for all t. This means that

d(ψut) =
(
ψf0

t − f i
tDiψ + Di(ψf i

t )
)
dt + ψgk

t dwk
t , t ≤ τ.

By well-known results, in particular, by Itô’s formula (see, for instance, [13])
there is a set Ω′ ⊂ Ω of full probability such that

(i) ψut∧τ IΩ′ is a continuous L2-valued Ft-adapted function on [0, ∞);
(ii) for all t ∈ [0, ∞) and ω ∈ Ω′, Itô’s formula holds:∫

Rd

|ψut∧τ |2 dx(6.3)

=
∫

Rd

|ψu0|2 dx + 2
∫ t

0

Is≤τ

∫
Rd

ψ2usg
k
s dxdwk

s

+
∫ t

0

Is≤τ

(∫
Rd

[2usf
0
s ψ2 − 2f i

sDi(ψ2us) + ψ2|gs|2�2 ]dx

)
ds.

This proves (6.2) if we replace there φ with ψ2. However, for any φ ∈ C∞
0 one

can find ψ1, ψ2 ∈ C∞
0 such that φ = ψ2

1 − ψ2
2 . Indeed, one can take sufficiently

large N,R > 0 and take ψ1(x) = exp(−(R2 − |x|2)−1) for |x| < R and ψ1(x) = 0
for |x| ≥ R and define ψ2 = (ψ2

1 − φ)1/2. This implies that (6.2) holds for any
φ ∈ C∞

0 with probability one for all t and proves the theorem. �

Corollary 6.2. Let u, f, g be as in Theorem 6.1, let a nonrandom ψ ∈ W 1
2 ,

and let a random process xt be given as

xt =
∫ t

0

σk
s dwk

s +
∫ t

0

bs ds
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for some predictable R
d-valued functions σk

t and bt such that

E

∫ τ

0

(∑
k

|σk
t |2 + |bt|

)
dt < ∞.

Then in the sense of generalized functions

d(utψt) = [Di(uta
ij
t Djψt) − aij

t (Diut)Djψt + utb
i
tDiψt + Di(ψtf

i
t )

− f i
tDiψt + ψtf

0
t + gk

t σik
t Diψt]dt + [ψtg

k
t + utσ

ik
t Diψt]dwk

t , t ≤ τ,

where ψt(x) = ψ(x + xt) and 2aij
t = σik

t σjk
t .

Indeed, observe that by Itô’s formula and the stochastic Fubini theorem,
for any φ ∈ C∞

0 ,∫
Rd

ψt∧τφdx =
∫

Rd

ψ(x)φ(x − xt∧τ )dx

=
∫

Rd

ψφdx +
∫ t

0

Is≤τ

∫
Rd

ψs[aij
s Dijφ − bi

sDiφ]dxds

+
∫ t

0

Is≤τ

∫
Rd

σik
s φDiψs dxdwk

s ,

where the coefficient of ds equals∫
Rd

φ[aij
s Dijψs + bi

sDiψs]dx.

Furthermore, for instance,

E

∫ τ

0

∫
Rd

∑
k

|σik
s Diψs|2 dxds ≤ E

∫ τ

0

∫
Rd

∑
k

|σk
s |2|Dψs|2 dxds

=
∫

Rd

|Dψ|2 dxE

∫ τ

0

∑
k

|σk
s |2 ds < ∞.

It follows that ψ· ∈ W 1
2 (τ) and

dψt = [Di(a
ij
t Djψt) + bi

tDiψt]dt + σik
t Diψt dwk

t

in the sense of generalized functions, so that the desired result follows from
Theorem 6.1.

7. Kalman–Bucy filter

We take a T ∈ (0, ∞) and on [0, T ] consider a d1-dimensional two com-
ponent process zt = (xt, yt) with xt being d-dimensional and yt (d1 − d)-
dimensional. We assume that zt is a diffusion process defined as a solution of
the system

dxt = b(t, zt)dt + θ(t, yt)dwt,(7.1)
dyt = B(t, zt)dt + Θ(t, yt)dwt
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with some initial data.

Assumption 7.1. The functions b, θ, B and Θ are Borel measurable func-
tions of (t, z) and (t, y) as appropriate and θ and Θ are bounded and satisfy
the Lipschitz condition with respect to y with a constant independent of t.
We have

b(t, z) = x∗ḃ(t, y) + b(t,0, y), B(t, z) = x∗Ḃ(t, y) + B(t,0, y),

where ḃ and Ḃ are bounded matrix-valued functions of appropriate dimen-
sions, b(t,0) and B(t,0) are bounded, and ḃ(t, y), Ḃ(t, y), b(t,0, y), and B(t,
0, y) satisfy the Lipschitz condition with respect to y with a constant inde-
pendent of t.

In the rest of the article, we use the notation

Di =
∂

∂xi
, Dij = DiDj

only for i, j = 1, . . . , d.

Remark 7.1. Note that

(7.2) ḃij(t, y) = Dib
j(t, z), Ḃij(t, y) = DiB

j(t, z).

Set

θ̌(t, y) =
(

θ(t, y)
Θ(t, y)

)
, ǎ(t, y) =

1
2
θ̌θ̌∗(t, y), b̌(t, z) =

(
b(t, z)
B(t, z)

)
,(7.3)

Ľ(t, z) = ǎij(t, y)
∂2

∂zi ∂zj
+ b̌i(t, z)

∂

∂zi
,(7.4)

where t ∈ [0, T ], z = (x, y) ∈ R
d1 , and we use the summation convention over

all “reasonable” values of repeated indices, so that the summation in (7.4) is
performed for i, j = 1, . . . , d1.

Observe that

(7.5) dzt = θ̌(t, zt)dwt + b̌(t, zt)dt.

Assumption 7.2. The symmetric matrix ǎ(t, y) is uniformly nondegener-
ate. In particular, the matrix ΘΘ∗ is invertible and

Ψ := (ΘΘ∗)− 1
2

is a bounded function of (t, y).

Remark 7.2. It is well known (see, for instance, [14]) that in light of
Assumption 7.2 the matrix

â(t, y) = a(t, y) − α(t, y)

is uniformly (with respect to (t, y)) nondegenerate, where

a =
1
2
θθ∗, α =

1
2
σσ∗, σ = θΘ∗Ψ,
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Remark 7.3. Everywhere below we use the stipulation that if we are given
a function ξ(t, x, y), then we denote

(7.6) ξt = ξt(x) = ξ(t, x, yt)

unless it is explicitly specified otherwise. For instance, Ψt = Ψ(t, yt), Θt =
Θ(t, yt), σt = θtΘ∗

t Ψt.

Next we introduce a few more notation. Let (note the size and shape of b)

b = ΨB, bt(x) = ΨtBt(x) = Ψ(t, yt)B(t, x, yt)

and set

Lt(x) = aij
t DiDj + bi

t(x)Di,(7.7)

L∗
t (x)ut(x) = DiDj(a

ij
t ut(x)) − Di(bi

t(x)ut(x))(7.8)

= Dj

(
aij

t Diut(x) − bj
t (x)ut(x)

)
,

Λk
t (x)ut(x) = σik

t Diut(x) + b
k
t (x)ut(x),(7.9)

Λk∗
t (x)ut(x) = −σik

t Diut(x) + b
k
t (x)ut(x),(7.10)

where t ∈ [0, T ], x ∈ R
d, k = 1, . . . , d1 − d, and as above we use the summation

convention over all “reasonable” values of repeated indices, so that the sum-
mation in (7.7), (7.8), (7.9), and (7.10) is performed for i, j = 1, . . . , d (whereas
in (7.4) for i, j = 1, . . . , d1).

Finally, by F y
t we denote the completion of σ{ys : s ≤ t} with respect to

P, F .

Assumption 7.3. There exists an ε > 0 and a function Q(x) = Q(ω,x)
which is F y

0 -measurable in ω, quadratic in x, and
(i) For all x ∈ R

d (and ω)

ε−1|x|2 ≥ xixjDijQ ≥ ε|x|2;
(ii) We have π0e

Q ∈ tr W 1
p , where π0 is the conditional density of x0 given y0.

Assumption 7.3 is satisfied, for instance, in the classical setting of the
Kalman–Bucy filter when π0 is a Gaussian density.

Theorem 7.1. There exists a process π̄ on [0, T ] such that
(i) π̄t is F y

t -adapted and, for any r ∈ [1, p], with probability one π̄t is a
continuous Lr-valued process on [0, T ] and π̄0 = π0;

(ii) There exists an increasing sequence of F y
t -stopping times τm ≤ T such

that P (τm = T ) → 1 and π̄ ∈ W
1
p(τm) for any m;

(iii) In the sense of Definition 2.3 for any m

(7.11) dπ̄t = Λk∗
t π̄t dỹk

t + L∗
t π̄t dt, t ≤ τm,

where

ỹk
t =

∫ t

0

Ψkr
s dyr

s .



KALMAN–BUCY FILTER AND SPDES 1099

Furthermore, for any m and φ ∈ C∞
0 we have π̄φ ∈ W 1

p (τm);
(iv) We have π̄t ≥ 0 for all t ∈ [0, T ] (a.s.),

(7.12) 0 <

∫
Rd

π̄t(x)dx = (π̄t,1) < ∞

for all t ∈ [0, T ] (a.s.), and for any t ∈ [0, T ] and real-valued, bounded or non-
negative, (Borel) measurable function f given on R

d

(7.13) E[f(xt)| F y
t ] =

(π̄t, f)
(π̄t,1)

(a.s.).

Remark 7.4. Equation (7.13) shows (by definition) that

πt(x) :=
π̄t(x)
(π̄t,1)

is a conditional density of distribution of xt given ys, s ≤ t. Since, generally,
(π̄t,1) 	= 1, one calls π̄t an unnormalized conditional density of distribution
of xt given ys, s ≤ t. Thus, Theorem 7.1 allows us to characterize the condi-
tional density and being combined with Theorem 3.4 allows us to obtain fine
regularity properties of it.

The following result is obtained by repeating what is said after Theorem 3.4
and taking into account that with probability one τm = T for all large m.

Theorem 7.2. (i) For any φ ∈ C∞
0 the process π̄tφ is continuous on [0, T ]

as an Lp-valued process (a.s.);
(ii) If p > 2 and we have two numbers α and β such that

2
p

< α < β ≤ 1,

then for any φ ∈ C∞
0 (a.s.)

π̄φ ∈ Cα/2−1/p([0, T ],H1−β
p ).

In particular, if p > d + 2, then
(a) for any ε ∈ (0, ε0], with ε0 = 1 − (d + 2)/p, (a.s.) for any t ∈ [0, T ]

we have π̄tφ ∈ Cε0−ε(Rd) and the norm of π̄tφ in this space is bounded as a
function of t;

(b) for any ε as in (a) (a.s.) for any x ∈ R
d we have π̄·(x)φ(x) ∈

C(ε0−ε)/2([0, T ]) and the norm of π̄·(x)φ(x) in this space is bounded as a
function of x.

In the general filtering theory equation (7.11) is known as Zakai’s equa-
tion. From the point of view of the Sobolev space theory of SPDEs the most
unpleasant feature of (7.11) in our particular case is the presence of b

k
t (x)π̄t

in the stochastic term with b
k
t (x) which is unbounded in x. However, in the

theory of linear PDEs it was observed that if an equation has a zeroth or-
der term and we know a particular nonzero solution, then the ratio of the
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unknown function and this particular solution satisfies an equation without
zeroth order term (cf. (8.1)).

The way to find a particular solution of (7.11) is suggested by filtering
theory. Imagine that b̌ is affine with respect to z and θ̌ is independent of z.
Then as easy to see zt is a Gaussian process and hence the conditional density
of xt given ys, s ≤ t, is Gaussian, that is, its logarithm is a quadratic function
in x. Therefore, we were looking for a particular solution as e−Qt(x), where
Qt(x) is a quadratic function with respect to x, and finding the equation for
Qt(x) (see (7.19)) was pretty straightforward.

After we “kill” the zeroth-order term our equation falls into the scheme
of Section 3 even though it still has growing first order coefficients in the
deterministic part of the equation. Finding π̄t in the described way allows
us to follow the scheme suggested in [20] thus avoiding using filtering theory.
However, we still encounter an additional difficulty that certain exponential
martingales may not have moments of order > 1, unlike the situation in [20],
and, to prove that they are martingales indeed, we use the Liptser–Shiryaev
theorem (see [22]). This way of proceeding was used by Liptser in [21] (see also
[22]) while treating filtering problem for the so-called conditionally Gaussian
processes.

Finding a particular solution of (7.11) is based on the following lemma
which is probably well known. We give its proof in the end of Section 8 just
for completeness. Set

(7.14) ḃt = ḂtΨt.

Lemma 7.3. The following system of equations about d × d-symmetric
matrix-valued process Wt, R

d-valued process Vt, and real-valued process Ut

d

dt
Wt = (ḃtσ

∗
t − ḃt)Wt + W ∗

t (σtḃ
∗
t − ḃ∗

t ) − 2W ∗
t âtWt + ḃtḃ

∗
t ,(7.15)

dVt = −(Wtσt + ḃt)dỹt(7.16)

+
[
(ḃtσ

∗
t − ḃt)Vt − 2WtâtVt

+ Wt

(
σtbt(0) − bt(0)

)
+ ḃtbt(0)

]
dt,

dUt = −
(
V ∗

t σt + b
∗
t (0)

)
dỹt(7.17)

+
[
aij

t W ij
t + V ∗

t

(
σtbt(0) − bt(0)

)
− V ∗

t âtVt +
1
2

|bt(0)|2 + tr ḃt

]
dt,

has a unique F y
t -adapted solution with initial conditions W ij

0 = DijQ, V i
0 =

DiQ(0), U0 = Q(0). Furthermore, ε−1
1 (δij) ≥ Wt ≥ ε1(δij) on [0, T ], where

ε1 > 0 is a constant independent of ω and t (depending on T among other
things).
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Observe that the coefficients in (7.17) are independent of x.

Remark 7.5. Set

(7.18) Qt(x) =
1
2
W ij

t xixj + V i
t xi + Ut.

Then by using Itô’s formula one easily checks that for any x ∈ R
d

dQt(x) = −
(
σik

t DiQt(x) + b
k
t (x)

)
dỹk

t(7.19)

+
[
aij

t DijQt(x) + Dib
i
t +

(
σik

t b
k
t (x) − bi

t(x)
)
DiQt(x)

− âij
t (DiQt(x))DjQt(x) +

1
2

|bt(x)|2
]

dt

and ηt = e−Qt satisfies

(7.20) dηt(x) = Λr∗
t ηt(x)dỹr

t + L∗
t ηt(x)dt.

By the way, Qt(x) is a unique F y
t -adapted function depending quadratically

on x, satisfying (7.19), and such that Q0 = Q. Indeed, uniqueness follows from
the fact that DijQt, DiQt(0), and Qt(0) are easily shown to satisfy (7.15),
(7.16), and (7.17), respectively.

Our method also allows us to derive the classical equations for the Kalman–
Bucy filter.

Theorem 7.4. Replace requirement (ii) in Assumption 7.3 with the as-
sumption that π0 = e−Q. Then for any t (a.s.) we have πt(x) = Cte

−Qt(x),
where Ct is a normalizing process obtained from the condition that

Ct

∫
Rd

e−Qt(x) dx = 1.

This theorem is proved in Section 9.

Remark 7.6. After just completing the square and finding the stochastic
differential of the remaining term, we find that

Qt(x) =
1
2

|W 1/2
t x + W

−1/2
t Vt|2 +

∫ t

0

(
V ∗

s W −1
s ḃs − b

∗
s(0)

)
dỹs(7.21)

+
1
2

∫ t

0

|ḃ∗
sW

−1
s Vs − bs(0)|2 ds + At,

with a bounded on Ω × [0, T ] function

At :=
∫ t

0

[
aij

s W ij
s + tr ḃs − 1

2
‖W 1/2

s σs + W −1/2
s ḃs‖2

]
ds,
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where for a matrix u we use the notation ‖u‖2 = truu∗. This shows that in
the situation of Theorem 7.4

x̄t := E(xt| F y
t ) =

∫
Rd

xπt(x)dx = −W −1
t Vt,

Σt := E
(
(xt − x̄t)(xt − x̄t)∗ | F y

t

)
= W −1

t

and allows one to derive the classical Kalman–Bucy equations for x̄t and Σt

from (7.15) and (7.16).

8. An auxiliary function

The assumptions from Section 7 are supposed to hold. Set

b̂i
t(x) = σik

t b
k
t (x) − 2âij

t DjQt(x).

Theorem 8.1. The equation

(8.1) dπ̂t = −σik
t Diπ̂tdỹk

t + [aij
t Dij π̂t − bi

tDiπ̂t + b̂i
tDiπ̂t]dt, t ≤ T,

with initial data π̂0 = eQπ0 has a unique solution in the sense of Definition 2.3.

This theorem is a direct consequence of Remark 3.4 and Theorem 3.3 since
the coefficients b and b̂ in (8.1) are affine functions of x and have bounded
derivatives in x.

Lemma 8.2. Almost surely π̂t is a continuous Lp-valued process on [0, T ].
Furthermore, Gt‖π̂t‖p

Lp
is a decreasing function of t (a.s.), where Gt is a

bounded function on Ω × [0, T ] defined by

Gt := exp
∫ t

0

(Dib̂
i
s − Dib

i
s)ds = exp

∫ t

0

tr(σsḃ
∗
s − âsWs − ḃs)ds.

In particular, on the set where τ := T ∧ inf{t ≥ 0 : ‖π̂t‖ Lp = 0} < T we have
‖π̂t‖ Lp = 0 for τ ≤ t ≤ T (a.s.).

Proof. Set

ξi
t =

∫ t

0

σik
s dỹr

s , ξt = (ξi
t), τm = T ∧ inf{t ≥ 0 : |zt| + |ξt| ≥ m}.

The purpose to stop zt is that on |(0, τm]], we have

|σtbt(x)| + |bt(x)| + |b̂t(x)| ≤ N(1 + |x|),
where the constant N is independent of ω, t, x. Why we also stop ξt will
become clear later.

Observe that for any ψ ∈ C∞
0 the process ψπ̂t satisfies an equation ob-

tained by multiplying through (8.1) by ψ. Then after writing ψDi(a
ij
t Dj π̂t)

as Di(ψaij
t Dj π̂t) − aij

t (Dj π̂t)Diψ and noting that the other coefficients mul-
tiplied by ψ are bounded functions on |(0, τm]] × R

d we see that

(8.2) ψπ̂t ∈ W 1
p (τm)
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for any m. It follows from [13] that with probability one ψπ̂t∧τm is a continu-
ous Lp-valued process and since, for each ω, τm = T if m is sufficiently large,
with probability one ψπ̂t is a continuous Lp-valued process on [0, T ] for any
ψ ∈ C∞

0 .
Then take a nonnegative radially symmetric and radially decreasing func-

tion φ ∈ C∞
0 such that |Dφ| ≤ 1, introduce φn(x) = φ(x/n), n = 1,2, . . . ,

φn
t (x) = φn(x − ξt)

and use Corollary 6.2 with τm in place of τ (recall (8.2)). Then we find

d(π̂tφ
n
t ) = −σik

t Di(π̂tφ
n
t )dỹk

t + φn
t (b̂i

t − bi
t)Diπ̂t dt(8.3)

+ [Di(φn
t aij

t Dj π̂t) − (âij
t + aij

t )(Diφ
n
t )Dj π̂t

+ Di(π̂tα
ij
t Djφ

n
t )]dt, t ≤ τm.

As above we conclude that φn
t π̂ ∈ W 1

p (τm) and that, owing to [13], with
probability one φn

t π̂t is a continuous Lp-valued process and (a.s.)

‖φn
t∧τm

π̂t∧τm ‖p
Lp

= ‖φnπ̂0‖p
Lp

+ I1n
t + I2n

t + I3n
t

for all t, where

I1n
t = −p(p − 1)

∫ t∧τm

0

aij
s

∫
Rd

|φn
s |p|π̂s|p−2(Diπ̂s)Dj π̂s dxds ≤ 0,

I2n
t = −

∫ t∧τm

0

[Dib̂
i
s − Dib

i
s]

∫
Rd

|φn
s |p|π̂s|p dxds,

I3n
t =

∫ t∧τm

0

∫
Rd

|π̂s|pψn
s dxds,

ψn
s = paij

s Dij |φn
s |p + (p − 1)(p − 2)|φn

s |p−2αij
s (Diφ

n
s )Djφ

n
s

+ (2 − p)|φn
s |p−1αij

s Dijφ
n
s + (bi

s − b̂i
s)Di|φn

s |p,

where for simplicity of notation the argument x is dropped.
Observe that |Dφn

s | ≤ 1/n and for s ≤ τm we have |bs − b̂s| ≤ N(1 + |x|),
where N is independent of s,x, and ω. Furthermore, Dφn

s → 0 as n → ∞ and
for s < τm

|x| |Dφn
s (x)| =

|x|
n

∣∣∣∣(Dφ)
(

x − ξs

n

)∣∣∣∣ ≤ |ξs|
n

+
|x − ξs|

n

∣∣∣∣(Dφ)
(

x − ξs

n

)∣∣∣∣
≤ m + sup

y
|y| |Dφ(y)|.

By adding that π̂ ∈ W
1
p(T ), we conclude that I3n

t → 0 uniformly in t (a.s.).
Analyzing I1n

t and I2n
t is almost trivial and

‖φn
t∧τm

π̂t∧τm ‖p
Lp

→ ‖π̂t∧τm ‖p
Lp
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as n → ∞ by the monotone convergence theorem. It follows that (a.s.) for
all t

‖π̂t∧τm ‖p
Lp

= ‖π̂0‖p
Lp

−
∫ t∧τm

0

(Dib̂
i
s − Dib

i
s)‖π̂s‖p

Lp
ds

− p(p − 1)
∫ t∧τm

0

aij
s

∫
Rd

|π̂s|p−2(Diπ̂s)Dj π̂s dxds.

Obviously on can drop τm in this formula and then obtain that (a.s.) for
all t ≤ T

Gt‖π̂t‖p
Lp

= ‖π̂0‖p
Lp

− p(p − 1)
∫ t

0

Gsa
ij
s

∫
Rd

|π̂s|p−2(Diπ̂s)Dj π̂s dxds,

which implies that Gt‖π̂t‖p
Lp

is decreasing and continuous (a.s.). Further-
more, since φn

t π̂t are continuous Lp-valued processes, π̂t is at least a weakly
continuous Lp-valued function, but since ‖π̂t‖p

Lp
is (absolutely) continuous,

π̂t is strongly continuous. This proves the lemma. �

Remark 8.1. After we know that π̂t is a continuous Lp-valued process on
[0, T ] the last assertion of Lemma 8.2 can be also obtained from uniqueness
of solutions of (8.1) because the τ in Lemma 8.2 is a stopping time and π̂t∧τ

is obviously a solution of (8.1) implying that on the set where τ < T we have
π̂t = 0 for τ ≤ t ≤ T .

Before stating the following lemma, we introduce a stipulation accepted
throughout the rest of the paper that if we are given a function ξ(t, x, y), then
we denote

(8.4) ξ̃t = ξt(xt) = ξ(t, xt, yt).

The reader encountered above already one of these abbreviated notation (see
(7.6)).

Lemma 8.3. Introduce

w̃t =
∫ t

0

ΨsΘs dws, b̃t = bt(xt) = Ψ(t, yt)B(t, xt, yt).

Then w̃t is a Wiener process and the process

ρt = ρt(b̃, dw̃) = exp
(

−
∫ t

0

b̃
k
s dw̃k

s − 1
2

∫ t

0

|b̃s|2�2 ds

)

is a martingale on [0, T ].

Proof. The first assertion follows from Lévy’s theorem. To prove the second
one, observe that ∫ t

0

b̃
k
s dw̃k

s =
∫ t

0

b̃
∗
sΨsΘs dws.
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Furthermore, the system

dxt =
(
b(t, zt) − θ(t, yt)Θ∗(t, yt)Ψ2(t, yt)B(t, zt)

)
dt + θ(t, yt)dwt,

dyt = Θ(t, yt)dwt,

which is obtained from (7.1) by formal application of the measure change, has
a unique solution with initial data z0 since its coefficients are locally Lipschitz
in z and grow as |z| → ∞ not faster than linearly. In this situation by the
Liptser–Shiryaev theorem, ρ is a martingale since∫ T

0

|Ψ(t, y(t))B(t, x(t), y(t))|2 dt < ∞

for any deterministic functions x(t) and y(t) which are continuous on [0, T ].
The lemma is proved. �

Lemma 8.4. The process π̂t is F y
t -adapted.

Proof. Observe that in equation (8.1) we have

dỹk
t = Ψkr

t dyr
t = dw̃k

t + b̃
k
t dt,

where, as it is pointed out above, w̃t is a Wiener process. Furthermore, the
processes ỹk

t is F y
t -adapted since such are Ψkr

t and equation (8.1) is rewritten
as

dπ̂t = −σik
t Diπ̂t dw̃k

t + [Di(a
ij
t Dj π̂t) − bi

tDiπ̂t(8.5)

+ (b̂i
t − σik

t b̃
k
t )Diπ̂t]dt, t ≤ T.

Here σik
t b̃

k
t is independent of x and for each ω the trajectories of σik

t b̃
k
t are

locally bounded on R+, which shows that in order to be able to apply Theo-
rem 3.5 it only remains to refer to Lemma 8.3. The lemma is proved. �

Lemma 8.5. The assertions (i)–(iii) of Theorem 7.1 hold for π̄t := e−Qt π̂t.

Proof. Assertion (i) of Theorem 7.1 follows immediately from Lemma 8.2,
the continuity of Qt, and the boundedness of Wt = (DijQt) away from zero.

To prove assertion (ii), notice that π̂ ∈ W
1
p(T ) and∫ t

0

‖π̄s‖p
W 1

p
ds

is an F y
t -adapted continuous process on [0, T ]. Then after introducing

τ ′
m = T ∧ inf

{
t ≥ 0 :

∫ t

0

‖π̄s‖p
W 1

p
ds ≥ m

}
we get that π̄ ∈ W

1
p(τ ′

m) and τ ′
m = T for all large m (a.s.).

We now prove that π̄ satisfied (7.11) define Φt = Ψ−1
t and observe that

(dỹk
t )dỹr

t = δkr dt, dyk
t = Φkr

t dw̃r
t + B̃k

t dt,

(B̃t = B(t, zt)). Recall that ηt(x) = exp(−Qt(x)) satisfies equation (7.20) for
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each x with probability one for all t ∈ [0, T ]. It turns out that this equation
also holds in the sense of generalized functions. Owing to the special structure
of Qt, this follows from the stochastic version of Fubini’s theorem (see, for
instance, Lemma 2.7 of [17]).

Next, for m = 1,2, . . . set

(8.6) τ ′ ′
m = T ∧ inf{t ≥ 0 : |zt| + |DQt(0)| ≥ m}.

Note that for a constant N0 independent of m for t < τ ′ ′
m we have

|bt(x)| + |bt(x)| ≤ N0(1 + |x| + m), |b̃t| + |B̃t| ≤ N0(1 + 2m).

Furthermore, DiQt(x) = xjDijQt + DiQt(0), so that increasing N0 if needed
we may assume that for t < τ ′ ′

m

|DQt(x)| ≤ N0(1 + |x| + m).

Then as is easy to see (cf. (8.2)) ut := π̂t and ũt := ηt satisfy the condition of
Theorem 6.1 with appropriate f, f̃ , g, g̃ and τ ′ ′

m in place of τ .
By Theorem 6.1 in the sense of generalized functions

d(ηtπ̂t) = Ir
t dỹr

t + Jt dt, t ≤ τ ′ ′
m,

where

Ir
t = π̂tΛr∗

t ηt − ηtσ
ir
t Diπ̂t = Λr∗

t (ηtπ̂t),

Jt = −(ηtb
k
t − σik

t Diηt)σ
jk
t Dj π̂t + π̂tL

∗
t ηt

+ ηt[a
ij
t Dij π̂t − bi

tDiπ̂t + (σik
t b

k
t + 2η−1âij

t Djηt)Diπ̂t]

= π̂tL
∗
t ηt + ηt(a

ij
t Dij π̂t − bi

tDiπ̂t) + 2aij
t (Diπ̂t)Djηt = L∗

t (ηtπ̂t).

In other words (see Theorem 6.1) for any φ ∈ C∞
0 with probability one

(π̄t∧τ ′ ′
m

, φ) = (π̄0, φ) +
∫ t

0

Is≤τ ′ ′
m

(π̄s,Λk
sφ)dỹk

s +
∫ t

0

Is≤τ ′ ′
m

(π̄s,Lsφ)ds

for all t ≥ 0. Obviously, one can take here τm := τ ′
m ∧ τ ′ ′

m in place of τ ′ ′
m and

then after recalling that π̄ ∈ W
1
p(τ

′
m) one concludes that π̄ is a solution of

(7.11) in the sense of Definition 2.3. The final assertion in (iii) is obtained in
the same way as (8.2). The lemma is proved. �

To better orient the reader, it is worth noting that in the next lemma the
second factor on the left in (8.7) contains the negative of two terms in (7.21).

Lemma 8.6. We have

ρt(b̃, dw̃) exp
(

−
∫ t

0

(
V ∗

s W −1
s ḃs − b

∗
s(0)

)
dỹs(8.7)

− 1
2

∫ t

0

|ḃ∗
sW

−1
s Vs − bs(0)|2 ds

)
= ρt

(
b̃ − b·(0) + ḃ

∗
W −1V,dw̃

)
.
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Furthermore, the right-hand side is a martingale on [0, T ].

Proof. The equality is obtained by simple manipulations. As in the proof of
Lemma 8.3, to prove that (8.7) is a martingale we are going to use the Liptser–
Shiryaev theorem by considering the system consisting of (7.5), (7.15), and
(7.16). We do not include (7.17) because Ut does not enter (8.7). First of
all, we find a smooth bounded, uniformly nondegenerate d × d-matrix-valued
function F (W ) such that F (Wt) = Wt. The fact that this is possible follows
from Lemma 7.3. Then set

A(t, z,W,V ) = Θ∗(t, y)Ψ2(t, y)
(
B(t, z) − B(t,0, y) + Ḃ∗(t, y)F −1(W )V

)
.

After changing the probability measure formally, we arrive at the system
consisting of (7.15) with σt = σ(t, yt), ât = â(t, yt), and with F (Wt) in place
of Wt on the right and the following two equations

dzt = θ̌(t, yt)dwt + [b̌(t, zt) − θ̌(t, yt)A(t, zt,Wt, Vt)]dt,

dVt = −
(
F (Wt)σ(t, yt) + Ḃ(t, yt)Ψ(t, yt)

)
Ψ(t, yt)Θ(t, yt)dwt

+
(
F (Wt)σ(t, yt) + Ḃ(t, yt)Ψ(t, yt)

)
Ψ(t, yt)Θ(t, yt)A(t, zt,Wt, Vt)dt

−
(
F (Wt)σ(t, yt) + Ḃ(t, yt)Ψ(t, yt)

)
Ψ(t, yt)B(t, zt)dt

+
[(

Ḃ(t, yt)Ψ(t, yt)σ∗(t, yt) − ḃ(t, yt)
)
Vt − 2F (Wt)â(t, yt)Vt

]
dt

+
[
F (Wt)

(
σ(t, yt)Ψ(t, yt)B(t,0, yt) − b(t,0, yt)

)
+ Ḃ(t, yt)Ψ2(t, yt)B(t,0, yt)

]
dt.

This system has a unique solution with prescribed initial data since its
coefficients are locally Lipschitz continuous and may grow to infinity as |z| +
|W | + |V | → ∞ not faster than linearly. Moreover,∫ T

0

|A(t, z(t),W (t), V (t))|2 dt < ∞

for any functions z(t),W (t), V (t) which are continuous on [0, T ]. This implies
that process (8.7) is a martingale on [0, T ] and the lemma is proved. �

Proof of Lemma 7.3. Notice that (7.17) yields Ut once Wt and Vt are found.
Equation (7.16) is linear with respect to Vt and proving the existence and
uniqueness of its solution presents no difficulty if Wt is known.

Equation (7.15) can be considered for each ω separately. Then the theory
of ODEs allows us to conclude that a unique solution exists until it blows
up and it is F y

t -adapted. Uniqueness implies that Wt = W ∗
t . Furthermore, at

least on a small time interval Wt > 0. It turns out that Wt > 0 on any interval
of time where Wt is bounded.
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Indeed, if not, then for some t0 > 0 we would have that detWt0 = 0, Wt is
bounded on [0, t0] and detWt > 0 for t < t0. However, for t < t0

(8.8)
d

dt
detWt = trẆtW

−1
t detWt,

and
trẆtW

−1
t = 2tr(ḃtσ

∗
t − ḃt) − 2 tr âtWt + tr ḃtḃ

∗
t W

−1
t ,

where the last term is nonnegative as the trace of the product of two symmetric
nonnegative matrices. It follows, that trẆtW

−1
t is bounded from below on

[0, t0) and hence equation (8.8) implies that detWt0 > 0.
Next, it turns out that the solution does not blow up on [0, T ]. Indeed

d

dt
trWtWt = 4tr(ḃtσ

∗
t − ḃt)WtWt + 2tr ḃtḃ

∗
t Wt − 4 tr âtW

3
t ,

where the last trace is nonnegative again on the interval of existence of Wt.
Here

tr ḃtḃ
∗
t Wt ≤ N(trW 2

t )1/2 ≤ N + trW 2
t ,

where N is a constant. Also for two matrices A and W such that W is
symmetric and nonnegative it holds that

(trAW 2)2 ≤ ‖A‖ ‖W 2‖ ≤ ‖A‖(trW 2)2.

This and Gronwall’s inequality imply that Wt is bounded on [0, T ]. Obviously
the bound of Wt is uniform with respect to ω. The lower bound is also uniform
since by the above detWt is bounded away from zero on [0, T ] uniformly with
respect to ω. The lemma is proved. �

9. Proof of Theorems 7.1 and 7.4

Take a function ϕ ∈ C∞
0 (Rd1) and let c(t, y) be a smooth, bounded, and

nonnegative function on [0, T ] × R
d1−d. Recall that the operator Ľ is intro-

duced in (7.4) and consider the following deterministic problem

∂tv(t, z) + Ľv(t, z) − c(t, y)v(t, z) = 0, t ∈ [0, T ], z ∈ R
d1 ,(9.1)

v(T, z) = ϕ(z), z ∈ R
d1 .

Remark 9.1. By Theorem 2.5 of [18], for any α ∈ (0,1) there exists a
unique classical solution v of (9.1) such that, for any t ∈ [0, T ], v(t, ·) ∈
C2+α(Rd1) and the standard C2+α(Rd1)-norms of v(t, ·) are bounded on [0, T ].
If we denote by zt(s, z), t ≥ s, the solution of system (7.1) which starts at z
at moment s ≤ T , then by Itô’s formula we have

v(s, z) = Eϕ(zT (s, z)) exp
(

−
∫ T

s

cr(yr(s, z))dr

)
,

|v(s, z)| ≤ sup |ϕ|P {τ(s, z) ≤ T } ≤ sup |ϕ|eN0T Ee−N0τ(s,z),
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where N0 > 0 is an arbitrary constant, τ(s, z) is the first time zt(s, z) hits
{z : |z| ≤ R}, and R is such that ϕ(z) = 0 for |z| ≥ R. Take an m ≥ 0 and
introduce ψ(z) = (1 + |z|2)−m. It is not hard to see that, if N0 is sufficiently
large, then

Ľtψ(z) − N0ψ(z) ≤ 0.

By Itô’s formula, for |z| ≥ R,

ψ(R)Ee−N0τ(s,z) ≤ ψ(z),

implying that for any m ≥ 0 there is a constant N such that for all (s, z)

|v(s, z)| ≤ N

(1 + |z|2)m
.

The argument in the proof of Lemma 4.11 of [20] proves that the same
estimate holds for ∂v(s, z)/∂zi and ∂2v(s, z)/∂zi ∂zj , i, j = 1, . . . , d1.

Before we come to a crucial point, we state the following.

Lemma 9.1. Let ξt be a nonnegative continuous martingale on [0, T ] and
let ζt be a continuous Ft-adapted process given on [0, T ] such that ξtζt is a
local martingale on [0, T ). Assume that

EξT sup
[0,T ]

|ζt| < ∞.

Then ξtζt is a martingale on [0, T ].

Proof. We need to prove that for any stopping time τ ≤ T we have Eξτζτ =
Eξ0ζ0. Here the left-hand side equals EξT ζτ and we are given that there
exists a sequence of stopping times τn ↑ T such that EξT ζτ ∧τn = Eξ0ζ0. Using
the dominated convergence theorem yields the desired result and proves the
lemma. �

Lemma 9.2. The process

ρte
−

∫ t
0 cs(ys)ds

∫
Rd

v(t, x, yt)π̄t(x)dx

is a martingale on [0, T ].

Proof. Define (ct = c(t, yt), vt(x) = v(t, x, yt))

Dy
k =

∂

∂yk
, Dy

kr = Dy
kDy

r , Ct = exp
(

−
∫ t

0

cs ds

)
, χt = Ctvtπ̄t.

We need to show that

(9.2) ρt

∫
Rd

χt(x)dx

is a martingale.
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Observe that by Itô’s formula and (9.1), we have

d[vt(x)Ct] = d[vtCt](9.3)

= Ct[D
y
kvtdyk

t + (∂tvt − ctvt + ǎkr
t Dy

krvt)dt]

= Ct

[
Dy

kvtΦkr
t dw̃r

t

−
(
Ltvt + 2ǎik

t DiD
y
kvt + (Bk

t − B̃k
t )Dy

kvt

)
dt

]
,

where we dropped the arguments x for shortness and, of course, Dy
kvt =

(Dy
kv)(t, x, yt), Dy

krvt = (Dy
krv)(t, x, yt), and DiD

y
kvt = (DiD

y
kv)(t, x, yt). By

the way, observe that

σir
t Φkr

t = 2ǎik
t , Bk

t = Φkr
t b

r
t .

Similarly to the proof of Lemma 8.5, we conclude that (9.3) holds in the
sense of distributions and that Theorem 6.1 is applicable to vtπ̄t on the time
interval t ≤ τm for any n, where τm are taken from Lemma 8.5. It follows that
for any m for t ≤ τm

dχt = Ct(π̄tΦkr
t Dy

kvt + vtΛr∗
t π̄t)dw̃r

t

− Ctπ̄t

(
Ltvt + σir

t Φkr
t DiD

y
kvt + Φkr

t (br
t − b̃

r
t )D

y
kvt

)
dt

+ Ctvt(L∗
t π̄t + b̃

k
t Λk∗

t π̄t)dt + Ct(D
y
kvt)Φkr

t Λr∗
t π̄t dt.

It is convenient to rearrange the above terms by using the notation

ζr
t = Ct(π̄tΦkr

t Dy
kvt + vtΛr∗

t π̄t).

We have
dχt = ζr

t dw̃r
t + (b̃r

t ζ
r
t + I1

t + I2
t )dt, t ≤ τm,

where

I1
t = Ct(vtL

∗
t π̄t − π̄tLtvt),

I2
t = −CtΦkr

t σir
t

(
π̄tσ

ir
t DiD

y
kvt + (Dy

kvt)Diπ̄t

)
= −CtΦkr

t σir
t Di(π̄tD

y
kvt).

In the integral form this means that for any φ ∈ C∞
0 with probability one

(χt∧τm , φ) = (χ0, φ) +
∫ t

0

Is≤τm(ζr
s , φ)dw̃r

s(9.4)

+
∫ t

0

Is≤τm b̃
r
s(ζ

r
s , φ)ds

+
∫ t

0

Is≤τmCsa
ij
s (π̄sDjvs − vsDj π̄s,Diφ)ds

+
∫ t

0

Is≤τmCs[(π̄svs, b
i
sDiφ) + Φkr

s σir
s (π̄tD

y
kvs,Diφ)]ds.

We take a φ such that φ(0) = 1 and plug φj into (9.4) in place of φ, where
φj(x) = φ(x/j), j = 1,2, . . . .
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Observe that

(ζr
s , φj) = Cs(φj , π̄sΦkr

s Dy
kvs + vsΛr∗

s π̄s)

and for any r and k∫ T

0

(1, |π̄sD
y
kvs| + |vsΛr∗

s π̄s|)2 ds

≤ N

∫ T

0

‖π̄s‖2
W 1

p
‖vs‖2

W 1
p′

ds ≤ N ‖π̄‖2
W1

p(T ) < ∞,

where N is independent of ω. By the dominated convergence theorem and
the rules for passing to the limit under the sign of stochastic integral it follows
that in probability uniformly on [0, T ]∫ t

0

Is≤τm(ζr
s , φj)dw̃r

s →
∫ t

0

Is≤τmCs(1, π̄sΦkr
s Dy

kvs + vsΛr∗
s π̄s)dw̃s.

Similarly, and in an easier fashion one analyzes the remaining terms in (9.4)
and concludes that for any m

d(χt,1) = Ct(1, π̄tΦkr
t Dy

kvt + vtΛr∗
t π̄t)dỹt, t ≤ τm.

By using Itô’s formula we then immediately obtain that the process (9.2) is at
least a local martingale on [0, T ]. We rewrite it as ξtζt, where (see Remark 7.6
and Lemma 8.6) ξt = ρt(b̃ − b·(0) + ḃ

∗
W −1V,dw̃) and

ζt = e−At −
∫ t
0 cs(ys)ds

∫
Rd

π̂t(x)vt(x) exp
(

− 1
2

∫ t

0

|W 1/2
s x + W −1/2

s Vs|2 ds

)
dx.

Owing to Lemma 8.2 the process ζt is bounded on [0, T ] by a constant times
‖π0‖ Lp which along with Lemma 9.1 implies that ξtζt is a martingale. The
lemma is proved. �

Proof of Theorem 7.1. Recall that assertions (i)–(iii) are proved in Lem-
ma 8.5. By Lemma 9.2 and Itô’s formula

Ee−
∫ T
0 cs(ys)dsϕ(zT ) = Ev(0, x0, y0) = E

∫
Rd

v(0, x, y0)π̄0 dx

= EρT e−
∫ T
0 cs(ys)ds

∫
Rd

ϕ(x, yT )π̄T (x)dx

= Eρ̄T e−
∫ T
0 cs(ys)ds

∫
Rd

ϕ(x, yT )π̄T (x)dx,

where ρ̄T = E(ρT | F y
T ). Since the equality between the extreme terms holds

for sufficiently wide class of functions c, we get that

E(ϕ(zT ) | F y
T ) = ρ̄T

∫
Rd

ϕ(x, yT )π̄T (x)dx (a.s.).
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The arbitrariness of φ implies that π̄T ≥ 0 (a.s.) and

1 = ρ̄T

∫
Rd

π̄T (x)dx, (1, π̄T ) =
∫

Rd

π̄T (x)dx > 0, ρ̄T = (1, π̄T )−1

(a.s.). It follows that for any Borel f ≥ 0 equation (7.13) holds with t = T .
The above argument can be repeated for any t ≤ T by taking t in place of T .

Then we obtain (7.13) for any t. Furthermore, for any t we will have that
that π̄t ≥ 0 and (1, π̄t) > 0 (a.s.). Actually, the last two properties hold with
probability one for all t at once since with probability one π̄t is a continuous
L1-function by Lemma 8.5 and by Lemma 8.2, on the set where τ = inf{t ≥
0 : (1, π̄t) = 0} < T , we have π̄T = 0, which only happens with probability
zero. The theorem is proved. �

Proof of Theorem 7.4. We use part of notation from the proof of Lem-
ma 9.2 but this time take π̄t = ηt = e−Qt . Then by Itô’s formula and (7.20)
we obtain that for each x

dχt = ζr
t (dw̃r

t + b̃
r
dt) + Ct(vtL

∗
t π̄t − π̄tLtvt)dt − CtΦkr

t σir
t Di(π̄tD

y
kvt)dt.

By using the stochastic Fubini theorem and integrating by parts, we see that

d(χt,1) = (ζr
t ,1)(dw̃r

t + b̃
r
dt)

which implies that process (9.2) is a local martingale on [0, T ]. We rewrite it as
ξtζt, where (see Remark 7.6 and Lemma 8.6) ξt = ρt(b̃ − b·(0)+ ḃ

∗
W −1V,dw̃)

and

ζt = e−At −
∫ t
0 cs(ys)ds

∫
Rd

vt(x) exp
(

− 1
2

∫ t

0

|W 1/2
s x + W −1/2

s Vs|2 ds

)
dx.

Notice that ξt is a martingale and ζt is obviously bounded. By Lemma 9.1,
we conclude that process (9.2) is a martingale.

After that it suffices to repeat the proof of Theorem 7.1 dropping un-
necessary here details concerning the fact that (1, π̄t) > 0. The theorem is
proved. �
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[8] I. Gyöngy, Stochastic partial differential equations manifolds II. Nonlinear filtering,
Potential Analysis 6 (1997), 39–56. MR 1436821
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