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EXPONENTIALLY GENERIC SUBSETS OF GROUPS

ROBERT GILMAN, ALEXEI MIASNIKOV AND DENIS OSIN

To Paul Schupp as a token of our friendship

Abstract. In this paper, we study the generic, i.e., typical,
behavior of finitely generated subgroups of hyperbolic groups

and also the generic behavior of the word problem for amenable

groups. We show that a random set of elements of a nonele-
mentary word hyperbolic group is very likely to be a set of free

generators for a nicely embedded free subgroup. We also exhibit

some finitely presented amenable groups for which the restric-
tion of the word problem is unsolvable on every sufficiently large
subset of words.

1. Introduction

Natural sets of algebraic objects are often unions of two unequal parts,
the larger part consisting of generic objects whose structure is uniform and
relatively simple, and the smaller including exceptional cases which have much
higher complexity and provide most of resistance to classification. The essence
of this idea first appeared in the form of zero–one laws in probability, number
theory, and combinatorics. In finite group theory the idea of genericity can
be traced to a series of papers by Erdős and Turan in 1960–1970s (for recent
results see [Sha]), while in combinatorial group theory the concept of generic
behavior is due to Gromov. His inspirational works [Gro, Gro2, Gro3] turned
the subject into an area of very active research, see, for example, [AO, Arz1,
Arz2, BMR1, BMR2, BMR3, BV1, BV2, BMS, CERT, CS, BM, BV2, Cha1,
Cha2, Jit, KMSS1, KMSS2, KSS, KRSS, KR, Oll, Olsh, Rom, MTV, Woe,
Zuk].
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We mention in particular the remarkable results due to Kapovich and
Schupp on generic properties of one-relator groups [KS1, KS2] and by Ma-
her [Mah] and Rivin [Riv] on generic properties of random elements of map-
ping class groups and automorphisms of free groups, as well as the theorem
by Kapovich, Rivin, Schupp and Shpilrain that generic cyclically reduced
elements in free groups are of minimal length in their automorphic orbits
[KRSS]. An earlier series of papers [Olsh, AO, Arz1, Arz2] by Arjantseva and
Olshanskii established the theory of subgroups of random groups and related
questions.

Knowledge of generic properties of objects can be used in design of simple
practical algorithms that work very fast on most inputs. In cryptography,
several successful attacks have exploited generic properties of randomly chosen
objects to break cryptosystems [MU, MSU1, MSU2, RST]. Explicit generic
case analysis of algorithmic problems first appeared in the papers [KMSS1,
KMSS2, BMR1].

In the first part of this paper, we show that with high probability a random
subgroup of a nonelementary hyperbolic group has a simple structure and is
embedded without much distortion of its intrinsic metric. Arbitrary subgroups
on the other hand, can be very complicated. A remarkable construction intro-
duced by Rips [Rips] shows that every finitely presented group G is a quotient
of a hyperbolic (in fact, small cancellation) group H by a finitely generated
normal subgroup N . The Dehn function of G is intimately related to the
metric distorsion of the subgroup N in H . In particular, as Rips noticed, the
membership problem for N in H is undecidable provided the word problem
in G is undecidable. A host of undecidability results for subgroups of hyper-
bolic groups has been proven by combining the Rips technique with known
unsolvability results for finitely presented groups ([BauMS], [BW]). These re-
sults show that hyperbolic groups contain finitely generated subgroups with
as much distortion as one pleases. However, it is widely believed that such
subgroups are rare, and that most finitely generated subgroups of hyperbolic
groups have an uncomplicated structure and not much distortion.

We prove here that for each k ≥ 1, with overwhelming probability (relative
to a natural distribution) k-tuples of words in a given finite set of generators
of a nonelementary hyperbolic group freely generate a free subgroup which
is quasi-isometrically embedded into the ambient group. The property that
a random k-tuple of words is, with overwhelming probability, a set of free
generators is sometimes referred to as the generic Nielsen property. In [MU],
Myasnikov and Ushakov proved that similar results hold in pure braid groups,
as well as right angled Artin groups. This result has been applied to a rig-
orous mathematical cryptanalysis of the Anshel–Anshel–Goldfeld public key
exchange scheme [AAG], including an analysis of various length-based attacks
([HT], [GKTTV], [RST]). For free non-Abelian groups, the generic Nielsen
property was shown earlier in [Jit] and [MTV]. Notice, that in the case of
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free groups, all finitely generated subgroups are free and embedded quasi-
isometrically.

For related results on free products with amalgamation and HNN exten-
sions, we refer to [FMR]. Beyond cryptographic applications, our results on
generic subgroups in hyperbolic groups provide a cubic time deterministic
partial algorithm A, which never lies and solves the membership problem
for almost all (more precisely, for a certain exponentially generic subset D)
of finitely generated subgroups in a given nonelementary hyperbolic group.
Furthermore, if a given subgroup is not in the set D the algorithm quickly
recognizes this (in quadratic time) and halts with a failure message.

Another result we would like to mention here concerns with the complex-
ity of the word problem in finitely presented groups. It turns out that many
famous undecidable problems are, in fact, very easy on generic set of inputs.
This is precisely the case for the halting problem of Turing machines with
one-ended infinite tape [HM], and for the classical examples of finitely pre-
sented groups or semigroups with undecidable word problem [MUW]. The
first examples of finitely presented semigroups where the word problem is un-
decidable on any generic set of inputs (words in the given set of generators)
are constructed in [MR]. Whether there exist such examples in finitely pre-
sented groups is still an open problem. In this paper, we describe some finitely
presented groups for which the word problem is undecidable on any exponen-
tially generic set of words in given generators. The famous construction [Kh],
due to Kharlampovich, of finitely presented solvable groups with undecidable
word problem provide a host of examples of such groups.

In the next section, we describe our main results in detail, and prove them
in the following sections. The last section contains several open problems in
this area.

The authors are grateful to Pascal Weil, whose careful reading of the man-
uscript led to several corrections and improvements.

2. Statement of results

Fix a finite alphabet with formal inverses, A = {a1, . . . , am, a−1
1 , . . . , a−1

m }
for some m ≥ 2. Use |w| to denote the length of a word w over A and |S| for
the cardinality of a set S. Formal inverses, w−1, are defined in the obvious
way.

By W , we denote the free monoid with basis A, that is, the set of all words
over the alphabet W with the binary operation of concatenation. The subset
Wn = {w ∈ W | |w| ≤ n} is the disk of radius n in W , and W =

⋃∞
n=1 Wn is

the stratification of W by disks. Since every disk is finite, one may define the
standard uniform distribution μn on Wn. The ensemble of distributions {μn},
after a proper normalization, induces the standard “uniform distribution” μ
on W relative to the stratification by disks.
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The exponential asymptotic density of X ⊂ W is defined as

ρe(X) = lim
n→∞

|X ∩ Wn|
|Wn|

if the limit converges exponentially fast. In other words,

ρe(X) = λ ⇐⇒
∣∣∣∣λ − |X ∩ Wn|

|Wn|

∣∣∣∣ ≤ αn

for some constant α ∈ (0,1) and all sufficiently large n, or equivalently if∣∣∣∣λ − |X ∩ Wn|
|Wn|

∣∣∣∣ ≤ Mβn

for some β ∈ (0,1), positive constant M and all n.
X ⊂ W is exponentially generic if ρe(X) = 1 and exponentially negligible if

its complement is exponentially generic, that is, if ρe(X) = 0. It is clear that
finite intersections of exponentially generic sets are exponentially generic and
finite unions of exponentially negligible sets are exponentially negligible. See
[BMS, BMR1] for more information on asymptotic density.

To study asymptotic properties of k-generated subgroups of groups gen-
erated by A, we need to extend the notions introduced above to subsets of
k-tuples of words from W . For k ≥ 1, put

(2.1) W (k) = {(w1, . . . ,wk) | wi ∈ W }.

The disk of radius n in W (k) is defined to be

(2.2) W (k)
n =

k︷ ︸︸ ︷
Wn × · · · × Wn =

{
(w1, . . . ,wk) ∈ W (k) | |wi| ≤ n

}
.

Exponential asypmtotic density of subsets of W (k) is defined as above but
with W

(k)
n in place of Wn. When k is fixed or irrelevant, we write

�w for (w1, . . . ,wk), and | �w| for max{|wi| | i = 1, . . . , k}.

For any group G a monoid epimorphism W → G which respects inverses is
called a choice of generators for G, and the image in G of w ∈ W is denoted w.
Each choice of generators determines a word metric with distance |g − h| equal
to the length of the shortest word in W representing g−1h. We abbreviate
|g − 1| as |g| or |g|G if the ambient group is not clear. Note that for w ∈ W , |w|
is the length of w while |w| is the length of the shortest word in W mapping
to w.

Let H be a finitely generated subgroup of G with a choice of generators
W ′ → H where W ′ is the free monoid over a finite set of generators B with
formal inverses. H is undistorted in G (with respect to the choices of genera-
tors for G and H) if it is quasi-isometrically embedded in G, that is, there is a
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constant λ > 1 such that for every elements f,h ∈ H the following inequality
holds

1
λ

|f − h|H ≤ |f − h|G.

A nontrivial subgroup H is undistorted if and only if the compression
factor of H in G is positive. The compression factor of H in G (with respect
to choices of generators A → G and B → H) is defined as

(2.3) Comp(G,A;H,B) = inf
h∈H\ {1}

|h|G
|h|G,H

,

where
|h|G,H = min

h=bi1 ···bis

(|bi1 |G + · · · + |bis |G),

and the minimum is taken over all representations of h in the form bi1 · · · bis

with bij ∈ B, 1 ≤ j ≤ s.
Recall that the gross cogrowth θ of G with respect to a choice of generators

W → G is defined by

(2.4) θ = lim
n→∞

1
2n

log2m |V2n|,

where for any r, Vr is the subset of all words of length r in W which represent
the identity in G. It is known (see Section 3.2 for details and references)
that G is amenable if and only if θ = 1.

The main technical result of the paper is Lemma 4.3, which says that
a certain set C ⊂ W (k) which is defined in terms of a parameter ε > 0 is
exponentially generic. The exponentially generic sets mentioned in the next
two theorems all contain C. Recall that a group is called elementary if it
contains a cyclic subgroup of finite index.

Theorem 2.1. Let G be a nonelementary hyperbolic group. Then for any
choice of generators W → G the following sets are exponentially generic:
(1) The set of all (w1, . . . ,wk) ∈ W (k) for which w1, . . . ,wk generate a free

subgroup of rank k in G.
(2) The set of all (w1, . . . ,wk) ∈ W (k) for which w1, . . . ,wk generate a sub-

group with compression factor at least 1−θ
θ − ε, where θ is the gross

cogrowth of G with respect to the given choice of generators and ε is any
positive constant.

It is easy to see that the first statement of Theorem 2.1 holds for any
group G which has a surjective homomorphism onto a nonelementary hy-
perbolic group. Examples of such groups include many relatively hyperbolic
groups, for example, nonelementary groups hyperbolic relative to proper resid-
ually finite subgroups [Osi]. The later class includes fundamental groups
of complete finite volume manifolds of pinched negative curvature, CAT (0)
groups with isolated flats, groups acting freely on R

n-trees, and many other
examples.
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Theorem 2.2. Let G be a nonelementary hyperbolic group. Then for any
choice of generators W → G and k ≥ 1 there exists a partial algorithm A which
for each �w = (w1, . . . ,wk) in an exponentially generic subset D ⊂ W (k) and an
arbitrary z ∈ W decides if z is in the subgroup H = 〈w1, . . . ,wk 〉 ⊂ G. When
the answer is yes, A decomposes z as a word in the generators w1, . . . ,wk and
their inverses. On all inputs A runs in time O((k| �w| + |z|)3).

By partial algorithm, we mean one which never gives a wrong answer but
may say “Don’t know” or “Fail.”

Theorem 2.3. Let G be a finitely presented amenable group with unsolvable
word problem. Then for any choice of generators W → G the word problem
in G is not solvable on any exponentially generic subset of W .

As we noted above, Kharlampovich [Kh] provides many groups to which
Theorem 2.3 applies.

3. Preliminaries

In this section, we recall for convenience various known results and draw
some elementary consequences. Recall the definitions of W,Wn,W (k) and
W

(k)
n from the preceding section.

3.1. Asymptotic density.

Lemma 3.1. Define In = {w ∈ W | |w| = n} (the sphere of radius n). If
limn→∞

|X∩In |
|In | < αn for some α ∈ (0,1), and all sufficiently large n, then X

is exponentially negligible.

Proof. Let r be the greatest integer less than n/2.

|X ∩ Wn|
|Wn| ≤ |Wr |

|Wn| +
|X ∩ Ir+1| + · · · + |X ∩ In|

|Wn|

≤ (2m)−n/2 +
|X ∩ Ir+1|

|Ir+1| + · · · +
|X ∩ In|

|In|
≤ (2m)−n/2 + αr+1 + · · · + αn for n sufficiently large

≤ (2m)−n/2 +
αn/2

1 − α
. �

Concatenation of all entries of �w = (w1, . . . ,wk) ∈ W (k) defines a map
π : W (k) → W . It is easy to see that that π(W (k)

n ) = Wnk whence |W (k)
n | ≥

|Wnk |. The k-tuples in π−1(w) correspond to ordered partitions 
1 + · · · +
k =
|w| with 0 ≤ 
i ≤ |w|. There are at most (|w| + 1)k such partitions, and it
follows that the restriction of π to W

(k)
n is at most (nk + 1)k to 1. These

conclusions still apply if we pick a fixed sequence of exponents e1, . . . , ek with
ei = ±1 and define π(�w) = we1

1 · · · wek

k .
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Lemma 3.2. Define π : W (k) → W by π(�w) = we1
1 · · · wek

k as above. If π(X)
is exponentially negligible, then so is X .

Proof. If π(X) is exponentially negligible, then |π(X)∩Wkn |
|Wkn | ≤ αn for some

α ∈ (0,1) and all sufficiently large n. Thus,

|X ∩ W
(k)
n |

|W (k)
n |

≤ (nk + 1)k |π(X) ∩ Wkn|
|Wkn| ≤ (nk + 1)kαn

and a straightforward argument shows that X is exponentially negligible. �

3.2. Amenable groups. Let W → G be a choice of generators for a group G.
Define V to be the subset of all words in W which map to 1 in G. Vn = V ∩ In

is the set of all words of length n in V .
By [Gri1, Gri2] (see also [Coh] and [Kes2]) G is amenable if and only if

limsup
n→∞

(|Vn|/|In|)1/n = 1.

Clearly, |Vn+p| ≥ |Vn| |Vp|, and V2n includes all concatentations of n terms of
the form aia

−1
i or a−1

i ai. It follows that |V2n| ≥ (2m)n; and if |Vn| = 0, then
|Vn−2| = 0. Thus, |Vn| is positive for all even n and either positive for all
odd n greater than than some bound M or 0 for all odd n.

In first case, let t = ks + r with s > M and M < r ≤ M + s. Then |Vt| ≥
|Vs|k |Vr | implies |Vt|1/t ≥ |Vs|1/s(|Vs| −r |Vr |)1/t whence lim inft→∞ |Vt|1/t ≥
|Vs|1/s. It follows that lim inft→∞ |Vt|1/t ≥ limsups→∞ |Vs|1/s, which in turn
implies that limn→∞ |Vn|1/n exists. In the second case, a similar argument
show that limn→∞ |V2n|1/(2n) exists. Thus, we may define

(3.1) λ = lim
n→∞

(|V2n|/|I2n|) 1
2n =

1
2m

lim
n→∞

|V2n| 1
2n =

1
2m

limsup
n→∞

|Vn|1/n.

|V2n| ≥ (2m)n implies 1 ≥ λ ≥ 1/
√

2m. Comparison of (3.1) with (2.4) yields

(3.2) θ = 1 + log2m λ = limsup
n→∞

1
n

log2m |Vn|

whence

(3.3) 1/2 ≤ θ ≤ 1.

Thus, amenability is equivalent to both λ = 1 and θ = 1.
Also it follows from [Kes1, Corollary 1, p. 343] that every subgroup of

an amenable group is amenable. Conversely, a group which contains a nona-
menable subgroup is itself nonamenable.

Lemma 3.3. If G is nonamenable, then for any ε > 0 and constant K,
U = {w ∈ W | |w| > ( 1−θ

θ − ε)|w| + K} is exponentially generic.
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Proof. First, suppose K = 0. Choose ε > 0 and let ρ = (2m)θ+ε. As m ≥ 2,
(3.3) implies ρ ≥ 2. If w ∈ In,r = {w ∈ In | |w| ≤ r}, then ww′ ∈ Vn+s for some
w′ of length s ≤ r. Thus, In,r ⊂ Vn ∪ · · · ∪ Vn+r. For n sufficiently large, (3.2)
yields

|In,r | ≤ ρn + · · · + ρn+r = ρn ρr+1 − 1
ρ − 1

≤ ρn+r ρ

ρ − 1
≤ 2ρn+r.

Consequently, |In,r |
|In | ≤ 2(2m)(θ+ε)(r+n)−n. If r ≤ (1−θ

θ − ε)n, then (θ + ε) ×
((1−θ

θ − ε) + 1) − 1 = −ε2 implies |In,r |
|In | ≤ 2(2m)−ε2

whence the complement
of U is exponentially negligible by Lemma 3.1.

Now suppose K > 0. For any ε > 0, U ′ = {w ∈ W | |w| ≥ (1−θ
θ − ε/2)|w| } is

exponentially generic. But w ∈ U ′ implies

|w| ≥
(

1 − θ

θ
− ε/2

)
|w| ≥

(
1 − θ

θ
− ε

)
|w| + ε/2|w| ≥

(
1 − θ

θ
− ε

)
|w| + K

for |w| sufficiently large. Thus, U contains a co-finite subset of U ′. �

Lemma 3.4. If G is nonamenable, then for any ε > 0:
(1) The set of words w with |v| ≥ ( 1−θ

θ − ε)|v| for all subwords v of w with
|v| ≥ ε|w| is exponentially generic;

(2) The set of words w with |v| ≥ ( 1−θ
θ − ε)|v| for all subwords v of ww with

|w| ≥ |v| ≥ ε|w| is exponentially generic.

Proof. Let ρ = 1−θ
θ − ε. The words in In are obtained by filling a sequence

of n locations 
1, . . . , 
n with letters from A in all possible ways. Fix i and j
with j − i + 1 ≥ εn. It follows from the proof of Lemma 3.3 that for some
α ∈ (0,1) and n sufficiently large, the fraction of ways of filling the subsequence

i, . . . , 
j with a word v such that |v| < ρ|v| = ρ(j − i+1) is less than α|v|. Since
each v extends to w ∈ In in (2m)n− |v| ways, α|v| also bounds the fraction of
extensions which fail the condition at the subword v. There are n2 choices
of i, j, so we conclude that the fraction of words w ∈ In which fail is at most
n2αεn. Thus, the first assertion holds by Lemma 3.1. The second is proved
similarly by counting the number of extensions of v to ww. The condition
|w| ≥ |v| insures that v extends to a word of the form ww in (2m)(n− |v|)

ways. �

3.3. Hyperbolic metric spaces. Recall that a metric space M is geodesic
if distances between points are realized by geodesics, and a geodesic metric
space is δ-hyperbolic for some δ ≥ 0 (or simply hyperbolic) if any geodesic
triangle T in M is δ-thin. That is, each side of T belongs to the union of the
closed δ-neighborhoods of the other two sides [Gro].

We denote a geodesic path in M from p to q by [p, q] and its length by
|p − q|. The next lemma is well known (see, e.g., [GdH]).
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Lemma 3.5.
(1) For any geodesic quadrilateral with vertices p, q, r, s,

|p − s| + |q − r| ≤ 2δ + max{ |p − q| + |r − s|, |p − r| + |q − s| }.

(2) Let T be a geodesic triangle with vertices p, q, r. There are points tp, tq, tr
on the sides opposite p, q, r respectively such that:
(a) tp, tq, tr are a distance at most 2δ from each other;
(b) |p − tq | = |p − tr |, and likewise for the other vertices;
(c) points lying an equal distance from p along the segments of the sides

of T from p to tq and p to tr are a distance at most 2δ from each
other. Similar statements hold for the other vertices.

The quantity |p − tq | = |p − tr | is the Gromov product of q and r with
respect to p, usually written (q|r)p. It is not hard to show that

(3.4) (q|r)p =
1
2
(|p − q| + |p − r| − |q − r|).

Thus, (q|r)p is independent of the choice of geodesics forming the sides of a
triangle with vertices p, q, r.

The following lemma improves [GdH, Theorem 16 in Chapter 5].

Lemma 3.6. If for some κ > 0 and n ≥ 2, the points p0, . . . , pn satisfy

(3.5) |pi − pi+2| ≥ κ + 2δ + max{ |pi − pi+1|, |pi+i − pi+2| }
then

|p0 − pn| ≥ |p0 − pn−1| + κ ≥ |p0 − p1| + (n − 1)κ ≥ κn.

Proof. The first inequality implies the second by induction, and the second
implies the third as |p0 − p1| ≥ κ lest the hypothesis fail for i = 0. Thus, it
suffices to prove

(3.6) |p0 − pn| ≥ |p0 − pn−1| + κ.

Clearly, (3.6) holds when n = 2; assume n ≥ 3. By the first part of Lemma 3.5,
either

(3.7) |p0 − pn−1| + |pn−2 − pn| ≤ 2δ + |p0 − pn−2| + |pn−1 − pn|
or

(3.8) |p0 − pn−1| + |pn−2 − pn| ≤ 2δ + |pn−2 − pn−1| + |p0 − pn|.
By induction and (3.5), the left-hand side of (3.7) is greater than or equal

to |p0 − pn−2| + 2κ + 2δ + |pn−1 − pn|, which contradicts (3.7), as κ > 0. Con-
sequently (3.8) holds. Applying (3.5) to the left-hand side of (3.8) yields
|p0 − pn−1| + κ + 2δ ≤ 2δ + |p0 − pn| as desired. �

The following lemma is [BH, Proposition 1.6, Chapter III.H] and [CDP,
Lemma 1.5, Chapter 3].
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Lemma 3.7. Let γ be a path of length 
 from p to q in a δ-hyperbolic space,
and [p, q] a geodesic from p to q. Any point on [p, q] is a distance at most
1 + 2δ log2 
 from some point on γ.

4. Subgroups of hyperbolic groups

A group G with choice of generators W → G is δ-hyperbolic for some δ > 0
(or simply hyperbolic) if its Cayley graph Γ (with edges isometric to the unit
interval) is a δ-hyperbolic metric space. The word metric on G extends to a
metric on Γ.

A hyperbolic group is called elementary if it contains a cyclic subgroup of fi-
nite index. Throughout this section, G denotes a nonelementary δ-hyperbolic
group. As nonelementary hyperbolic groups contain non-Abelian free sub-
groups [Del], G is nonamenable.

For each word w ∈ W and vertex x in Γ, there is a unique path in Γ
with initial point x and label w. Thus, we will speak of the path w starting
at x; w−1 is the same path traversed in the opposite direction starting at the
endpoint of w.

Lemma 4.1. For any ε > 0, the set of �w = (u, v) ∈ W (2) with (u±1|v±1)1 <
εmin{|u|, |v| } is exponentially generic.

Proof. Without loss of generality, assume ε < 1/2. A straightforward count-
ing argument shows that the fraction of (u, v) ∈ W

(2)
n with |u| < n/2 or |v| <

n/2 is less than 2(2m)−n/2. It follows that { �w ∈ W (2) | min{|u|, |v| } < | �w|/2}
is exponentially negligible.

To complete the proof, it suffices to show that for each e = ±1 and f = ±1

X =
{

�w ∈ W (2) | (ue|vf )1 ≥ ε| �w|/2 and min{|u|, |v| } ≥ | �w|/2
}

is exponentially negligible. Consider e = −1, f = 1; the other cases are similar.
For any �w ∈ X let T be a geodesic triangle in the Cayley diagram Γ with

vertices 1, u−1 and v as in Figure 1. Pick points p and q a distance ε| �w|/2
from 1 along the geodesics [1, u−1] and [1, v] respectively. By Lemma 3.5,
|p − q| ≤ 2δ. As every point of Γ is a distance at most 1/2 from a vertex,
Lemma 3.7 yields |p − r| ≤ 3/2 + 2δ log2 | �w| for some vertex r on the path
from u−1 to 1 with label u. Likewise, |q − s| ≤ 3/2 + 2δ log2 | �w| for some
vertex s on the path from 1 to v with label v.

Let z be the subword of uv which labels the subpath from r to s. By
construction

|z| = |r − s| ≤ 3 + 2δ + 4δ log2 | �w|,
|z| ≥ (|p| − |p − r|) + (|q| − |q − s|)

≥ ε| �w| − (3 + 4δ log2 | �w|).
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Figure 1. The triangle T from the proof of Lemma 4.1.
Shaded dots are vertices of the Cayley diagram of G.

As | �w| ≤ |uv| ≤ 2| �w|, we have

|z| ≤
(

1 − θ

θ
− ε

4

)
| �w| ≤

(
1 − θ

θ
− ε

4

)
|uv|,

|z| ≥ ε| �w|
2

≥ ε

4
|uv|

for | �w| large enough; that is, for all �w in some co-finite subset X ′ of X . By
Lemma 3.4(1), the image of X ′ under the map π of Lemma 3.2 is exponentially
negligible. By Lemma 3.2, X ′ and hence X are exponentially negligible. �

Lemma 4.2. For any ε > 0, the set of w ∈ W such that (w−1|w)1 < ε|w| is
exponentially generic.

Proof. The proof is similar to that of Lemma 4.1. Recall from Section 3.2
that 1/2 ≤ θ ≤ 1. As G is not amenable, θ < 1; and it follows that 0 < θ−1

θ ≤
1/2. By Lemma 3.4(1) with ε = θ−1

2θ ≤ 1/4, the set{
w

∣∣∣ for all subwords v of w, either |v| < (1/4)|w| or |v| ≥
(

1 − θ

2θ

)
|v|

}

is exponentially generic. Thus, it suffices to prove that for any ε > 0 the set X
of all w with:
(1) (w−1|w)1 ≥ ε|w| and
(2) for all subwords v or w, either |v| < (1/4)|w| or |v| ≥ ( 1−θ

2θ )|v|
is exponentially negligible. Without loss of generality, assume ε ≤ 1−θ

4θ ≤ 1/8.
Consider w ∈ X . Form a geodesic triangle T with vertices 1, w−1, w, and

argue as in the proof of Lemma 4.1. The proof goes as before except that we
must show the |z| ≤ |w| in order to employ Lemma 3.4(2).
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Let wr and ws be the subwords of w which label the paths from r to 1
and 1 to s. It suffices to show that for all w ∈ X both these subwords have
length at most |w|/2. We give the argument for wr; the other case is similar.

Assume |wr | > |w|/4. By definition of X and construction of wr, we have

1 − θ

2θ
|wr | ≤ |wr | ≤ |r − p| + |p|

≤ 3/2 + 2δ log2 |w| + ε|w|/2 ≤ 3/2 + 2δ log2 |w| +
1 − θ

8θ
|w|.

Thus

|wr | ≤ 2θ

1 − θ
(3/2 + 2δ log2 |w|) + |w|/4

from which it follows that |wr | ≤ |w|/2 for |w| large enough. �

Lemma 4.3. Fix ε ∈ (0,1). The set C of all �w = (w1, . . . ,wk) ∈ W (k) satis-
fying the following conditions is exponentially generic:

(1) |wi| ≥ | �w|(1 − ε) for 1 ≤ i ≤ k.
(2) |wi| ≥ ( 1−θ

θ − ε)|wi| + 2δ.
(3) (w±1

i |w±1
j )1 < ε| �w| except when i = j and the exponents are equal.

Proof. It suffices to show that for each condition above the set of �w’s which
satisfy that condition is exponentially generic. A straightforward counting
argument suffices for (1), and (2) follows from Lemma 3.3. The remaining
assertion follows from Lemmas 4.1 and 4.2. �

Now we complete the proof of Theorem 2.1.

Proof of Theroem 2.1. Pick ε > 0 as in the statement of Theorem 2.1(2).
If ε ≥ 1−θ

θ , then Theorem 2.1(2) is vacuous, so we may assume 0 < ε < 1−θ
θ .

Let ε′ = ε/4. We apply Lemma 4.3 with ε′ in place of ε to show that the
conclusions of Theorem 2.1 hold for all �w ∈ C.

Fix �w = (w1, . . . ,wk) ∈ C and consider any freely reduced word z in the
wi’s. Write z = x1 · · · xt where each xj equals wi or w−1

i for some i. By
equation (3.4) and Lemma 4.3

|xj − xj+1| = |xj | + |xj+1| − 2(xj |xj+1)1
≥ max{ |xj |, |xj+1| } + min{ |xj |, |xj+1| } − 2ε′ | �w|

≥ max{ |xj |, |xj+1| } +
(

1 − θ

θ
− ε′

)
| �w|(1 − ε′) + 2δ − 2ε′ | �w|

≥ max{ |xj |, |xj+1| } +
(

1 − θ

θ
− ε

)
| �w| + 2δ,

where the last step depends on the inequality θ ≥ 1/2 from Section 3.2.
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For 1 < 
 ≤ t Lemma 3.6 yields

|x1 · · · x�| ≥ |x1 · · · x�−1| +
(

1 − θ

θ
− ε

)
| �w| ≥ 


(
1 − θ

θ
− ε

)
| �w| > 0.

Hence |z| > 0, which implies that Y = {w1, . . . ,wk } freely generates a free
subgroup H ⊂ G. In addition, since |z|G = |z| ≥ t( 1−θ

θ − ε)| �w| and |z|G,H ≤
t| �w|, the compression factor is bounded below by 1−θ

θ − ε. �

The last part of the preceding proof provides the following corollary.

Corollary 4.4. Let D be the set of all K-tuples �w = (w1, . . . ,wk) such
that |wi

±1 − wj
±1| > max |wi|, |wj | + 2δ except when i = j and the exponents

agree. D is exponentially generic, and for each �w = (w1, . . . ,wk) ∈ D and
freely reduced word we1

i1
· · · wet

it
, |we1

i1
· · · we�

i�
| > |we1

i1
· · · we�−1

i�−1
| for 1 < 
 ≤ t.

Proof. D is exponentially generic because it contains C. By hypothesis,
there exists κ > 0 such that

|w±1
j − w±1

j+1| > max{ |wi|, |wj | } + κ + 2δ

for all applicable cases. Lemma 3.6 applies. �

5. The membership problem for generic subgroups of hyperbolic
groups

Let W → G be a choice of generators for G. The membership problem
is to decide for words z,w1, . . . ,wk ∈ W if u is in the subgroup generated
by w1, . . . ,wk. Corollary 4.4 provides the basis for a procedure to solve the
membership problem once we know how to compute geodesic representatives
for u ∈ W , that is words of minimum length with the same image in G as u.

There is no uniform algorithm for computing geodesic representatives in
presentations of hyperbolic groups. If there were, then since trivial groups
are hyperbolic, there would be a feasible procedure to decide whether a finite
presentation presents the trivial group; namely check the geodesic length of
all the generators. However, this decision problem is unsolvable.

On the other hand given a presentation for a hyperbolic group G, one can
precompute a strongly geodesic automatic structure for G with respect to
the original choice of generators as well as an integer δ such that all geodesic
triangles are δ-thin [EH]. For the reasons we have discussed, there is no com-
putable bound (in terms of the size of the original presentation) for how long
this precomputation will take. Nevertheless, once the precomputation is done,
one can compute geodesic representatives in linear time by an algorithm due
to Shapiro [EH2].

By Corollary 4.4, the following partial algorithm solves the membership
problem for all z ∈ W and (w1, . . . ,wk) ∈ D. If in addition z is in the subgroup
generated by the w1, . . . ,wk, the algorithm expresses z as a word in the wi’s.



384 R. GILMAN, A. MIASNIKOV AND D. OSIN

Algorithm 5.1. Input �w = (w1, . . . ,wk) ∈ W , and z ∈ W
If the hypothesis of Corollary 4.4 does not hold, Output “Failure”
Else While |z| > 0

If |zwe
j | < |z| for some j and e = ±1,

Then Output we
j and set z equal to a geodesic representative of zwe

j

Else Output “Failure” and halt
Output “z is in the subgroup generated by w1, . . . ,wk.”

Checking the hypothesis of Corollary 4.4 requires computing O(k2) geodesic
lengths for words of length at most 2| �w|. There will be no more than |z| passes
through the while loop, and during each pass O(k) geodesic representatives
are computed for words of length at most |z| + | �w|. Thus, the time complexity
of Algorithm 5.1 is O(k2 + k|z|)(2| �w| + |z|) = O((k| �w| + |z|)3).

6. The word problem for amenable groups

In this section, we prove Theorem 2.3.

Proof of Theorem 2.3. Let G be a finitely presented amenable group with
choice of generators W → G and unsolvable word problem. Let A be a correct
partial algorithm for the word problem in G. The input to A is a word w ∈ W .
Assume that D, the domain of A, is exponentially generic; that is, there exists
a positive ρ < 1 such that

(6.1)
|Wn − D|

|Wn| ≤ ρn for n large enough,

where Wn is the set of words of length n. We shall obtain a contradiction by
showing that under these conditions the word problem for G is solvable.

Let B be the partial algorithm which on input w recursively enumerates
all words v1, v2, . . . defining the identity in G and applies A to wv1,wv2, . . . .
Since A does not always converge, we organize this computation as follows.
For each m = 1,2, . . . , B computes v1, . . . , vm, and applies the first m steps
of A to each wvi. If A halts for some i, then eventually B discovers that fact
and halts too. B accepts w as a word defining the identity if and only if A
accepts wvi.

Clearly, B converges on w if and only if A converges on some wvi. Hence,
there must exist a word w such that A does not halt on any wvi. Fix n > |w|.
For any vi of length n − |w|, we have wvi ∈ Wn − D because A does not halt
on wvi. We conclude

|Wn − D| ≥
∣∣Vn− |w|

∣∣,
where for any k ≥ 0, Vk is the set of words of length k which define the identity
in G. Since G is amenable, we have

lim
k→∞,2|k

(
|Vk |

|Wk |

)1/k

= 1.
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It follows from the equations above that for n large enough and even,

∣∣Vn− |w|
∣∣ ≥

(
1 + ρ

2

)(n− |w|)∣∣W(n− |w|)
∣∣,

whence

|Wn − D| ≥
(

1 + ρ

2

)(n− |w|)∣∣W(n− |w|)
∣∣

which implies

ρn ≥ |Wn − D|
|Wn| ≥ Cw

(
1 + ρ

2

)n

for some constant Cw (depending on w) and infinitely many n, which is im-
possible since ρ < 1+ρ

2 . �

7. Open problems

In this section, we formulate some open problems which seem to be inter-
esting in this area.

Let G be a group generated by a finite set A and W the free monoid with
basis A ∪ A−1. For k ≥ 1, put W (k) = {(w1, . . . ,wk) | wi ∈ W } and define the
disk of radius n in W (k) by W

(k)
n = {(w1, . . . ,wk) ∈ W (k) | |wi| ≤ n}.

We say that a group G satisfies the generic free basis property if for each
choice of generators W → G and every k ≥ 1 the set of all tuples (w1, . . . ,wk) ∈
W (k) for which w1, . . . ,wk generate a free subgroup of rank k in G, is generic
with respect to the stratification W (k) =

⋃∞
n=1 W

(k)
n .

Problem 7.1. Does a finitely generated group G have the generic free
basis property if some of its subgroups of finite index has it?

Problem 7.2. Does the group SL(n,Z), n ≥ 3, have the generic free basis
property?

Problem 7.3. Construct a finitely presented group where the word prob-
lem is undecidable on every generic set of inputs (which are words in a given
finite generating set).
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