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COMPUTING FIXED CLOSURES IN FREE GROUPS

ENRIC VENTURA

To Paul Schupp, colleague and friend.

Abstract. Let F be a finitely generated free group. We present
an algorithm such that, given a subgroup H ≤ F , decides whether

H is the fixed subgroup of some family of automorphisms, or

family of endomorphisms of F and, in the affirmative case, finds

such a family. The algorithm combines both combinatorial and
geometric methods.

1. Introduction

For all the paper, let A = {a1, . . . , an} be an alphabet with n different
letters, and F be the free group (of rank r(F ) = n) with basis A.

Let End(F ) denote the endomorphism monoid of F , and Aut(F ) the auto-
morphism group of F , so Aut(F ) is the group of units of End(F ). Throughout,
we let elements of End(F ) act on the right on F , so x �→ (x)φ. Accordingly,
compositions are like (x)φψ = (xφ)ψ.

In the last decade, a lot of literature has appeared studying the fixed sub-
group of a single, or a family, of automorphisms, or endomorphisms, of F (see
the survey [19] for details). But very few algorithmic results are known in this
direction. Only few years ago, O. Maslakova (see [13]) has found an algorithm
to compute a set of generators for the fixed subgroup of an automorphism of
F (which is quite complicated, and whose complexity is quite high). One can
easily extend this to compute generators for the fixed subgroup of a finite
family of automorphisms, while the related questions on endomorphisms are
still open.
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In this note, we shall address the dual problem. We present an algorithm
such that, given a subgroup H ≤ F , decides whether H is the fixed subgroup
of some finite family of automorphisms, or finite family of endomorphisms of
F and, in the affirmative case, finds such a family. We advice the reader that
the provided algorithms are theoretical and far from effective, in the sense
that their complexities will be way too high to think about possible effective
implementations. A natural open question is whether there exist more natural
and efficient algorithms, say polynomial time, for solving such problems.

Recognizing whether H is the fixed subgroup of a family of automorphisms
is not difficult, because a classical result by McCool already established that
the stabilizer of a finitely generated subgroup of F is finitely generated and
computable (as subgroup of Aut(F )), see Theorem 8 below. However, recog-
nizing whether H is the fixed subgroup of a family of endomorphisms is much
trickier, because the stabilizer of H , in general, need not be finitely generated
as a submonoid of End(F ) (see Example 1 below).

More precisely, the two algorithms given in this paper take a finitely gen-
erated subgroup H ≤ F as the input, and compute a basis of its automor-
phism (resp. endomorphism) closure, that is, the smallest subgroup K such
that H ≤ K ≤ F and K = Fix(S) for some S ⊆ AutF (resp. S ⊆ EndF ), see
the precise definitions below. The main technique used to deal with these
problems is the graphical tool called “fringe of a subgroup”, which allows to
compute the collection of algebraic extensions of a given subgroup H .

In Section 2, we define the concepts, and state the results that will be used,
with the corresponding references. Along Section 3, we prove the main result
and give the two announced algorithms. Finally, in Section 4, we collect a list
of related questions and open problems.

2. Needed tools

Definition 1. For any S ⊆ End(F ), let Fix(S) denote the subset con-
sisting of those elements of F which are fixed by every element of S (read
Fix(S) = F for the case where S is empty). Then Fix(S) is a subgroup of F ,
called the fixed subgroup of S.

A subgroup H of F is called an endo-fixed subgroup of F if H = Fix(S) for
some S ⊆ End(F ). If S can be chosen to lie in Aut(F ), we further say that
H is an auto-fixed subgroup of F .

A subgroup H of F is called a 1-endo-fixed subgroup of F if H = Fix(φ)
for some φ ∈ End(F ) (here, and throughout, to simplify notation we write
Fix(φ) rather than Fix({φ})). If φ can be chosen to lie in Aut(F ), we further
say that H is a 1-auto-fixed subgroup of F . For example, any maximal cyclic
subgroup of F is 1-auto-fixed, since it is the subgroup fixed by a suitable
inner automorphism. And nonmaximal cyclic subgroups of F are not even
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endo-fixed, because every endomorphism fixing a power of an element must
fix the element itself.

Notice that, since Fix(S) =
⋂

α∈S Fix(α), an auto-fixed (resp. endo-fixed)
subgroup is an intersection of 1-auto-fixed (resp. 1-endo-fixed) subgroups, and
vice-versa. And, clearly, the families of auto-fixed and endo-fixed subgroups
of F are closed under arbitrary intersections.

A natural question that arises in this context asks about the relation be-
tween the four mentioned families of subgroups of F , namely 1-auto-fixed,
1-endo-fixed, auto-fixed and endo-fixed subgroups. Apart from the obvious
inclusions, the relationship among these families is partially known, though
not completely since there still are interesting questions in this direction that
remain open. For example, it is not known (and conjectured) whether the fam-
ilies of 1-auto-fixed and auto-fixed subgroups (resp. 1-endo-fixed and endo-
fixed subgroups) do coincide; in other words, it is not known whether the
family of 1-auto-fixed (resp. 1-endo-fixed) subgroups is closed under intersec-
tions. As far as we are aware, this is only known to be true when the ambient
rank is n = 2, and when the involved fixed subgroups have maximal rank,
see [10]. In this direction, A. Martino and E. Ventura showed in [10] that
every auto-fixed (resp. endo-fixed) subgroup of F is a free factor of a 1-auto-
fixed (resp. 1-endo-fixed) subgroup of F . However, they also gave an example
of a free factor of a 1-auto-fixed subgroup which is not even endo-fixed.

We point out that, in the definitions of auto-fixed and endo-fixed subgroups,
one can always assume that the involved families of morphisms are finite. This
was proven by A. Martino and E. Ventura in [12, Corollary 4.2], answering
a question previously posed by G. Levitt. So, from now on, a “family” of
endomorphisms will always mean a “finite family”.

Proposition 2 (Martino–Ventura, [12]). Let F be a finitely generated free
group. For every S ⊆ End(F ) there exists a finite subset S0 ⊆ S with |S0| ≤
2r(F ), and such that Fix(S0) = Fix(S).

We do not include in this discussion the families of 1-mono-fixed and mono-
fixed subgroups, because they are known to coincide with the families of 1-
auto-fixed and auto-fixed subgroups, respectively (see [11, Theorem 11]).

On the other hand, it is known that the families of 1-endo-fixed and 1-auto-
fixed subgroups (and the families of endo-fixed and auto-fixed subgroups, as
well) do not coincide: in [11], the authors exhibited the first known examples
of 1-endo-fixed subgroups which are not 1-auto-fixed; see also [3] for more
interesting calculations about this phenomena. Hence, determining whether a
given subgroup H is an auto-fixed or an endo-fixed subgroup are two different
algorithmic problems (the first being much simpler than the second, as will
be seen below).

The deepest and most important result about 1-auto-fixed subgroups in
the literature was obtained by M. Bestvina and M. Handel in [2], where they
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developed the theory of train tracks for graphs, and showed that every 1-
auto-fixed subgroup of F has rank at most r(F ), which had previously been
conjectured by G. P. Scott. Soon after the announcement of this result, and
using it, W. Imrich and E. Turner showed, in [5], that any 1-endo-fixed sub-
group of F also has rank at most r(F ). Later, W. Dicks and E. Ventura
in [4], using the techniques of [2], showed that any auto-fixed subgroup of F
has rank at most r(F ); in fact, they proved a stronger result, namely that
any mono-fixed subgroup of F is F -inert (a subgroup H ≤ F is F -inert if
r(H ∩ K) ≤ r(K) for every K ≤ F ). And after this, G. M. Bergman [1], using
the result of [4], showed that any endo-fixed subgroup of F also has rank at
most r(F ) (however, it is not known whether endo-fixed subgroups of F are
necessarily F -inert; it is conjectured to be so in the inertia conjecture, see [12]
and [19]). This brief history is appropriate for our purposes, but is far from
complete; for example, it does not mention the ground-breaking work of S. M.
Gersten, who first showed that 1-auto-fixed subgroups are finitely generated.

As we mentioned in the Introduction, few algorithmic results are known
about fixed subgroups of free groups. The main one is the computability of
fixed subgroups of automorphisms which, by the moment, it has only theoret-
ical interest because no precise bound on the complexity is known, and one
expects it to be quite high. The corresponding fact for endomorphisms is still
an open problem.

Theorem 3 (Maslakova, [13]). Let ϕ : F → F be an automorphism of a
finitely generated free group F . Then, a basis for Fix(ϕ) is computable.

An interesting notion to study these questions is the notion of “closure” of
a subgroup.

Definition 4. Let H ≤ F . We denote by AutH(F ) the subgroup of
Aut(F ) consisting of all automorphisms of F which fix H pointwise,

AutH(F ) = {ϕ ∈ Aut(F ) | H ≤ Fix(ϕ)},

usually called the stabilizer of H . Analogously, we denote by EndH(F ) the
submonoid of End(F ) consisting of all endomorphisms of F which fix every
element of H . Clearly, AutH(F ) ≤ EndH(F ).

Now, Aut(−)(F ) is a function from the set of subgroups of F to the set of
subsets of Aut(F ), and Fix(−) is a function in the reverse direction. This pair
of functions form a Galois connection, and their images are called closed sub-
sets (in Aut(F ) and F , respectively). Clearly, Aut(F )-closed subgroups of F
are precisely the auto-fixed subgroups. Mimicking the classical Galois notions,
we define the auto-closure of H in F , denoted a-ClF (H), as Fix(AutH(F )),
that is, the smallest auto-fixed subgroup of F containing H .

Replacing Aut to End everywhere in the previous paragraph, we obtain
another Galois connection, and we similarly define the endo-closure of H in F ,
denoted e-ClF (H), as Fix(EndH(F )), i.e., the smallest endo-fixed subgroup
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of F containing H . Since AutH(F ) ≤ EndH(F ), an obvious relation between
closures is

e-ClF (H) = Fix(EndH(F )) ≤ Fix(AutH(F )) = a-ClF (H).

However, the equality does not hold in general, because of the existence of
1-endo-fixed subgroups which are not auto-fixed.

Note that, by the results mentioned above, the ranks of a-ClF (H) and
e-ClF (H) are always less than or equal to r(F ), even if that of H is not.

The main goal of this note is to show that, for any finitely generated H ≤ F
(given by a set of generators), one can algorithmically compute a basis for both
a-ClF (H) and e-ClF (H). Using this algorithm, one can immediately decide
whether the given H is auto-fixed (resp. endo-fixed) or not: H is auto-fixed
(resp. endo-fixed) if and only if a-ClF (H) = H (resp. e-ClF (H) = H).

To do this, we need to use the concepts of retract and stable image, and
the graphical technique called “fringe of a subgroup” to compute the set of
algebraic extensions of H . We briefly review now on these two topics.

A subgroup H ≤ F is called a retract of F (just retract if there is no
risk of confusion) if there exists a homomorphism ρ : F → H which fixes the
elements of H (i.e., such that ρ2 = ρ); such a morphism is called a retraction.
The obvious examples of retracts are the free factors of F , but there are
retracts which are not free factors. Recognizing retracts is algorithmically
possible, as showed in [14, Proposition 4.6] following an argument indicated
by E. Turner, though quite complicated in practice, because it makes use of
Makanin’s algorithm to solve systems of equations in free groups.

Proposition 5 (Proposition 4.6 in [14]). Let H ≤ F be a finitely generated
subgroup of F , given by a finite set of generators. It is algorithmically decidable
whether H is a retract of F and, in the affirmative case, find a retraction
ρ : F → H .

For a given endomorphism ϕ : F → F , define the stable image of ϕ as
Fϕ∞ =

⋂∞
m=1 Fϕm. With a simple argument, W. Imrich and E. Turner

showed in [5] that: (1) Fϕ∞ is a ϕ-invariant subgroup of F ; (2) the restriction
of ϕ to its stable image is always an automorphism; and (3) Fϕ∞ is a retract
of F . This will be used later in order to reduce a certain computation with
endomorphisms, to a similar one with automorphisms.

Let H ≤ K ≤ F . We say that the extension H ≤ K is algebraic, denoted
H ≤alg K, if H is not contained in any proper free factor of K. The antago-
nistic situation consists of H being a free factor of K, denoted H ≤ff K. It is
not difficult to see (see [14]) that every extension H ≤ K of finitely generated
(free) subgroups of F can be decomposed, in a unique way, as an algebraic
extension followed by a free extension, namely H ≤alg L ≤ff K (just take L
to be the smallest free factor of K containing H , or the biggest algebraic
extension of H contained in K). The uniqueness refers to the fact that L
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is completely determined by the original extension H ≤ K; again, mimicking
the classical Galois theory, L is called the algebraic closure of H in K. We
refer the reader to [14] for a detailed development of these ideas, including
an analysis of the similarities and the significant differences with respect to
classical field theory.

The important fact in this story is an old result by M. Takahasi, origi-
nally proven by combinatorial methods in [17] (and reproduced in Section 2.4,
Exercise 8 of [8]). However, the modern graphical techniques developed by
Stalling’s in the 1980s (see [16]) lead to a new, clear, concise and very natural
proof of Takahasi’s theorem, which was discovered independently by E. Ven-
tura in [18], and by I. Kapovich and A. Miasnikov in [6]. S. Margolis, M. Sapir
and P. Weil, also independently, considered the same construction in [9] for a
slightly different purposes. See [14] for a unification of these three points of
view, written in the language of algebraic extensions. In this setting, Taka-
hasi’s theorem says the following.

Theorem 6 (Takahasi). Let H ≤ F be a subgroup of a free group F . If H
is finitely generated, then it has finitely many algebraic extensions, that is,

A E (H) = {K ≤ F | H ≤alg K}
is finite. Furthermore, the elements in A E (H) are finitely generated, and bases
of all of them are computable from any given set of generators for H .

Sketch of proof (See [14, Proposition 3.7] for details). Think F = 〈A | 〉
as the fundamental group of a bouquet of n circles, and then H as the cor-
responding covering X(H), which can be though of as a graph with labels
from A on the edges (this graph is easily computable from any given set of
generators of H). When H is of infinite index in F , the graph X(H) is infi-
nite but, if H is finitely generated, X(H) consists on a finite core Γ(H) with
attached infinite trees (each isomorphic to a subtree of the Cayley graph of
F with respect to A). Now, consider an arbitrary extension H ≤ K ≤ F . It
corresponds to another covering X(K), which is in turn covered by X(H).
That is, X(K) is a quotient of X(H) and so, can be obtained from X(H) by
performing several identifications of vertices and edges. These identifications
may destroy Γ(H), but some quotient of Γ(H) always remains as a subgraph
of X(K) (in fact, of Γ(K)). If H is finitely generated then Γ(H) is finite,
and so has finitely many quotients, which are computable from Γ(H) (i.e.,
from any given set of generators of H). This gives a computable finite list of
extensions of H , called the fringe of H , O(H) = {H1, . . . ,Hp}, p ≥ 1. And, by
construction, it is clear that, for every H ≤ K, there exists i = 1, . . . , p such
that H ≤ Hi ≤ff K. This implies that A E (H) ⊆ O(H) and so, we already
have a proof of the finiteness part of Takahasi’s theorem. Unfortunately, the
equality between these two sets is not true in general, as one can possibly find
free factor relations between the Hi’s. But, after a cleaning process (checking
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for every pair (i, j) whether Hi ≤ff Hj and, in this case, deleting Hj from
the list) one can algorithmically compute A E (H) = {H1, . . . ,Hq }, 1 ≤ q ≤ p.
See [15] for a polynomial time algorithm to check free factorness. �

Note that the smallest and the biggest of the Hi’s in O(H) correspond, re-
spectively, to the quotient identifying nothing, which gives H itself, and to the
quotient identifying all vertices down to a single one, which gives 〈A′ 〉 ≤ff F ,
where A′ ⊆ A is the set of all letters involved in the generators of H . Note also
that the first one belongs to A E (H) (since H ≤alg H) and the same happens
for either the second one or a free factor of it. In particular, A E (H) contains
at least H , and a free factor of F (which may coincide). This fact will be used
later.

Finally, we mention one of the results in [16]. Given two finitely generated
subgroups H,K ≤ F (by sets of generators, say), one can algorithmically
compute a basis for H ∩ K using the technique of pull-backs of graphs.

Proposition 7 (Stallings, [16]). Let H,K ≤ F be two finitely generated
subgroups of a free group F , given by finite sets of generators. Then, a basis
for H ∩ K is algorithmically computable.

3. The algorithms

Let H ≤ F be a finitely generated subgroup of F , given by a set of gen-
erators. We shall give two algorithms to compute a basis for a-ClF (H) and
e-ClF (H), respectively. The basic fact that we use is a classical result due
to J. McCool (see Proposition 5.7 in Chapter I of [7], and the subsequent
paragraph).

Theorem 8 (McCool, [7]). Let H ≤ F be a finitely generated subgroup of
a (finitely generated) free group, given by a finite set of generators. Then the
stabilizer, AutH(F ), of H is also finitely generated (in fact finitely presented),
and a finite set of generators (and relations) is algorithmically computable
from H .

3.1. The automorphism case. By Theorem 8, AutH(F ) is finitely gener-
ated; furthermore, a list of generators, say AutH(F ) = 〈ϕ1, . . . , ϕm〉 ≤ Aut(F ),
can be algorithmically found from a set of generators of H . Now it is clear
that

a-ClF (H) = Fix(AutH(F )) =
⋂

ϕ∈AutH(F )

Fix(ϕ) = Fix(ϕ1) ∩ · · · ∩ Fix(ϕm).

By Maslakova’s Theorem 3, we can then compute generators for each of the
Fix(ϕi)’s and, using Proposition 7, find a basis for their intersection that is
a-ClF (H). Finally, Proposition 2 ensures us that a certain subset of at most
2r(F ) of those ϕi’s also makes the job; it only remains to recurrently compute
intersections until finding such a set. Thus, we have proven the following.
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Theorem 9. Let H ≤ F be a finitely generated subgroup of a free group,
given by a finite set of generators. Then, a basis for the auto-closure a-ClF (H)
of H is algorithmically computable, together with a set of m ≤ 2r(F ) automor-
phisms ϕ1, . . . , ϕm ∈ Aut(F ), such that a-ClF (H) = Fix(ϕ1) ∩ · · · ∩ Fix(ϕm).

Corollary 10. Let H ≤ F be a finitely generated subgroup of a free group,
given by a finite set of generators. Then, it is algorithmically decidable whether
H is auto-fixed and, in the affirmative case, find a set of m ≤ 2r(F ) automor-
phisms ϕ1, . . . , ϕm ∈ Aut(F ), such that H = Fix(ϕ1) ∩ · · · ∩ Fix(ϕm).

Proof. Apply Theorem 9 to H . If a-ClF (H) is strictly bigger than H , then
H is not auto-fixed (there are elements outside H which are fixed by every
automorphism of F fixing H). Otherwise, a-ClF (H) = H and the algorithm
in Theorem 9 also outputs a list of m ≤ 2r(F ) automorphisms ϕ1, . . . , ϕm ∈
Aut(F ), such that Fix(ϕ1) ∩ · · · ∩ Fix(ϕm) = a-ClF (H) = H . �

We don’t play much attention to the complexity of this algorithm be-
cause it seems far from fast. McCool’s algorithm is a brute force search
which is not conceptually complicated, but has strongly exponential complex-
ity. Maslakova’s algorithm is conceptually much more sophisticated, and its
complexity also seems to be quite high. Finally, the algorithm to compute
intersections is both easy and fast.

3.2. The endomorphism case. There is no hope that a similar strategy
could work in general for endomorphisms instead of automorphisms. On one
hand, Maslakova’s theorem makes strong use of train tracks, a machinery
that only works for monomorphisms and definitely does not work in presence
of nontrivial kernel; in fact, at the time of writing, no algorithm is known to
compute the fixed subgroup of an arbitrary endomorphism of F . On the other
hand, as the following example shows, EndH(F ) is not always finitely gener-
ated as submonoid of End(F ) and so, there is no hope of having a variation
of McCool’s result for endomorphisms.

Example 1 (Ciobanu–Dicks, [3]). We reproduce here Example 1.4 of [3]
to show that EndH(F ) is not always finitely generated as a submonoid of
End(F ), even with H being finitely generated as a subgroup of F .

Let F = 〈a, b, c〉 be the free group of rank 3, let d = ba[c2, b]a−1 (where
[x, y] = xyx−1y−1), and consider the subgroup H = 〈a, d〉 ≤ F . Consider the
endomorphism ψ : F → F given by a �→ a, b �→ d, c �→ 1, and the automor-
phism φ : F → F given by a �→ a, b �→ b, c �→ cb. Straightforward computa-
tions show that dψ = d hence, ψ ∈ EndH(F ). Moreover, φnψ acts as a �→ a,
b �→ d, c �→ dn and so, we also have φnψ ∈ EndH(F ) for every n ∈ Z. Now,
Corollary 3.4 from [3] shows that this is precisely the whole stabilizer of H ,

EndH(F ) = {1, φnψ | n ∈ Z} = {1} ∪ 〈φ〉ψ.
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Again, an easy calculation shows that (φnψ) · (φmψ) = φnψ, for every n,m ∈ Z.
Thus, the monoid EndH(F ) is not finitely generated.

Being convinced that the above algorithm for the automorphism case can-
not be adapted to the endomorphism case, a different strategy is needed. We
shall use algebraic extensions, Takahasi’s theorem and retractions to reduce
the computation of the endo-closure e-ClF (H) to finitely many computations
of auto-closures.

Theorem 11. Let H ≤ F be a finitely generated subgroup of a free group,
given by a finite set of generators. Then, a basis for the endo-closure e-ClF (H)
of H is algorithmically computable, together with a set of m ≤ 2r(F ) endomor-
phisms ϕ1, . . . , ϕm ∈ End(F ), such that e-ClF (H) = Fix(ϕ1) ∩ · · · ∩ Fix(ϕm).

Proof. Consider the set A E (H) = {H1,H2, . . . ,Hq } of algebraic extensions
of H , and the subset of those which are retracts of F , say A E ret(H) =
{H1, . . . ,Hr }, 1 ≤ r ≤ q (note that A E ret(H) is not empty because, as we
noted above, A E (H) contains at least a free factor (and so a retract) of F ).
By Theorem 6, we can algorithmically compute q ≥ 1, and a basis for each
H1, . . . ,Hq . Now, using Theorem 5, we can algorithmically decide which of
these Hi’s are retracts of F , and so compute r ≥ 1, A E ret(H) = {H1, . . . ,Hr },
and retractions ρi : F → Hi, for i = 1, . . . , r. Then, write the generators of H
in terms of the computed bases of each one of these Hi’s, and apply r times
Theorem 9 to compute, for every i = 1, . . . , r, a basis for a-ClHi(H) together
with a collection of (at most 2r(Hi)) automorphisms αi,j ∈ Aut(Hi) such that⋂

j Fix(αi,j) = a-ClHi(H), and bases for all these fixed subgroups Fix(αi,j).
Finally, use Proposition 7 to find a basis for

⋂r
i=1 a-ClHi(H).

Now, we claim that
⋂r

i=1 a-ClHi(H) = e-ClF (H). In fact, we shall prove
this equality under the form

(1)
r⋂

i=1

⋂
α∈Aut(Hi)

H≤Fix(α)

Fix(α) =
⋂

β∈End(F )

H≤Fix(β)

Fix(β),

by showing that every intersecting subgroup in one side is also present in the
opposite side (or otherwise a subgroup of it).

Let β ∈ End(F ) be such that H ≤ Fix(β). Consider the stable image of
β, which is a retract of F , and contains Fix(β) and so H ; then, look at the
algebraic closure of H in it,

H ≤alg Hi ≤ff Fβ∞ ≤ret F.

Since free factors of retracts of F are retracts of F , this Hi is an element of
A E ret(H). Furthermore, the endomorphism β restricts to an automorphism
of Fβ∞ which, in turn, restricts to an automorphism α = β|Hi

of Hi: the au-
tomorphism β|Fβ∞ leaves H invariant (in fact, pointwise fixed) and sends free
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factors of Fβ∞ to free factors of Fβ∞; hence, the smallest one containing H ,
which is Hi, must be sent to itself. And, clearly, H ≤ Fix(α) ≤ Fix(β). This
shows inclusion “≤” in equation (1).

Now, let Hi ∈ A E ret(H), and let α ∈ Aut(Hi) with H ≤ Fix(α). Consider
β = ρiαιi ∈ End(F ), where ρi : F → Hi is a retraction, and ιi : Hi → F is
the inclusion map. It is clear that H ≤ Fix(α) = Fix(β) and so, Fix(α) is
also one of the subgroups appearing in the intersection on the right-hand side
of (1). This shows inclusion “≥” in equation (1) and completes the proof of
the claim.

Thus, the algorithm described in the first paragraph of this proof, certainly
computes a basis for e-ClF (H) (together with some side information, namely
the retractions ρi, the collection of automorphisms αi,j ∈ Aut(Hi), and bases
for their fixed subgroups Fix(αi,j)). To conclude, it only remains to explicitly
construct a list of at most 2r(F ) endomorphisms of F whose fixed set is
exactly e-ClF (H). This is easy from the previous paragraph: the collection
of endomorphisms βi,j = ρiαi,jιi ∈ End(F ) satisfy Fix(βi,j) = Fix(αi,j) and
so, ⋂

i,j

Fix(βi,j) =
⋂
i

(⋂
j

Fix(αi,j)
)

=
⋂
i

a-ClHi(H) = e-ClF (H).

It could happen that the computed set, {βi,j | i, j}, of endomorphisms of F
exceeded in number the maximum wanted quantity of 2r(F ). In this case,
Proposition 2 ensures us that a certain subset of cardinal at most 2r(F ) makes
the job, too. Since, as a side product of our computation, we also have a basis
of each Fix(βi,j) = Fix(αi,j), it only remains to recurrently compute inter-
sections until finding the desired set (knowing it exists). This concludes the
proof. �

Corollary 12. Let H ≤ F be a finitely generated subgroup of a free group,
given by a finite set of generators. Then, it is algorithmically decidable whether
H is endo-fixed and, in the affirmative case, find a set of m ≤ 2r(F ) endo-
morphisms ϕ1, . . . , ϕm ∈ End(F ) such that H = Fix(ϕ1) ∩ · · · ∩ Fix(ϕm).

4. Open problems

In this last section, we collect a list of interesting questions and open prob-
lems in this subject.

Problem 1. Find an algorithm to compute Fix(ϕ) for a given ϕ ∈ End(F ).

Problem 2. Find an algorithm to determine whether a given finitely gen-
erated subgroup H ≤ F is 1-auto-fixed, or 1-endo-fixed.

Problem 3. Do the families of auto-fixed and 1-auto-fixed subgroups of
F coincide? And those of 1-endo-fixed and endo-fixed subgroups?
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Problem 4. Find effective, say polynomial time, algorithms to compute
the fix subgroup of a given endomorphism, and to determine whether a given
finitely generated subgroup H of F is 1-auto-fixed, or 1-endo-fixed, or auto-
fixed, or endo-fixed.

Problem 5. Are endo-fixed subgroups of F F -inert?

Problem 6. Find an algorithm to decide whether a given subgroup H ≤ F
is F -inert.
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