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ON THE PROJECTIVE EMBEDDINGS OF GORENSTEIN
TORIC DEL PEZZO SURFACES

T. KIKUCHI AND T. NAKANO

Abstract. We study the projective embeddings of complete Go-
renstein toric del Pezzo surfaces by ample complete linear sys-
tems, especially of minimal degree and dimension. Complete

Gorenstein toric del Pezzo surfaces are in one-to-one correspon-
dence with the 2-dimensional reflexive integral convex polytopes,

which are classified into 16 types up to isomorphisms of lattices.

Our main result shows that the minimal dimension and the min-
imal degree of all the ample complete linear systems on such a

surface are attained by the primitive anti-canonical class except

one case. From this, we determine the projective embeddings of

these surfaces which are global complete intersections. We also

show that the minimal free resolution of the defining ideal of the

image under the anti-canonical embedding of these surfaces is
given by an Eagon–Northcott complex.

1. Introduction

The purpose of this note is to study the embeddings of complete Goren-
stein toric del Pezzo surfaces (abbreviated as GTDP surfaces in the following)
into projective spaces by ample complete linear systems, especially of mini-
mal dimension and minimal degree. The GTDP surfaces are in one-to-one
correspondence with the 2-dimensional reflexive integral convex polytopes via
toric geometry, which are classified into 16 types up to the isomorphisms of
lattices ([4], [5]). They are labeled Ri (1 ≤ i ≤ 16) in this note (Figure 1).
Though these 16 polytopes contain all the geometrical information of these
surfaces, we would like to describe them as a variety in projective spaces.
Then the projective embeddings of minimal dimension and minimal degree
are the most favorable and we will study them in this note. We also note
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Figure 1. The 16 2-dimensional reflexive integral convex polytopes.

that these Gorenstein surfaces are actually locally complete intersection since
they have at worst An-singularities. Thus, we have a natural question if these
surfaces are global complete intersections in projective spaces or not.

Our three main results are summarized as follows. In Theorem 2.1, we show
that the projective embedding of minimal dimension and minimal degree by
ample complete linear systems on GTDP surfaces is given simultaneously by
the primitive anti-canonical class except one case. We next determine when
GTDP surfaces are complete intersections in projective spaces in Theorem 2.2.
Finally, in Proposition 2.4, we show that the minimal free resolution of the
defining ideal of the image under the anti-canonical embedding of GTDP
surfaces is given by an Eagon–Northcott complex.

For toric varieties, we follow the notations and terminology of Fulton [2].
We also assume that all the varieties and morphisms are defined over a fixed
algebraically closed field k of characteristic 0. We finally note that part of
this note is based on the master thesis of the first author [3].
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2. Main results

Let Ri (1 ≤ i ≤ 16) be a 2-dimensional reflexive integral convex polytope.
Let Si be the GTDP surface corresponding to Ri and AC(Si) the set of all
the ample line bundles on Si (the ample cone of Si). We note that any ample
line bundle on Si is generated by global sections and very ample ([2, Exercise
on p. 70]).

Let −KS be the anti-canonical bundle of S = Si and t the index of S
(t is the maximal natural number such that KS

t ∈ Pic(S)). Then we call
−K ′

S := − 1
t KS ∈ Pic(S) the primitive anti-canonical bundle of S temporarily

in this note.
Now, we state our first main result.

Theorem 2.1. Let S = Si be a GTDP surface. Consider two functions
h0,deg : AC(S) → {1,2, . . . } defined by h0(L) := dimH0(S,L) and degL :=
L2. Then

(i) If S �= S14, then the minimal values of h0 and deg are taken simulta-
neously by and only by the primitive anti-canonical bundle of S.

(ii) If S = S14 (the blowing-up of P2 at a point), then the minimal values of
h0 and deg are taken simultaneously by and only by π∗(OP2(2)) + OS14(−E),
where π : S14 → P2 is the blowing-up of a point of P2 and E ⊂ S14 is the
exceptional divisor.

Proof. We consider the S = S8 case as a typical case. Let R8 be the 2-
dimensional reflexive integral convex polytope and R◦

8 the polar of R8. The
fan Δ8 := ΔR8 of S8 is given by the set of cones generated by the faces of R◦

8

and the origin (Figure 2).

(i) We first describe Pic(S) and KS explicitly. Let D be a T -Cartier
divisor on S. Then D is given by (and identified with) a collection ψ = ψD

of 5 linear integral functions {ψi|1 ≤ i ≤ 5}, where ψi = aix + biy (ai, bi ∈

Figure 2. R8,R
◦
8 and Δ8.
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Z,1 ≤ i ≤ 5) is a linear integral form on σi. We think of ψ as an element
ψ = t(a1, b1, a2, b2, . . . , a5, b5) ∈ Z10.

By the compatibility of ψi’s on the edges γi, we have ψ1(v2) = ψ2(v2) etc.
Thus, we have five equations:

b1 = b2, −a2 + b2 = −a3 + b3, −a3 − b3 = −a4 − b4,

a4 − b4 = a5 − b5, a5 = a1.

Hence, by setting

A :=

⎛
⎜⎜⎜⎜⎝

0 1 0 −1 0 0 0 0 0 0
0 0 −1 1 1 −1 0 0 0 0
0 0 0 0 −1 −1 1 1 0 0
0 0 0 0 0 0 1 −1 −1 1
1 0 0 0 0 0 0 0 −1 0

⎞
⎟⎟⎟⎟⎠

we have T-CDiv(S) � ker(A : Z10 → Z5), where T-CDiv(S) is the group of
T-Cartier divisors. By the elementary divisor theory, we have B = PAQ,
where

B =

⎛
⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0

⎞
⎟⎟⎟⎟⎠

is the Smith normal form (the elementary divisor matrix) of A,

P =

⎛
⎜⎜⎜⎜⎝

1 0 0 0 0
0 0 0 0 1
0 0 0 −1 0
0 0 1 0 0
0 1 0 0 0

⎞
⎟⎟⎟⎟⎠ ∈ GL(5,Z)

and

Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 1 1 1 2 −1 −2 1 1
1 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 1 1 −1 0 1 0
0 0 0 0 0 1 0 0 0 0
0 0 0 1 1 2 −1 −1 1 0
0 0 0 0 0 0 0 1 0 0
0 0 1 1 1 2 −1 −2 1 1
0 0 0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ GL(10,Z).

Thus, T-CDiv(S) � kerA = Q(kerB) is a free submodule generated by the
ith columns (6 ≤ i ≤ 10) of Q. Set fi := (i + 5)th column of Q (1 ≤ i ≤ 5) so
that T-CDiv(S) �

⊕5
i=1 Zfi.
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Furthermore, the principal T-Cartier divisors of S are given by a global
integral linear form ax + by on R2 (a, b ∈ Z). Thus, the subgroup of the
principal T-Cartier divisors is generated by r1 := t(1,0,1,0,1,0,1,0,1,0) and
r2 := t(0,1,0,1,0,1,0,1,0,1) ∈ Z10. Set r1 =

∑5
j=1 αjfj and r2 =

∑5
j=1 βjfj .

Then we have (α1, . . . , α5) = (0,0,0,1,0) and (β1, . . . , β5) = (1,1,1,0,1). Thus,
if we set

C :=
t(0 0 0 1 0

1 1 1 0 1

)
,

then Pic(S) � coker(C : Z2 → Z5).
Let

H =
t(1 0 0 0 0

0 1 0 0 0

)
be the Smith normal form of C so that H = RCU , where

R =

⎛
⎜⎜⎜⎜⎝

0 0 0 1 0
0 1 0 0 0
0 −1 1 0 0
1 −1 0 0 0
0 −1 0 0 1

⎞
⎟⎟⎟⎟⎠ ∈ GL(5,Z) and U =

(
1 0
0 1

)
∈ GL(2,Z).

Then Pic(S) � cokerC = R−1(cokerH). Since cokerH is generated by t(0,0,
1,0,0), t(0,0,0,1,0), t(0,0,0,0,1) and

R−1 =

⎛
⎜⎜⎜⎜⎝

0 1 0 1 0
0 1 0 0 0
0 1 1 0 0
1 0 0 0 0
0 1 0 0 1

⎞
⎟⎟⎟⎟⎠ ,

we know Pic(S) is generated by t(0,0,1,0,0), t(1,0,0,0,0), t(0,0,0,0,1) in Z5.
Thus, we conclude that Pic(S) = ZOS(f3) ⊕ ZOS(f1) ⊕ ZOS(f5) � Z3, where
OS(fi) is the line bundle corresponding to fi.

The canonical bundle KS ∈ Pic(S) is represented as

ψKS
= {(x + y), (y), (−x), (−y), (x)} = t(1,1,0,1, −1,0,0, −1,1,0) ∈ Z10

as an integral piecewise linear function on R2 since it is characterized by
ψKS

(vi) = 1 (1 ≤ i ≤ 5). Since KS = OS(f2 − f3) = −OS(f1) − 2OS(f3) −
OS(f5) ∈ Pic(S), KS is not divisible in PicS and the index of S = S8 is 1.

(ii) Let Di be the prime T-Weil divisor corresponding to the edge γi =
R≥0vi (1 ≤ i ≤ 5). Then the Weil divisor E1 = [f3] corresponding to the
T-Cartier divisor f3 is calculated as E1 =

∑5
j=1 −〈f3, vj 〉Dj = 2D1 + 2D5.

Similarly, we have E2 := [f1] = −2D1 + 2D4 − 2D5 and E3 := [f5] = −D1.
Now let us determine the intersection product on the Weil divisor class

group over Q, A1(S)Q = A1(S) ⊗Z Q. In the case i �= j, the intersection
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number (Di,Dj) ∈ Q is calculated as

(Di,Dj) =

{
0, if γi and γj does not generate a cone σ ∈ Δ,

1
| det(vi,vj)| , if γi and γj generate a cone σ ∈ Δ.

The principal T-Cartier divisor φ = { −x} defines a T-Weil divisor [φ] =∑5
j=1 −φ(vj)Dj = 1D1 +0D2 +(−1)d3 +(−1)D4 +1D5 = D1 − D3 − D4 +D5,

and the corresponding line bundle OS(φ) = 0 in Pic(S). Similarly, the princi-
pal T-Cartier divisor ψ = { −y} defines a T-Weil divisor [ψ] =

∑5
j=1 −ψ(vj) ×

Dj = D2 + D3 − D4 − D5, and OS(ψ) = 0 in Pic(S).
From these, we get the intersection numbers of {Dj } as (D1,D2) = (D2,

D3) = (D1,D5) = 1, (D3,D4) = (D4,D5) = 1
2 , (Di,Dj) = 0 for other i �= j, and

D1
2 = D2

2 = −1,D3
2 = D5

2 = − 1
2 ,D4

2 = 0.
Thus, we get the intersection matrix

I = ((Ei,Ej)) =

⎛
⎝−2 4 0

4 −2 0
0 0 −1

⎞
⎠ .

For the calculation of h0(L) = dimH0(S,L) and degL = L2 for L ∈ Pic(S),
it is convenient to take an orthogonal basis of Pic(S). Set F1 := E1+2E3, F2 :=
E2, F3 := −E1 − E3. Then we have the intersection matrix

J = ((Fi, Fj)) =

⎛
⎝−2 0 0

0 −2 0
0 0 1

⎞
⎠ .

Then noting that KS = F1 − F2 + 3F3, from Riemann–Roch and the van-
ishing theorem ([2, Corollary on p. 74]), we have for any aF1 + bF2 + cF3 in
the ample cone AC(S),

h0(aF1 + bF2 + cF3)

= 1 +
1
2
(aF1 + bF2 + cF3)(−F1 + F2 − 3F3) +

1
2
(aF1 + bF2 + cF3)2

= 1 + a − b − 3
2
c − a2 − b2 +

c2

2
.

We also have

deg(aF1 + bF2 + cF3) = (aF1 + bF2 + cF3)2 = −2a2 − 2b2 + c2.

(iii) We determine the ample cone AC(S). Note that A1(S) is generated by
Di (1 ≤ i ≤ 5). Then by Kleiman’s ampleness criterion, L ∈ Pic(S) is ample if
and only if (L,Di) > 0 (1 ≤ i ≤ 5). Since (aF1 +bF2 +cF3,D1) = 2a − c, (aF1 +
bF2 + cF3,D2) = −2b − c, (aF1 + bF2 + cF3,D3) = b, (aF1 + bF2 + cF3,D4) =
a − b − c, (aF1 + bF2 + cF3,D5) = −a, we have that aF1 + bF2 + cF3 is ample
if and only if 2a − c > 0, −2b − c > 0, b > 0, −a > 0 (note that a − b − c > 0
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is unnecessary). Hence, AC(S) = {(a, b, c) ∈ Z3|2a − c > 0, −2b − c > 0, b >
0, −a > 0}.

So our minimization problem reduces to an elementary problem of min-
imizing h0(aF1 + bF2 + cF3) and deg(aF1 + bF2 + cF3) on AC(S). We use
Mathematica [8] to solve this. If we type:

Minimize[{ −a2 − b2 + c2/2 + a − b − (3/2)c + 1,

2a − c � 1, −2b − c � 1, b � 1, −a � 1}, {a, b, c}],

then the answer is:

−→
{
5, {a = −1, b = 1, c = −3}

}
.

Similarly, if we type:

Minimize[{−2a2 − 2b2 + c2,2a − c � 1, −2b − c � 1, b � 1, −a � 1}, {a, b, c}],

then we have:
−→

{
6, {a = −1, b = 1, c = −3}

}
.

We note that Mathematica minimizes h0 and deg in the closed continuous
domain {(a, b, c) ∈ R3|2a − c ≥ 1, −2b − c ≥ 1, b ≥ 1, −a ≥ 1}, but this causes
no problem. Thus, the minimum values of h0 and deg on AC(S) are taken
simultaneously at −F1 + F2 − 3F3 = −KS .

The other cases are computed similarly. The key computational data of the
other 15 surfaces can be seen in the Appendix, which is put in our web page
(URL: http://www.r.dendai.ac.jp/~nakano/research.html). In this Ap-
pendix, the defining equations of the image under these minimal projective
embeddings are also computed. �

Next, we determine if Si is a complete intersection in a projective space or
not.

Theorem 2.2. Let f : Si ↪→ PN be an embedding of Si by a (not necessarily
complete) linear system δ and suppose that the image f(Si) is not contained
in a hyperplane and is a global complete intersection in PN . Then there is at
most 1 such δ on each Si. More precisely:

(i) If i = 1,2,4,5,11,12,13, then δ is the complete primitive anti-canonical
system | −K ′

Si
|.

(ii) If i = 3,6,7,8,9,10,14,15,16, then there is no such δ.

Proof. Let δ′ be the complete linear system containing δ and f ′ : S = Si ↪→
PN+k be the corresponding embedding, where k = dim δ′ − dim δ. We have
a projection h : PN+k → PN such that h ◦ f ′ = f . By assumption, imf is
defined by N − 2 homogeneous equations of degree di (1 ≤ i ≤ N − 2, di ≥ 2)
in PN . Hence, by adjunction formula for the canonical bundle, we have
KS � OS(−N − 1 +

∑N −2
i=1 di). Since −KS is ample, we have 0 > −N − 1 +∑N −2

i=1 di ≥ −N − 1 + 2(N − 2) = N − 5. Thus, we conclude 2 ≤ N ≤ 4.

http://www.r.dendai.ac.jp/~nakano/research.html
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Proof of (i): We deal with S = S4 case. The other cases (Si for i = 1,2,5,11,
12,13) can be dealt with similarly. We have Pic(S) = ZOS(f1) ⊕ ZOS(f4),
KS = 2OS(f1)+ OS(f4), index = 1, h0(aOS(f1)+bOS(f4)) = 1 − a+2ab − 2b2,
deg(aOS(f1) + bOS(f4)) = 4ab − 4b2, the ample cone AC(S) = {aOS(f1) +
bOS(f4)|b > a, b < 0} (see the Appendix for the details). Now set δ′ = |x ×
OS(f1) + yOS(f4)|.

(a) Suppose N = 4. Then im(f : S ↪→ P4) is defined by 2 equations of de-
gree p, q (p, q ≥ 2). Since KS � OS(−5 + p + q), we must have p + q < 5.
Hence, p = q = 2 and we get 4 = deg imf = deg imf ′ = 4xy − 4y2 (x, y ∈
Z, y > x, y < 0). Thus, we have (x, y) = (−2, −1) and δ′ = | −KS |. Since
4 = dim| −KS | = dim δ, we have δ = | −KS | = | −K ′

S | in this case. Conversely,
it is easy to see that the image of the embedding associated to | −KS | is ac-
tually a complete intersection. Actually, this image is given by {x1x3 − x0

2 =
0, x2x4 − x0

2 = 0} ⊂ P4 (see the Appendix).
(b) Suppose N = 3. Then the imf is defined by 1 equation of degree p < 4.

Thus, p = 2,3. But we have 2 (or 3) = deg imf = deg imf ′ = 4xy − 4y2, a
contradiction.

(c) Suppose N = 2. Then 1 = deg imf = deg imf ′ = 4xy − 4y2, a contra-
diction.

Proof of (ii): Suppose that S = Si (i = 3,6,7,8,9,10,15,16). Then, we
know that the minimum value of degL for L ∈ AC(S) is greater than or equal
to 5 (see the Appendix). On the other hand, we have deg imf = deg imf ′ ≤ 4
as in (i), a contradiction.

Suppose S = S14. In this case, S � QP (P2), the blowing-up of P2 at a
point P .

(a) Suppose N = 4. Then S is a complete intersection of (2,2)-type in P4.
Then by the adjunction formula, −KS = OS(1) and K2

S = 4. On the other
hand, −KS = 3L − E, where L = π∗(OP2(1)), π : S → P2 is the blowing-up,
and E is the line bundle associated to the exceptional divisor. Thus K2

S = 8,
a contradiction.

(b) Suppose N = 3. Then S is a smooth surface of degree 2 or 3 in P3.
Since S � QP (P2), this is a contradiction.

(c) Suppose N = 2. Then S � P2, a contradiction. �

Thus, we have the following corollary.

Corollary 2.3. If i = 3,6,7,8,9,10,14,15,16, then Si can never be real-
ized as a complete intersection in a projective space.

We finally consider the defining equations and their syzygies of the image
under the anti-canonical embedding (not necessarily minimal embedding as
in Theorem 2.1) of our surfaces. The generators and syzygies of the defining
ideal of toric varieties have been a subject of interest and studied by several
authors ([6], [7, Chapter 13]). The following proposition is due to the referee.
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Proposition 2.4. Let S = Si be a GTDP surface. Then the minimal free
resolution of the ideal I−KS

of the image under the anti-canonical embedding
is given by an Eagon–Northcott complex.

Proof. Let r + 2 = h0(−KS). We use a hyperplane section argument as
in [6]: Toric surfaces embedded by complete linear systems are projectively
normal hence arithmetically Cohen–Macaulay. So taking a hyperplane section
yields a smooth, projectively normal curve (a generic section is smooth since
the singular locus is in codimension 2). Since reflexive polygons have a single
interior point, this curve has genus 1 [2, p. 91] and degree K2

S . Thus, the
minimal graded free resolution is that of an elliptic normal curve, which is an
Eagon–Northcott complex ([1, Theorem 6.26]—our choice of r above is made
to coincide with the notation in [1]). �
Acknowledgments. We thank the referee very much for giving us useful
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