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ON M-PERMUTABLE SYLOW SUBGROUPS OF FINITE
GROUPS

LONG MIAO AND WOLFGANG LEMPKEN

Abstract. A p-subgroup P �= 1 of G is called M-permutable in
G if there exists a set Md(P ) = {P1, . . . , Pd } of maximal subgroup

Pi of P and a subgroup B of G such that: (1)
⋂d

i=1 Pi = Φ(P )

and |P : Φ(P )| = pd; (2) G = PB and PiB = BPi < G for any

Pi of Md(P ). In this paper, we investigate the influence of M-
permutability of Sylow subgroups in finite groups. Some new
results about supersolvable groups and formations are obtained.

1. Introduction

All the groups in this paper are finite. Let G be a finite group and M(G)
be the set of all maximal subgroups of the Sylow subgroups of G. An inter-
esting question is how the elements in M(G) influence the structure of finite
groups. As a typical example of this aspect Srinivasan [13] states that G is
supersolvable provided that each member of M(G) is normal in G. Later,
this result has been widely generalized (see [8], [9], [16], [17]).

Recall that a subgroup H of G is said to be supplemented in G, if there
exists a subgroup K of G such that G = HK. The relationship between the
property of primary subgroups and the supplements of some restricted con-
ditions has been studied extensively by many scholars. For instance, Hall [5]
in 1937 proved that a group G is solvable if and only if every Sylow sub-
group of G is complemented in G. Later on, Arad and Ward [1] further
proved that a group G is solvable if and only if every Sylow 2-subgroup and
every Sylow 3-subgroup of G are complemented in G. Recently, Ballester-
Bolinches, Wang and Guo ([2], [16]) introduced the concept of c-supplemented
subgroup and proved that G is solvable if and only if every Sylow subgroup
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of G is c-supplemented in G. More recently, Miao and Lempken [9] consid-
ered M-supplemented subgroups of finite groups G and obtained some new
characterization of saturated formations containing all supersolvable groups.

Now, we introduce the following new concept of M-permutable subgroups.

Definition 1.1. Let G be a finite group and p a prime divisor of |G|.
A p-subgroup P �= 1 of G is called M-permutable in G if there exists a set
Md(P ) = {P1, . . . , Pd} of maximal subgroups Pi of P and a subgroup B of G
such that

(1)
⋂d

i=1 Pi = Φ(P ) and |P : Φ(P )| = pd (so d is the smallest generator
number of P );

(2) G = PB and PiB = BPi < G for any Pi of Md(P ).

Recall that, a subgroup H is called M-supplemented in a finite group G, if
there exists a subgroup B of G such that G = HB and H1B is a proper sub-
group of G for any maximal subgroup H1 of H [9, Definition 1.1]. Obviously,
if a p-subgroup H is M-supplemented in G, then H is also M-permutable
in G. The following example shows that the converse is not true.

Example 1.2. G = 〈s, a〉 × 〈t, b〉 where |a| = |b| = 3, |s| = |t| = 2 and 〈s, a〉 ∼=
〈t, b〉 ∼= S3. Clearly, P = 〈a, b〉 ∈ Syl3(G), d = 2 and M2(P ) = {〈a〉, 〈b〉 }.
Choose B = 〈s, t〉. 〈a〉B = B〈a〉, 〈b〉B = B〈b〉, but 〈ab〉B �= B〈ab〉. There-
fore, we conclude that Sylow 3-subgroup of G is M-permutable in G, but is
not M-supplemented in G.

Most of the notation is standard and can be found in [4] and [11]. In
particular, H < G indicates that H is a proper subgroup of G, |G| denotes
the order of G, Gp is a Sylow p-subgroup of G and π(G) is the set of all
prime divisors of |G|. Moreover, Φ(G), F (G) and F ∗(G) denote the Frattini
subgroup, the Fitting subgroup and the generalized Fitting subgroup of G,
respectively. Furthermore, U denotes the class of all supersolvable groups.

In this paper, we will investigate the properties of the M-permutable Sylow
subgroups in a finite group G. The main goal of this paper is to prove the
following theorem.

Theorem 3.6. Let F be a saturated formation containing U . Suppose
that G is a finite group with a normal subgroup H such that G/H ∈ F . If
every noncyclic Sylow subgroup of F ∗(H) is M-permutable in G, then G ∈ F .

In order to prove Theorem 3.6, we shall prove the following fact which is
one of the main step in the proof of Theorem 3.2 and Theorem 3.4.

Theorem 3.2. Let F be a saturated formation containing U and let H be
a normal subgroup of G such that G/H ∈ F . Suppose that every noncyclic
Sylow subgroup of H is M-permutable in G, then G ∈ F .
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Theorem 3.4. Let F be a saturated formation containing U . Suppose
that G is a finite group with a solvable normal subgroup H such that G/H ∈ F .
If every noncyclic Sylow subgroup of F (H) is M-permutable in G, then G ∈ F .

Recall that a class F of groups is said to be a formation if G/H ∈ F
whenever G ∈ F and H � G and if G/(M ∩ N) ∈ F whenever G/M and
G/N are in F . A formation F is said to be saturated if G ∈ F whenever
G/Φ(G) ∈ F . Note that for a formation F every group G has a uniquely
determined smallest normal subgroup GF such that G/GF ∈ F . It is also
well known that the class of all supersolvable groups and the class of all p-
nilpotent groups are saturated formations (e.g., see [4]).

2. Preliminaries

For the sake of convenience, we first list here some results which will be
used in the sequel.

Lemma 2.1. Let G be a finite group and P �= 1 a p-subgroup of G for some
p ∈ π(G). Assume that P is M-permutable in G with respect to Md(P ) and
that L is a normal subgroup of G contained in P . Then the following hold:

(1) There exists a subgroup B of G such that G = PB and |G : PiB| = p
for any Pi ∈ Md(P ); moreover, P ∩ B = Pi ∩ B = Φ(P ) ∩ B.

(2) If P ≤ H ≤ G, then P is M-permutable in H .
(3) If L ≤ Φ(G), then L ≤ Φ(P ).
(4) If L ≤ Φ(P ), then P/L is M-permutable in G/L.
(5) If L is a minimal normal subgroup of G and L � Φ(P ), then |L| = p.

Proof. (1) By definition, there exists a subgroup B of G with G = PB
and PiB = BPi < G for Pi ∈ Md(P ). Since |P : Pi| = p, order considerations
show that |G : PiB| = p and P ∩ B = Pi ∩ B for any Pi ∈ Md(P ). Hence,
P ∩ B =

⋂d
i=1(Pi ∩ B) = Φ(P ) ∩ B.

(2) Now we have H = H ∩ PB = P (H ∩ B) and H ≥ H ∩ PiB = Pi(H ∩ B)
for any Pi ∈ Md(P ). Since P ∩ (H ∩ B) = P ∩ B = Pi ∩ B = Pi ∩ (H ∩ B) and
Pi < P , we have Pi(H ∩ B) < P (H ∩ B) = H . Therefore, P is M-permutable
in H .

(3) If L ≤ Φ(G), then L ≤
⋂d

i=1 PiB = Φ(P )B and thus L ≤ P ∩ Φ(P )B =
Φ(P )(P ∩ B) = Φ(P ).

(4) If L ≤ Φ(P ), then we may set Md(P/L) = {Pi/L | Pi ∈ Md(P )}. Then
we have L ≤ BL ≤ Φ(P )B ≤ PiB < G and BL/L < G/L as well as G/L =
(P/L)(BL/L) and (Pi/L)(BL/L) = PiB/L < G/L; so P/L is M-permutable
in G/L.

(5) If L is a minimal normal subgroup of G and L � Φ(P ), then there
exists Pi ∈ Md(P ) with L � PiB by the proof of part (3). Then G = LPiB
and so L ∩ PiB � G. As L is minimal normal in G, L ∩ PiB = 1 and hence
|L| = p. �
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Lemma 2.2 ([17, Theorem 3.1]). Let F be a saturated formation containing
U , G a group with a solvable normal subgroup H such that G/H ∈ F . If for
any maximal subgroup M of G, either F (H) ≤ M or F (H) ∩ M is a maximal
subgroup of F (H), then G ∈ F . The converse also holds, in the case where
F = U .

Lemma 2.3 ([4, Theorem 1.8.17]). Let N be a solvable normal subgroup of
a group G (N �= 1). If N ∩ Φ(G) = 1, then the Fitting subgroup F (N) of N
is the direct product of minimal normal subgroups of G which are contained
in N .

Lemma 2.4 ([10, Lemma 2.6]). If H is a subgroup of G with |G : H| = p,
where p is the prime divisor of |G| such that (|G|, p − 1) = 1, then H � G.

Lemma 2.5. Let p ∈ π(G) and P ∈ Sylp(G). Then the following hold:
(1) If NG(P ) = CG(P ), then G is p-nilpotent. In particular, G is p-

nilpotent whenever P is cyclic and p is the smallest prime in π(G).
(2) If N � G with P ∩ N ≤ Φ(P ), then N is p-nilpotent.

Proof. (1) This is a result of W. Burnside; see [6, Theorem IV.2.6 and
IV.2.8].

(2) This is a result of Tate [14]; also see [6, Theorem IV.4.7]. �

Lemma 2.6. Let G be a finite group and P a Sylow p-subgroup of G where
p is the prime divisor of |G| such that (|G|, p − 1) = 1. Then G is p-nilpotent
if and only if P is M-permutable in G.

Proof. If G is p-nilpotent, then G has a normal p-complement D. For the
Sylow p-subgroup P of G and every maximal subgroup P1 of P , we may easily
get G = PD and P1D < G. Therefore P is M-permutable in G.

Conversely, if P is M-permutable in G, there exists a subgroup B of G
such that G = PB and PiB < G for any Pi of Md(P ). By Lemma 2.1, we
have |G : PiB| = p and hence PiB � G by Lemma 2.4. Since |G : PiB| =
|PB : PiB| = p, we have P ∩ B = Pi ∩ B for any Pi of Md(P ). On the other
hand

⋂d
i=1 Pi = Φ(P ) and hence P ∩ B =

⋂d
i=1(Pi ∩ B) = Φ(P ) ∩ B. Next

we will prove
⋂

Pi ∈Md(P )(PiB) = (
⋂

Pi ∈Md(P ) Pi)B. In fact, we only need to
prove PiB ∩ PjB = (Pi ∩ Pj)B for any two maximal subgroups Pi and Pj

of Md(P ). Clearly, PiB ∩ PjB ≥ (Pi ∩ Pj)B. On the other hand, we may
choose xb1 = yb2 ∈ PiB ∩ PjB, where x ∈ Pi, y ∈ Pj and b1, b2 ∈ B. Hence,
y−1x = b2b

−1
1 ∈ P ∩ B = Pi ∩ B = Pj ∩ B. Therefore, x ∈ Pi ∩ Pj and we get

PiB ∩ PjB = (Pi ∩ Pj)B. Therefore, we have that
⋂d

i=1(PiB) = (
⋂d

i=1 Pi)B =
Φ(P )B and Φ(P )B � G. It follows from P ∩ Φ(P )B = Φ(P )(P ∩ B) ≤ Φ(P )
that we have Φ(P )B is p-nilpotent by Lemma 2.5. Let H be a normal Hall
p′- subgroup of Φ(P )B. Clearly, H is also the normal Hall p′-subgroup of G
and hence G is p-nilpotent. The proof is over. �
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Lemma 2.7 ([8, Lemma 2.7]). Let P be an elementary Abelian p-group of
order pd, d ≥ 2, p a prime and let Md(P ) = {M1, . . . ,Md}. Then

(a) Xi =
⋂

i �=j Mj is cyclic of order p;
(b) P = 〈X1, . . . ,Xd〉.
Lemma 2.8 ([7]). Let G be a group and N a subgroup of G. The generalized

Fitting subgroup F ∗(G) of G is the unique maximal normal quasinilpotent
subgroup of G. Then

(1) If N is normal in G, then F (N) = N ∩ F (G) and F ∗(N) = N ∩ F ∗(G);
(2) F ∗(G) �= 1 if G �= 1; in fact, F ∗(G)/F (G) = Soc(F (G)CG(F (G))/

F (G);
(3) F ∗(F ∗(G)) = F ∗(G) ≥ F (G); if F ∗(G) is solvable, then F ∗(G) = F (G);
(4) CG(F ∗(G)) ≤ F (G);
(5) Let P � G and P ≤ Op(G); then F ∗(G/Φ(P )) = F ∗(G)/Φ(P );
(6) If K is a subgroup of G contained in Z(G), then F ∗(G/K) = F ∗(G)/K.

Lemma 2.9. Let H and L be normal subgroups of G and let p ∈ π(G). Then
the following hold:

(1) Φ(H) ≤ Φ(G);
(2) If L ≤ Φ(G), then F (G/L) = F (G)/L;
(3) If L ≤ H ∩ Φ(G), then F (H/L) = F (H)/L;
(4) If H is a p-group and L ≤ Φ(H), then F ∗(G/L) = F ∗(G)/L.

Proof. (1) See [6, Lemma III.3.3].
(2) Note that F (G/Φ(G)) = F (G)/Φ(G) and Φ(G/L) = Φ(G)/L. With this

we obtain (F (G)/L)/Φ(G/L) = (F (G)/L)/(Φ(G)/L) ∼= F (G)/Φ(G) = F (G/
Φ(G)) ∼= F ((G/L)/(Φ(G)/L)) = F ((G/L)/Φ(G/L)) = F (G/L)/Φ(G/L) and
then F (G)/L = F (G/L).

(3) Note that F (H/L) = H/L ∩ F (G/L) = H/L ∩ F (G)/L = (H ∩ F (G))/
L = F (H)/L.

(4) Since L ≤ Φ(H), we have Φ(H/L) = Φ(H)/L. By Lemma 2.8, we ob-
tain that F ∗((G/L)/Φ(H/L)) = F ∗(G/L)/Φ(H/L) ∼= F ∗(G/Φ(H)) = F ∗(G)/
Φ(H) and hence (F ∗(G)/L)/(Φ(H)/L) = F ∗(G/L)/Φ(H/L). Therefore,
F ∗(G/L) = F ∗(G)/L. �

Lemma 2.10 ([12, Lemma 1.9]). Let F be a saturated formation containing
U and G be a group with a normal subgroup E such that G/E ∈ F . If E is
cyclic, then G ∈ F .

Lemma 2.11 ([4, Lemma 3.6.10]). Let K be a normal subgroup of G and P
a p-subgroup of G where p is a prime divisor of |G|. Then NG/K(PK/K) =
NG(P1)K/K, here P1 is a Sylow p-subgroup of PK.

Lemma 2.12. Let F be a saturated formation containing U . Suppose that G
is a finite group with a solvable normal subgroup H such that G/H ∈ F . If
every Sylow subgroup of F (H) is cyclic, then G ∈ F .
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Proof. Assume that the assertion is false and choose G to be a counterex-
ample of smallest order.

Let p be a prime of π(H) and assume that Φ(Op(H)) �= 1. Then we
have F (H/Φ(Op(H))) = F (H)/Φ(Op(H)) by Lemma 2.9. Now, we easily
verify that the pair (G/Φ(Op(H)),H/Φ(Op(H))) satisfies the hypotheses of
the lemma. Therefore, by the minimal choice of G, G/Φ(Op(H)) ∈ F . As
Op(H) � G, Φ(Op(H)) ≤ Φ(G). As F is a saturated formation, we now get
G/Φ(G) ∈ F and hence G ∈ F , a contradiction.

So we have Φ(Op(H)) = 1. We have shown that every Sylow subgroup of
F (H) is cyclic group of prime order.

Assume now that π(F (H)) = {p1, . . . , pr } and that Ri := Opi(F (H)) is
cyclic of order pi for i ∈ {1, . . . , r}. So CH(F (H)) = F (H) = R1 × · · · × Rr

and H/F (H) � Aut(F (H)) ∼= ×r

i=1 Aut(Ri) where Aut(Ri) is cyclic of order
pi − 1.

Set Fi = R1 × · · · × Ri and Hi = CH(Fi) for i ∈ {1, . . . , r}; clearly, Fi � G
and Hi � G with R1 = F1 < F2 < · · · < Fr = Hr ≤ Hr−1 ≤ · · · ≤ H1 ≤ H such
that H/H1,H1/H2, . . . ,Hr−1/Hr, Fr/Fr−1, . . . , F2/F1 and F1 are cyclic. Since
G/H ∈ F , iterated application of Lemma 2.10 yields G ∈ F , a contradiction.

The final contradiction completes our proof. �

3. Main results

Theorem 3.1. Let p be an odd prime divisor of |G| and P be a Sylow
p-subgroup of G. Then G is p-nilpotent if and only if NG(P ) is p-nilpotent
and P is M-permutable in G.

Proof. As the necessity part is obvious, we only need to prove the sufficiency
part. Assume that the assertion is false and choose G to be a counterexample
of minimal order. We will divide the following steps.

(1) Op′ (G) = 1.
In fact, if Op′ (G) �= 1, then we consider the quotient group G/Op′ (G). By

Lemmas 2.1 and 2.11, G/Op′ (G) satisfies the condition of the theorem, the
minimal choice of G implies that G/Op′ (G) is p-nilpotent, and hence G is
p-nilpotent, a contradiction.

(2) If S is a proper subgroup of G containing P , then S is p-nilpotent.
Clearly, NS(P ) ≤ NG(P ) and hence NS(P ) is p-nilpotent. Applying

Lemma 2.1, we find that S satisfies the hypotheses of our theorem. Then
the minimal choice of G implies that S is p-nilpotent.

(3) G = PQ, where Q is the Sylow q-subgroup of G with q �= p.
Since G is not p-nilpotent, by Thompson ([15], Corollary), there exists a

characteristic subgroup H of P such that NG(H) is not p-nilpotent. Since
NG(P ) is p-nilpotent, we may choose a characteristic subgroup H of P such
that NG(H) is not p-nilpotent, but NG(K) is p-nilpotent for any characteris-
tic subgroup K of P with H < K ≤ P . Since NG(P ) ≤ NG(H) and NG(H) is
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not p-nilpotent, we have NG(P ) < NG(H). Then by (2), we have NG(H) = G.
This leads to Op(G) �= 1 and NG(K) is p-nilpotent for any characteristic sub-
group K of P such that Op(G) < K ≤ P . Now by Thompson ([15], Corollary),
again, we see that G/Op(G) is p-nilpotent and therefore, G is p-solvable.
Since G is p-solvable, for any q ∈ π(G) with q �= p, there exists a Sylow q-
subgroup Q of G such that PQ = QP is a subgroup of G by Gorenstein
([3], Theorem 6.3.5). If PQ < G, then PQ is p-nilpotent by (2). This leads to
Q ≤ CG(Op(G)) ≤ Op(G) by Robinson ([11], Theorem 9.3.1) since Op′ (G) = 1,
a contradiction. Thus, we have proven that G = PQ.

(4) Final contradiction.
If Op(G) ∩ Φ(G) �= 1, then we pick a minimal normal subgroup L of G with

L ≤ Op(G) ∩ Φ(G). By Lemma 2.1(3), we have L ≤ Φ(P ) and, furthermore,
G/L satisfies the condition of the theorem by Lemma 2.1(4), the minimal
choice of G implies that G/L is p-nilpotent. Since the class of all p-nilpotent
groups is a saturated formation, we obtain that G is p-nilpotent, a contradic-
tion.

So we may assume Op(G) ∩ Φ(G) = 1. Let L be any minimal normal
subgroup of G contained in Op(G). Clearly, L � Φ(P ). By Lemma 2.1(5),
we have |L| = p. Thus, Op(G) is the direct product of some minimal normal
subgroups of order p of G by Lemma 2.3. If p < q, then LQ is p-nilpotent by
Lemma 2.5 and therefore Q ≤ CG(Op(G)), which contradicts to CG(Op(G)) =
Op(G). On the other hand, if q < p, since Op(G) is the direct product of some
minimal normal subgroup of order p, we have G/CG(Op(G)) is supersolvable
by [6, Lemma 6.9.8] and hence G/Op(G) is supersolvable.

Since G/Op(G) is supersolvable and q < p, we know that G/Op(G) is q-
nilpotent and then P/Op(G) is normal in G/Op(G). Therefore, P is normal
in G. Hence, NG(P ) = G is p-nilpotent, a contradiction.

The final contradiction completes our proof. �

Theorem 3.2. Let F be a saturated formation containing U , H a nor-
mal subgroup of G such that G/H ∈ F . Suppose that every noncyclic Sylow
subgroup of H is M-permutable in G, then G ∈ F .

Proof. Assume that the assertion is false and choose G to be a counterex-
ample of minimal order.

By hypotheses and Lemma 2.1, we know that every noncyclic Sylow sub-
group of H is M-permutable in H , and hence H has a supersolvable type
Sylow tower by Lemma 2.6. Let P be a Sylow p-subgroup of H where p is the
largest prime divisor of |H|. Then P char H and hence P � G. Moreover, we
have the following.

Claim 1. G/P ∈ F and P � Φ(G), furthermore, P is not cyclic.

First, we check that (G/P,H/P ) satisfies the hypotheses for (G,H). We
know that H/P � G/P and (G/P )/(H/P ) ∼= G/H ∈ F . We may assume
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that H1/P is the noncyclic Sylow q-subgroup of H/P where p �= q, clearly,
H1 = PQ and Q is a noncyclic Sylow q-subgroup of H . By hypotheses, Q is
M-permutable in G, there exists a subgroup B of G such that G = QB and
QiB < G for any Qi of Ml(Q) where l is the smallest generator number of Q.
Therefore, G/P = (QP/P )(B/P ) and (QiP/P )(B/P ) = QiB/P < G/P for
any QiP/P of Ml(QP/P ). So G/P satisfies the condition of the theorem.
The minimal choice of G implies that G/P ∈ F . Since F is a saturated
formation, we know that P � Φ(G). If P is cyclic, then G ∈ F by Lemma 2.10,
a contradiction.

Claim 2. P ∩ Φ(G) = 1, in particular, P = R1 × · · · × Rt with minimal
normal subgroups R1, . . . ,Rt of G.

If P ∩ Φ(G) �= 1, then we may choose a minimal normal subgroup L of G
contained in P ∩ Φ(G). On the other hand, by hypotheses, P is M-permutable
in G, i.e., there exists a subgroup B of G such that G = PB and PiB < G for
any Pi of Md(P ). By Lemma 2.1, |G : PiB| = p and P ∩ B = Pi ∩ B ≤ Φ(P )
for any Pi of Md(P ). Clearly, PiB is the maximal subgroup of G for any Pi

of Md(P ). Since L is a minimal normal subgroup of G, we have G = LPiB
or L ≤ PiB. If G = LPiB for some Pi of Md(P ), we have G = PiB since L
is contained in P ∩ Φ(G), a contradiction. Therefore, L ≤ PiB for any Pi of
Md(P ). Moreover, if L � Pi for some Pi of Md(P ), then P = LPi and hence
PiB = LPiB = PB = G, a contradiction. Therefore, we have L ≤ Pi for any Pi

of Md(P ). According to the choice of Md(P ), we have L ≤
⋂d

i=1 Pi = Φ(P ).
Hence, G/L satisfies the condition of the theorem by Lemma 2.1. The minimal
choice of G implies that G/L ∈ F . Since F is a saturated formation, it follows
from G/L ∈ F that we have G ∈ F , a contradiction.

So we may assume that P ∩ Φ(G) = 1 and then P is the direct product of
minimal normal subgroups of G contained in P by Lemma 2.3. We denote that
P = R1 × · · · × Rt, where Rj is a minimal normal subgroup of G, j = 1,2, . . . , t.
By hypotheses, P is M-permutable in G, i.e., there exists a subgroup B of
G such that G = PB and PiB < G for any Pi of Md(P ). By Lemma 2.1, we
have |G : PiB| = p and P ∩ B = Pi ∩ B ≤ Φ(P ) for any Pi of Md(P ). Without
loss of generality, choose any minimal normal subgroup L of G contained in P .
Since PiB is the maximal subgroup of G for any Pi of Md(P ), we know that
there exists some Pi of Md(P ) such that L � PiB. Otherwise, if L ≤ PiB for
any Pi of Md(P ), then L ≤ Pi and hence L ≤

⋂d
i=1 Pi = Φ(P ). If not so, there

exists Pi of Md(P ) such that P = LPi, so we have PiB = LPiB = PB = G,
a contradiction. Therefore, L ≤ Φ(P ). With the similar discussion as above,
we have that G/L satisfies the condition of the theorem. The minimal choice
of G implies that G/L ∈ F . Since F is a saturated formation and L ≤ Φ(G),
we have G ∈ F , a contradiction. Consequently, there exist at least a Pi of

Md(P ) such that L � PiB. Since |G : PiB| = p, we know that |L| = p. Thus,
P is the direct product of some minimal normal subgroup of order p of G.
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Then for any maximal subgroup M of G, if P ≤ M , then P ≤ Φ(G), a con-
tradiction. If P � M , then there exist at least a minimal normal subgroup
Rj of G contained in P such that Rj � M . Since G = RjM and |Rj | = p,
we get that M have a prime index in G, and hence G ∈ F by Lemma 2.2,
a contradiction.

The final contradiction completes our proof. �

Corollary 3.3. Let G be a finite group. If every noncyclic Sylow subgroup
of G is M-permutable in G, then G is supersolvable.

Theorem 3.4. Let F be a saturated formation containing U . Suppose that
G is a finite group with a solvable normal subgroup H such that G/H ∈ F . If
every noncyclic Sylow subgroup of F (H) is M-permutable in G, then G ∈ F .

Proof. Suppose that the theorem is false and choose G to be a counter-
example of minimal order. The proof is divided into two cases.

Case 1. Suppose that Φ(G) ∩ H �= 1.
Since Φ(G) ∩ H �= 1, there exists a minimal normal subgroup L of G con-

tained in Φ(G) ∩ H . Clearly, L ≤ Op(H). Note that F (H/L) = F (H)/L by
Lemma 2.8. If Op(H) is cyclic, then G/L satisfies the hypotheses of the
theorem; therefore G/L ∈ F by the minimal choice of G. Now Lemma 2.10
implies G ∈ F , a contradiction. We have shown that Op(H) is not cyclic. By
hypotheses, Op(H) is M-permutable in G. There exists a subgroup B of G
such that G = Op(H)B and PiB < G for any Pi of Md(Op(H)). Firstly, we
have that L ≤ PiB for any Pi of Md(Op(H)). Otherwise, there exists some
Pi of Md(Op(H)) such that L � PiB. By Lemma 2.1, |G : PiB| = p and
Op(H) ∩ B = Pi ∩ B ≤ Φ(Op(H)) for any Pi of Md(Op(H)). Obviously, PiB
is the maximal subgroup of G and L ≤ Φ(G), so L ≤ PiB, a contradiction.
Moreover, next we will prove L ≤ Pi for any Pi of Md(Op(H)). If not so, there
exist some Pi such that L � Pi. Since Pi is the maximal subgroup of Op(H),
we have Op(H) = LPi. Furthermore, PiB = LPiB = Op(H)B = G, a con-
tradiction. Therefore, 1 �= L ≤

⋂d
i=1 Pi = Φ(Op(H)). Clearly, G/Φ(Op(H))

satisfies the hypotheses of the theorem by Lemma 2.8. The minimal choice
of G implies that G/Φ(Op(H)) ∈ F and hence G ∈ F since F is a saturated
formation, a contradiction.

Case 2. Suppose that Φ(G) ∩ H = 1.
If H = 1, nothing need to prove, so we may assume that H �= 1. The

solvability of H implies that F (H) �= 1. By Lemma 2.3, F (H) is the direct
product of minimal normal subgroups of G contained in H . There exists a
noncyclic Sylow p-subgroup of F (H) by Lemma 2.12 for some prime p ∈ π(G).
Denote P = Op(H). Then P is the direct product of some minimal normal
subgroup of G. Denote P = R1 × · · · × Rt, where R1, . . . ,Rt is minimal normal
subgroup of G contained in P . By hypotheses, P is M-permutable in G.
There exists a subgroup B of G such that G = PB and PiB < G for any Pi of
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Md(P ). By Lemma 2.1, we have |G : PiB| = p and P ∩ B = Pi ∩ B ≤ Φ(P ).
Let L be any minimal normal subgroup of G contained in P . Next, we will
prove that there exist at least some Pi such that L � PiB. Otherwise, if
L ≤ PiB for any Pi of Md(P ), then we claim that L ≤ Pi and hence L ≤
⋂d

i=1 Pi = Φ(P ). If not so, there exists Pi of Md(P ) such that L �= Pi, so we
have PiB = LPiB = PB = G, a contradiction. Therefore, L ≤ Φ(P ). With the
similar discussion, we have that G/L satisfies the condition of the theorem.
The minimal choice of G implies that G/L ∈ F . Since F is a saturated
formation and L ≤ Φ(G), we have G ∈ F , a contradiction. Consequently,
there exist at least a Pi of Md(P ) such that L � PiB. Since |G : PiB| = p,
we know that |L| = p. Thus, P is the direct product of some minimal normal
subgroup of order p of G, so is F (H).

Denote F (H) = H1 × H2 × · · · × Hr, where Hi is a minimal normal sub-
group of prime order of G, then G/CG(Hi) is Abelian, i = 1,2, . . . , r. Since
CG(F (H)) =

⋂r
i=1 CG(Hi), F is a saturated formation, G/CG(F (H)) ∈ F .

By assumption, G/H ∈ F and hence G/(H ∩ CG(F (H)) = G/CH(F (H)) ∈ F .
Since H is solvable, we have CH(F (H)) ≤ F (H). Then G/F (H) is an epimor-
phic image of G/CH(F (H)), thus G/F (H) ∈ F . Now applying Theorem 3.2
for (G,F (H)), we get G ∈ F , a contradiction.

The final contradiction completes our proof. �

Corollary 3.5. Let H be a solvable normal subgroup of G such that
G/H ∈ U . If every noncyclic Sylow subgroup of F (H) is M-permutable in G,
then G ∈ U .

Theorem 3.6. Let F be a saturated formation containing all supersolvable
groups. Suppose that G is a finite group with a normal subgroup H such that
G/H ∈ F . If every noncyclic Sylow subgroup of F ∗(H) is M-permutable in G,
then G ∈ F .

Proof. Suppose that the theorem is false and choose G to be a counter-
example of minimal order. We consider the following two cases.

Case 1. F = U .
(1) F ∗(H) = F (H) �= 1.
By hypotheses and Lemma 2.1, every noncyclic Sylow subgroup of F ∗(H) is

M-permutable in G and hence is M-permutable in F ∗(H). By Corollary 3.3,
F ∗(H) is supersolvable. In particular, F ∗(H) is solvable and hence F ∗(H) =
F (H) �= 1 by Lemma 2.8.

(2) H = G, F ∗(G) = F (G) �= 1.
Since H satisfies the hypotheses of the theorem, the minimal choice of G

implies that H is supersolvable if H < G. It follows that G ∈ F by Corol-
lary 3.5.
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(3) Every proper normal subgroup N of G containing F ∗(G) is supersolv-
able.

By Lemma 2.8, F ∗(G) = F ∗(F ∗(G)) ≤ F ∗(N) ≤ F ∗(G), so F ∗(N) =
F ∗(G). And every noncyclic Sylow subgroup of F ∗(N) is M-permutable
in N by Lemma 2.1. Hence, N is supersolvable by the minimal choice of G.

(4) Φ(G) < F (G).
If every Sylow subgroup of F (G) is cyclic, then we denote that F (G) =

H1 × · · · × Hr and hence G/CG(Hi) is Abelian for any i ∈ {1 · · · r}. Moreover,
we have G/

⋂r
i=1 CG(Hi) = G/F (G) is Abelian. Therefore, G is supersolvable

by Lemma 2.12, a contradiction. Let Op(G) be a noncyclic Sylow subgroup of
F (G). By hypotheses, Op(G) is M-permutable in G, and there exists a sub-
group B of G such that G = Op(G)B and PiB < G for any Pi of Md(Op(G)).
If Φ(G) = F (G), then Op(G) ≤ Φ(G) and hence G = Op(G)B = B, a contra-
diction.

(5) Final contradiction.
By (4), there exists some Sylow p-subgroup Op(G) of F (G) and the maxi-

mal subgroup M of G with Op(G) � M and G = Op(G)M .
If |Op(G)| = p, then set C = CG(Op(G)). Clearly, F (G) ≤ C � G. If C < G,

then C is solvable by (3). On the other hand, since G/C is cyclic, we have
G is solvable and hence G is supersolvable by Corollary 3.5, a contradic-
tion. So we may assume C = G. Now we have Op(G) ≤ Z(G). Then we
consider factor group G/Op(G). By Lemma 2.8, we have F ∗(G/Op(G)) =
F ∗(G)/Op(G) = F (G)/Op(G). In fact, every noncyclic Sylow subgroup of
F ∗(G/Op(G)) are M-permutable in G/Op(G). Therefore, the minimal choice
of G implies that G/Op(G) ∈ U and hence G is supersolvable by Lemma 2.10,
a contradiction.

So we may assume that |Op(G)| > p. If Φ(Op(G)) �= 1, then it is easy to
obtain that factor group G/Φ(Op(G)) satisfies the condition of the theorem
by Lemma 2.8. The minimal choice of G implies that G/Φ(Op(G)) is su-
persolvable and hence G is supersolvable since the class of all supersolvable
groups is a saturated formation, a contradiction. Therefore, Φ(Op(G)) = 1
and Op(G) is an elementary Abelian p-group. By hypotheses, Op(G) is M-
permutable in G, there exists a subgroup B of G such that G = Op(G)B
and PiB < G for any Pi of Md(Op(G)). By Lemma 2.1, |G : PiB| = p
and Op(G) ∩ B = Pi ∩ B ≤ Φ(Op(G)) = 1 for any Pi of Md(Op(G)). In
this case, Op(G) ∩ PiB = Pi(Op(G) ∩ B) = Pi is normal in G since G =
Op(G)B and Op(G) is an elementary Abelian p-group. Therefore, we have
that any Pi of Md(Op(G)) is normal in G. By Lemma 2.7, there exist
minimal normal subgroup Xi of G of order p where Xi =

⋂
i �=j Pi and i =

1, . . . , d, such that Op(G) = 〈X1, . . . ,Xd〉. For any Xi of Op(G), with the
similar discussion, we may consider CG(Xi). Clearly, F (G) ≤ CG(Xi) �
G. If CG(Xi) < G, then CG(Xi) is solvable by (3). On the other hand,
since G/CG(Xi) is cyclic, then we have G is solvable, a contradiction. So
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we may assume CG(Xi) = G. Since Xi ≤ Z(G) for any minimal normal
subgroup Xi in Op(G), we have Op(G) ≤ Z(G). Then we consider factor
group G/Op(G). By Lemma 2.8, we have F ∗(G/Op(G)) = F ∗(G)/Op(G) =
F (G)/Op(G). In fact, every noncyclic Sylow subgroup of F ∗(G/Op(G)) are
M-permutable in G/Op(G) by Lemma 2.1. Therefore, the minimal choice
of G implies that G/Op(G) ∈ U and hence G is supersolvable, a contradic-
tion.

Case 2. F �= U .
By case 1, H is supersolvable. Particularly, H is solvable and F (H) =

F ∗(H). By Lemma 2.2 and Theorem 3.4, we may get G ∈ F , a contradiction.
The final contradiction completes our proof. �

Corollary 3.7. Let H be a normal subgroup of G such that G/H ∈ U . If
every noncyclic Sylow subgroup of F ∗(H) is M-permutable in G, then G ∈ U .
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