ON \mathcal{M} -PERMUTABLE SYLOW SUBGROUPS OF FINITE GROUPS

LONG MIAO AND WOLFGANG LEMPKEN

ABSTRACT. A *p*-subgroup $P \neq 1$ of *G* is called *M*-permutable in *G* if there exists a set $\mathcal{M}_d(P) = \{P_1, \ldots, P_d\}$ of maximal subgroup P_i of *P* and a subgroup *B* of *G* such that: (1) $\bigcap_{i=1}^d P_i = \Phi(P)$ and $|P : \Phi(P)| = p^d$; (2) G = PB and $P_iB = BP_i < G$ for any P_i of $\mathcal{M}_d(P)$. In this paper, we investigate the influence of \mathcal{M} permutability of Sylow subgroups in finite groups. Some new results about supersolvable groups and formations are obtained.

1. Introduction

All the groups in this paper are finite. Let G be a finite group and $\mathcal{M}(G)$ be the set of all maximal subgroups of the Sylow subgroups of G. An interesting question is how the elements in $\mathcal{M}(G)$ influence the structure of finite groups. As a typical example of this aspect Srinivasan [13] states that G is supersolvable provided that each member of $\mathcal{M}(G)$ is normal in G. Later, this result has been widely generalized (see [8], [9], [16], [17]).

Recall that a subgroup H of G is said to be supplemented in G, if there exists a subgroup K of G such that G = HK. The relationship between the property of primary subgroups and the supplements of some restricted conditions has been studied extensively by many scholars. For instance, Hall [5] in 1937 proved that a group G is solvable if and only if every Sylow subgroup of G is complemented in G. Later on, Arad and Ward [1] further proved that a group G is solvable if and only if every Sylow 2-subgroup and every Sylow 3-subgroup of G are complemented in G. Recently, Ballester-Bolinches, Wang and Guo ([2], [16]) introduced the concept of c-supplemented subgroup and proved that G is solvable if and only if every Sylow subgroup

©2010 University of Illinois

Received April 6, 2009; received in final form August 13, 2009.

This research is supported by the grant of NSFC (Grant #10901133) and sponsored by Qing Lan Project and Natural science fund for colleges and universities in Jiangsu Province. 2000 Mathematics Subject Classification. 20D10, 20D20.

of G is c-supplemented in G. More recently, Miao and Lempken [9] considered \mathcal{M} -supplemented subgroups of finite groups G and obtained some new characterization of saturated formations containing all supersolvable groups.

Now, we introduce the following new concept of \mathcal{M} -permutable subgroups.

DEFINITION 1.1. Let G be a finite group and p a prime divisor of |G|. A p-subgroup $P \neq 1$ of G is called \mathcal{M} -permutable in G if there exists a set $\mathcal{M}_d(P) = \{P_1, \ldots, P_d\}$ of maximal subgroups P_i of P and a subgroup B of G such that

(1) $\bigcap_{i=1}^{d} P_i = \Phi(P)$ and $|P : \Phi(P)| = p^d$ (so d is the smallest generator number of P);

(2) G = PB and $P_iB = BP_i < G$ for any P_i of $\mathcal{M}_d(P)$.

Recall that, a subgroup H is called \mathcal{M} -supplemented in a finite group G, if there exists a subgroup B of G such that G = HB and H_1B is a proper subgroup of G for any maximal subgroup H_1 of H [9, Definition 1.1]. Obviously, if a *p*-subgroup H is \mathcal{M} -supplemented in G, then H is also \mathcal{M} -permutable in G. The following example shows that the converse is not true.

EXAMPLE 1.2. $G = \langle s, a \rangle \times \langle t, b \rangle$ where |a| = |b| = 3, |s| = |t| = 2 and $\langle s, a \rangle \cong \langle t, b \rangle \cong S_3$. Clearly, $P = \langle a, b \rangle \in \text{Syl}_3(G)$, d = 2 and $\mathcal{M}_2(P) = \{\langle a \rangle, \langle b \rangle\}$. Choose $B = \langle s, t \rangle$. $\langle a \rangle B = B \langle a \rangle, \langle b \rangle B = B \langle b \rangle$, but $\langle ab \rangle B \neq B \langle ab \rangle$. Therefore, we conclude that Sylow 3-subgroup of G is \mathcal{M} -permutable in G, but is not \mathcal{M} -supplemented in G.

Most of the notation is standard and can be found in [4] and [11]. In particular, H < G indicates that H is a proper subgroup of G, |G| denotes the order of G, G_p is a Sylow *p*-subgroup of G and $\pi(G)$ is the set of all prime divisors of |G|. Moreover, $\Phi(G), F(G)$ and $F^*(G)$ denote the Frattini subgroup, the Fitting subgroup and the generalized Fitting subgroup of G, respectively. Furthermore, \mathcal{U} denotes the class of all supersolvable groups.

In this paper, we will investigate the properties of the \mathcal{M} -permutable Sylow subgroups in a finite group G. The main goal of this paper is to prove the following theorem.

THEOREM 3.6. Let \mathcal{F} be a saturated formation containing \mathcal{U} . Suppose that G is a finite group with a normal subgroup H such that $G/H \in \mathcal{F}$. If every noncyclic Sylow subgroup of $F^*(H)$ is \mathcal{M} -permutable in G, then $G \in \mathcal{F}$.

In order to prove Theorem 3.6, we shall prove the following fact which is one of the main step in the proof of Theorem 3.2 and Theorem 3.4.

THEOREM 3.2. Let \mathcal{F} be a saturated formation containing \mathcal{U} and let H be a normal subgroup of G such that $G/H \in \mathcal{F}$. Suppose that every noncyclic Sylow subgroup of H is \mathcal{M} -permutable in G, then $G \in \mathcal{F}$. THEOREM 3.4. Let \mathcal{F} be a saturated formation containing \mathcal{U} . Suppose that G is a finite group with a solvable normal subgroup H such that $G/H \in \mathcal{F}$. If every noncyclic Sylow subgroup of F(H) is \mathcal{M} -permutable in G, then $G \in \mathcal{F}$.

Recall that a class \mathcal{F} of groups is said to be a formation if $G/H \in \mathcal{F}$ whenever $G \in \mathcal{F}$ and $H \leq G$ and if $G/(M \cap N) \in \mathcal{F}$ whenever G/M and G/N are in \mathcal{F} . A formation \mathcal{F} is said to be saturated if $G \in \mathcal{F}$ whenever $G/\Phi(G) \in \mathcal{F}$. Note that for a formation \mathcal{F} every group G has a uniquely determined smallest normal subgroup $G^{\mathcal{F}}$ such that $G/G^{\mathcal{F}} \in \mathcal{F}$. It is also well known that the class of all supersolvable groups and the class of all pnilpotent groups are saturated formations (e.g., see [4]).

2. Preliminaries

For the sake of convenience, we first list here some results which will be used in the sequel.

LEMMA 2.1. Let G be a finite group and $P \neq 1$ a p-subgroup of G for some $p \in \pi(G)$. Assume that P is \mathcal{M} -permutable in G with respect to $\mathcal{M}_d(P)$ and that L is a normal subgroup of G contained in P. Then the following hold:

(1) There exists a subgroup B of G such that G = PB and $|G : P_iB| = p$ for any $P_i \in \mathcal{M}_d(P)$; moreover, $P \cap B = P_i \cap B = \Phi(P) \cap B$.

(2) If $P \leq H \leq G$, then P is \mathcal{M} -permutable in H.

(3) If $L \leq \Phi(G)$, then $L \leq \Phi(P)$.

(4) If $L \leq \Phi(P)$, then P/L is \mathcal{M} -permutable in G/L.

(5) If L is a minimal normal subgroup of G and $L \leq \Phi(P)$, then |L| = p.

Proof. (1) By definition, there exists a subgroup B of G with G = PBand $P_iB = BP_i < G$ for $P_i \in \mathcal{M}_d(P)$. Since $|P:P_i| = p$, order considerations show that $|G:P_iB| = p$ and $P \cap B = P_i \cap B$ for any $P_i \in \mathcal{M}_d(P)$. Hence, $P \cap B = \bigcap_{i=1}^d (P_i \cap B) = \Phi(P) \cap B$.

(2) Now we have $H = H \cap PB = P(H \cap B)$ and $H \ge H \cap P_iB = P_i(H \cap B)$ for any $P_i \in \mathcal{M}_d(P)$. Since $P \cap (H \cap B) = P \cap B = P_i \cap B = P_i \cap (H \cap B)$ and $P_i < P$, we have $P_i(H \cap B) < P(H \cap B) = H$. Therefore, P is \mathcal{M} -permutable in H.

(3) If $L \leq \Phi(G)$, then $L \leq \bigcap_{i=1}^{d} P_i B = \Phi(P)B$ and thus $L \leq P \cap \Phi(P)B = \Phi(P)(P \cap B) = \Phi(P)$.

(4) If $L \leq \Phi(P)$, then we may set $\mathcal{M}_d(P/L) = \{P_i/L \mid P_i \in \mathcal{M}_d(P)\}$. Then we have $L \leq BL \leq \Phi(P)B \leq P_iB < G$ and BL/L < G/L as well as G/L = (P/L)(BL/L) and $(P_i/L)(BL/L) = P_iB/L < G/L$; so P/L is \mathcal{M} -permutable in G/L.

(5) If L is a minimal normal subgroup of G and $L \nleq \Phi(P)$, then there exists $P_i \in \mathcal{M}_d(P)$ with $L \nleq P_i B$ by the proof of part (3). Then $G = LP_i B$ and so $L \cap P_i B \trianglelefteq G$. As L is minimal normal in $G, L \cap P_i B = 1$ and hence |L| = p.

LEMMA 2.2 ([17, Theorem 3.1]). Let \mathcal{F} be a saturated formation containing \mathcal{U} , G a group with a solvable normal subgroup H such that $G/H \in \mathcal{F}$. If for any maximal subgroup M of G, either $F(H) \leq M$ or $F(H) \cap M$ is a maximal subgroup of F(H), then $G \in \mathcal{F}$. The converse also holds, in the case where $\mathcal{F} = \mathcal{U}$.

LEMMA 2.3 ([4, Theorem 1.8.17]). Let N be a solvable normal subgroup of a group G $(N \neq 1)$. If $N \cap \Phi(G) = 1$, then the Fitting subgroup F(N) of N is the direct product of minimal normal subgroups of G which are contained in N.

LEMMA 2.4 ([10, Lemma 2.6]). If H is a subgroup of G with |G:H| = p, where p is the prime divisor of |G| such that (|G|, p-1) = 1, then $H \leq G$.

LEMMA 2.5. Let $p \in \pi(G)$ and $P \in Syl_p(G)$. Then the following hold:

(1) If $N_G(P) = C_G(P)$, then G is p-nilpotent. In particular, G is p-nilpotent whenever P is cyclic and p is the smallest prime in $\pi(G)$.

(2) If $N \leq G$ with $P \cap N \leq \Phi(P)$, then N is p-nilpotent.

Proof. (1) This is a result of W. Burnside; see [6, Theorem IV.2.6 and IV.2.8].

(2) This is a result of Tate [14]; also see [6, Theorem IV.4.7].

 \Box

LEMMA 2.6. Let G be a finite group and P a Sylow p-subgroup of G where p is the prime divisor of |G| such that (|G|, p-1) = 1. Then G is p-nilpotent if and only if P is \mathcal{M} -permutable in G.

Proof. If G is p-nilpotent, then G has a normal p-complement D. For the Sylow p-subgroup P of G and every maximal subgroup P_1 of P, we may easily get G = PD and $P_1D < G$. Therefore P is \mathcal{M} -permutable in G.

Conversely, if P is \mathcal{M} -permutable in G, there exists a subgroup B of G such that G = PB and $P_i B < G$ for any P_i of $\mathcal{M}_d(P)$. By Lemma 2.1, we have $|G: P_iB| = p$ and hence $P_iB \leq G$ by Lemma 2.4. Since $|G: P_iB| = p$ $|PB: P_iB| = p$, we have $P \cap B = P_i \cap B$ for any P_i of $\mathcal{M}_d(P)$. On the other hand $\bigcap_{i=1}^{d} P_i = \Phi(P)$ and hence $P \cap B = \bigcap_{i=1}^{d} (P_i \cap B) = \Phi(P) \cap B$. Next we will prove $\bigcap_{P_i \in \mathcal{M}_d(P)}(P_iB) = (\bigcap_{P_i \in \mathcal{M}_d(P)} P_i)B$. In fact, we only need to prove $P_i B \cap P_i B = (P_i \cap P_i) B$ for any two maximal subgroups P_i and P_i of $\mathcal{M}_d(P)$. Clearly, $P_i B \cap P_j B \geq (P_i \cap P_j) B$. On the other hand, we may choose $xb_1 = yb_2 \in P_iB \cap P_jB$, where $x \in P_i$, $y \in P_j$ and $b_1, b_2 \in B$. Hence, $y^{-1}x = b_2b_1^{-1} \in P \cap B = P_i \cap B = P_j \cap B$. Therefore, $x \in P_i \cap P_j$ and we get $P_i B \cap P_j B = (P_i \cap P_j) B$. Therefore, we have that $\bigcap_{i=1}^d (P_i B) = (\bigcap_{i=1}^d P_i) B =$ $\Phi(P)B$ and $\Phi(P)B \trianglelefteq G$. It follows from $P \cap \Phi(P)B = \Phi(P)(P \cap B) \le \Phi(P)$ that we have $\Phi(P)B$ is p-nilpotent by Lemma 2.5. Let H be a normal Hall p'- subgroup of $\Phi(P)B$. Clearly, H is also the normal Hall p'-subgroup of G and hence G is p-nilpotent. The proof is over. LEMMA 2.7 ([8, Lemma 2.7]). Let P be an elementary Abelian p-group of order p^d , $d \ge 2$, p a prime and let $\mathcal{M}_d(P) = \{M_1, \ldots, M_d\}$. Then

(a)
$$X_i = \bigcap_{i \neq j} M_j$$
 is cyclic of order p;

(b) $P = \langle X_1, \dots, X_d \rangle.$

LEMMA 2.8 ([7]). Let G be a group and N a subgroup of G. The generalized Fitting subgroup $F^*(G)$ of G is the unique maximal normal quasinilpotent subgroup of G. Then

(1) If N is normal in G, then $F(N) = N \cap F(G)$ and $F^*(N) = N \cap F^*(G)$;

(2) $F^*(G) \neq 1$ if $G \neq 1$; in fact, $F^*(G)/F(G) = Soc(F(G)C_G(F(G))/F(G);$

 $(3) \ F^*(F^*(G)) = F^*(G) \ge F(G); \ if \ F^*(G) \ is \ solvable, \ then \ F^*(G) = F(G);$

(4) $C_G(F^*(G)) \le F(G);$

(5) Let $P \leq G$ and $P \leq O_p(G)$; then $F^*(G/\Phi(P)) = F^*(G)/\Phi(P)$;

(6) If K is a subgroup of G contained in Z(G), then $F^*(G/K) = F^*(G)/K$.

LEMMA 2.9. Let H and L be normal subgroups of G and let $p \in \pi(G)$. Then the following hold:

- (1) $\Phi(H) \leq \Phi(G);$
- (2) If $L \leq \Phi(G)$, then F(G/L) = F(G)/L;
- (3) If $L \leq H \cap \Phi(G)$, then F(H/L) = F(H)/L;
- (4) If H is a p-group and $L \leq \Phi(H)$, then $F^*(G/L) = F^*(G)/L$.

Proof. (1) See [6, Lemma III.3.3].

(2) Note that $F(G/\Phi(G)) = F(G)/\Phi(G)$ and $\Phi(G/L) = \Phi(G)/L$. With this we obtain $(F(G)/L)/\Phi(G/L) = (F(G)/L)/(\Phi(G)/L) \cong F(G)/\Phi(G) = F(G/L)/\Phi(G/L)) \cong F((G/L)/\Phi(G/L)) = F((G/L)/\Phi(G/L)) = F(G/L)/\Phi(G/L)$ and then F(G)/L = F(G/L).

(3) Note that $F(H/L) = H/L \cap F(G/L) = H/L \cap F(G)/L = (H \cap F(G))/L = F(H)/L$.

(4) Since $L \leq \Phi(H)$, we have $\Phi(H/L) = \Phi(H)/L$. By Lemma 2.8, we obtain that $F^*((G/L)/\Phi(H/L)) = F^*(G/L)/\Phi(H/L) \cong F^*(G/\Phi(H)) = F^*(G)/\Phi(H)$ and hence $(F^*(G)/L)/(\Phi(H)/L) = F^*(G/L)/\Phi(H/L)$. Therefore, $F^*(G/L) = F^*(G)/L$.

LEMMA 2.10 ([12, Lemma 1.9]). Let \mathcal{F} be a saturated formation containing \mathcal{U} and G be a group with a normal subgroup E such that $G/E \in \mathcal{F}$. If E is cyclic, then $G \in \mathcal{F}$.

LEMMA 2.11 ([4, Lemma 3.6.10]). Let K be a normal subgroup of G and P a p-subgroup of G where p is a prime divisor of |G|. Then $N_{G/K}(PK/K) = N_G(P_1)K/K$, here P_1 is a Sylow p-subgroup of PK.

LEMMA 2.12. Let \mathcal{F} be a saturated formation containing \mathcal{U} . Suppose that G is a finite group with a solvable normal subgroup H such that $G/H \in \mathcal{F}$. If every Sylow subgroup of F(H) is cyclic, then $G \in \mathcal{F}$.

Proof. Assume that the assertion is false and choose G to be a counterexample of smallest order.

Let p be a prime of $\pi(H)$ and assume that $\Phi(O_p(H)) \neq 1$. Then we have $F(H/\Phi(O_p(H))) = F(H)/\Phi(O_p(H))$ by Lemma 2.9. Now, we easily verify that the pair $(G/\Phi(O_p(H)), H/\Phi(O_p(H)))$ satisfies the hypotheses of the lemma. Therefore, by the minimal choice of G, $G/\Phi(O_p(H)) \in \mathcal{F}$. As $O_p(H) \leq G$, $\Phi(O_p(H)) \leq \Phi(G)$. As \mathcal{F} is a saturated formation, we now get $G/\Phi(G) \in \mathcal{F}$ and hence $G \in \mathcal{F}$, a contradiction.

So we have $\Phi(O_p(H)) = 1$. We have shown that every Sylow subgroup of F(H) is cyclic group of prime order.

Assume now that $\pi(F(H)) = \{p_1, \ldots, p_r\}$ and that $R_i := O_{p_i}(F(H))$ is cyclic of order p_i for $i \in \{1, \ldots, r\}$. So $C_H(F(H)) = F(H) = R_1 \times \cdots \times R_r$ and $H/F(H) \lesssim \operatorname{Aut}(F(H)) \cong \bigotimes_{i=1}^r \operatorname{Aut}(R_i)$ where $\operatorname{Aut}(R_i)$ is cyclic of order $p_i - 1$.

Set $F_i = R_1 \times \cdots \times R_i$ and $H_i = C_H(F_i)$ for $i \in \{1, \ldots, r\}$; clearly, $F_i \leq G$ and $H_i \leq G$ with $R_1 = F_1 < F_2 < \cdots < F_r = H_r \leq H_{r-1} \leq \cdots \leq H_1 \leq H$ such that $H/H_1, H_1/H_2, \ldots, H_{r-1}/H_r, F_r/F_{r-1}, \ldots, F_2/F_1$ and F_1 are cyclic. Since $G/H \in \mathcal{F}$, iterated application of Lemma 2.10 yields $G \in \mathcal{F}$, a contradiction.

The final contradiction completes our proof.

3. Main results

THEOREM 3.1. Let p be an odd prime divisor of |G| and P be a Sylow p-subgroup of G. Then G is p-nilpotent if and only if $N_G(P)$ is p-nilpotent and P is \mathcal{M} -permutable in G.

Proof. As the necessity part is obvious, we only need to prove the sufficiency part. Assume that the assertion is false and choose G to be a counterexample of minimal order. We will divide the following steps.

(1) $O_{p'}(G) = 1.$

In fact, if $O_{p'}(G) \neq 1$, then we consider the quotient group $G/O_{p'}(G)$. By Lemmas 2.1 and 2.11, $G/O_{p'}(G)$ satisfies the condition of the theorem, the minimal choice of G implies that $G/O_{p'}(G)$ is *p*-nilpotent, and hence G is *p*-nilpotent, a contradiction.

(2) If S is a proper subgroup of G containing P, then S is p-nilpotent.

Clearly, $N_S(P) \leq N_G(P)$ and hence $N_S(P)$ is *p*-nilpotent. Applying Lemma 2.1, we find that S satisfies the hypotheses of our theorem. Then the minimal choice of G implies that S is *p*-nilpotent.

(3) G = PQ, where Q is the Sylow q-subgroup of G with $q \neq p$.

Since G is not p-nilpotent, by Thompson ([15], Corollary), there exists a characteristic subgroup H of P such that $N_G(H)$ is not p-nilpotent. Since $N_G(P)$ is p-nilpotent, we may choose a characteristic subgroup H of P such that $N_G(H)$ is not p-nilpotent, but $N_G(K)$ is p-nilpotent for any characteristic subgroup K of P with $H < K \leq P$. Since $N_G(P) \leq N_G(H)$ and $N_G(H)$ is

not p-nilpotent, we have $N_G(P) < N_G(H)$. Then by (2), we have $N_G(H) = G$. This leads to $O_p(G) \neq 1$ and $N_G(K)$ is p-nilpotent for any characteristic subgroup K of P such that $O_p(G) < K \leq P$. Now by Thompson ([15], Corollary), again, we see that $G/O_p(G)$ is p-nilpotent and therefore, G is p-solvable. Since G is p-solvable, for any $q \in \pi(G)$ with $q \neq p$, there exists a Sylow qsubgroup Q of G such that PQ = QP is a subgroup of G by Gorenstein ([3], Theorem 6.3.5). If PQ < G, then PQ is p-nilpotent by (2). This leads to $Q \leq C_G(O_p(G)) \leq O_p(G)$ by Robinson ([11], Theorem 9.3.1) since $O_{p'}(G) = 1$, a contradiction. Thus, we have proven that G = PQ.

(4) Final contradiction.

If $O_p(G) \cap \Phi(G) \neq 1$, then we pick a minimal normal subgroup L of G with $L \leq O_p(G) \cap \Phi(G)$. By Lemma 2.1(3), we have $L \leq \Phi(P)$ and, furthermore, G/L satisfies the condition of the theorem by Lemma 2.1(4), the minimal choice of G implies that G/L is *p*-nilpotent. Since the class of all *p*-nilpotent groups is a saturated formation, we obtain that G is *p*-nilpotent, a contradiction.

So we may assume $O_p(G) \cap \Phi(G) = 1$. Let L be any minimal normal subgroup of G contained in $O_p(G)$. Clearly, $L \not\leq \Phi(P)$. By Lemma 2.1(5), we have |L| = p. Thus, $O_p(G)$ is the direct product of some minimal normal subgroups of order p of G by Lemma 2.3. If p < q, then LQ is p-nilpotent by Lemma 2.5 and therefore $Q \leq C_G(O_p(G))$, which contradicts to $C_G(O_p(G)) =$ $O_p(G)$. On the other hand, if q < p, since $O_p(G)$ is the direct product of some minimal normal subgroup of order p, we have $G/C_G(O_p(G))$ is supersolvable by [6, Lemma 6.9.8] and hence $G/O_p(G)$ is supersolvable.

Since $G/O_p(G)$ is supersolvable and q < p, we know that $G/O_p(G)$ is qnilpotent and then $P/O_p(G)$ is normal in $G/O_p(G)$. Therefore, P is normal in G. Hence, $N_G(P) = G$ is p-nilpotent, a contradiction.

The final contradiction completes our proof.

THEOREM 3.2. Let \mathcal{F} be a saturated formation containing \mathcal{U} , H a normal subgroup of G such that $G/H \in \mathcal{F}$. Suppose that every noncyclic Sylow subgroup of H is \mathcal{M} -permutable in G, then $G \in \mathcal{F}$.

Proof. Assume that the assertion is false and choose G to be a counterexample of minimal order.

By hypotheses and Lemma 2.1, we know that every noncyclic Sylow subgroup of H is \mathcal{M} -permutable in H, and hence H has a supersolvable type Sylow tower by Lemma 2.6. Let P be a Sylow p-subgroup of H where p is the largest prime divisor of |H|. Then P char H and hence $P \leq G$. Moreover, we have the following.

CLAIM 1. $G/P \in \mathcal{F}$ and $P \nleq \Phi(G)$, furthermore, P is not cyclic.

First, we check that (G/P, H/P) satisfies the hypotheses for (G, H). We know that $H/P \leq G/P$ and $(G/P)/(H/P) \approx G/H \in \mathcal{F}$. We may assume

that H_1/P is the noncyclic Sylow q-subgroup of H/P where $p \neq q$, clearly, $H_1 = PQ$ and Q is a noncyclic Sylow q-subgroup of H. By hypotheses, Q is \mathcal{M} -permutable in G, there exists a subgroup B of G such that G = QB and $Q_iB < G$ for any Q_i of $\mathcal{M}_l(Q)$ where l is the smallest generator number of Q. Therefore, G/P = (QP/P)(B/P) and $(Q_iP/P)(B/P) = Q_iB/P < G/P$ for any Q_iP/P of $\mathcal{M}_l(QP/P)$. So G/P satisfies the condition of the theorem. The minimal choice of G implies that $G/P \in \mathcal{F}$. Since \mathcal{F} is a saturated formation, we know that $P \nleq \Phi(G)$. If P is cyclic, then $G \in \mathcal{F}$ by Lemma 2.10, a contradiction.

CLAIM 2. $P \cap \Phi(G) = 1$, in particular, $P = R_1 \times \cdots \times R_t$ with minimal normal subgroups R_1, \ldots, R_t of G.

If $P \cap \Phi(G) \neq 1$, then we may choose a minimal normal subgroup L of G contained in $P \cap \Phi(G)$. On the other hand, by hypotheses, P is \mathcal{M} -permutable in G, i.e., there exists a subgroup B of G such that G = PB and $P_iB < G$ for any P_i of $\mathcal{M}_d(P)$. By Lemma 2.1, $|G: P_iB| = p$ and $P \cap B = P_i \cap B \leq \Phi(P)$ for any P_i of $\mathcal{M}_d(P)$. Clearly, P_iB is the maximal subgroup of G for any P_i of $\mathcal{M}_d(P)$. Clearly, P_iB is the maximal subgroup of G for any P_i of $\mathcal{M}_d(P)$. Since L is a minimal normal subgroup of G, we have $G = LP_iB$ or $L \leq P_iB$. If $G = LP_iB$ for some P_i of $\mathcal{M}_d(P)$, we have $G = P_iB$ since L is contained in $P \cap \Phi(G)$, a contradiction. Therefore, $L \leq P_iB$ for any P_i of $\mathcal{M}_d(P)$. Moreover, if $L \nleq P_i$ for some P_i of $\mathcal{M}_d(P)$, then $P = LP_i$ and hence $P_iB = LP_iB = PB = G$, a contradiction. Therefore, we have $L \leq P_i$ for any P_i of $\mathcal{M}_d(P)$. According to the choice of $\mathcal{M}_d(P)$, we have $L \leq \bigcap_{i=1}^d P_i = \Phi(P)$. Hence, G/L satisfies the condition of the theorem by Lemma 2.1. The minimal choice of G implies that $G/L \in \mathcal{F}$. Since \mathcal{F} is a saturated formation, it follows from $G/L \in \mathcal{F}$ that we have $G \in \mathcal{F}$, a contradiction.

So we may assume that $P \cap \Phi(G) = 1$ and then P is the direct product of minimal normal subgroups of G contained in P by Lemma 2.3. We denote that $P = R_1 \times \cdots \times R_t$, where R_j is a minimal normal subgroup of $G, j = 1, 2, \dots, t$. By hypotheses, P is \mathcal{M} -permutable in G, i.e., there exists a subgroup B of G such that G = PB and $P_i B < G$ for any P_i of $\mathcal{M}_d(P)$. By Lemma 2.1, we have $|G: P_iB| = p$ and $P \cap B = P_i \cap B \leq \Phi(P)$ for any P_i of $\mathcal{M}_d(P)$. Without loss of generality, choose any minimal normal subgroup L of G contained in P. Since $P_i B$ is the maximal subgroup of G for any P_i of $\mathcal{M}_d(P)$, we know that there exists some P_i of $\mathcal{M}_d(P)$ such that $L \nleq P_i B$. Otherwise, if $L \le P_i B$ for any P_i of $\mathcal{M}_d(P)$, then $L \leq P_i$ and hence $L \leq \bigcap_{i=1}^d P_i = \Phi(P)$. If not so, there exists P_i of $\mathcal{M}_d(P)$ such that $P = LP_i$, so we have $P_i B = LP_i B = PB = G$, a contradiction. Therefore, $L \leq \Phi(P)$. With the similar discussion as above, we have that G/L satisfies the condition of the theorem. The minimal choice of G implies that $G/L \in \mathcal{F}$. Since \mathcal{F} is a saturated formation and $L \leq \Phi(G)$, we have $G \in \mathcal{F}$, a contradiction. Consequently, there exist at least a P_i of $\mathcal{M}_d(P)$ such that $L \not\leq P_i B$. Since $|G: P_i B| = p$, we know that |L| = p. Thus, P is the direct product of some minimal normal subgroup of order p of G.

1103

Then for any maximal subgroup M of G, if $P \leq M$, then $P \leq \Phi(G)$, a contradiction. If $P \nleq M$, then there exist at least a minimal normal subgroup R_j of G contained in P such that $R_j \nleq M$. Since $G = R_j M$ and $|R_j| = p$, we get that M have a prime index in G, and hence $G \in \mathcal{F}$ by Lemma 2.2, a contradiction.

The final contradiction completes our proof.

COROLLARY 3.3. Let G be a finite group. If every noncyclic Sylow subgroup of G is \mathcal{M} -permutable in G, then G is supersolvable.

THEOREM 3.4. Let \mathcal{F} be a saturated formation containing \mathcal{U} . Suppose that G is a finite group with a solvable normal subgroup H such that $G/H \in \mathcal{F}$. If every noncyclic Sylow subgroup of F(H) is \mathcal{M} -permutable in G, then $G \in \mathcal{F}$.

Proof. Suppose that the theorem is false and choose G to be a counterexample of minimal order. The proof is divided into two cases.

Case 1. Suppose that $\Phi(G) \cap H \neq 1$.

Since $\Phi(G) \cap H \neq 1$, there exists a minimal normal subgroup L of G contained in $\Phi(G) \cap H$. Clearly, $L \leq O_p(H)$. Note that F(H/L) = F(H)/L by Lemma 2.8. If $O_p(H)$ is cyclic, then G/L satisfies the hypotheses of the theorem; therefore $G/L \in \mathcal{F}$ by the minimal choice of G. Now Lemma 2.10 implies $G \in \mathcal{F}$, a contradiction. We have shown that $O_p(H)$ is not cyclic. By hypotheses, $O_p(H)$ is \mathcal{M} -permutable in G. There exists a subgroup B of G such that $G = O_p(H)B$ and $P_iB < G$ for any P_i of $\mathcal{M}_d(O_p(H))$. Firstly, we have that $L \leq P_i B$ for any P_i of $\mathcal{M}_d(O_p(H))$. Otherwise, there exists some P_i of $\mathcal{M}_d(O_p(H))$ such that $L \leq P_i B$. By Lemma 2.1, $|G: P_i B| = p$ and $O_p(H) \cap B = P_i \cap B \leq \Phi(O_p(H))$ for any P_i of $\mathcal{M}_d(O_p(H))$. Obviously, P_iB is the maximal subgroup of G and $L \leq \Phi(G)$, so $L \leq P_i B$, a contradiction. Moreover, next we will prove $L \leq P_i$ for any P_i of $\mathcal{M}_d(O_p(H))$. If not so, there exist some P_i such that $L \leq P_i$. Since P_i is the maximal subgroup of $O_p(H)$, we have $O_p(H) = LP_i$. Furthermore, $P_iB = LP_iB = O_p(H)B = G$, a contradiction. Therefore, $1 \neq L \leq \bigcap_{i=1}^{d} P_i = \Phi(O_p(H))$. Clearly, $G/\Phi(O_p(H))$ satisfies the hypotheses of the theorem by Lemma 2.8. The minimal choice of G implies that $G/\Phi(O_p(H)) \in \mathcal{F}$ and hence $G \in \mathcal{F}$ since \mathcal{F} is a saturated formation, a contradiction.

Case 2. Suppose that $\Phi(G) \cap H = 1$.

If H = 1, nothing need to prove, so we may assume that $H \neq 1$. The solvability of H implies that $F(H) \neq 1$. By Lemma 2.3, F(H) is the direct product of minimal normal subgroups of G contained in H. There exists a noncyclic Sylow p-subgroup of F(H) by Lemma 2.12 for some prime $p \in \pi(G)$. Denote $P = O_p(H)$. Then P is the direct product of some minimal normal subgroup of G. Denote $P = R_1 \times \cdots \times R_t$, where R_1, \ldots, R_t is minimal normal subgroup of G contained in P. By hypotheses, P is \mathcal{M} -permutable in G. There exists a subgroup B of G such that G = PB and $P_i B < G$ for any P_i of $\mathcal{M}_d(P)$. By Lemma 2.1, we have $|G: P_iB| = p$ and $P \cap B = P_i \cap B \leq \Phi(P)$. Let L be any minimal normal subgroup of G contained in P. Next, we will prove that there exist at least some P_i such that $L \nleq P_iB$. Otherwise, if $L \leq P_iB$ for any P_i of $\mathcal{M}_d(P)$, then we claim that $L \leq P_i$ and hence $L \leq \bigcap_{i=1}^d P_i = \Phi(P)$. If not so, there exists P_i of $\mathcal{M}_d(P)$ such that $L \neq P_i$, so we have $P_iB = LP_iB = PB = G$, a contradiction. Therefore, $L \leq \Phi(P)$. With the similar discussion, we have that G/L satisfies the condition of the theorem. The minimal choice of G implies that $G/L \in \mathcal{F}$. Since \mathcal{F} is a saturated formation and $L \leq \Phi(G)$, we have $G \in \mathcal{F}$, a contradiction. Consequently, there exist at least a P_i of $\mathcal{M}_d(P)$ such that $L \nleq P_iB$. Since $|G: P_iB| = p$, we know that |L| = p. Thus, P is the direct product of some minimal normal subgroup of order p of G, so is F(H).

Denote $F(H) = H_1 \times H_2 \times \cdots \times H_r$, where H_i is a minimal normal subgroup of prime order of G, then $G/C_G(H_i)$ is Abelian, i = 1, 2, ..., r. Since $C_G(F(H)) = \bigcap_{i=1}^r C_G(H_i)$, \mathcal{F} is a saturated formation, $G/C_G(F(H)) \in \mathcal{F}$. By assumption, $G/H \in \mathcal{F}$ and hence $G/(H \cap C_G(F(H)) = G/C_H(F(H)) \in \mathcal{F}$. Since H is solvable, we have $C_H(F(H)) \leq F(H)$. Then G/F(H) is an epimorphic image of $G/C_H(F(H))$, thus $G/F(H) \in \mathcal{F}$. Now applying Theorem 3.2 for (G, F(H)), we get $G \in \mathcal{F}$, a contradiction.

The final contradiction completes our proof.

COROLLARY 3.5. Let H be a solvable normal subgroup of G such that $G/H \in \mathcal{U}$. If every noncyclic Sylow subgroup of F(H) is \mathcal{M} -permutable in G, then $G \in \mathcal{U}$.

THEOREM 3.6. Let \mathcal{F} be a saturated formation containing all supersolvable groups. Suppose that G is a finite group with a normal subgroup H such that $G/H \in \mathcal{F}$. If every noncyclic Sylow subgroup of $F^*(H)$ is \mathcal{M} -permutable in G, then $G \in \mathcal{F}$.

Proof. Suppose that the theorem is false and choose G to be a counterexample of minimal order. We consider the following two cases.

Case 1. $\mathcal{F} = \mathcal{U}$.

(1) $F^*(H) = F(H) \neq 1$.

By hypotheses and Lemma 2.1, every noncyclic Sylow subgroup of $F^*(H)$ is \mathcal{M} -permutable in G and hence is \mathcal{M} -permutable in $F^*(H)$. By Corollary 3.3, $F^*(H)$ is supersolvable. In particular, $F^*(H)$ is solvable and hence $F^*(H) = F(H) \neq 1$ by Lemma 2.8.

(2) $H = G, F^*(G) = F(G) \neq 1.$

Since H satisfies the hypotheses of the theorem, the minimal choice of G implies that H is supersolvable if H < G. It follows that $G \in \mathcal{F}$ by Corollary 3.5.

(3) Every proper normal subgroup N of G containing $F^*(G)$ is supersolvable.

By Lemma 2.8, $F^*(G) = F^*(F^*(G)) \leq F^*(N) \leq F^*(G)$, so $F^*(N) = F^*(G)$. And every noncyclic Sylow subgroup of $F^*(N)$ is \mathcal{M} -permutable in N by Lemma 2.1. Hence, N is supersolvable by the minimal choice of G. (4) $\Phi(G) < F(G)$.

If every Sylow subgroup of F(G) is cyclic, then we denote that $F(G) = H_1 \times \cdots \times H_r$ and hence $G/C_G(H_i)$ is Abelian for any $i \in \{1 \cdots r\}$. Moreover, we have $G/\bigcap_{i=1}^r C_G(H_i) = G/F(G)$ is Abelian. Therefore, G is supersolvable by Lemma 2.12, a contradiction. Let $O_p(G)$ be a noncyclic Sylow subgroup of F(G). By hypotheses, $O_p(G)$ is \mathcal{M} -permutable in G, and there exists a subgroup B of G such that $G = O_p(G)B$ and $P_iB < G$ for any P_i of $\mathcal{M}_d(O_p(G))$. If $\Phi(G) = F(G)$, then $O_p(G) \leq \Phi(G)$ and hence $G = O_p(G)B = B$, a contradiction.

(5) Final contradiction.

By (4), there exists some Sylow *p*-subgroup $O_p(G)$ of F(G) and the maximal subgroup M of G with $O_p(G) \notin M$ and $G = O_p(G)M$.

If $|O_p(G)| = p$, then set $C = C_G(O_p(G))$. Clearly, $F(G) \leq C \leq G$. If C < G, then C is solvable by (3). On the other hand, since G/C is cyclic, we have G is solvable and hence G is supersolvable by Corollary 3.5, a contradiction. So we may assume C = G. Now we have $O_p(G) \leq Z(G)$. Then we consider factor group $G/O_p(G)$. By Lemma 2.8, we have $F^*(G/O_p(G)) =$ $F^*(G)/O_p(G) = F(G)/O_p(G)$. In fact, every noncyclic Sylow subgroup of $F^*(G/O_p(G))$ are \mathcal{M} -permutable in $G/O_p(G)$. Therefore, the minimal choice of G implies that $G/O_p(G) \in \mathcal{U}$ and hence G is supersolvable by Lemma 2.10, a contradiction.

So we may assume that $|O_p(G)| > p$. If $\Phi(O_p(G)) \neq 1$, then it is easy to obtain that factor group $G/\Phi(O_p(G))$ satisfies the condition of the theorem by Lemma 2.8. The minimal choice of G implies that $G/\Phi(O_n(G))$ is supersolvable and hence G is supersolvable since the class of all supersolvable groups is a saturated formation, a contradiction. Therefore, $\Phi(O_p(G)) = 1$ and $O_p(G)$ is an elementary Abelian p-group. By hypotheses, $O_p(G)$ is \mathcal{M} permutable in G, there exists a subgroup B of G such that $G = O_p(G)B$ and $P_iB < G$ for any P_i of $\mathcal{M}_d(O_p(G))$. By Lemma 2.1, $|G: P_iB| = p$ and $O_p(G) \cap B = P_i \cap B \leq \Phi(O_p(G)) = 1$ for any P_i of $\mathcal{M}_d(O_p(G))$. In this case, $O_p(G) \cap P_i B = P_i(O_p(G) \cap B) = P_i$ is normal in G since G = $O_p(G)B$ and $O_p(G)$ is an elementary Abelian p-group. Therefore, we have that any P_i of $\mathcal{M}_d(O_p(G))$ is normal in G. By Lemma 2.7, there exist minimal normal subgroup X_i of G of order p where $X_i = \bigcap_{i \neq j} P_i$ and i =1,...,d, such that $O_p(G) = \langle X_1, \ldots, X_d \rangle$. For any X_i of $O_p(G)$, with the similar discussion, we may consider $C_G(X_i)$. Clearly, $F(G) \leq C_G(X_i) \leq C_G(X_i)$ G. If $C_G(X_i) < G$, then $C_G(X_i)$ is solvable by (3). On the other hand, since $G/C_G(X_i)$ is cyclic, then we have G is solvable, a contradiction. So we may assume $C_G(X_i) = G$. Since $X_i \leq Z(G)$ for any minimal normal subgroup X_i in $O_p(G)$, we have $O_p(G) \leq Z(G)$. Then we consider factor group $G/O_p(G)$. By Lemma 2.8, we have $F^*(G/O_p(G)) = F^*(G)/O_p(G) =$ $F(G)/O_p(G)$. In fact, every noncyclic Sylow subgroup of $F^*(G/O_p(G))$ are \mathcal{M} -permutable in $G/O_p(G)$ by Lemma 2.1. Therefore, the minimal choice of G implies that $G/O_p(G) \in \mathcal{U}$ and hence G is supersolvable, a contradiction.

Case 2. $\mathcal{F} \neq \mathcal{U}$.

By case 1, H is supersolvable. Particularly, H is solvable and $F(H) = F^*(H)$. By Lemma 2.2 and Theorem 3.4, we may get $G \in \mathcal{F}$, a contradiction. The final contradiction completes our proof.

COROLLARY 3.7. Let H be a normal subgroup of G such that $G/H \in \mathcal{U}$. If every noncyclic Sylow subgroup of $F^*(H)$ is \mathcal{M} -permutable in G, then $G \in \mathcal{U}$.

Acknowledgment. We thank the referee for his careful reading of the manuscript and for his suggestions which have helped to improve our original version.

References

- Z. Arad and M. B. Ward, New criteria for the solvability of finite groups, J. Algebra 77 (1982), 234–246. MR 0665175
- [2] A. Ballester-Bolinches, Y. Wang and X. Guo, C-supplemented subgroups of finite groups, Glasgow Math. J. 42 (2000), 383–389. MR 1793807
- [3] D. Gorenstein, Finite groups, Harper & Row, New York, 1968. MR 0231903
- [4] W. Guo, The theory of classes of groups, Kluwer Academic Publishers, Dordrecht, 2000. MR 1862683
- [5] P. Hall, A characteristic property of soluble groups, J. London Math. Soc. 12 (1937), 188–200.
- [6] B. Huppert, Endliche gruppen I, Springer, Berlin, 1967. MR 0224703
- [7] B. Huppert and N. Blackburn, Finite groups III, Springer, Berlin, 1982. MR 0662826
- [8] S. Li and X. He, On normally embedded subgroups of prime power order in finite groups, Comm. Algebra 36 (2008), 2333–2340. MR 2418390
- L. Miao and W. Lempken, On *M*-supplemented subgroups of finite groups, J. Group Theory 12 (2009), 271–289. MR 2502219
- [10] L. Miao, On p-nilpotency of finite groups, Bull. Braz. Math. Soc. 38 (2007), 585–594. MR 2371947
- [11] D. J. Robinson, A course in the theory of groups, Springer, Berlin, 1993. MR 1261639
- [12] A. N. Skiba, A note on c-normal subgroups of finite groups, Algebra Discrete Math. 3 (2005), 85–95. MR 2237897
- S. Srinivasan, Two sufficient conditions for supersolvability of finite groups, Israel J. Math. 35 (1980), 210–214. MR 0576471
- [14] J. Tate, Nilpotent quotient groups, Topology 3 (1964), 109–111. MR 0160822
- [15] J. G. Thompson, Normal p-complement for finite groups, J. Algebra 1 (1964), 43–46. MR 0167521
- [16] Y. Wang, Finite groups with some subgroups of Sylow subgroups c-supplemented, J. Algebra 224 (2000), 467–478. MR 1739589

 Y. Wang, H. Wei and Y. Li, A generalization of Kramer's theorem and its applications, Bull. Austral. Math. Soc. 65 (2002), 467–475. MR 1910499

Long Miao, School of Mathematical Sciences, Yangzhou University Yangzhou 225002, People's Republic of China

E-mail address: miaolong714@vip.sohu.com

Wolfgang Lempken, Institute for Experimental Mathematics, University of Duisburg-Essen 45326 Essen, Germany

E-mail address: lempken@iem.uni-due.de