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THE AUTOMORPHISM GROUP OF A GRAPH
PRODUCT WITH NO SIL

RUTH CHARNEY, KIM RUANE, NATHANIEL STAMBAUGH, AND ANNA VIJAYAN

Abstract. We study the automorphisms of graph products of
cyclic groups, a class of groups that includes all right-angled Cox-
eter and right-angled Artin groups. We show that the group of

automorphisms generated by partial conjugations is itself a graph

product of cyclic groups providing its defining graph does not con-
tain any separating intersection of links (SIL). In the case that all

the cyclic groups are finite, this implies that the automorphism

group is virtually CAT(0); it has a finite index subgroup which
acts geometrically on a right-angled building.

1. Introduction

Classically, a collection of groups can be combined using free products
or direct products. More generally, a graph product of groups is a class of
groups which interpolates between these. Let Γ be a finite simplicial graph
with vertex set V and let {Gv }v∈V be a family of groups. Then the graph
product GΓ is the quotient of the free product of the groups Gv obtained by
adding commutator relations between Gv and Gw whenever v,w are adjacent
in Γ. A discrete graph Γ gives the free product of the Gv and a complete
graph gives the direct product. Graph products encompass several important
classes of groups. In particular, one obtains the class of right-angled Coxeter
groups by requiring each Gv be isomorphic to Z/2Z and the class of right-
angled Artin groups when each Gv is isomorphic to Z. In this paper, we
require only that the vertex groups be finitely generated abelian groups. Any
such graph product is isomorphic to a graph product of cyclic groups, hence
we can restrict our attention to the latter.
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The automorphism groups of right-angled Coxeter and right-angled Artin
groups have been studied extensively in the literature (see, for example, [2, 4,
6, 11, 13, 18, 20, 23]). Automorphisms of more general graph products were
considered by Laurence in his thesis [19]. Building on work of Servatius [21],
Laurence describes a finite generating set for Aut(GΓ) in the case when all
vertex groups have the same order, either infinite or a fixed prime p. More
recently, in [15], Gutierrez, Piggott, and Ruane begin a unified treatment of
the automorphism group of a general graph product of cyclic groups, and in
[7], Corredor and Gutierrez extend Laurence’s generating set to all such graph
products.

The automorphism group of GΓ is generated by four types of automor-
phisms: graph symmetries, vertex isomorphisms, transvections, and partial
conjugations. The first two types generate a finite subgroup. Transvections,
which map v �→ vw (or v �→ wv) for a pair of vertices v,w, are familiar to those
who work with free group automorphisms. Indeed, the automorphism group
of a free group is entirely generated by these transvections. For graph prod-
ucts, however, the transvections are more restricted (in some cases excluded
entirely) and the partial conjugations play an essential role.

Partial conjugations are defined as follows. Given a vertex v ∈ V , let lk(v)
denote the full subgraph of Γ spanned by the vertices adjacent to v and st(v)
the subgraph spanned by v and lk(v). For each connected component C of
Γ \ st(v), the partial conjugation πv,C conjugates all of the generators in C by
v and leaves all other generators fixed.

The subgroup of Aut(GΓ) generated by the partial conjugations is denoted
Autpc(GΓ) and will be our main object of study. In the case where all vertex
groups have finite order, this subgroup has finite index in the full automor-
phism group Aut(GΓ). This is also true for some graph products with infinite
vertex groups, namely those for which the structure of Γ does not permit any
transvections (e.g., if Γ has no circuits of length less than four and no valence
one vertices).

A simplicial graph Γ has a Separating Intersection of Links (SIL) if for
some pair v,w with dΓ(v,w) ≥ 2, there is a component of Γ \ (lk(v) ∩ lk(w))
which contains neither v nor w. Our main theorem, Theorem 3.6, states that
if Γ has no SILs, then Autpc(GΓ) is itself a graph product of cyclic groups.

To prove this, we consider the graph Γ̃ whose vertices are in one-to-one
correspondence with the partial conjugations πv,C of GΓ. Two vertices of Γ̃
are connected by an edge if the two partial conjugations commute, thus we
have a graph product of cyclic groups GΓ̃. In the case where Γ has no SILS,
we prove that Autpc(GΓ) is isomorphic to GΓ̃. The main technical point is to
characterize exactly when two partial conjugations commute. Under the no
SILS assumption, we give a simple characterization of when πv,C and πw,D

commute in terms of the relative position of C and D. This is the content of
Lemma 3.4.
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Our main theorem has some interesting geometric implications. Recall
that a CAT(0) metric space is a proper, complete metric space in which each
geodesic triangle is “at least as thin” as the Euclidean triangle with the same
side lengths. We say that a finitely generated group G is a CAT(0) group if G
acts properly, cocompactly by isometries on a CAT(0) metric space (such an
action is said to be geometric). A group G is virtually CAT(0) if some finite
index subgroup of G is CAT(0). Note that extending a geometric action from
a finite index subgroup to the full group is highly nontrivial. It is unknown if
virtually CAT(0) groups are CAT(0).

In Section 2, we show that any graph product of cyclic groups GΓ acts
on a right-angled building. Right-angled buildings are always CAT(0) by a
theorem of Davis [9]. If the vertex groups are all finite, then the associated
building is locally finite, its automorphism group is a locally compact group,
and the graph product sits as a uniform lattice in this group. In particular,
GΓ is a CAT(0) group. (For a discussion of right-angled buildings and their
lattices, see [1] and [22].) If some vertex group is infinite cyclic, then the
action is no longer proper. However, if all the vertex groups are infinite (the
right-angled Artin group case), then there is a different CAT(0) cube complex,
the Salvetti complex, which can be used to get a CAT(0) structure on GΓ.

Our main theorem implies that under the no SILs hypothesis, Autpc(GΓ)
is itself a graph product hence also acts on a right-angled building. Moreover,
we show that this action extends to the larger group generated by partial
conjugations, graph symmetries and vertex isomorphisms. If all of the vertex
groups are finite, these generate a finite index subgroup of Aut(GΓ) and we
conclude that Aut(GΓ) is virtually CAT(0). (This last statement also follows
from [15] where they show that under these hypotheses, the inner automor-
phism group has finite index in Aut(GΓ). Our construction gives a CAT(0)
action of a much larger subgroup, sometimes encompassing the entire auto-
morphism group.)

One would like to know whether, in general, these actions can be extended
to the full automorphism group Aut(GΓ), that is, whether the action can
be extended to include transvections. This would almost certainly require
a different geometric construction as transvections do not behave well with
respect to the geometry of the cube complexes given here. Even in the case
of right-angled Coxeter and Artin groups, it is unknown whether the full
automorphism groups are CAT(0).

2. Graph products and associated geometries

In this section, we discuss graph products and their associated geometries.
We begin with a definition of a graph product.

Definition 2.1. Let Γ be a finite, simplicial graph with vertex set V ,
together with a labeling of each vertex by a group Gv . Let FΓ denote the free
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product of all the vertex groups Gv, v ∈ V . Then the graph product GΓ is the
quotient group of FΓ obtained by adding commutator relations between Gv

and Gw whenever v,w are connected by an edge in Γ.

In this paper, we investigate graph products of cyclic groups, that is, graph
products for which all of the vertex groups Gv are cyclic. More generally, if
all of the vertex groups of a graph product GΓ are finitely generated Abelian
groups, then GΓ is naturally isomorphic to the graph product obtained by
replacing each vertex in Γ by a complete graph with vertices labelled by
the (indecomposable) cyclic summands of Gv . Thus, our results apply more
generally to this class of groups.

Gutierrez and Piggott [14], generalizing work of Laurence [19], have shown
that for any graph product of indecomposable cyclic groups, the graph Γ and
the vertex groups Gv are uniquely determined by the isomorphism class of GΓ.
Thus, when referring to the graph product GΓ, we may assume that this data
has been specified.

For the remainder of the paper, we assume that all vertex groups are cyclic.

Examples 2.2. If all of the vertex groups are cyclic of order 2, then we
obtain the right-angled Coxeter groups. If all of the vertex groups are infinite
cyclic, then we obtain the right-angled Artin groups.

Given g ∈ GΓ, a reduced word for g is a minimal length word g1g2 . . . gk in
FΓ (with each gi belonging to some vertex group) representing g. Any word
representing g can be reduced by a process of “shuffling” (i.e., interchanging
commuting elements) and combining adjacent elements from the same vertex
group. Any two reduced words representing g differ only by shuffling [12].

For any subset T of the vertex set V , let GT denote the graph product
associated to the full subgraph of Γ spanned by T . The natural map from GT

into GΓ splits, hence GT is isomorphic to its image and we make no distinction
between them. By convention, we set G∅ = 1.

To a graph product GΓ, we associate a cubical complex XΓ as follows.
Define two sets, partially ordered by inclusion,

SΓ = {GT | T ⊆ V, GT is Abelian}
∼= {T | T ⊆ V, T spans a complete subgraph of Γ},

GSΓ = {gGT | g ∈ GΓ, T ⊆ V, GT is Abelian}.

Let XΓ be the geometric realization of the poset GSΓ and let K ⊂ XΓ be the
geometric realization of SΓ. Left multiplication of GΓ on this poset induces
an action of GΓ on XΓ. A fundamental domain for this action is K, and hence
the action is cocompact. The stabilizer of the vertex gGT is conjugate to GT

which is finite if and only if all the vertex groups in T are finite. Thus, the
action of GΓ on XΓ is proper if and only if Γ is a graph of finite cyclic groups.
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The complexes XΓ are interesting in their own right. As we will now show,
they have the structure of right-angled buildings. These buildings are based
on a construction of Davis [9, 10]. In the case of a right-angled Coxeter group,
XG is the well-known Davis complex. For a right-angled Artin group, XΓ is
known as the Deligne complex (or in the terminology of [5], the “modified”
Delinge complex). We follow [1] and [8] for basic definitions.

First, recall that a chamber system over a set S is a set Φ of chambers
together with a family of equivalence relations on Φ indexed by S. For s ∈ S,
we say two chambers are s-adjacent if they are s-equivalent, but not equal.
For a word w = s1 . . . sk, si ∈ S, a gallery of type w is a sequence of chambers
φ0, φ1, . . . , φk such that φi−1 is si-adjacent to φi.

Now suppose S is the generating set of a right-angled Coxeter group W .
A W -valued distance function on Φ is a function d : Φ × Φ → W such that,
given a reduced word s1 . . . sk representing w ∈ W , there exists a gallery of
type s1 . . . sk from φ to φ′ if and only if d(φ,φ′) = w.

Definition 2.3. Let W = WΓ be a right-angled Coxeter group with gen-
erating set S. Then a right-angled building of type W is a chamber system Φ
over S such that

(1) for all s ∈ S, every s-equivalence class contains at least two chambers,
(2) there exists a W -valued distance function d : Φ × Φ → W .

Let GΓ be a graph product of cyclic groups. Denote by WΓ the right-angled
Coxeter group obtained by replacing each vertex group Gv by Wv = Z/2Z.
Define a set-theoretic map (not a homomorphism) γ : GΓ → WΓ as follows.
For g ∈ GΓ, represent g by a reduced word g = g1 . . . gk, with gi ∈ Gvi , and set
γ(g) = s1s2 . . . sk where si is the generator of Wvi . This is well-defined since
any two reduced words for g are related by commutator relations which also
hold in WΓ. Moreover, s1 . . . sk is also reduced since no shuffling of g1 . . . gk

(and hence of s1 . . . sk) allows two elements of the same vertex group to be
combined.

Theorem 2.4. For any graph product GΓ of cyclic groups, XΓ is a right-
angled building of type WΓ.

Proof. We take Φ to be the set of translates of K in XΓ and we say that two
chambers gK,hK are si-equivalent if g−1h ∈ Gvi . Then every si-equivalence
class contains q elements where q = |Gvi |.

Define d : Φ × Φ → WΓ by d(gK,hK) = γ(g−1h). Then for a reduced word
w = s1s2 . . . sk, there exists a gallery of type w from gK to hK if and only if
g−1h = g1 . . . gk for some gi ∈ Gvi , or equivalently, d(gK,hK) = w. �

These buildings and their automorphism groups are studied by Barnhill,
Thomas, Haglund, and Paulin [1, 16, 17, 22]. If the vertex groups are all
finite, then the (full) automorphism group of the building is a locally compact
topological group and GΓ is a uniform lattice in this group.



254 R. CHARNEY ET AL.

Although XΓ was defined as a simplicial complex, it has a natural cubical
structure whose cubes correspond to “intervals”. For a pair of subsets T1 ⊆ T2

in SΓ, the interval [GT1 ,GT2 ] is the subcomplex of K spanned by the vertices
GT , T1 ⊆ T ⊆ T2. It is combinatorially a cube of dimension |T2 − T1|. The
translates of these intervals give a cubical structure on all of XΓ.

The fundamental chamber K is independent of the orders of the vertex
groups. Thus, it is isometric to the fundamental chamber in the Davis complex
for WΓ. It was shown by Davis in [9] that any such right-angled building is
CAT(0) with respect to the cubical metric described above. (This can also be
proved directly for XΓ using the link condition for cubical complexes.)

The action of GΓ takes intervals to intervals, hence preserves the cubical
metric and the quotient by GΓ is just the fundamental chamber K. Thus
GΓ acts faithfully (the stabilizer of G∅ is trivial), cocompactly by isometries
on XΓ. As noted above, however, the action is proper if and only if every
vertex group is finite.

Corollary 2.5. For all graph products of cyclic groups, the cubical metric
on XΓ is CAT(0). If the vertex groups are all finite, then GΓ is a CAT(0)
group.

Remark 2.6. For use later in the paper, we remark that this action can be
extended to a slightly larger group. Let ΣΓ be the (finite) group of automor-
phisms of GΓ generated by symmetries of the graph Γ (which permute the
generators of GΓ) and automorphisms of a single vertex group. This group
acts on the poset GSΓ in the obvious way, σ · gGT = σ(gGT ), and hence it acts
on XΓ. Combining this with the GΓ-action gives an action of the semi-direct
product GΓ � ΣΓ on XΓ. This action is again proper, cocompact, isometric,
and faithful.

3. Automorphism groups and separating intersections of links

In this section, we introduce the no SILs condition on Γ and study automor-
phism groups of graph products of cyclic groups GΓ satisfying this condition.

Servatius [21] and Laurence [18, 19] described a finite generating set for
Aut(GΓ) for certain classes of graph products, such as right-angled Artin
groups. This result has recently been extended to all graph products of cyclic
groups by Corredor and Gutierrez in [7]. We now describe this generating set.

In order to simplify notation, we will think of the vertex v as the generator
of the cyclic group Gv , so that the vertex set V generates GΓ. Denote the
order of v (and hence of Gv) by |v|. Associated to a vertex v in Γ are two
subgraphs: the link of v, lk(v), is the full subgraph spanned by the vertices
adjacent to v and the star of v, st(v), is the subgraph spanned by v and lk(v).

Theorem 3.1 ([7, 18]). If GΓ is a graph product of cyclic groups, then
Aut(GΓ) is generated by automorphisms of the following types:



THE AUTOMORPHISM GROUP OF A GRAPH PRODUCT WITH NO SIL 255

Figure 1. A graph with separating stars but no SILs.

(1) Symmetries: induced by symmetries of Γ, permute the generators.
(2) Vertex isomorphisms: automorphisms of a single vertex group Gv .
(3) Partial conjugations: conjugate all of the generators in one connected

component C of Γ \ st(v) by v.
(4) Transvections: map v �→ vwk or v �→ wkv where one of the following

holds
(a) |v| = ∞, k = 1, and lk(v) ⊆ st(w), or
(b) |v| = pi, |w| = pj , k = max{1, pj−i}, and st(v) ⊆ st(w).

We are interested primarily in the partial conjugations. Denote by πv,C

the partial conjugation by v of the component C, and let Autpc(WΓ) denote
the group generated by all partial conjugations.

It follows from Lemma 2.8 of [15] that when the vertex groups are all finite,
Autpc(WΓ) has finite index in the full automorphism group Aut(GΓ). This is
also the case when there are no permissible transvections (for example, when
Γ has no cycles of length less than 5 and no vertices of valence less than 2).

The interaction between two partial conjugations πv,C and πw,D depends
on the relative position of the components C and D. A crucial role will be
played by the following.

Definition 3.2. A simplicial graph Γ has a Separating Intersection of
Links (SIL) if for some pair (v,w), with dΓ(v,w) ≥ 2, there is a component of
Γ \ (lk(v) ∩ lk(w)) which contains neither v nor w.

Remark 3.3. The no SILs condition is most interesting for connected
graphs. For if Γ has more than two connected components, then it neces-
sarily has a SIL. If it has two components Γ1 and Γ2, one of which is not a
complete graph, then it also has a SIL since if v and w are vertices in Γ1 with
d(v,w) ≥ 2, then Γ2 ⊂ Γ \ (lk(v) ∩ lk(w)) is a component containing neither
v nor w. Thus, a graph with no SILs is either connected or it is the disjoint
union of two complete graphs.

As illustrated in Figure 1, a graph with no SILs may still have separating
stars, giving rise to partial conjugations. In the case where Γ has no SILs,
we will prove that Autpc(GΓ) is itself a graph product of cyclic groups GΓ̃

where the vertex set of Γ̃ corresponds to the set of partial conjugations. The
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edges of Γ̃ will correspond to the partial conjugations that commute, and are
prescribed by the following lemma.

Lemma 3.4. Suppose Γ is a connected simplicial graph which does not con-
tain any SILs and let v and w be vertices of Γ. Suppose d(v,w) ≥ 2, and let
C0 be the component of Γ \ st(v) containing w, and D0 be the component of
Γ \ st(w) containing v. Then
(1) Every component of Γ \ st(v), except C0, lies entirely in D0, and every

component of Γ \ st(w), except D0, lies entirely in C0.
(2) The partial conjugations πv,C and πw,D commute unless C = C0 and D =

D0.

Proof. (1) Let C be a component of Γ \ st(v). If C contains any vertex of
lk(w), then it also contains w, so C = C0. If not, then C ∩ st(w) = ∅, so C lies
completely in some component D of Γ \ st(w). We claim that D = D0.

Let C̄ denote the graph generated by C and the vertices adjacent to C.
Clearly C̄ \ C ⊂ lk(v). On the other hand, C̄ \ C �⊂ lk(v) ∩ lk(w), since this
would imply that C was a component of Γ \ lk(v) ∩ lk(w) which did not contain
v or w. It follows that C and v are adjacent to a vertex which is not in the
link of w. Hence, C and v are in the same component of Γ \ st(w), that is,
D = D0 as claimed.

(2) First, we note that πv,C0 and πw,D0 do not commute. By direct com-
putation,

πv,C0 ◦ πw,D0(v) = πv,C0(wvw−1) = vwvw−1v−1,

πw,D0 ◦ πv,C0(v) = πw,D0(v) = wvw−1.

Next, consider the case where C �= C0 and D �= D0. By (1) C ∩ D = ∅, and
we do another direct computation.

πv,C ◦ πw,D(x) = πw,D ◦ πv,C(x) =

⎧⎪⎨
⎪⎩

vxv−1, x ∈ C,

wxw−1, x ∈ D,

x, x /∈ (C ∪ D).

Now suppose C �= C0 and D = D0. Then by (1), we know that C ⊂ D, v ∈ D,
and w /∈ C. We can once again check this by direct computation.

πv,C ◦ πw,D(x) = πw,D ◦ πv,C(x) =

⎧⎪⎨
⎪⎩

wvxv−1w−1, x ∈ C,

wxw−1, x ∈ D \ C,

x, x /∈ D.

The remaining case where C = C0 and D �= D0 is similar. �

We now construct the graph Γ̃. The vertices of Γ̃ are in one-to-one corre-
spondence with the partial conjugations πv,C , and are denoted by Ṽ = {pv,C }.
Any two vertices pv,C and pw,D are connected by an edge unless d(v,w) ≥ 2,
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Figure 2. The graphs Γ and Γ̃.

v ∈ D, and w ∈ C. We assign to the vertex pv,C the cyclic group of order |v|.
An example is shown in Figure 2.

By the lemma, there is a homomorphism φ : GΓ̃ → Autpc(GΓ) which takes
pv,C �→ πv,C . This homomorphism is clearly surjective; our goal is to prove
that if Γ contains no SILs, then φ is an isomorphism. To do this, we will pass
to the outer automorphism group.

The outer automorphism group of GΓ is the quotient of Aut(GΓ) by the
subgroup Inn(GΓ) of inner automorphsims of GΓ. The inner automorphism
by a vertex v is the product of all the partial conjugations by v, hence this
subgroup lies in Autpc(GΓ) and we can define Outpc(GΓ) accordingly. We
would like to define a corresponding quotient for GΓ̃.

The inner automorphism group is isomorphic to the group modulo its cen-
ter. In the case of GΓ, the center is generated by the vertices (if any) which
are connected to every other vertex in Γ. Let Δ be the (possibly empty) graph
generated by these vertices and let Γ0 = Γ \ Δ. Then GΓ decomposes as the
direct product of GΔ and GΓ0 , so Inn(GΓ) is isomorphic to GΓ0 .

We denote by pv the product pv =
∏

pv,C over all components C of Γ \ st(v),
so that φ(pv) is the inner automorphism by v.

Lemma 3.5. The correspondence v �→ pv induces a homomorphism f̃ :
GΓ0 → GΓ̃ and the image of f̃ is a normal subgroup of GΓ̃.

Proof. The first statement follows by definition of Γ̃ since if d(v,w) ≤ 1
in Γ, then pv,C commutes with pw,D for all C,D, so commuting relations are
preserved and the order of pv is |v|.
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To prove that the image is normal, we will show that for any v ∈ Γ0 and
for any generator of pw,D of GΓ̃, the following equation holds.

pw,Dpvp−1
w,D =

{
pv, if v /∈ D,

pwpvp−1
w , if v ∈ D.

Note that in either case, pw,Dpvp−1
w,D is in f̃(GΓ0).

Case 1: v /∈ D. Then by Lemma 3.4 pw,D commutes with pv,C for every C.
Case 2: v ∈ D. Consider the expression pwpvp−1

w . Then for each connected
component D′ of Γ \ st(w) with D �= D′, the partial conjugation pw,D′ com-
mutes with pv by Lemma 3.4. Simplifying the expression, we get the desired
result. �

In light of the lemma, we can now form the quotient group, Q = GΓ̃/f̃(GΓ0).
If f denotes the inclusion of the inner automorphisms into Autpc(GΓ), then
the diagram below clearly commutes.

It follows that f̃ is injective and that φ induces a map on the quotient
groups, so we have a commutative diagram of exact sequences,

We are now ready to state and prove our main result.

Theorem 3.6. Let GΓ be a graph product of cyclic groups whose defining
graph Γ contains no SILs. Then the map φ : GΓ̃ → Autpc(GΓ) is an isomor-
phism. In particular, Autpc(GΓ) is a graph product of cyclic groups of the
same order(s) as the vertex groups of GΓ.

Proof. In light of the exact sequence above, it suffices to prove that the
map ψ on the quotient groups is an isomorphism. The theorem will then
follow from the 5-lemma. Since φ and g are both surjective, ψ ◦ g̃ = g ◦ φ is
surjective, and so ψ is as well.

Suppose Γ is connected. We first argue that Q is Abelian. Take two
generators pv,C and pw,D ∈ GΓ̃ which do not commute. By Lemma 3.4, we
know that pv,C does commute with pw,D′ for every connected component D′ of
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Γ \ st(w) with D′ �= D, hence it commutes with the product p′ =
∏

D′ �=D pw,D′ .
But p′ and pw,D represent inverse elements in Q, so the images of pv,C and
pw,D commute in Q.

Since Q is Abelian, for any x̄ ∈ Q, we can write x̄ as a product of generators
pv,C in which all occurrences of a vertex v appear together. That is, we can
choose a representative x ∈ GΓ̃ of the form

x =
∏
v

∏
C

p
kv,C

v,C .

Now suppose x̄ ∈ ker(ψ). By the commutivity of the relevant diagram, φ(x) =∏
v

∏
C π

kv,C

v,C lies in Inn(WΓ). A product of this form is an inner automorphism
if and only if, for fixed v, the power kv,C is the same for every component C
of Γ \ st(v). This means that x has the form

∏
v pkv

v , which is clearly in GΓ0 ,
thus x̄ is trivial in Q. We conclude that the kernel of ψ is trivial, so ψ is an
isomorphism.

It remains to consider the case when Γ is not connected. By Remark 3.3,
this occurs only when Γ is the disjoint union of two complete graphs. In this
case, every partial conjugation is an inner automorphism, so Γ = Γ̃, and since
GΓ has trivial center, Autpc(GΓ) = Inn(GΓ) ∼= GΓ. �

As noted in Section 2, any graph product of finitely generated Abelian
groups is isomorphic to a graph product of cyclic groups obtained by “blowing
up” a vertex v with group Gv into a complete graph with vertices labeled by
the indecomposable cyclic summands of Gv . Applying Theorem 3.6 to this
new graph product, we see that Autpc(GΓ) is again a graph product of cyclic
groups. Moreover, this graph product is just the blow-up of GΓ̃ (where Γ̃ is
defined as above, but the vertex groups Gv are no longer cyclic). Thus, we
may restate the theorem as follows.

Theorem 3.7. Let GΓ be a graph product of finitely generated Abelian
groups whose defining graph Γ contains no SILs. Then the map φ : GΓ̃ →
Autpc(GΓ) is an isomorphism. In particular, Autpc(GΓ) is also a graph prod-
uct of finitely generated Abelian groups.

We remark that the proof of the theorem above also gives an independent
proof of the following result of [15].

Corollary 3.8 ([15]). Assume Γ is connected. Then Outpc(GΓ) is Abelian
if and only if Γ contains no SILs.

Proof. In the proof of the main theorem, we showed that if Γ has no SILs,
then Q, and hence Outpc(GΓ), is Abelian. If Γ has a SIL, that is a component
C of Γ \ (lk(v) ∩ lk(w)) containing neither v nor w where d(v,w) ≥ 2, then it
is straightforward to check that the commutator [πv,C , πw,C ] is not an inner
automorphism. Hence, Outpc(GΓ) is not Abelian. �
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4. Geometric implications

Recall that a group G is a CAT(0) group if it acts geometrically (i.e.,
properly, cocompactly by isometries) on a complete CAT(0) space. It is an
open question whether automorphism groups of graph products, even in the
Coxeter group case, are CAT(0) groups. Theorem 3.6 gives some partial
answers.

In the case where all vertex groups are finite, Autpc(GΓ) has finite index
in Aut(GΓ) so by Theorems 2.4 and 3.6 we obtain

Corollary 4.1. Let GΓ be a graph product of finite cyclic groups whose
defining graph has no SILs. Then the automorphism group Aut(GΓ) is virtu-
ally CAT(0). More precisely, there is a faithful, geometric action of Autpc(GΓ)
on the right-angled building XΓ̃.

It would be nice to extend this action to the whole automorphism group.
Recall from Theorem 3.1 that Aut(GΓ) is generated by four types of au-
tomorphisms: symmetries, vertex isomorphisms, partial conjugations, and
transvections. Letting ΣΓ denote the group generated by symmetries and
vertex isomorphisms, the subgroup of Aut(GΓ) generated by the first three
types of automorphisms is a semi-direct product, Autpc(GΓ) � ΣΓ. We can
easily extend the action of Autpc(GΓ) on XΓ̃ to this larger group.

Corollary 4.2. Let GΓ be a graph product of finite cyclic groups whose
defining graph has no SILs. Then the action of Autpc(GΓ) on XΓ̃ extends to
a faithful, geometric action of Autpc(GΓ) � ΣΓ.

Proof. By Remark 2.6, the action of GΓ̃ on XΓ̃ extends to a faithful, geo-
metric action of the semi-direct product GΓ̃ � ΣΓ̃. The group ΣΓ embeds
naturally in ΣΓ̃ (an isomorphism of Gv goes to the product of the correspond-
ing isomorphisms of Gpv,C

for all components C). Combining this embedding
with the isomorphism φ−1, we get an inclusion Autpc(GΓ) � ΣΓ ↪→ GΓ̃ � ΣΓ̃,
and hence an induced action on XΓ̃. �

If some of the vertex groups are infinite cyclic, then the action of GΓ̃ on
XΓ̃ is not proper. However, if all of the vertex groups are infinite, then GΓ

and GΓ̃ are right-angled Artin groups and we can use a different geometric
construction, the Salvetti complex (see [3]), to get an action on a CAT(0)
space.

Corollary 4.3. Let Γ be a simplicial graph with no SILs, and suppose
GΓ is a right-angled Artin group. Then the subgroup of Aut(GΓ) generated
by partial conjugations, inversions and graph symmetries acts faithfully and
geometrically on a CAT(0) cube complex, the Salveti complex of GΓ.

Proof. It is easy to show that the action of AΓ̃ on its Salvetti complex
extends to an action of AΓ̃ � ΣΓ̃. The proof then proceeds as above. �
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We close by remarking that some graph products GΓ of cyclic groups do
not permit transvections in which case the subgroup in Corollaries 4.2 and 4.3
constitutes the entire automorphism group. This is the case, for example, if Γ
has no triangles and no vertices of valence less than two, or if every pair of
adjacent vertex groups have relatively prime order. For those that do permit
transvections, the action described above does not extend in any natural way
to an isometric action of the transvections. In this case, proving that the full
automorphism group is CAT(0) will almost certainly require a different space.
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