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WINDMILLS AND EXTREME 2-CELLS

JON MCCAMMOND AND DANIEL WISE

Abstract. In this article, we prove new results about the exis-
tence of 2-cells in disc diagrams which are extreme in the sense

that they are attached to the rest of the diagram along a small

connected portion of their boundary cycle. In particular, we es-
tablish conditions on a 2-complex X which imply that all minimal

area disc diagrams over X with reduced boundary cycles have

extreme 2-cells in this sense. The existence of extreme 2-cells in
disc diagrams over these complexes leads to new results on co-
herence using the perimeter-reduction techniques we developed

in an earlier article. Recall that a group is called coherent if all of

its finitely generated subgroups are finitely presented. We illus-
trate this approach by showing that several classes of one-relator

groups, small cancellation groups and groups with staggered pre-
sentations are collections of coherent groups.

In this article, we prove some new results about the existence of extreme
2-cells in disc diagrams which lead to new results on coherence. In particular,
we combine the diagram results shown here with the theorems from [3] to
establish the coherence of various classes of one-relator groups, small cancel-
lation groups, and groups with relatively staggered presentations. The article
is organized as follows: Section 1 contains background definitions, Section 2
recalls how extreme 2-cells lead to perimeter reductions and to coherent fun-
damental groups, Section 3 introduces the concept of a windmill, Section 4
uses windmills to prove that extreme 2-cells exist, and finally Section 5 uses
extreme 2-cells to prove that various groups are coherent. For instance, we
obtain the following special case of Corollary 5.12.
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Corollary 0.1. Let G = 〈a1, . . . , ar, t | WN 〉 where W has the form

tε1W1t
ε2W2 . . . tεkWk,

N is arbitrary, and for each i, εi is a nonzero integer and Wi is a reduced
word in the ai. Suppose that {W1,W2, . . . ,Wk } freely generate a subgroup of
the free group 〈a1, . . . , ar | −〉. Then G is coherent.

1. Basic definitions

In this section, we review some basic definitions about 2-complexes and
diagrams.

Definition 1.1 (Combinatorial maps and complexes). A map Y → X be-
tween CW complexes is combinatorial if its restriction to each open cell of Y
is a homeomorphism onto an open cell of X . A CW complex X is combinato-
rial provided that the attaching map of each open cell of X is combinatorial
for a suitable subdivision. All complexes and maps considered in this article
will be combinatorial after suitable subdivisions. In addition, we will only
consider 2-complexes in which the attaching maps of 2-cells are immersions.

Definition 1.2 (Polygon). A polygon is a 2-dimensional disc whose cell
structure has n 0-cells, n 1-cells, and one 2-cell where n ≥ 1 is a natural
number. If X is a combinatorial 2-complex, then for each open 2-cell C ↪→ X
there is a polygon R, a combinatorial map R → X and a map C → R such
that the diagram

C ↪→ X
↓ ↗
R

commutes, and the restriction ∂R → X is the attaching map of C. In this
article, the term 2-cell will always mean a combinatorial map R → X where
R is a polygon. The corresponding open 2-cell is the image of the interior
of R.

A similar convention applies to 1-cells. Let e denote the graph with two
0-cells and one 1-cell connecting them. Since combinatorial maps from e to X
are in one-to-one correspondence with the characteristic maps of 1-cells of X ,
we will often refer to a map e → X as a 1-cell of X .

Technical difficulties with 2-complexes often arise because of the existence
of redundant 2-cells and 2-cells attached by proper powers.

Definition 1.3 (Redundant 2-cells). Let X be a 2-complex. If R and S
are distinct 2-cells in X with identical boundary cycles, then R and S are
called redundant 2-cells. More specifically, there must exist a combinatorial
map R → S so that ∂R ↪→ R → S → X agrees with the map ∂R ↪→ R → X .



WINDMILLS AND EXTREME 2-CELLS 71

Definition 1.4 (Exponent of a 2-cell). Let X be a 2-complex, and let
R → X be one of its 2-cells. Let n be the largest number such that the map
∂R → X can be expressed as a path Wn in X , where W is a closed path in X .
This number n, which measures the periodicity of the map of ∂R → X , is the
exponent of R, and a path such as W is a period for ∂R. Notice that any
other closed path which determines the same cycle as W will also be a period
of ∂R. If the exponent n is greater than 1, then the R is said to be attached
by a proper power.

Definition 1.5 (Disc diagrams). A disc diagram D is a finite nonempty
contractible 2-complex together with a specific embedding of D in R2. A disc
diagram which consists of a single 0-cell is called trivial. If it is homeomorphic
to a disc, then it is nonsingular. It is a fundamental result in combinatorial
group theory that the image of a closed (combinatorial) loop P → X is null-
homotopic if and only if there is a disc diagram D → X having P as its
boundary cycle [2].

Definition 1.6 (Area). Let X be a 2-complex and let D → X be a disc
diagram. The area of D is simply the number of 2-cells it contains. Since
area is a nonnegative integer, for every closed loop P → X whose image is
null-homotopic, there is a minimal area disc diagram D → X having P as its
boundary cycle.

Definition 1.7 (Cancellable pair). Let X be a 2-complex, let D → X be
a disc diagram and let R1 and R2 be distinct 2-cells in D. If (1) ∂R1 and
∂R2 are lifts of the same loop in X , (2) ∂R1 ∩ ∂R2 contains a vertex v and
(3) the closed path ∂R1 can be read counterclockwise starting at v and the
closed path ∂R2 can be read clockwise starting at v so that they have identical
images in X , then R1 and R2 are called a cancellable pair. The definition of
a cancellable pair is often restricted to the case where ∂R1 and ∂R2 contain
a 1-cell in common, but this restriction is actually unnecessary.

Remark 1.8 (Redundant cells and proper powers). The focus of Defini-
tion 1.7 is on ∂R1 and ∂R2 (rather than R1 and R2 themselves) because of
the possibility of redundant 2-cells and 2-cells attached by proper powers. If
R and S are redundant 2-cells and D → X is a disc diagram containing a 2-cell
R′ which maps to R, then the map D → X can be modified so that R′ is sent
to S while keeping the rest of the map fixed. Similarly, if R is a 2-cell in X
with exponent n and D → X is a disc diagram containing a 2-cell R′ which is
sent to R, then there are n distinct ways of sending R′ to R while keeping the
rest of the map fixed. Moreover, these modifications do not fundamentally
change the basic properties of the disc diagram.

We will need the following lemma about minimal area diagrams. Its proof
is standard and will be omitted. The basic idea is that R1 and R2 can be
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“cut out” and the resulting hole can be “sewn up”, but there are a few tech-
nicalities. See [4] or [5] for complete details.

Lemma 1.9. Let X be a 2-complex and let D → X be a disc diagram. If D
contains a cancellable pair, then D does not have minimal area.

2. Perimeter reductions

As mentioned in the introduction, the main goal of this article is to use
structures we call “windmills” (introduced in the next section) to force disc
diagrams to contain extreme 2-cells. Once this fact is known in a particular
context, the machinery constructed in [3] can be used to conclude that the
corresponding fundamental groups are coherent. In this short section, we
briefly review the main ideas and results from [3] and very briefly explain the
connection between the existence of extreme 2-cells and coherent fundamental
groups.

Let Y be a subcomplex of a 2-complex X . The perimeter of Y in X is
essentially the length of the boundary of an ε-neighborhood of Y in X , under
the assumption that the 1-cells of X have unit length. For example, the
perimeter of a single edge e is just the number of sides of 2-cells of X that
are attached to e. Alternatively, the perimeter of Y in X is the total number
of missing sides, where a side of a 2-cell in X is missing if it is attached to a
1-cell in Y but it is not a side of a 2-cell in Y . There is also a weighted version
where the sides of the 2-cells of X are given non-negative weights (subject to
minor restrictions). The weighted perimeter of Y in X is then the sum of the
weights of the missing sides.

The main idea of [3] is to use perimeter calculations to force the termination
of the following algorithm. Let X be 2-complex with a finitely generated
fundamental group and let Y be a compact subcomplex of X such that the
induced map π1Y → π1X is onto. Note that such a Y always exists since we
can use the union of closed loops representing a finite generating set. At this
point the map from π1Y to π1X may or may not be π1-injective. If it is, then
π1Y = π1X and the compactness of Y implies that π1X is finitely presented.
If this map is not π1-injective, then it is natural to focus attention on a closed
loop P → Y ⊂ X that is essential in Y and null-homotopic in X . Being null-
homotopic in X there is a disc diagram D → X with P as its boundary cycle
and being essential in Y there is at least one 2-cell of D that is not in Y .
If we enlarge Y by adding the 2-cells from D, then this new complex has a
fundamental group that still maps onto π1X , it is still compact and it is closer
to being π1-injective. In general, this process of enlargement might need to
happen infinitely many times.

If, however, all the disc diagrams over X always have 2-cells where most
of their boundary cycle is contained in the closed loop P , then it is at least
conceivable that we can guarantee the existence of a 2-cell in D whose addition
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to Y results in a larger subcomplex with a smaller (weighted) perimeter.
Under such conditions, the iterative procedure described above must stop since
at each stage the nonnegative integral perimeter of the resulting subcomplexes
is steadily decreasing, and when it stops, π1Y

′ = π1X and the compactness
of Y ′ implies that π1X is finitely presented as above.

Many variations on this proof-scheme are described in [3] along with pre-
cise definitions and statements of the results. In this article, we focus on
producing 2-complexes for which every disc diagram has an extreme 2-cell.
The conclusion that the corresponding fundamental groups are coherent will
follow from the fact that in the contexts described weights can be found so
that the hypotheses of Theorem 7.6 of [3] are satisfied.

3. Windmills

In this section, we introduce a particular type of (weak) subcomplex of a
2-complex that we call a windmill. These structures will be used to force the
existence of extreme 2-cells in disc diagrams.

Definition 3.1 (Subcomplexes). Let X and Y be 2-complexes and let
Y ↪→ X be a topological embedding. If X and Y can be subdivided so that
Y ↪→ X is combinatorial, then we will call Y a subcomplex of X even though
its image is not a subcomplex in the original cell structure of X . We will
use the term true subcomplex if Y ⊂ X is a subcomplex in the traditional
sense—without subdivisions. Finally, given a subcomplex Y in X , the closure
of X \ Y will be another subcomplex that we will call its complement.

The fact that the image of Y need not be a subcomplex of X in the tradi-
tional sense could have been avoided if we had assumed at the start that X
and Y were already suitably subdivided. We will not, however, carry out such
subdivisions since the cell structures of X and Y carry information of interest
in applications. In fact we will mostly be interested in the other extreme:
subcomplexes where the image of Y 1 is, in some sense, transverse to X1.

Definition 3.2 (Windmills). Let X be a 2-complex, let Y ↪→ X be a
subcomplex and let Z ↪→ X be its complement subcomplex, and let Γ = Y ∩ Z
be the subgraph of X which separates them. If φ : R → X is a 2-cell of X ,
then we will say R is a windmill with respect to Z if, roughly speaking, φ−1(Z)
looks like a windmill. An example is shown in Figure 1. The dark portion of
this 2-cell belongs to φ−1(Z) and there are eight 1-cells in its interior which
separate the light and dark areas. Other examples are shown in Figures 2
and 3.

The precise definition we will use goes as follows: R is a windmill with
respect to Z if φ−1(Z \ Γ) is connected and φ−1(Γ) is homeomorphic to a
collection of isolated points in ∂R plus n ≥ 2 disjoint closed 1-cells whose
endpoints lie in ∂R and whose interiors lie entirely in the interior of R. If
each 2-cell of X is a windmill with respect to Z, then Z is a windmill in X .
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Figure 1. A windmill configuration in a 2-cell.

Figure 2. A windmill created by ∂A.

Note that if Z is a windmill in X then Γ ∩ X1 is a finite set of points. We
will now give two concrete methods of creating windmills which we will need
for our applications in Section 5.

Definition 3.3 (∂A). Let X be a connected 2-complex and let A be a true
subcomplex of X1. Let Y be the closure of a regular neighborhood of A, let
Z denote the complementary subcomplex, and let ∂A denote the intersection
Γ of Y and Z. Then Z is a windmill if φ−1(A) is disconnected for each 2-cell
φ : R → X . For example, if X consists of a single hexagonal 2-cell and A
consists of five of its 0-cells and one of its 1-cells, then the windmill created
by ∂A is shown in Figure 2.

Our second construction is similar.

Definition 3.4 (ðA). Let X be a connected 2-complex, let A and B be
true subcomplexes of X1 such that (A ∪ B) = X1 and (A ∩ B) ⊂ X0. We will
now define ðA and simultaneously define Y and Z so that they extend A
and B, respectively. Define the vertices of ðA to be the 0-cells in A ∩ B.
Suppose R → X is a 2-cell. If ∂R → X only contains 1-cells from A then
R will also be a 2-cell of Y and if ∂R only contains 1-cells from B then
R will belong to Z. Finally, if it contains 1-cells from A and B, then the
boundary cycle ∂R → X can be uniquely partitioned into nontrivial paths
which alternate between paths in A and paths in B. For each nontrivial path
in A, we add an edge to ðA which starts and ends at the endpoints of this path
and runs parallel to it through the interior of R. The regions of R thus created
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Figure 3. A windmill created by ðA.

which border 1-cells from A will belong to Y and the unique remaining region
will belong to Z. This procedure will create a windmill Z if φ−1(A) has more
than one nontrivial component for each 2-cell φ : R → X . If X consists of a
single hexagonal 2-cell, A contains three of its 1-cells (the two leftmost 1-cells
and the 1-cell in the upper right) and B contains the other three, then the
windmill created by ðA is shown in Figure 3.

Remark 3.5 (∂A versus ðA). Despite their similar definitions, in general,
neither ∂A ↪→ X nor ðA ↪→ X is homotopic to a subgraph of the other. To
pass from ∂A ↪→ X to ðA ↪→ X requires shrinking some “trivial” loops and
identifying distinct vertices. Moreover, these definitions will lead to indepen-
dent applications.

The windmills of primary interest will be those where a particular inclusion
map is π1-injective. When X has no redundant 2-cells and no 2-cells attached
by proper powers (and Γ is the subgraph which separates a windmill from its
complement), we will require that the inclusion Γ ↪→ X be π1-injective. In
the general case, we will only need to focus on a particular portion of Γ that
we call its essence.

Definition 3.6 (Essence of a subgraph). Let X be a 2-complex and let
Γ ↪→ X be the subgraph which separates a windmill in X from its complement.
If Γ partitions redundant 2-cells R and S in similar ways, then the portion
of Γ in R and the portion in S perform similar functions in disc diagrams
over X and we will not need both. Similarly, if R is a 2-cell with exponent
n > 1 and the windmill-like structure in R respects this n-fold symmetry,
then we will only need “ 1

n th” of Γ ∩ R. Both types of redundancies may occur
in ∂A and in ðA. These two observations define an equivalence relation on
the 1-cells of Γ. Let Essence(Γ) ↪→ X be a graph in X which results from
picking one 1-cell from each equivalence class. In the end, the exact choice of
1-cells is irrelevant since, if Γ′ ↪→ X and Γ′ ′ ↪→ X are any two possibilities for
Essence(Γ) ↪→ X then Γ′ and Γ′ ′ are homeomorphic and and the maps are
homotopic. To see the homotopy, note that distinct choices of representative
1-cells can be pushed to the same path in X1 while keeping their endpoints
fixed.
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Definition 3.7 (Splitting windmills). Let X be a 2-complex and let Γ be
the subgraph which separates a windmill Z in X from its complement. If the
embedding Essence(Γ) ↪→ X is π1-injective on each connected component
then Z is a splitting windmill.

4. Extreme 2-cells

In this section, we prove that minimal area disc diagrams over 2-complexes
with splitting windmills have 2-cells which are extreme in the sense that they
are attached to the rest of D along a very small portion of their boundary
cycle (Theorem 4.14). The key property of splitting windmills that enables
the proof is that they partition minimal area disc diagrams in a very restrictive
manner. Given any map to X (such as a disc diagram) we can pull back the
partitioning of X determined by the windmill and its complement to define a
partitioning of the domain. Recall that a graph with no cycles is a forest, a
connected forest is a tree, and a vertex of valence 1 is a leaf.

Theorem 4.1 (Forest). Let X be a 2-complex and let Γ ↪→ X be the sub-
graph which separates a splitting windmill from its complement. If P → X is
a nontrivial null-homotopic immersed combinatorial path and ψ : D → X is a
minimal area disc diagram having P as its boundary cycle, then Γ′ = ψ−1(Γ)
is a forest and every leaf in Γ′ lies in ∂D.

Proof. Let Y and Z denote complementary subcomplexes in X , one of
which is a splitting windmill. Which letter represents the windmill will be
irrelevant since the proof is symmetric with respect to Y and Z. The second
assertion is immediate since every 1-cell in Γ′ traverses an open 2-cell of D
in which one side belongs to φ−1(Y ) and the other to φ−1(Z), whereas if D
contained a leaf in its interior, both sides of its unique 1-cell would necessarily
belong to the same preimage.

Suppose that Γ′ contains a cycle. By choosing an innermost cycle, we can
find a cycle Q in Γ′ ⊂ D so that the portion of D to the left of Q belongs
entirely to ψ−1(Y ) or entirely to ψ−1(Z) as Q is traversed counterclockwise.
Without loss of generality, assume it belongs to ψ−1(Z). If ψ(Q) is not an
immersed loop in Γ, then the 2-cells containing the portion of Q immediately
before and after a point which fails to be an immersion will form a cancellable
pair in D. Note that we need the fact that the portion of D to the left of Q
lies in ψ−1(Z) to conclude that these 2-cells have opposite orientations. Since
by Lemma 1.9 this contradicts our assumption that D has minimal area, ψ(Q)
must be immersed. Moreover, since Γ is a graph, ψ(Q) is an essential in Γ.

Next, let φ : Γ → Essence(Γ) be the natural projection which sends each
1-cell in Γ to the 1-cell in Essence(Γ) which represents its equivalence class.
We claim that φ(ψ(Q)) is immersed—hence essential—in Essence(Γ). If not,
then as above, the 2-cells containing the portion of Q immediately before and
after the point which fails to be an immersion will form a cancellable pair
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Figure 4. An example of branching in Γ′.

in D. The difference is that this time the two 2-cells are not sent to X in
identical ways; they might be sent to redundant 2-cells or in different ways
to a single 2-cell attached by a proper power. Finally, φ(ψ(Q)) is essential
in X since the inclusion Essence(Γ) ↪→ X is π1-injective by assumption. On
the other hand, D is simply-connected, so Q is null-homotopic in D and its
image should be null-homotopic in X . This contradiction shows that Γ′ is a
forest. �

Remark 4.2 (Structure of Γ′). The conclusion of Theorem 4.1 does not
preclude the existence of trivial components in the interior of D since the
arguments given need an edge to get started. Such isolated interior points
can arise if Γ passes through a 0-cell of X . Another complication is that the
components of Γ′ can be quite complicated trees. Figure 4 illustrates how
such branching can occur. Although we will not need this simplification, we
note that neither complication will occur when Γ ∩ X0 is empty.

Despite the fact that Γ′ might branch in D, there is enough structure to
ensure that D is constructed by gluing together components in a tree-like
fashion. To make this precise we introduce the idea of a connection graph.

Definition 4.3 (Connection graph). If D is a disc diagram and Γ ↪→ D
is a graph in D, then we define its connection graph Conn(Γ,D) as follows.
The vertices of Conn(Γ,D) are the path components of Γ and the path com-
ponents of D \ Γ, and we have an edge from u to v when u represents a
component Γ0 of Γ, v represents a component D0 of D \ Γ, and Γ0 ∩ ∂D0 �= ∅.

Remark 4.4 (Paths). Since the components involved are path connected
and the edges represent adjacency in D, for any combinatorial path P →
Conn(Γ,D), we can create a path Q → D which traces through the corre-
sponding components in the exact same order. Moreover, if P is simple,
we can choose Q to be simple. Conversely, generic paths Q → D determine
combinatorial paths P → Conn(Γ,D) which simply trace the components tra-
versed. Our standing assumption that maps can be suitably subdivided to be
combinatorial, rules out pathological paths which wiggle across a single edge
in Γ infinitely often in a decaying manner.
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Lemma 4.5 (Tree-like). Let D be a disc diagram and let Γ ↪→ D be a forest
in D. If the leaves of Γ lie in ∂D, then its connection graph, T = Conn(Γ,D),
is a tree. If in addition no isolated vertices of Γ are contained in the interior
of D, then the components of D \ Γ are simply connected.

Proof. Suppose P → T is a nontrivial closed simple cycle. We will reach
a contradiction by showing that P has a backtrack meaning that it traverses
an edge followed by its inverse. Let Q → D be the closed simple cycle from
Remark 4.4. Then Q bounds a disc diagram D′ ⊂ D. Since P is nontrivial,
Q intersects Γ. An innermost component of D′ − Γ determines a backtrack
of P .

Suppose some component D0 of D \ Γ is not simply-connected. Let Q ⊂ D0

be an essential simple closed curve. Let D′ be the region bounded by Q. Then
D′ cannot be a disc since Q is essential. Thus, D′ contains some component
of Γ, which is necessarily a trivial component since any nontrivial component
intersects ∂D by Theorem 4.1. �

In order to take full advantage of Lemma 4.5, we introduce the notion of a
modified preimage.

Definition 4.6 (Modified preimages). Let X be 2-complex and let Y and
Z be complementary subcomplexes separated by Γ = Y ∩ Z. If ψ : D → X is
a disc diagram over X , then we partition D into sets Y ′, Z ′ and Γ′ as follows.
Let Γ′ be ψ−1(Γ) with any isolated points in the interior of D removed and
let Z ′ = ψ−1(Z) \ Γ′ and Y ′ = ψ−1(Y ) \ Γ′. We will call Γ′, Y ′ and Z ′ the
modified preimages of Γ, Y and Z, respectively. Notice that Y ′ and Z ′ are
open in D and Γ′ is closed.

The sets Z ′ and Y ′ are almost the same as ψ−1(Z \ Γ) and ψ−1(Y \ Γ)
except that the isolated points of ψ−1(Γ) in the interior of D have been
added to the regions which contain them. Adding these points will ensure
that the components of Z ′ and Y ′ will be simply-connected whenever Γ′ is
a forest with all its leaves in ∂D. In particular, the following corollary is an
immediate consequence of Theorem 4.1, Lemma 4.5, and Definition 4.6.

Corollary 4.7 (Simply-connected). Let X be a 2-complex and let Γ ↪→ X
be the subgraph which separates a splitting windmill Z from its complement Y .
If P → X is a nontrivial null-homotopic immersed combinatorial path and
ψ : D → X is a minimal area disc diagram having P as its boundary cycle,
then each component of each modified preimage, Γ′, Y ′ and Z ′ is simply-
connected.

A nonsingular subdiagram of a disc diagram D which is attached to the
rest of D at a single point is a dangling subdiagram. As a quick illustration of
Lemma 4.5, we give a short proof of the well-known result that certain disc
diagrams must contain dangling subdiagrams.
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Lemma 4.8 (Dangling subdiagrams exist). If X is a 2-complex, P → X is a
nontrivial null-homotopic immersed combinatorial loop, and D → X is a disc
diagram having P as its boundary cycle, then either D itself is nonsingular or
D contains at least two dangling subdiagrams.

Proof. Let Γ be the collection of 0-cells of D whose removal disconnects
D (i.e., cut vertices) and note that a disc diagram without cut vertices is
either trivial, a single 1-cell, or nonsingular. By Lemma 4.5, T = Conn(Γ,D)
is a tree, and by construction each vertex of Γ corresponds to a vertex of T
with valence at least 2. Thus, the leaves of T correspond to components of
D \ Γ attached to the rest of D at a single point. Since trivial subdiagrams
cannot be separated off by cut vertices and 1-cells attached at a single point
are prohibited since P is immersed, the leaves of T correspond to dangling
subdiagrams. Similarly, if T is trivial, then D is nonsingular since the restric-
tions on P ensure that D is not a single 0-cell or single 1-cell. The result now
follows from the observation that finite trees are either trivial or have at least
two leaves. �

Our second application is only slightly more complicated. In order to state
the result, we will need the notion of an outermost component.

Definition 4.9 (Outermost components). Let Z be a subcomplex of a
2-complex X , let ψ : D → X be a disc diagram, and let Z ′ be the modified
preimage of Z. A component Z0 of Z ′ is outermost if Z ′ \ Z0 is contained in
a single connected component of D \ Z0.

Lemma 4.10 (Outermost components exist). Let Z be a splitting windmill
in a 2-complex X , let P → X be a nontrivial null-homotopic immersed com-
binatorial path and let ψ : D → X be a minimal area disc diagram having P
as its boundary cycle. If D is nonsingular and Z ′ is the modified preimage of
Z in D, then either Z ′ is connected or Z ′ has at least two outermost compo-
nents. Moreover, for each outermost component Z0 of D there exists a simple
path Q → D in ∂Z0 so that D \ Q is disconnected and Z0 lies in a different
connected component of D \ Q from the rest of Z ′.

Proof. By Theorem 4.1, Γ′ is a forest with its leaves in ∂D, and so by
Lemma 4.5, the connection graph T = Conn(D,Γ′) is a tree. Consider the
smallest subtree T ′ of T which contains all of the vertices corresponding to
components of Z ′. This subtree is either trivial, in which case Z ′ is connected,
or it has at least two leaves. By minimality of T ′ each leaf corresponds to a
component of Z ′, and using Remark 4.4, we see that a component of Z ′ is an
outermost component if and only if it corresponds to a leaf in T ′.

The final assertion can be shown as follows. Let Z0 be an outermost com-
ponent which corresponds to a leaf v in T ′ and let Γ0 be the component of Γ′

which corresponds to the unique vertex u in T ′ connected to v. The intersec-
tion ∂Z0 ∩ Γ0 will be a path with the required properties. In particular, the
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intersection ∂Z0 ∩ Γ0 is a simple path Q (rather than more complicated 1-
complex) since Γ0 is a tree with its leaves in ∂D and ∂Z0 is a circle, so ∂Z0 ∩ Γ0

consists of at most one arc since T is a tree. The separation properties for Q
follow immediately from the position of u in T ′ and Remark 4.4. �

Our third application of Lemma 4.5 will show that certain disc diagrams
contain 2-cells which are extreme in the following sense.

Definition 4.11 (Extreme 2-cells). Let X be a 2-complex, let Y and Z
be complementary subcomplexes, and let Γ = Y ∩ Z be the subgraph which
separates them. A 2-cell R in a disc diagram ψ : D → X is extreme with respect
to Z if ∂R is the concatenation of two paths S and Q where Q is a subpath
of ∂D and S ∩ ψ−1(Z) has at most one nontrivial component (isolated points
in the intersection are ignored). Figure 5 contains a sketch of a disc diagram
which contains four copies of the 2-cell from Figure 2. The one in the lower
left-hand corner is not extreme; the other three are extreme.

We will prove three versions of the following result under successively
weaker hypotheses.

Lemma 4.12 (Extreme 2-cells exist: first version). Let X be a 2-complex, let
Z be a splitting windmill in X with complement Y , let P → X be a nontrivial
null-homotopic immersed combinatorial path, and let ψ : D → X be a minimal
area disc diagram having P as its boundary cycle. If D is nonsingular, and
the modified preimage of Z in D is connected, then either D consists of a

Figure 5. Three extreme 2-cells in a disc diagram.
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single 2-cell or D contains at least two 2-cells which are extreme with respect
to Z.

Proof. Let Y ′ and Z ′ denote the modified preimages of Y and Z, and let
Δ be the graph D1 ∩ Z ′. Observe that Δ is a forest, for otherwise there
would be a simple closed curve Q in Δ and, since D is simply-connected,
Q would bound a non-singular subdiagram of D containing at least one 2-
cell. Consequently, Q would lie in Z ′ but contain points of Y ′ in its interior,
contradicting the fact that Z ′ is simply-connected (Corollary 4.7). Moreover,
the leaves of Δ must lie in ∂Z ′ because the 2-cells of X are attached along
immersed paths (Definition 1.1). Thus, by Lemma 4.5, the connection graph
T = Conn(Z ′,Δ) is a tree.

A similar argument shows that for each 2-cell R in D, the distinct portions
of ∂R ∩ Z ′ (recall that there are at least two by the definition of a windmill)
belong to distinct components of Δ. If not, a simple path in Δ connecting
distinct portions, combined with a simple path connecting them through R ∩
Z ′ (which exists because R ∩ Z ′ is connected) forms a simple closed path in Z ′

which surrounds points in Y ′ ∪ Γ′ (in particular there are points of this type
in ∂R separating the distinct intervals of ∂R ∩ Z ′ we have connected). This
contradicts that Z ′ is simply-connected, proving the claim. Consequently, all
leaves of T are components of Δ.

Finally, let T ′ be the smallest subtree in T which contains all of the vertices
corresponding to components of Z ′ \ Δ. Since the components of Z ′ \ Δ also
correspond to the 2-cells in D, T ′ is a single vertex if and only if D consists
of a single 2-cell. Moreover, when D has more than one 2-cell it is easy to see
that a 2-cell of D is extreme with respect to Z if and only if it corresponds
to a leaf of T ′. �

Using Lemma 4.10, we can remove the assumption that Z ′ is connected.

Lemma 4.13 (Extreme 2-cells exist: second version). Let X be a 2-complex,
let Z be a splitting windmill in X with complement Y , let P → X be a non-
trivial null-homotopic immersed combinatorial path, and let ψ : D → X be a
minimal area disc diagram having P as its boundary cycle. If D is nonsingu-
lar, then either D consists of a single 2-cell or D contains at least two 2-cells
which are extreme with respect to Z.

Proof. Let Z ′ be the modified preimage of Z in D. By Lemma 4.12, we
may assume Z ′ is disconnected and by Lemma 4.10, D must contain at least
two outermost components. If each outermost component Z0 contributes at
least one extreme 2-cell, we will be done.

Let D0 be the union of the 2-cells of D which intersect Z0 nontrivially.
Notice that D0 ∩ Z ′ = Z0 since the intersection of Z ′ with each 2-cell is con-
nected. We claim that D0 is a nonsingular disc diagram which is attached to
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the rest of D along a path Q′ contained in Y ′ ∪ Γ′. To see that D0 is simply-
connected, suppose not. Then there is a simple closed path in ∂D0 ∩ (Y ′ ∪ Γ′)
which bounds a subdiagram of D (it cannot contain points in Z ′ since Z ′ is
open in D). This subdiagram contains at least one 2-cell and hence a point
in Z ′. And finally, the boundary of this component of Z ′ must be an essential
cycle in Γ′ contradicting Corollary 4.7. Thus, D0 is a disc diagram. Since
it is a union of 2-cells and Z0 is open in D, it is also nonsingular. Finally,
by Lemma 4.10, Z0 can be separated from the rest of Z ′ by a path Q in Γ′.
Let Q′ be the portion of ∂D0 which has the same endpoints as Q and which
avoids Z0. The path Q′ exists since Q separates and Z ′ ∩ D0 is connected.

By Lemma 4.12, D0 is either a single 2-cell or it contains at least two
2-cells which are extreme with respect to Z. Since a single 2-cell attached
to the rest of D along a path Q′ in Y ′ ∪ Γ′ is always extreme with respect
to Z, we may assume D0 has at least two extreme 2-cells. Finally, when such
a D0 is attached to the rest of the diagram along a path Q′ in Y ′ ∪ Γ′, at
most one of these 2-cells loses its status as an extreme 2-cell, and the proof is
complete. �

Finally, using Lemma 4.8, we can remove the assumption that D is non-
singular.

Theorem 4.14 (Extreme 2-cells exist). If X is a 2-complex, Z is a splitting
windmill in X with complement Y , P → X is a nontrivial null-homotopic
immersed combinatorial path, and ψ : D → X is a minimal area disc diagram
having P as its boundary cycle, then either D consists of a single 2-cell or D
contains at least two 2-cells which are extreme with respect to Z.

Proof. We may assume that D is singular by Lemma 4.13, so D must
contain at least two dangling subdiagrams by Lemma 4.8. If each dangling
subdiagram D′ contributes at least one extreme 2-cell, we will be done. By
Lemma 4.13, D′ is either a single 2-cell or it contains at least two 2-cells which
are extreme with respect to Z. Since a single 2-cell attached to the rest of
D at a point is always extreme with respect to Z, we may assume D′ has
at least two extreme 2-cells. Finally, when such a D′ is attached to the rest
of the diagram at a point, at most one of these 2-cells loses its status as an
extreme 2-cell, and the proof is complete. �

When the hypotheses of Theorem 4.14 hold, we will say that disc diagrams
over X have extreme 2-cells.

5. Applications to coherence

In this final section, we combine the constructions ∂A and ðA with Theo-
rem 4.14 to show that various groups are coherent. Throughout this section,
let X be a 2-complex, let A be a portion of its 1-skeleton, let Γ be either
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∂A or ðA, and let Y and Z be as defined in Definitions 3.3 or 3.4, respec-
tively. In order to apply Theorem 4.14, we need to know that Z is a splitting
windmill. As we noted in the definitions of ∂A and ðA, there are easy con-
ditions on A which ensure that Z is a windmill, so the main issue becomes
whether Essence(Γ) → X is π1-injective. Moreover, since the inclusion map
Essence(Γ) → X can be homotoped to a map Essence(Γ) → A ⊆ X by
pushing the regular neighborhood of A back into A in the obvious way, it is
sufficient to establish that this new map is π1-injective and that the inclusion
A → X is π1-injective. Here are three common situations where A → X is
known to be π1-injective.

Theorem 5.1 (Freiheitsatz). Let X be the standard 2-complex of a pre-
sentation whose single relator is reduced and cyclically reduced. If A is a non-
empty subgraph of X1 that omits at least one 1-cell contained in the boundary
cycle of the relator, then the inclusion A ↪→ X is π1-injective.

The Freiheitssatz for one-relator groups, which was first proven by Magnus,
can be generalized in various ways. One of these generalizations involves the
notion of staggered 2-complex (see [1] or [2]).

Definition 5.2 (Staggered). Let X be a 2-complex with a subgraph A ⊂
X1 such that each 2-cell of X contains a 1-cell not in A on its boundary.
Suppose that there is a linear ordering on the 1-cells of X which are not in A,
and a linear ordering on the 2-cells of X . For each 2-cell α, we let max(α) and
min(α) denote the highest and lowest 1-cells not in A which occur in ∂α. We
then say that the pair X,A is staggered provided that if α and β are 2-cells
with α < β then max(α) < max(β) and min(α) < min(β).

The following generalization of the Freiheitssatz is proven in [2] (see also
[1]).

Theorem 5.3. If X,A is staggered (for some linear orderings), then the
inclusion map A ↪→ X is π1-injective on all components.

Our third example is an immediate corollary of the fundamental theorem
of small cancellation theory. See [2] or [4] for small-cancellation definitions
and further details.

Theorem 5.4. Let X be a C(6) [C(4) − T (4)] small-cancellation complex,
and let A be a subgraph of X1. If there does not exist a path S in A and a
path Q in X such that Q is the concatenation of at most 3 pieces [2 pieces] in
X and QS is the attaching map of a 2-cell of X , then A ↪→ X is π1-injective.

Thus, in each of these three contexts, we merely need to check that
Essence(Γ) → A is π1-injective in order for Theorem 4.14 to apply.
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5.1. Combinatorial descriptions. To understand the situation, we now
provide a combinatorial description of ∂A → A and ðA → A.

Definition 5.5. Let X be the standard 2-complex of the presentation

〈a1, . . . , ap, b1, . . . , bq | W1, . . . ,Wr 〉.
Let A and B be the subgraphs of X1 corresponding to the ai and bi edges.
For each i, the word Wi can be written uniquely in the form

Wi0b
εi1
i1 Wi1b

εi2
i2 Wi2 . . . b

εisi
isi

Wisi ,

where each εij is ±1, each bij is a generator in B, and each word Wij is a
(possibly empty) word in the generators of A. By replacing Wi with one of its
cyclic conjugates, we can assume that Wi0 is empty. We now form a graph ∂A
from the set of Wi words as follows: For each i, we form a 2si-sided polygon
whose edges are directed and labeled by the elements b

εij

ij and Wij in exactly
the same order as in Wi. For each k, we identify edges which are labeled by
bk according to their orientations. Finally for each k, we remove the interior
of the edge labeled bk. The resulting graph ∂A has 2q vertices and

∑r
i=1 si

edges.
By assumption, each word Wij is a word in the free group generated by A,

and there is an induced label-preserving map from ∂A to A. Note that the
edges which are labeled by the trivial element are mapped to vertices. The
graph ∂A is injective if this map is π1-injective on each component. An
important special case where ∂A is injective is when the words Wij form a
basis for a subgroup of the free group generated by A.

Definition 5.6 (Generator graphs). Let W be an arbitrary word and let
t be one of the generators it contains. If we single out all of the instances of
t in W , then we can write W uniquely in the form W0t

ε1W1t
ε2W2 . . . tεrWr

where each εi is an integer and each word Wi is a non-empty word which does
not contain the letter t. If we replace W with one of its cyclic conjugates,
we can assume that W0 is empty. We now form a graph ðt(W ), called the
generator graph of W for the generator t, as follows: We begin with the |W |-
sided polygon whose edges are directed and labeled by the generators so that
the label of the entire boundary is the word W . Next, we identify all of the
t-edges according to their orientations, and finally we remove the interior of
the unique edge labeled t in the quotient. The resulting graph will be ðt(W ).
Notice that it contains either one or two connected components.

More generally, let B and C be disjoint sets of letters and let W be a
word of the form W = B1C1B2C2 . . .BkCk where Bi and Ci are nonempty
reduced words using generators from B and C, respectively. The generator
graph ðB(W ) is formed as follows: Take the |W |-sided polygon as before,
and identify all of the instances of the generator b ∈ B according to their
orientations, and repeat this for each generator in B that occurs in W . Finally,
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remove the interior of the edges labeled by elements of B. The resulting graph
is ðB(W ). This more general graph may contain quite a few components.

Since each Ci is a word in the free group generated by C, there is an
induced label-preserving map from ðB(W ) to the bouquet of circles labeled
by the ci ∈ C. The graph ðB(W ) is injective if this map is π1-injective on
each component. An important special case where ðB(W ) is injective is when
the words Ci form a basis for a subgroup of the free group generated by C.

5.2. Applications of ∂A. Here is an application to coherence of one-relator
groups.

Theorem 5.7. Consider a one-relator group of the form

G = 〈a1, a2, . . . , b | (bε1W1b
ε2W2 . . . bεrWr)n〉,

where for each i, εi = ±1, n is arbitrary, and Wi is a word in the ai. Suppose
that ∂A is injective. Let P denote a reduced word representing the trivial
element, then P contains a subword Q such that QS is equal to a cyclic
conjugate of W ±n and b±1 occurs at most once in S. As a consequence, G is
coherent.

Proof. By the Freiheitssatz (Theorem 5.1), the ai elements form a basis for
a free group. Let R denote the unique 2-cell of X . Let each side of R at b
have weight 1, and let each side of R not at b have weight 0. Then X satisfies
the ≤ condition for the perimeter reduction hypothesis of [3, Theorem 7.6],
and is therefore coherent. �

We can now state a generalization of Theorem 5.7 to staggered 2-complexes.

Theorem 5.8. Let X be the standard 2-complex of the presentation

〈a1, . . . , ap, t1, . . . , tq | W1, . . . ,Wr 〉

and let A denote the subgraph of X1 corresponding to the ai edges. If X,A
is relatively staggered for some linear orderings and the inclusion ðA → X is
injective, then extreme 2-cells exist in disc diagrams over X .

Theorem 5.9. Let X be a C(6) [C(4) − T (4)] small-cancellation complex,
and suppose that A is a subgraph of X1 such that there does not exist a
path S → A such that QS is the attaching map of a 2-cell of X , where Q is
the concatenation of at most 3 pieces [2 pieces] in X . Then A → X is π1-
injective. Consequently, if ∂A → A is injective, then extreme 2-cells exist in
disc diagrams over X .

In both cases, the restricted nature of the extreme 2-cells, combined with
Theorem 7.6 of [3], leads to new tests for coherence.
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5.3. ðA applications. The following theorem is merely the conclusion of
Theorem 4.14 translated into a more group theoretic language.

Theorem 5.10. Let W = A1B1A2B2 . . .AkBk be a word where the Ai are
non-empty words using generators in A and the Bi are nonempty words using
generators from B (disjoint from A), and let G be the one-relator group G =
〈A ∪ B | Wn〉. If Essence(ðA) → A is π1-injective and P is a cyclically
reduced word representing the trivial element in G, then there are words Q
and S such that Q is a subword of P , QS is a cyclic conjugate of W ±n and
S is a subword of Bi−1AiBi for some i where the subscripts are considered
modk.

When k is at least 2, then this theorem gives a refinement of the B. B. New-
man spelling theorem in the sense that it further restricts the size of the pos-
sible complements S. As with the spelling theorem, this leads immediately
to a corresponding weight test. We refer the reader to [3] for the definition of
Perimeter(Ai) and Weight(Wn).

Corollary 5.11. Let G = 〈A ∪ B | Wn〉 be a one relator group with tor-
sion where A and B are disjoint sets of generators and W has the form
A1B1A2B2 . . .AkBk for some non-empty words Ai and Bi using generators
from A and B, respectively. If Essence(ðA) → A is π1-injective and
Perimeter(Ai) ≤ Weight(Wn) for all i, then G is coherent.

Proof. Let X be the standard 2-complex of the presentation. Assign a
weight of 1 to each side labeled by an element of A and a weight of 0 to each
side labeled by an element of B. By Theorem 5.10, the Perimeter Reduction
Hypothesis of [3, Theorem 7.6] is satisfied and so G ∼= π1X is coherent. �

The most important corollary, and the easiest to apply, is the following.

Corollary 5.12. Let G = 〈A, t | WN 〉 where W has the form tε1W1t
ε2W2

. . . tεkWk and for each i, εi is an integer and Wi is a reduced word over A. If
Essence(ðA) → A is injective, then G is coherent.

Proof. Since Perimeter(t) = Weight(W ), Corollary 5.11 applies. �
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