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QUANTUM SEMIGROUP COMPACTIFICATIONS AND
UNIFORM CONTINUITY ON LOCALLY COMPACT

QUANTUM GROUPS

PEKKA SALMI

Abstract. We introduce quantum semigroup compactifications
and study the universal quantum semigroup compactification of

a coamenable locally compact quantum group. If G is a classical

locally compact group, the universal semigroup compactification

corresponds to the C*-algebra of the bounded left uniformly con-
tinuous functions on G, so we study the analogous C*-algebra
associated with a locally compact quantum group.

1. Introduction

In topology, a compactification of a locally compact space X is a compact
space that includes a dense homeomorphic copy of X . If we replace X by a
locally compact group G, then we naturally expect that the group structure
on G is somehow represented in the compactification. As the classical Bohr
compactification shows, if we want that a compactification is also a topological
group, we cannot require that the compactification includes a topologically
isomorphic copy of G, that is, we have to loosen the topological requirements
of compactification. On the other hand, the multiplication of G can be ex-
tended to a compact space in such a way that G keeps both its topological
and algebraic structure. However, the compact space itself is not a group
anymore—just a semigroup. Such an object is called a semigroup compacti-
fication; we define them properly in Section 3, but, for a thorough treatment
of the theory, the reader is referred to [5].

The aim of this paper is to define the notion of semigroup compactification
for locally compact quantum groups and give a description of the universal
quantum semigroup compactification. The latter object corresponds, in the
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case of a classical locally compact group G, to the C*-algebra LUC(G) of the
bounded left uniformly continuous functions. So our attempt is to define the
C*-algebra LUC(G) of the left uniformly continuous functions, so to speak,
for a locally compact quantum group G. The definition is based on the work
of Ng [23]. On the dual side, Granirer [11] has defined the so-called bounded
uniformly continuous functionals, which form a C*-subalgebra UCB(Ĝ) of the
group von Neumann algebra VN(G). We shall show that if G is the dual Ĝ

of an amenable locally compact group G, then LUC(G) agrees with UCB(Ĝ).
More generally, we shall compare LUC(G) with the space L∞(G)L1(G), which
is defined through the standard action of L1(G) on its dual L∞(G). Along the
way, we develop some basic results about the completely contractive Banach
algebra LUC(G)∗. For example, it includes an isomorphic copy of C0(G)∗, the
dual of the reduced C*-algebra associated with the locally compact quantum
group G. The definition of the quantum semigroup compactification encom-
passes the quantum Bohr compactification defined recently by So�ltan [28].

Using a different approach, also Runde [27] has studied uniform continuity
on locally compact quantum groups (which I found out after this work was
completed). Theorem 5.3 of the present paper should be compared with The-
orem 5.2 of [27]: in both results the spaces L∞(G)L1(G) and LUC(G) are
compared, but the conditions put on G are very different. (It should be noted
that the space which we denote by L∞(G)L1(G) is denoted by LUC(G) in
[27].)

2. Preliminaries

Throughout this paper, G denotes a locally compact quantum group in
the sense of Kustermans and Vaes [16]. That is to say that G consists of a
von Neumann algebra L∞(G) with the following additional structure. There
is a unital normal ∗-homomorphism Γ : L∞(G) → L∞(G) ⊗ L∞(G) that is
coassociative in the sense that

(Γ ⊗ id)Γ = (id ⊗ Γ)Γ

(here, as elsewhere, ⊗ denotes the von Neumann algebra tensor product and
id denotes the identity map). The map Γ is called the comultiplication of G.
We require also that there exist a left and a right Haar weight, φ and ψ, on
L∞(G). The reader is referred to [31, 16] for details.

Every locally compact group G induces, of course, a locally compact quan-
tum group. It consists of the usual L∞(G), the comultiplication

Γ(f)(g1, g2) = f(g1g2)
(
f ∈ L∞(G), g1, g2 ∈ G

)
,

and the left and the right Haar measures on G. We say that such a locally
compact quantum group is a classical group. The dual of a classical group is
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formed by the von Neumann algebra VN(G) generated by the the left regular
representation λ of G, the comultiplication

Γ(λ(g)) = λ(g) ⊗ λ(g) (g ∈ G),

and the Plancherel weight [30, Section VII.3], which acts as both the left and
the right Haar weight.

Let L2(G) be the Hilbert space that is obtained by applying the GNS-
construction to the pair (L∞(G), φ). This Hilbert space is isomorphic with
the one coming from (L∞(G), ψ), and we make no distinction between the
two. We identify L∞(G) with its isomorphic image in B(L2(G)), the bounded
operators on L2(G). There is a unitary operator V on the Hilbert space tensor
product L2(G) ⊗ L2(G) such that V satisfies the pentagonal relation

(2.1) V12V13V23 = V23V12

(where we use the standard leg numbering notation: for example V13 is V
acting on the first and the third component of L2(G) ⊗ L2(G) ⊗ L2(G)) and
determines the comultiplication via

Γ(x) = V (x ⊗ 1)V ∗ (
x ∈ L∞(G)

)
.

The norm closure of

{(ω ⊗ id)V ;ω ∈ B(L2(G))∗ }
is a C*-algebra, which we denote by C0(G). The C*-algebra C0(G) is the
reduced C*-algebraic version of the locally compact quantum group G intro-
duced in [15]. The weak* closure of C0(G) is L∞(G) and the comultiplication
Γ maps C0(G) to M(C0(G) ⊗ C0(G))—the multiplier algebra of the spatial C*-
algebra tensor product C0(G) ⊗ C0(G). In general, we denote the multiplier
algebra of a C*-algebra A by M(A), but in the special case of A = C0(G) we
shall write Cb(G) for M(C0(G)). If G = G is a classical group, then, of course,
C0(G) is the C*-algebra C0(G) of the continuous functions on G vanishing
at infinity, and Cb(G) is the C*-algebra Cb(G) of the bounded continuous
functions on G.

Next we consider the extension of functions to multiplier algebras. Let
A and B be C*-algebras. A ∗-homomorphism φ : A → M(B) is said to be
nondegenerate if the linear span of φ(A)B is dense in B (note that if A has a
unit, then φ is nondegenerate if and only if it is unital). If φ is nondegenerate,
it can be extended uniquely to a function φ : M(A) → M(B) that is strictly
continuous on bounded sets. Recall that the strict topology on M(A) is
induced by the seminorms x �→ ‖ax‖ + ‖xa‖ where a runs through the elements
of A. Also bounded linear functionals and their slices (such as μ ⊗ id where
μ ∈ A∗) admit unique extensions that are strictly continuous on bounded
sets. We shall often use these extensions without explicit mention. See [14,
Section 7], [22, Appendix A], or [17, Chapter 2] for further details on these
matters.
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The dual C0(G)∗ is a completely contractive Banach algebra with respect
to the multiplication

μ ∗ ν = (μ ⊗ ν)Γ
(
μ, ν ∈ C0(G)∗)

,

where μ ⊗ ν ∈ M(C0(G) ⊗ C0(G))∗. We denote the predual of L∞(G) by
L1(G), which is a closed ideal in C0(G)∗.

The action of C0(G) on its dual, defined by

〈μ · a, b〉 = 〈μ,ab〉
(
μ ∈ C0(G)∗, a, b ∈ C0(G)

)
,

can be restricted to L1(G). We see that every f in L1(G) admits a decom-
position f = g · a with g in L1(G) and a in C0(G) (by Cohen’s factorization
theorem [6, Theorem I.11.10]). By taking weak* limits, it follows that

〈f,x〉 = 〈g, ax〉
(
x ∈ L∞(G)

)
,

which implies that f is strictly continuous when restricted to Cb(G). Similarly,
the weak*-continuous slice map f ⊗ id : L∞(G) ⊗ L∞(G) → L∞(G) is strictly
continuous on M(C0(G) ⊗ C0(G)) ⊆ L∞(G) ⊗ L∞(G).

We shall use some language from operator space theory; the reader is re-
ferred to [8, 24] for details on operator spaces.

The spatial tensor product of C*-algebras, or operator spaces, is denoted
just by ⊗. Also the Hilbert space tensor product is denoted with the same
symbol, but that should not lead to any confusion. The von Neumann algebra
tensor product is denoted by ⊗.

3. Quantum semigroup compactifications

Let G be a locally compact group. A semigroup compactification of G is a
pair (S,φ) such that:
• S is a semigroup and is equipped with a compact topology,
• φ : G → S is a continuous homomorphism,
• φ(G) is dense in S,

• the maps s �→ st and s �→ φ(g)s are continuous on S for every fixed t in S
and g in G.

There is a one-to-one correspondence between the semigroup compactifica-
tions of G and the so-called m-admissible C*-subalgebras of Cb(G) [5, Theo-
rem 3.1.7]. The C*-algebra corresponding to (S,φ) is just φ∗(Cb(S)), where
φ∗ is the dual map f �→ f ◦ φ from Cb(S) to Cb(G). A C*-subalgebra of Cb(G)
is m-admissible if it is unital, left translation invariant, and left m-introverted.
Our approach is to define suitable notions of invariance and introversion for
C*-subalgebras of Cb(G). A starting point is to define a coaction of a locally
compact quantum group on a C*-algebra.

It follows from the Ellis–Lawson joint continuity theorem [5, Theorem 1.4.2]
that if (S,φ) is a semigroup compactification of G, then the function

(g, s) �→ φ(g)s : G × S → S
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is jointly continuous (this result depends on two things: that G is a group
and that G is locally compact). In other words, G acts continuously on its
compactification S.

Following [23], we define a coaction of a locally compact quantum group G

on an operator space X as a completely bounded map α : X → M(C0(G) ⊗ X)
such that (Γ ⊗ id)α = (id ⊗ α)α. There are only two special cases in which we
need this concept. In the first case, X is a unital C*-algebra, M(C0(G) ⊗ X)
is the usual multiplier algebra, and α is a unital ∗-homomorphism. In the
second case, X is a closed subspace of Cb(G),

M
(
C0(G) ⊗ X

)
=

{
u ∈ M

(
C0(G) ⊗ C0(G)

)
;

(3.1)
(a ⊗ 1)u,u(a ⊗ 1) ∈ C0(G) ⊗ X ∀a ∈ C0(G)

}
,

and α is the restriction of the comultiplication Γ to X . So C0(G) ⊗ X is
viewed as a C0(G)-bimodule and M(C0(G) ⊗ X) is defined with respect to the
module actions. The slice maps of bounded functionals have unique extensions
to M(C0(G) ⊗ X) that are strictly continuous with respect to the module
actions of C0(G); this can be verified similarly as with the usual multiplier
algebras. The reader is referred to [23, Section 1] for a proper treatment of
coactions in a general setting.

We say that a closed subspace X ⊆ Cb(G) is left invariant if the comultipli-
cation Γ on Cb(G) defines a coaction on X , that is, if Γ(x) ∈ M(C0(G) ⊗ X) for
every x in X . If G = G is a classical locally compact group, then M(C0(G) ⊗
X) = Cb(G,X), and X is left invariant if and only if X is left translation
invariant and consists of left uniformly continuous functions. That X consists
of left uniformly continuous functions in the classical case is not a real restric-
tion for us because the left uniformly continuous functions form the maximal
left-introverted subspace of Cb(G).

A left-invariant subspace X ⊆ Cb(G) is said to be left introverted if

νx := (id ⊗ ν)Γ(x)

is in X for every x in X and ν in X∗. Note that νx is well defined because
X is left invariant and id ⊗ν : M(C0(G) ⊗ X) → Cb(G). In the classical case
((id ⊗ ν)Γ(x))(g) = 〈ν, �gx〉, where �g denotes the left translation by g in G, so
this definition really does agree with the classical definition of left introversion,
which goes back to Day [7].

If X is a left-introverted subspace of Cb(G), then X∗ is a Banach algebra
with respect to the multiplication defined by

〈μν,x〉 = 〈μ, νx〉 = 〈μ, (id ⊗ ν)Γ(x)〉 (μ, ν ∈ X∗, x ∈ X).

It is not difficult to show that the multiplication on X∗ is actually completely
contractive when X∗ is equipped with the dual operator space structure. It is
important to note that μν defined above is not (μ ⊗ ν)Γ but rather μ(id ⊗ ν)Γ.
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Every right translation μ �→ μν is weak*-continuous on X∗, but the same is
not necessarily true for the left translations.

Finally, we define a quantum semigroup compactification of G to be a left-
invariant, left-introverted, unital C*-subalgebra of Cb(G). This definition is
slightly stronger than in the classical case: “left m-introverted” has changed
to “left introverted”. A left translation invariant subspace X of Cb(G) is said
to be left m-introverted if μx ∈ X for every x in X and for every multiplicative
mean μ on X . This is enough to give a semigroup structure to the spectrum
of X , which is exactly the set of all multiplicative means on X , but is too
restrictive in the noncommutative case. It should be mentioned that, for
example, distal functions on the integers form a left-m-introverted C*-algebra
that is not left introverted [5, Exercise 4.6.15].

The quantum Bohr compactification defined by So�ltan [28] is an example of
a quantum semigroup compactification. The quantum Bohr compactification
AP(G) is the norm closure in Cb(G) of the matrix elements of admissible finite-
dimensional representations of G. The comultiplication of G maps the unital
C*-algebra AP(G) to AP(G) ⊗ AP(G), and AP(G) is a compact quantum
group. It is immediate that AP(G) is left invariant and left introverted, and
so a quantum semigroup compactification of G in our sense. As another
example, we shall study the universal quantum semigroup compactification in
the next section.

It is also possible to give a seemingly more general definition of a quantum
semigroup compactification. Start with a coaction α of G on a unital C*-
algebra X such that α is a unital ∗-homomorphism. Define a compactification
map θ from G to X to be a unital ∗-isomorphism θ : X → Cb(G) such that

(3.2) Γθ = (id ⊗ θ)α

and

(3.3) (id ⊗ ν)α(x) ∈ θ(X) (x ∈ X,ν ∈ X∗)

(since θ is unital, id ⊗ θ is nondegenerate and can be extended to a map
M(C0(G) ⊗ X) → M(C0(G) ⊗ Cb(G))). Then the triple (X,α, θ) is an abstract
quantum semigroup compactification of G. Compared with the definition of
a semigroup compactification (S,φ) of a classical group G, the C*-algebra
X corresponds to Cb(S) and the map θ to φ∗. Condition (3.3) gives X∗

a semigroup structure, and in the classical case it does so to the spectrum
S of Cb(S). Condition (3.2) corresponds to φ being a homomorphism. It
might seem unnecessary to require that θ is a ∗-isomorphism—and not a
mere ∗-homomorphism—but this property corresponds precisely with the re-
quirement that φ(G) is dense in S. All in all, this abstract definition does not
properly generalize the situation because the compactification map θ carries
all the structure between X and θ(X) ⊆ Cb(G).
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4. Left uniformly continuous elements

Let G be a locally compact group. A function x in Cb(G) is left uni-
formly continuous if the map g �→ �gx : G → Cb(G), where �g denotes the
left translation by g, is norm-continuous. Noting that M(C0(G) ⊗ Cb(G)) =
Cb(G,Cb(G)) and Γ(x)(g) = �gx for every g in G, it is natural to define that,
for a locally compact quantum group G,

LUC(G) =
{
x ∈ Cb(G);Γ(x) ∈ M

(
C0(G) ⊗ Cb(G)

)}
.

A similar definition appears in the context of coactions in [23, Lemma A1]. In
the next section we see that LUC(G) agrees with Granirer’s UCB(Ĝ) when
G is the dual of an amenable locally compact group G.

In general, LUC(G) is a unital C*-subalgebra of Cb(G). Moreover, LUC(G)
includes C0(G) because (a ⊗ 1)Γ(b) and Γ(b)(a ⊗ 1) are in C0(G) ⊗ C0(G) for
every a and b in C0(G) by [16, Proposition 1.6].

In order to prove that LUC(G) is a quantum semigroup compactification,
we need to assume that C0(G) has the following slice map property introduced
by Wassermann [32] as property S. We say that a C*-algebra A has the slice
map property if, for every C*-algebra B and its C*-subalgebra C, we have
that x ∈ A ⊗ C whenever (μ ⊗ id)(x) ∈ C for every μ in A∗. Every nuclear C*-
algebra has the slice map property by [33]. A locally compact quantum group
G is coamenable if L1(G) has a bounded approximate identity. A detailed
study of coamenability can be found in [4], where it is shown in Theorems 3.2
and 3.3 that coamenability of G implies that C0(G) is nuclear. So, in partic-
ular, if G is coamenable, C0(G) has the slice map property. Note that every
classical group is coamenable and the dual of a classical group is coamenable
if and only if the group is amenable (by a famous result of Leptin [21]).

In the classical case, the LUC-compactification (that is, the spectrum of
the left uniformly continuous functions) is the universal semigroup compacti-
fication of a given locally compact group. The following result shows that
this universal property carries over to the quantum version of the LUC-
compactification.

Theorem 4.1. Suppose that C0(G) has the slice map property. Then
LUC(G) is the universal quantum semigroup compactification of G in the
sense that every other quantum semigroup compactification of G is included
in LUC(G).

Proof. The C*-algebra LUC(G) is left invariant because the comultipli-
cation Γ maps LUC(G) to M(C0(G) ⊗ LUC(G)) by [23, Lemma A1]. Let
μ ∈ LUC(G)∗ and x ∈ LUC(G). For every a in C0(G),

(a ⊗ 1)Γ(μx) = (a ⊗ 1)(id ⊗ id ⊗ μ)
(
(Γ ⊗ id)Γ(x)

)
= (id ⊗ id ⊗ μ)(id ⊗ Γ)

(
(a ⊗ 1)Γ(x)

)
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by coassociativity. Since (a ⊗ 1)Γ(x) is in C0(G) ⊗ LUC(G), the function
id ⊗ Γ maps it to C0(G) ⊗ M(C0(G) ⊗ LUC(G)). Then applying id ⊗ id ⊗ μ
gives an element of C0(G) ⊗ Cb(G). Hence, (a ⊗ 1)Γ(μx) is in C0(G) ⊗ Cb(G),
and similarly Γ(μx)(a ⊗ 1) is in C0(G) ⊗ Cb(G). Therefore, μx ∈ LUC(G),
and so LUC(G) is left introverted.

By the definition of LUC(G), any left-invariant subspace of Cb(G) is in-
cluded in LUC(G), which is therefore the universal quantum semigroup com-
pactification of G. �
Example. A locally compact quantum group G is said to be discrete if the
dual of G is compact (i.e., C0(Ĝ) has an identity) or, equivalently, if L1(G)
has an identity [26]. When G is discrete, C0(G) is a direct sum (c0-direct sum
to be precise) of full matrix algebras [34, 25]:

C0(G) =
⊕
α∈I

Mnα .

(This last condition is, in fact, equivalent with discreteness.) In this case,
Cb(G) is the direct product (�∞-direct sum) of the same algebras:

Cb(G) =
∏
α∈I

Mnα .

Next, we show that if G is discrete, then LUC(G) = Cb(G).
Note first that

M
(
C0(G) ⊗ C0(G)

)
=

∏
α,β∈I

Mnα ⊗ Mnβ
,

and let u = (uα,β) be an element of M(C0(G) ⊗ C0(G)). Fix a = (aα) in
C0(G) such that aα = 0 for only finitely many α’s, and let 1 = (1β) be the
identity in Cb(G). Then

(a ⊗ 1)u =
(
(aα ⊗ 1β)uα,β

)
is such that (aα ⊗ 1β)uα,β = 0 for only finitely many α’s. It follows that
(a ⊗ 1)u is in C0(G) ⊗ Cb(G), and by taking limits we see that this holds for
any a in C0(G).

In particular, if a ∈ C0(G) and x ∈ Cb(G), then (a ⊗ 1)Γ(x) ∈ C0(G) ⊗
Cb(G) and similarly Γ(x)(a ⊗ 1) ∈ C0(G) ⊗ Cb(G). This shows that x ∈
LUC(G), and so LUC(G) = Cb(G).

Another compactification of a discrete quantum group is presented in [29].

We record here a simple lemma for an easy reference. A variant of this
lemma is well known and can be found, for example, in [3]. Recall that
M(C0(G) ⊗ X) is defined by (3.1).

Lemma 4.2. Let X be a closed subspace of Cb(G). If μ ∈ C0(G)∗ and
ν ∈ X∗, then

μ(id ⊗ ν) = ν(μ ⊗ id) = μ ⊗ ν
on M(C0(G) ⊗ X).
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The following decomposition theorem is a generalization of results concern-
ing classical groups [10, 9] and duals of classical groups [20]. In particular, it
shows that C0(G)∗ can be considered as a subalgebra of LUC(G)∗, a fact we
shall frequently use later on.

Theorem 4.3. Let X be a closed left-introverted subspace of Cb(G) such
that C0(G) ⊆ X . Then there is a completely isometric algebra isomorphism
τ : C0(G)∗ → X∗ such that

X∗ = τ(C0(G)∗) ⊕ C0(G)⊥.

The annihilator C0(G)⊥ is a weak*-closed ideal in X∗.

Proof. For any μ in C0(G)∗, let τ(μ) be the unique extension of μ to X
that is strictly continuous on bounded sets. Since μ can be written as μ′.a
where μ′ ∈ C0(G)∗ and a ∈ C0(G), we have that

〈τ(μ), x〉 = 〈μ′, ax〉 (x ∈ X).

We begin by showing that τ is a homomorphism. First, we consider τ(ν)x
for ν in C0(G)∗ and x in X . Let f ∈ L1(G) and let (cα) be a bounded net in
C0(G) that converges strictly to x. By Lemma 4.2,

〈τ(ν)x, f 〉 = 〈τ(ν), (f ⊗ id)Γ(x)〉 = lim〈ν, (f ⊗ id)Γ(cα)〉

because both Γ and f ⊗ id are strictly continuous on bounded sets. Continuing
the calculation, we have that

〈τ(ν)x, f 〉 = lim〈f, (id ⊗ ν)Γ(cα)〉 = 〈(id ⊗ ν)Γ(x), f 〉

where id ⊗ ν : M(C0(G) ⊗ C0(G)) → Cb(G).
Now let μ ∈ C0(G)∗. By the previous calculation,

〈τ(μ)τ(ν), x〉 = 〈τ(μ), (id ⊗ ν)Γ(x)〉,

which shows that τ(μ)τ(ν) is strictly continuous on bounded sets. Therefore,
it suffices to prove that τ(μ)τ(ν) = μ ∗ ν on C0(G), but, for every a in C0(G),

〈τ(μ)τ(ν), a〉 = 〈μ, (id ⊗ ν)Γ(a)〉 = 〈μ ∗ ν, a〉.

To see that τ is a complete isometry, let [μij ] ∈ Mn(C0(G)∗), that is, [μij ]
is an n × n matrix with entries in C0(G)∗. Obviously ‖τ (n)[μij ]‖n ≥ ‖[μij ]‖n,
where τ (n) denotes the nth amplification of τ , so we only need to show the
converse. Fix ε > 0. By Smith’s lemma [8, Proposition 2.2.2],

∥∥τ (n)[μij ]
∥∥

n
= ‖[τ(μij)]‖CB(X,Mn) = sup

[xkl]

‖[〈τ(μij), xkl〉]‖Mn2 ,

where the supremum runs through all [xkl] in Mn(X) with norm less than
or equal to 1. By Cohen’s factorization theorem, we may choose a from
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C0(G) and [νij ] from Mn(C0(G)∗) such that ‖a‖ = 1, ‖μij − νij ‖ < ε/n4, and
μij = νij .a. Then, continuing the preceding calculation,

∥∥τ (n)[μij ]
∥∥

n
= sup

[xkl]

‖[〈νij , axkl〉]‖Mn2 ≤ sup
[xkl]

‖[〈νij , xkl〉]‖Mn2

≤ ‖[μij ]‖n + sup
[xkl]

∑
i,j,k,l

| 〈μij − νij , xkl〉 | < ‖[μij ]‖n +
∑

i,j,k,l

ε/n4

= ‖[μij ]‖n + ε,

as required.
For every μ in X∗, define μ0 = τ(μ|C0(G)) and μ1 = μ − μ0. Then μ and

μ0 agree on C0(G) so μ1 ∈ C0(G)⊥. It is clear that this procedure gives an
algebraic direct sum decomposition

X∗ = τ(C0(G)∗) ⊕ C0(G)⊥.

Obviously, C0(G)⊥ is weak*-closed. Finally, we show that it is an ideal.
Let ν ∈ C0(G)⊥ and let μ = μ0 + μ1 be the decomposition of μ in X∗. For
every a and b in C0(G),

b(νa) = (id ⊗ ν)
(
(b ⊗ 1)Γ(a)

)
= 0

because (b ⊗ 1)Γ(a) ∈ C0(G) ⊗ C0(G). Since b is arbitrary, it follows that
νa = 0 and so μν ∈ C0(G)⊥. On the other hand,

〈νμ0, a〉 = 〈ν, (id ⊗ μ0)Γ(a)〉 = 0

because μ0 ∈ τ(C0(G)∗). Since both νμ0 and νμ1 are in C0(G)⊥, also νμ is
in C0(G)⊥. �

From now on, we consider C0(G)∗ as a subalgebra of LUC(G)∗ and suppress
the isomorphism τ used in the preceding theorem.

The following lemma is a direct consequence of Lemma 4.2. Determining
the topological center is a much harder task: see, for example, [18, 19].

Lemma 4.4. Suppose that C0(G) has the slice map property. Then C0(G)∗

is included in the topological center of LUC(G)∗, that is, for every μ in C0(G)∗,
the map ν �→ μν : LUC(G)∗ → LUC(G)∗ is weak*–weak*-continuous.

Proof. If μ ∈ C0(G)∗, ν ∈ LUC(G)∗, and x ∈ LUC(G), then

〈μν,x〉 = 〈μ, (id ⊗ ν)Γ(x)〉 = 〈ν, (μ ⊗ id)Γ(x)〉

by Lemma 4.2. The statement follows immediately. �
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5. Duals of classical groups and LUC(G)

In the classical setting when G is a locally compact group, LUC(G) =
L∞(G)L1(G) where the action of L1(G) on L∞(G) comes from the first Arens
product (and shall be described soon). This result inspired Granirer [11]
to define the space of bounded uniformly continuous functionals by setting
UCB(Ĝ) = A(G) · VN(G), where A(G) is the Fourier algebra of G, which is
the predual of the group von Neumann algebra VN(G). In this section, we
study the relation between LUC(G), as we defined in the previous section,
and L∞(G)L1(G).

Define an action of L1(G) on L∞(G) by setting

〈xf, g〉 = 〈x, f ∗ g〉 = 〈(f ⊗ id)Γ(x), g〉

whenever x ∈ L∞(G) and f, g ∈ L1(G). Then define L∞(G)L1(G) to be the
norm-closed linear span of elements of the form xf with x in L∞(G) and f in
L1(G). If G is coamenable, every member of L∞(G)L1(G) is of the form xf .
In [13] the space RUC(G), which is the right-hand side analogue of LUC(G),
is defined to be L1(G) · L∞(G) (using the opposite side action). Our notation
digresses in this regard and should not be confused with the notation of [13].

It should be noted that (topologically) left-invariant and (topologically)
left-introverted subspaces X of L∞(G) can be defined using the above action
and the action defined by

〈νx, f 〉 = 〈ν,xf 〉
(
ν ∈ X∗, x ∈ X,f ∈ L1(G)

)
.

These notions of invariance and introversion agree with the definitions in
Section 3 if we consider only subspaces of LUC(G). Theorem 4.3 holds true
also for these topologically left-introverted subspaces of Cb(G).

Theorem 5.1. Suppose that G is a coamenable locally compact quantum
group. Then LUC(G) ⊆ L∞(G)L1(G).

Proof. We first show that L1(G) is weak*-dense in LUC(G)∗. Indeed,
L1(G) is weak*-dense in its second dual L∞(G)∗ and restricting the func-
tionals in L1(G) to LUC(G) gives a weak*-dense subspace of LUC(G)∗. Since
each f in L1(G) is strictly continuous when restricted to LUC(G), it follows
that this weak*-dense copy of L1(G) in LUC(G)∗ is the same one that is
obtained in Theorem 4.3.

Since G is coamenable, there is an identity ε in C0(G)∗. Let μ ∈ LUC(G)∗

and let (fα) be a net in L1(G) converging to μ in the weak* topology. The
left translation by ε is weak*-continuous on LUC(G)∗ by Lemma 4.4, so εμ =
limε ∗ fα = limfα = μ. Similarly, με = μ because the right translations are
always weak*-continuous on LUC(G)∗. Therefore, ε is an identity also in
LUC(G)∗.
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Let x ∈ LUC(G) and let (eα) be a net in L1(G) that converges to ε in the
weak* topology of LUC(G)∗. For every μ in LUC(G)∗,

〈μ,xeα〉 = 〈eα, μx〉 → 〈ε,μx〉 = 〈μ,x〉

by Lemma 4.2. So xeα converges weakly to x in LUC(G). Let K be the
convex hull of {eα}. It follows from the Hahn–Banach separation theorem
that x is in the norm closure of xK ⊆ L∞(G)L1(G). But L∞(G)L1(G) is
closed so we are done. �

As a by-product of the preceding proof, we get that LUC(G)∗ is unital
when G is coamenable.

The next lemma is proved for duals of classical groups in [12]. We denote
the C*-algebra of compact operators on a Hilbert space H by B0(H).

Lemma 5.2. L∞(G)L1(G) ⊆ Cb(G).

Proof. Given x in L∞(G) and f in L1(G), we should show that a(xf)
and (xf)a are in C0(G) for every a in C0(G). Write f = g(K·) where g ∈
B(L2(G))∗ and K ∈ B0(L2(G)). Then

a(xf) = (f ⊗ id)
(
(1 ⊗ a)Γ(x)

)
= (g ⊗ id)

(
(K ⊗ a)V (x ⊗ 1)V ∗)

.

The operator V is in M(B0(L2(G)) ⊗ C0(G)) (perhaps the simplest reference
for this fact is [35], knowing that V is manageable [15, Proposition 6.10]) and
so (K ⊗ a)V is in B0(L2(G)) ⊗ C0(G). It follows that (K ⊗ a)V (x ⊗ 1)V ∗

is also in B0(L2(G)) ⊗ C0(G), and so a(xf) ∈ C0(G), as required. That also
(xf)a is in C0(G) can be proved similarly. �

Baaj and Skandalis defined and studied regular multiplicative unitaries in
their fundamental paper [2]. Let H be a Hilbert space. A unitary operator W
on H ⊗ H is said to be multiplicative if it satisfies the pentagonal relation (2.1).
Then a multiplicative unitary W is regular if the norm-closed linear span of

{(K ⊗ 1)W (1 ⊗ F );K,F ∈ B0(H)}

is B0(H ⊗ H). As noted in [2], Kac algebras, and so locally compact groups
and their duals, are determined by regular multiplicative unitaries. However,
for example, the multiplicative unitary associated with the quantum group
Eμ(2) is not regular [1], so regularity is truly a restrictive assumption for the
following result. Unfortunately, even the notion of manageability introduced
by Woronowicz [35] does not seem to help eliminate the regularity assumption.

Theorem 5.3. Suppose that G is a locally compact quantum group such
that the multiplicative unitary V is regular. Then L∞(G)L1(G) ⊆ LUC(G).
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Proof. By the preceding lemma L∞(G)L1(G) ⊆ Cb(G), so it suffices to
show that Γ(xf) ∈ M(C0(G) ⊗ Cb(G)) for every x in L∞(G) and f in L1(G).
Note first that

Γ(xf) = Γ
(
(f ⊗ id)Γ(x)

)
= (f ⊗ id ⊗ id)

(
(Γ ⊗ id)Γ(x)

)
by coassociativity.

Write f = g(K · F ) where g ∈ B(L2(G))∗ and K,F ∈ B0(L2(G)). For every
a in C0(G),

(a ⊗ 1)Γ(xf) = (f ⊗ id ⊗ id)
(
(1 ⊗ a ⊗ 1)(Γ ⊗ id)Γ(x)

)
= (g ⊗ id ⊗ id)

(
(K ⊗ a ⊗ 1)V12V13(x ⊗ 1 ⊗ 1)V ∗

13V
∗
12(F ⊗ 1 ⊗ 1)

)
.

Since V ∈ M(B0(L2(G)) ⊗ C0(G)), we can replace (K ⊗ a ⊗ 1)V12 in the above
calculation by K ⊗ a ⊗ 1 with K still in B0(G) and a in C0(G). Then we can
transfer 1 ⊗ a ⊗ 1 to right so that we obtain the term

(1 ⊗ a ⊗ 1)V ∗
12(F ⊗ 1 ⊗ 1),

which is in B0(L2(G)) ⊗ C0(G) ⊗ 1 by [2, Proposition 3.6] since V is regular.
Again, replace this term by F ⊗ a ⊗ 1 with F in B0(G) and a in C0(G). Then,
continuing the calculation, we have

(g ⊗ id ⊗ id)
(
(K ⊗ 1 ⊗ 1)V13(x ⊗ 1 ⊗ 1)V ∗

13(F ⊗ a ⊗ 1)
)

= a ⊗ (h ⊗ id)Γ(x) = a ⊗ xh,

where h = g(K · F ) is in B(L2(G))∗ (the slight abuse of notation is not a
problem here: (h ⊗ id)Γ(x) is well defined and agrees with xh′ when h′ is the
restriction of h to L∞(G)). But xh ∈ Cb(G) by the preceding lemma, so we get
that (a ⊗ 1)Γ(xf) ∈ C0(G) ⊗ Cb(G). Similarly, Γ(xf)(a ⊗ 1) ∈ C0(G) ⊗ Cb(G),
and so xf ∈ LUC(G). �

In particular, if G = Ĝ is a dual of a classical locally compact group G, then
UCB(Ĝ) = L∞(G)L1(G) ⊆ LUC(G) and the equality holds if G is amenable.

Acknowledgments. I thank the referee for helpful comments and sugges-
tions and in particular for pointing out the references [25] and [29].
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